2.4.2平面向量数量积的坐标表示、模、夹角
- 格式:ppt
- 大小:1.80 MB
- 文档页数:14
2.4.2平面向量数量积的坐标表示、模、夹角教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用教学过程:一、复习引入:1.平面向量数量积(内积)的定义:2.两个向量的数量积的性质: 设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ a 与b 同向时,a ⋅b = |a ||b |; a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a b a ⋅ ; 5︒|a ⋅b | ≤ |a ||b | 3.练习: (1)已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( )A.60° B .30° C.135° D.45°(2)已知|a |=2,|b |=1,a 与b 之间的夹角为3π,那么向量m =a -4b 的模为( ) A.2 B .23 C.6 D.12二、讲解新课:探究:已知两个非零向量),(11y x a =,),(22y x b =,怎样用a 和b 的坐标表示b a ⋅?.1、平面两向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式(1)设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x , 那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)3. 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x4. 两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=二、讲解范例:例1 已知A (1, 2),B (2, 3),C (-2, 5),试判断△ABC 的形状,并给出证明.例2 设a = (5, -7),b = (-6, -4),求a ·b 及a 、b 间的夹角θ(精确到1o )分析:为求a 与b 夹角,需先求a ·b 及|a |·|b |,再结合夹角θ的范围确定其值.例3 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少?评述:已知三角形函数值求角时,应注重角的范围的确定.三、课堂练习:1、P107面1、2、3题2、已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 四、小结: 1、b a ⋅2121y y x x +=2、平面内两点间的距离公式 221221)()(||y y x x a -+-=3、向量垂直的判定:设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x五、课后作业:作业二十四。
2.4.2 平面向量数量积的坐标表示、模、夹角知识点一 平面向量数量积的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ. 数量积 a ·b =x 1x 2+y 1y 2 向量垂直 a ⊥b ⇔x 1x 2+y 1y 2=0知识点二 向量 模长a =(x ,y ) |a |=x 2+y 2以A (x 1,y 1),B (x 2,y 2)为端点的向量AB →|AB →|=x 2-x 12+y 2-y 12 知识点三 cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 概念理解:1.若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.( )2.若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1y 2-x 2y 1=0.( )3.若两个非零向量的夹角θ满足cos θ>0,则两向量的夹角θ一定是锐角.( )类型一 数量积的坐标运算数量积坐标运算的技巧(1)进行数量积运算时,要正确使用公式a·b =x 1x 2+y 1y 2,并能灵活运用以下几个关系:①|a |2=a ·a ;②(a +b )·(a -b )=|a |2-|b |2;③(a +b )2=|a |2+2a ·b +|b |2.(2)在平面几何图形中求数量积,若几何图形规则易建系,一般先建立坐标系,写出相关向量的坐标,再求数量积.1.已知a =(2,-1),b =(1,-1),则(a +2b )·(a -3b )等于( )A .10B .-10C .3D .-32、如图所示,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,且DF →=2FC →,则AE →·BF →的值是________.3、向量a =(1,-1),b =(-1,2),则(2a +b )·a 等于( )A .-1B .0C .1D .2类型二 平面向量的模求向量a =(x ,y )的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系要灵活应用公式a 2=|a|2=x 2+y 2,求模时,勿忘记开方.(2)a ·a =a 2=|a |2或|a |=a 2=x 2+y 2,此性质可用来求向量的模,可以实现实数运算与向量运算的相互转化.1、已知平面向量a =(3,5),b =(-2,1).(1)求a -2b 及其模的大小;(2)若c =a -(a ·b )b ,求|c |.2、已知向量a =(2,1),a·b =10,|a +b |=52,则|b |等于 。
2.4.2平面向量数量积的坐标表示、模、夹角主备教师:李华一、内容及其解析(一)内容:平面向量数量积的坐标表示、模、夹角.(二)解析:本节课要学的内容有平面向量数量积的坐标表示、模、夹角,指的是发现公式、应用公式解决问题其核心是公式的推导与运用理解它关键就是根据平面向量数量积的意义探究其坐标表示,并在此基础上探索向量的模、夹角等重要的度量公式;理解掌握平面向量数量积的坐标表达式,会进行数量积的运算,理解掌握向量的模、夹角等公式,并能够根据公式解决两个向量的夹角、垂直的问题.学生已经学过了向量的坐标表示及平面向量数量积的定义,本节课的内容平面向量数量积的坐标表示、模、夹角,就是在此基础上的发展.由于它还与求线段长度,求角度等实际应用问题有联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容.教学的重点是探究发现公式,应用公式解决问题,所以解决重点的关键是根据平面向量数量积的意义探究其坐标表示,理解并会进行运算,能够根据公式解决两个向量的夹角、垂直等问题.二、目标及其解析(一)教学目标1.记住平面向量数量积的坐标表示式和向量的模、夹角等度量的坐标公式;2.理解平面向量数量积、模、夹角的坐标公式.(二)解析1.记住平面向量数量积的坐标表示式和向量的模、夹角等度量的坐标公式,就是指根据平面向量数量积的意义探究其坐标表示,记住公式;2.理解平面向量数量积、模、夹角的坐标公式,就是指会进行数量积的运算,理解掌握向量的模、夹角等公式;能够根据公式解决两个向量的夹角、垂直等问题.三、问题诊断分析在本节课的教学中,学生可能遇到的问题是平面数量积坐标公式的理解,产生这一问题的原因是:平面向量数量积的含义理解不清。
