12.3乘法公式1两数和乘以这两数的差作业
- 格式:doc
- 大小:102.31 KB
- 文档页数:7
12.3 乘法公式1 两数和乘以这两数的差课前知识管理1、两数和与这两数差的积等于这两个数的平方差:(a+b)(a-b)=a 2-b 2所以,我们把这个公式叫作平方差公式.平方差公式可以形象记忆为:(□+△)(□—△)=□2—△2.几何背景:如图,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a 2-b 2.若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成S Ⅰ+S Ⅲ=S Ⅰ+S Ⅳ=(a+b )(a -b ),从而验证了平方差公式(a+b )(a -b )=a 2-b 2. 2、平方差公式的特征:(1)公式左边的两个因式都是二项式,必须是相同的两数的和与差.或者说两个二项式必须有一项完全相同,另一项只有符号不同.(2)公式中的a 与b 可以是数,也可以换成一个代数式.名师导学互动典例精析:知识点1:直接应用平方差公式 例1、计算:)421)(214(22x x +-.【解题思路】此题是两个二项式相乘,且这两个二项式中各有一完全相同的项24x ,另外一项-21与21互为相反数,符合平方差公式的结构特点,因此,可直接套用平方差公式. 【解】)421)(214(22x x +-=4116)21()4(4222-=-x x .【方法归纳】将两个括号内的相同项24x 看作□,符号相反的项-21与21看作△,就可以直接运用平方差公式.对应练习:计算(y —2x)(—2x —y). 知识点2:连用平方差公式化简 例2、化简:()()()()()224488x y x y x yxy x y -++++.【解题思路】本题的前两项能利用平方差公式得到()22x y -,它与第三项()22xy +又能构成平方差公式,依次类推,较轻松地得到结果. 【解】原式=()()()()22224488x y xy x y x y -+++=()()()444488x y x y x y -++=()()88881616.x yxy x y -+=-【方法归纳】连用平方差公式使运算量大大减小,实现简算目的. 对应练习:计算:))()()()((884422b a b a b a b a b a ++++-知识点3:分组后运用平方差公式例3、计算: (2a+3)(3a+5)(2a-3)(3a-5).【解题思路】若直接运算,则计算比较繁琐,如果运用乘法的交换律将第一、三结合,第二、四结合分组,就可以利用乘法公式计算.【解】(2a+3)(3a+5)(2a -3)(2a -5)=[(2a+3)(2a -3)][(3a+5)(3a -5)]=(4a 2-9)(9a 2-25)=36a 4-181a 2+225.【方法归纳】根据算式中各因式的特征,恰当分组后利用乘法公式可以简化计算,减少运算量.对应练习:计算:(x+2)(x 2+4)(x —2). 知识点4:添项后运用平方差公式例4.计算;1)12)(12)(12)(12(842+++++.【解题思路】本题若添上一个因式“2-1”后,则可以连续四次运用平方差公式计算. 【解】原式==+++++-1)12)(12)(12)(12)(12(8421)12)(12)(12)(12(8422++++- =1)12)(12)(12(844+++-=16168821121)12)(12(=+-=++-.【方法归纳】本题的解题关键是在不改变原式的值的前提下,将原式添上一个因式,使得它能运用乘法公式计算.对应练习:某同学在计算)14)(14(32++时,把3写成14-后,发现可以连续运用两数和乘以这两数差公式计算:2551161)4()14)(14()14)(14)(14()14)(14(32222222=-=-=+-=++-=++.请借鉴该同学的经验,计算:1584221)211)(211)(211)(211(+++++. 知识点5:逆用平方差公式例5.计算:22)43()32(a b ba --+【解题思路】若直接运用完全平方公式展开再相减,运算量大,若把式中的“32ba +”与“a b43-”分别视为平方差公式中的a 、b ,逆用平方差公式,则运算简便. 解:22)43()32(a bb a --+ab a a b a a b b a a b b a 4126322433243322+-=⨯⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=.