要解决这一问题,就要在通过练习,加强公式的理解和运用.四、教学过程设计1、导入新课⑴a r 与b r 的数量积的定义?⑵向量的运算有几种?应怎样计算?2、提出问题 问题1:若11(,)a x y =r ,22(,)b x y =r ,则a r 与b r 的数量积如何用坐标表示?【师生活动】: 1.设,i j r r 是分别与x 轴、y 轴同向的两个单位向量,若两个非零向量11(,)a x y =r ,22(,)b x y =r ,则向量a r 与b r 用,i j r r 分别如何表示? 2.对于上述向量,i j r r ,则2i u r ,2j r ,,i j r r 分别等于什么? 3.根据数量积的运算性质,a b ⋅r r 等于什么?4.如何用文字语言描述这一结论?5.如何利用数量积的坐标表示证明(a b c a c b c +⋅=⋅+⋅)r r r r r r r 。
2.4.2平面向量数量积的坐标表示、模、夹角1.两向量的数量积与两向量垂直的坐标表示已知两个非零向量,向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.数量积两个向量的数量积等于它们对应坐标的乘积的和,即a·b=x1x2+y1y2向量垂直a⊥b⇔x1x2+y1y2=0[点睛]记忆口诀:数量积的坐标表示可简记为“对应相乘计算和”.2.与向量的模、夹角相关的三个重要公式(1)向量的模:设a=(x,y),则|a|=x2+y2.(2)两点间的距离公式:若A(x1,y1),B(x2,y2),则|AB|=(x1-x2)2+(y1-y2)2.(3)向量的夹角公式:设两非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ,则cos θ=a·b|a||b|=x1x2+y1y2x21+y21·x22+y22.平面向量数量积的坐标运算[典例](1)向量a=(1,-1),b=(-1,2),则(2a+b)·a=()A.-1B.0C.1 D.2(2)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,AB=(1,-2),AD =(2,1),则AD·AC=()A.5 B.4C.3 D.2[活学活用]已知向量a与b同向,b=(1,2),a·b=10.(1)求向量a的坐标;(2)若c=(2,-1),求(b·c)·a.向量的模的问题[典例] (1)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( )A. 5B.10 C .2 5D .10(2)已知点A (1,-2),若向量AB 与a =(2,3)同向,|AB |=213,则点B 的坐标是________.[活学活用]1.已知向量a =(cos θ,sin θ),向量b =(3,0),则|2a -b |的最大值为________.2.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |=________.向量的夹角和垂直问题[典例] (1)已知a =(3,2),b =(-1,2),(a +λb )⊥b ,则实数λ=________.(2)已知a =(2,1),b =(-1,-1),c =a +kb ,d =a +b ,c 与d 的夹角为π4,则实数k 的值为________.[活学活用]已知平面向量a =(3,4),b =(9,x ),c =(4,y ),且a ∥b ,a ⊥c . (1)求b 与c ;(2)若m =2a -b ,n =a +c ,求向量m ,n 的夹角的大小.求解平面向量的数量积[典例] 已知点A ,B ,C 满足|AB |=3,|BC |=4,|CA |=5,求AB ·BC +BC ·CA +CA ·AB 的值.[活学活用]如果正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,那么cos ∠DOE 的值为________.层级一 学业水平达标1.已知向量a =(0,-23),b =(1,3),则向量a 在b 方向上的投影为( ) A.3 B .3 C .- 3D .-32.设x ∈R ,向量a =(x,1),b =(1,-2),且a ⊥b ,则|a +b |=( ) A. 5 B.10 C .2 5D .103.已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =( ) A .-12 B .-6 C .6 D .12 4.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( )A .865B .-865C .1665D .-16655.已知A (-2,1),B (6,-3),C (0,5),则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等边三角形6.设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a|=________. 7.已知向量a =(1,3),2a +b =(-1,3),a 与2a +b 的夹角为θ,则θ=________. 8.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a·b =3,则向量b 的坐标为________.9.已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R. (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.10.在平面直角坐标系xOy 中,已知点A (1,4),B (-2,3),C (2,-1). (1)求AB ·AC 及|AB +AC |;(2)设实数t 满足(AB -t OC )⊥OC ,求t 的值.层级二 应试能力达标1.设向量a =(1,0),b =⎝⎛⎭⎫12,12,则下列结论中正确的是( ) A .|a |=|b | B .a ·b =22C .a -b 与b 垂直D .a ∥b2.已知向量OA =(2,2),OB =(4,1),在x 轴上有一点P ,使AP ·BP 有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0) 3.若a =(x,2),b =(-3,5),且a 与b 的夹角是钝角,则实数x 的取值范围是( )A.⎝⎛⎭⎫-∞,103 B.⎝⎛⎦⎤-∞,103 C.⎝⎛⎭⎫103,+∞D.⎣⎡⎭⎫103,+∞4.已知OA =(-3,1),OB =(0,5),且AC ∥OB ,BC ⊥AB (O 为坐标原点),则点C 的坐标是( )A.⎝⎛⎭⎫-3,-294 B.⎝⎛⎭⎫-3,294 C.⎝⎛⎭⎫3,294 D.⎝⎛⎭⎫3,-294 5.平面向量a =(1,2),b =(4,2),c =ma +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =________.6.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE ·CB 的值为______;DE ·DC 的最大值为______.7.已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2). (1)若|c |=25,且c ∥a ,求c 的坐标; (2)若|b |=52,且a +2b 与2a -b 垂直,求a 与b 的夹角θ.8.已知OA=(4,0),OB=(2,23),OC=(1-λ)OA+λOB(λ2≠λ).(1)求OA·OB及OA在OB上的投影;(2)证明A,B,C三点共线,且当AB=BC时,求λ的值;(3)求|OC|的最小值.。