【方法归纳】本题正向思考解题较为麻烦,若抓住题目的特征,逆用公式解题,往往显得简单.对应练习:计算:⎪⎭⎫ ⎝⎛-⋅⋅⋅⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-22221011411311211. 知识点6:变形后运用平方差公式 例6.计算293.【解题思路】注意到93接近整百数100,二者相差7,若使用数字93、7巧构平方差公式便可实现简算.【解】()()864949860077937939322=+=+-+=.【方法归纳】公式()()22b a b a b a -=-+可以变形为()()22b b a b a a +-+=.对应练习:计算:298知识点7:拆项变形后使用 例7、计算(x-y+1)(x+y-5).【解题思路】观察式子的特点,可以将两个多项式拆成两个数的和与这两个数的差的形式.然后利用平分差公式计算. 解:(x-y+1)(x+y-5)=(x-y-2+3)(x-y-2-3)=[(x-2)-(y-3)][(x-2)+(y-3)]=(x-2)2-(y-3)2=x 2-4x+4-y 2+6y-9=x 2-y 2-4x+6y-5.【方法归纳】拆项的关键在于将两个因式中的相同项、相反项正确分析出来,并恰当分组,使之符合平方差公式的结构特征. 对应练习:()()3232-++-b a b a易错警示例8、计算:(2x +3)(2y -3). 错解:(2x +3)(2y -3)=4xy -9.错解分析:(2x +3)(2y -3)中的两个因式不符合“两个数的和与这两个数的差的积”,因此不能用平方差公式做,只能按多项式乘以多项式的法则进行运算. 正解:(2x +3)(2y -3)=4xy -6x +6y -9. 例9、(2x +9)(2x -9).错解:(2x +9)(2x -9)=4x 2-9.错解分析:(2x +9)(2x -9)应等于2x 与9的平方差,即(2x )2-92,错解中没有把第二项9平方,当第二项是完全平方数时,很容易犯这样的错误.正解:(2x +9)(2x -9)=(2x )2-92=4x 2-81.例10、(a 3-8)(a 3+8).错解:(a 3-8)(a 3+8)=a 9-64.错解分析:(a 3-8)(a 3+8)中(a 3)2=a 6,而(a 3)2≠a 9.正解:(a 3-8)(a 3+8)=(a 3)2-82=a 6-64. 例11、(-2a -7)(2a -7).错解:(-2a -7)(2a -7)=4a 2-49.错解分析:(-2a -7)(2a -7)符合平方差公式的特征,但到底是哪个数的平方减去哪个数的平方呢?错解中认为就是前面一个数的平方减去后面一个数的平方,但(-2a -7)(2a -7)≠(-2a )2-72,应该是两式中符号相同的数的平方减去符号相反的那个数的平方,即: (-2a -7)(2a -7)=(-7-2a )(-7+2a ) =(-7)2-(2a )2或(-2a -7)(2a -7)=-(2a +7)(2a -7) =-[(2a )2-72].正解: (-2a -7)(2a -7) = (-7-2a )(-7+2a ) =(-7)2-(2a )2=49-4a 2.课堂练习评测知识点1:平方差公式1、在边长为a 的正方形纸片中剪去一个边长为b 的小正方形()a b >(如图1),把余下的部分沿虚线剪开,拼成一个矩形(如图2),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是 (用字母表示).2、已知2a b +=,则224a b b -+的值是 3、下列计算中,错误的有( )①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2. A .1个 B .2个 C .3个 D .4个 知识点2:平方差公式的实际应用4、一个长方形的面积是(x 2-9)平方米,其长为(x +3)米,用含有x 的整式表示它的宽为___________米.知识点3:平方差公式的运用5、计算:2221123443m n n m ⎛⎫⎛⎫-+-- ⎪⎪⎝⎭⎝⎭;6、计算:(3x-2y)(9x 2+4y 2)(-2y-3x)7、平方差公式的常见变形(1)位置变化:(a+b)(-b+a)=________; (2)符号变化:(-a-b)(a-b)=_______.(3)系数变化:(2a+3b)(2a-3b)=_______.(4)指数变化:(a 2+b 3)(a 2-b 3)=_____.(5)项数变化:(a+2b-c)(a-2b-c)=_________________;(6)连用公式:(a+b)(a-b)(a 2+b 2)= __________________.课后作业练习基础训练一、填空题1、=--+-)2)(2(y y _______.2、=-+)2)(2(y x y x ______.3、=-+)3121)(3121(b a b a ______. 4、=---))((22x a x a _______. 5、=++-))()((22b a b a b a _______. 6、=-+-))((y x y x _______. 7、=+-----+))(())((y x y x y x y x _______.8、+xy (_______)-xy (_______)81122-=y x .二、选择题9、下列各式中,能直接用平方差公式计算的是( ) A )22)(2(b a b a +--; B )2)(2(a b b a +-; C )2)(2(b a b a +--; D )2)(2(b a a b ++-. 10、下列各式中,运算结果是223625y x -的是( ) A )56)(56(x y x y --+- ; B )56)(65(x y y x +-; C )56)(56(x y x y ++- ; D )65)(65(y x y x +--.11、为了应用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是( )A.[x-(2y+1)]2B.[x-(2y-1)][x+(2y-1)]C.[(x-2y)+1][(x-2y)-1]D.[x+(2y+1)]2三、解答题12、计算)2)(2())((n m n m n m n m -+-+-.13、先化简后求值2),2)(2()2)(2(22-=-+--+x x x x x .提高训练14、解方程4)2()1)(1(2=---+x x x x .15、已知代数式(-4x+3y)(-3y-4x)与多项式M 的差是(2x+3y)(8x-9y),求多项式M.16、一个长方形菜地,长为(2a+3)cm,宽为(2a-3)cm, 那么这块菜地的面积是多少?17、一个长方体的游泳池的长为(4a 2+9b 2)米,宽为(2a+3b)米,高为(2a-3b)米,那么这个游泳池的容积是多少?12.3.1对应练习答案:1.解:原式=[(—2x)+y][(—2x)—y]=(—2x)2—y 2=4x 2—y 2.2.解:原式=))()(())()()((88444488442222b a b a b a b a b a b a b a ++-=+++-=16168888))((b a b a b a -=+-.3.解:原式=(x+2)(x —2)(x 2+4)=(x 2—4)(x 2+4)=x 4—16. 4.答案:2 5.解:原式=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+10111011411411311311211211 1091011434532342123⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯=2011=. 6.解:()()96044960022982989822=+=+-+=. 7.答案:96422-+-b b a . 课堂作业练习参考答案:1、答案:()()22a b a b a b +-=-2、答案:43、答案:D4、答案:(3x -)5、解:原式=22224211134916m n m n ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭.6、解:原式=[(3x-2y)(-3x-2y)](9x 2+4y 2) =(4y 2-9x 2)(9x 2+4y 2)=16y 4-81x 47、(1)a 2-b 2 (2)b 2-a 2 (3)4a 2-9b 2 (4)a 4-b 6 (5)(a-c)2-4b 2=a 2-2ac+c 2-4b 2(6)a 4-b 4课后作业练习参考答案:1~8:24y -;224y x -;229141b a -;24a x -;44b a -;22x y -;0;91,91. 9、D ;10、A ;11、D 12、23n ;13、化简结果为24x x -,求值结果为12;14、5.2=x15、解:由题意得: M=(-4x+3y)(-3y-4x)-(2x+3y)(8x-9y)=(-4x)2-(3y)2-(16x 2-18xy+24xy-27y 2)=16x 2-9y 2-16x 2-6xy+27y 2=18y 2-6xy.16、解:这块菜地的面积为: (2a+3)(2a-3)=(2a)2-9=4a 2-9(cm 2)17、解:游泳池的容积是:(4a 2+9b 2)(2a+3b)(2a-3b)=[(2a)2-(3b)2](4a 2+9b 2)=(4a 2-9b 2)(4a 2+9b 2)=(4a 2)2-(9b 2)2=16a 4-81b 4(米3)。
§ 12.3.1两数和乘以这两数的差、背景介绍及教学资料本教材改变了传统教材乘法公式单独成章的模式,而是在学习了整式乘法的基本知识之后直接导入,显得贴切自然,使学生体会到从一般到特殊的思想。
另一方面,新课标对乘法公式的要求是:会推导乘法公式(a + b) (a—b)= a2-b2, 了解公式的几何背景,并能进行简单计算。
较之旧大纲, 内容减少,要求降低。
当然,乘法公式的推导是初中运用推理方法进行恒等变形的开端,在推导过程中使用了以特殊到一般的归纳推理方法,教学中不仅要求学生记住公式,理解公式,更要深入理解公式中字母的广泛含义。
二、教学设计【教学内容分析】本节课引导学生用所学过的多项式和多项式相乘的法则,动手运算两数和与两数差的积结果,从而让他们体会两数和与两数差的积的结果与这两数的关系,从而得出平方差公式,并通过做一做给出它的几何解释,即增加可信度和印象,也增强学生的学习兴趣。
【教学目标】1、通过运算多项式乘法,来推导平方差公式,培养学生认识由一般法则到特殊法则的能力。
2、通过亲自动手、观察并发现平方差公式的结构特征,并能从广义上理解公式中字母的含义。
3、初步学会运用平方差公式进行计算。
【教学重点、难点】重点是平方差公式的推导及应用。
难点是对公式中a, b的广泛含义的理解及正确运用。
【教学准备】展示课件。
【教学过程】(2) (3-x)(3+x)= _______________(3) (a+b)(a-b )= ______________(4) (2m+n)(2m-n)= _____________二、交流探索,归结公式1、探索引导学生对引例中的1,2,3 , 4进行研究,对探索发现的特点进行整理归纳。
并回答问题:1,2,3,4 小题等式左边有哪些特点?回答问题:1,2,3,4 小题等式右边有哪些特点?问题:观察以上算式及其运算结果,你发现了什么规律?2、归结引导学生仔细而具体地观察题目特征,比较等号两边的代数式,它们在系数和字母方面各有什么特点?两者有什么联系?(用自己的语言叙述你的发现)进而分析产生这些特点的原因,然后由特殊到一般寻找出规律,并用语言进行概括,得到:两数和与这两数差的积,等于这两数的平方的差。
[12.3 1.两数和乘以这两数的差]一、选择题1.计算(2a +1)(2a -1)的结果是( ) A .4a 2-1 B .1-4a 2C .2a -1D .1+4a 22.2017·福建长泰一中、华安一中联考下列计算中可采用平方差公式的是( ) A .(x +y )(x -z ) B .(-x +2y )(x +2y ) C .(-3x -y )(3x +y ) D .(2a +3b )(2b -3a ) 3.下列各式中,运算结果是9a 2-16b 2的是( ) A .(-3a +4b )(-3a -4b ) B .(-4b +3a )(-4b -3a ) C .(4b +3a )(4b -3a ) D .(3a +2b )(3a -8b )4.计算(-2a -1)(2a -1)的结果是( ) A .4a 2-1 B .-4a 2-1 C .4a 2+1 D .-4a 2+15.下列各式可以用平方差公式简化计算的是( ) A .309×285 B .4001×3999 C .19.7×20.1 D .214×1236.(a +2b -3c )(a -2b -3c )可化为( ) A .a 2-(2b -3c )2B .(a -3c )2-4b 2C .(a +2b )2-9c 2D .9c 2-(a +2b )27.计算(x -1)(x +1)(x 2+1)-(x 4+1)的结果为( ) A .0 B .2 C .-2 D .-2a 48.有三种长度分别为三个连续整数的木棒,小明利用中等长度的木棒摆成了一个正方形,小刚用其余两种长度的木棒摆出了一个长方形,则他们两人谁摆的面积大?( )A .小刚B .小明C .同样大D .无法比较 二、填空题9.计算:(1)2017·德阳(x +3)(x -3)=________; (2)(x -12y )(x +12y )=________;(3)(3a -b )(-3a -b )=________.10.运用平方差公式进行简便运算:499×501=________×________=________. 11.一块长方形的菜地,长为(2a +3b )米,宽为(2a -3b )米,这块菜地的面积为________平方米.12.已知(a +b +1)(a +b -1)=63,则a +b 的值为________. 三、解答题 13.计算:(1)⎝ ⎛⎭⎪⎫13x +2⎝ ⎛⎭⎪⎫13x -2;(2)(x +1)(x -1)-x 2;(3)(x -3)(x +3)(x 2+9);(4)(2x +5)(2x -5)-(4+3x )(3x -4).14.计算:100×102-1012.15.解方程:(2x -3)(-2x -3)+9x =x (3-4x ).16.2017·宁波先化简,再求值:(2+x )(2-x )+(x -1)(x +5),其中x =32.17.如图K -13-1甲所示,边长为a 的大正方形中有一个边长为b 的小正方形. (1)请用含字母a 和b 的代数式表示出图甲中阴影部分的面积;(2)将阴影部分拼成一个长方形,如图乙,这个长方形的长和宽分别是多少?表示出阴影部分的面积;(3)比较(1)和(2)的结果,可以验证平方差公式吗?请给予解答.链接听课例2归纳总结图K -13-118.已知一个长方体的长为2a ,宽也是2a ,高为h . (1)用含a ,h 的代数式表示该长方体的体积与表面积; (2)当a =3,h =12时,求该长方体的体积与表面积;(3)在(2)的基础上,把长增加x ,宽减少x ,其中0<x <6,则长方体的体积是否发生变化?请说明理由.阅读理解阅读下列解法:(1)计算:(22+1)(24+1)(28+1)(216+1).解:原式=(22-1)(22+1)(24+1)(28+1)·(216+1)÷(22-1)=(24-1)(24+1)(28+1)(216+1)÷(22-1)=(28-1)(28+1)(216+1)÷3=(216-1)(216+1)÷3=(232-1)÷3=13(232-1).(2)计算:(2+1)(22+1)(24+1)(28+1)×…×(21024+1).解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)×…×(21024+1)=(22-1)(22+1)(24+1)(28+1)×…×(21024+1)=…=(21024-1)(21024+1)=22048-1.请仿照上面的解法中的一种或自己另外寻找一种解法解答下列问题. 计算:⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+124(1+128)×(1+1216)+(1+1231).详解详析【课时作业】 [课堂达标] 1.A2.[解析] B 根据平方差公式的特点,(-x +2y)·(x+2y)=(2y -x)(2y +x)=(2y)2-x 2.3.[解析] A 根据两数和乘以这两数的差的公式,只有(-3a +4b)(-3a -4b)=9a2-16b 2;B ,C 两个选项,虽然符合平方差公式的结构特征,但结果是16b 2-9a 2;D 选项的运算结果不是9a 2-16b 2.故选A .4.[解析] D 原式=(-1-2a)(-1+2a)=(-1)2-(2a)2=1-4a 2. 5.B 6.B7.[解析] C 原式=(x 2-1)(x 2+1)-(x 4+1)=x 4-1-x 4-1=-2,故选C . 8.[全品导学号:90702218] B 9.(1)x 2-9 (2)x 2-14y 2 (3)b 2-9a 210.[答案] (500-1) (500+1) 249999[解析] 原式=(500-1)×(500+1)=5002-1=250000-1=249999. 11.[答案] (4a 2-9b 2)[解析] 菜地的面积为(2a +3b)(2a -3b)=(4a 2-9b 2)米2. 12.[答案] ±8[解析] 因为(a +b +1)(a +b -1)=[(a +b)+1][(a +b)-1]=(a +b)2-1, 所以(a +b)2-1=63,即(a +b)2=64,所以a +b =±8. 13.解:(1)原式=⎝ ⎛⎭⎪⎫13x 2-22=19x 2-4.(2)原式=x 2-1-x 2=-1.(3)原式=(x 2-9)(x 2+9)=x 4-81. (4)原式=(2x)2-52-[(3x)2-42] =4x 2-25-9x 2+16 =-5x 2-9.14.[解析] 由于数字较大,直接计算较烦琐.注意到100,101,102是连续的自然数,因此可考虑运用“两数和与这两数差的乘法公式”来简化运算.解:100×102-1012=(101-1)(101+1)-1012=1012-1-1012=-1.15.解:9-(2x)2+9x =3x -4x 2, 9-4x 2+9x =3x -4x 2, -4x 2+9x -3x +4x 2=-9, 6x =-9, x =-32.16.解:原式=4-x 2+x 2+4x -5=4x -1. 当x =32时,原式=4×32-1=5.17.解:(1)大正方形的面积为a 2,小正方形的面积为b 2,故图甲中阴影部分的面积为a 2-b 2.(2)长方形的长和宽分别为a +b ,a -b , 故图乙中阴影部分的面积为(a +b)(a -b).(3)可以验证平方差公式,比较(1)和(2)的结果,都表示同一阴影的面积,它们相等,即(a +b)(a -b)=a 2-b 2.18解:(1)长方体的体积为2a·2a·h=4a 2h , 长方体的表面积为2×2a·2a+4×2a·h=8a 2+8ah.(2)当a =3,h =12时,长方体的体积为4×32×12=18.当a =3,h =12时,长方体的表面积为8×32+8×3×12=84.(3)长方体的体积发生变化.理由:当长方体的长增加x ,宽减少x 时,长方体的体积为12(6+x)(6-x)=18-12x 2<18,故长方体的体积减小了. [素养提升]解:原式=(1-12)(1+12)(1+122)(1+124)×⎝ ⎛⎭⎪⎫1+128⎝ ⎛⎭⎪⎫1+1216×2+⎝ ⎛⎭⎪⎫1+1231=⎝ ⎛⎭⎪⎫1-122⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+124⎝ ⎛⎭⎪⎫1+128(1+1216)×2+(1+1231)=⎝ ⎛⎭⎪⎫1-124⎝ ⎛⎭⎪⎫1+124⎝ ⎛⎭⎪⎫1+128⎝ ⎛⎭⎪⎫1+1216×2+(1+1231)=⎝ ⎛⎭⎪⎫1-128⎝ ⎛⎭⎪⎫1+128⎝ ⎛⎭⎪⎫1+1216×2+⎝ ⎛⎭⎪⎫1+1231=⎝ ⎛⎭⎪⎫1-1216⎝ ⎛⎭⎪⎫1+1216×2+⎝ ⎛⎭⎪⎫1+1231 =⎝ ⎛⎭⎪⎫1-1232×2+⎝ ⎛⎭⎪⎫1+1231 =2-1231+1+1231=3.。
[12.3 1.两数和乘以这两数的差]一、选择题1.计算(2a +1)(2a -1)的结果是( ) A .4a 2-1 B .1-4a 2C .2a -1D .1+4a 22.下列计算中可采用平方差公式的是( ) A .(x +y )(x -z ) B .(-x +2y )(x +2y ) C .(-3x -y )(3x +y ) D .(2a +3b )(2b -3a ) 3.下列各式中,运算结果是9a 2-16b 2的是( ) A .(-3a +4b )(-3a -4b ) B .(-4b +3a )(-4b -3a ) C .(4b +3a )(4b -3a ) D .(3a +2b )(3a -8b )4.计算(-2a -1)(2a -1)的结果是( ) A .4a 2-1 B .-4a 2-1 C .4a 2+1 D .-4a 2+15.下列各式可以用平方差公式简化计算的是( ) A .309×285 B .4001×3999 C .19.7×20.1 D .214×1236.(a +2b -3c )(a -2b -3c )可化为( ) A .a 2-(2b -3c )2B .(a -3c )2-4b 2C .(a +2b )2-9c 2D .9c 2-(a +2b )27.计算(x -1)(x +1)(x 2+1)-(x 4+1)的结果为( ) A .0 B .2 C .-2 D .-2a 48.有三种长度分别为三个连续整数的木棒,小明利用中等长度的木棒摆成了一个正方形,小刚用其余两种长度的木棒摆出了一个长方形,则他们两人谁摆的面积大?( )A .小刚B .小明C .同样大D .无法比较 二、填空题9.计算:(1)(x +3)(x -3)=________; (2)(x -12y )(x +12y )=________;(3)(3a -b )(-3a -b )=________.10.运用平方差公式进行简便运算:499×501=________×________=________. 11.一块长方形的菜地,长为(2a +3b )米,宽为(2a -3b )米,这块菜地的面积为________平方米.12.已知(a +b +1)(a +b -1)=63,则a +b 的值为________. 三、解答题 13.计算:(1)⎝ ⎛⎭⎪⎫13x +2⎝ ⎛⎭⎪⎫13x -2;(2)(x +1)(x -1)-x 2;(3)(x -3)(x +3)(x 2+9);(4)(2x +5)(2x -5)-(4+3x )(3x -4).14.计算:100×102-1012.15.解方程:(2x -3)(-2x -3)+9x =x (3-4x ).16.化简,再求值:(2+x )(2-x )+(x -1)(x +5),其中x =32.17.如图甲所示,边长为a 的大正方形中有一个边长为b 的小正方形. (1)请用含字母a 和b 的代数式表示出图甲中阴影部分的面积;(2)将阴影部分拼成一个长方形,如图乙,这个长方形的长和宽分别是多少?表示出阴影部分的面积;(3)比较(1)和(2)的结果,可以验证平方差公式吗?请给予解答.链接听课例2归纳总结18.已知一个长方体的长为2a ,宽也是2a ,高为h . (1)用含a ,h 的代数式表示该长方体的体积与表面积; (2)当a =3,h =12时,求该长方体的体积与表面积;(3)在(2)的基础上,把长增加x ,宽减少x ,其中0<x <6,则长方体的体积是否发生变化?请说明理由.阅读理解阅读下列解法:(1)计算:(22+1)(24+1)(28+1)(216+1).解:原式=(22-1)(22+1)(24+1)(28+1)·(216+1)÷(22-1)=(24-1)(24+1)(28+1)(216+1)÷(22-1)=(28-1)(28+1)(216+1)÷3=(216-1)(216+1)÷3=(232-1)÷3=13(232-1).(2)计算:(2+1)(22+1)(24+1)(28+1)×…×(21024+1).解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)×…×(21024+1)=(22-1)(22+1)(24+1)(28+1)×…×(21024+1)=…=(21024-1)(21024+1)=22048-1.请仿照上面的解法中的一种或自己另外寻找一种解法解答下列问题. 计算:⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+124(1+128)×(1+1216)+(1+1231).详解详析1.A2.[解析] B 根据平方差公式的特点,(-x +2y)·(x+2y)=(2y -x)(2y +x)=(2y)2-x 2.3.[解析] A 根据两数和乘以这两数的差的公式,只有(-3a +4b)(-3a -4b)=9a2-16b 2;B ,C 两个选项,虽然符合平方差公式的结构特征,但结果是16b 2-9a 2;D 选项的运算结果不是9a 2-16b 2.故选A .4.[解析] D 原式=(-1-2a)(-1+2a)=(-1)2-(2a)2=1-4a 2. 5.B 6.B7.[解析] C 原式=(x 2-1)(x 2+1)-(x 4+1)=x 4-1-x 4-1=-2,故选C . 8.[全品导学号:90702218] B 9.(1)x 2-9 (2)x 2-14y 2 (3)b 2-9a 210.[答案] (500-1) (500+1) 249999[解析] 原式=(500-1)×(500+1)=5002-1=250000-1=249999. 11.[答案] (4a 2-9b 2)[解析] 菜地的面积为(2a +3b)(2a -3b)=(4a 2-9b 2)米2. 12.[答案] ±8[解析] 因为(a +b +1)(a +b -1)=[(a +b)+1][(a +b)-1]=(a +b)2-1, 所以(a +b)2-1=63,即(a +b)2=64,所以a +b =±8. 13.解:(1)原式=⎝ ⎛⎭⎪⎫13x 2-22=19x 2-4.(2)原式=x 2-1-x 2=-1. (3)原式=(x 2-9)(x 2+9)=x 4-81. (4)原式=(2x)2-52-[(3x)2-42]=4x 2-25-9x 2+16 =-5x 2-9.14.[解析] 由于数字较大,直接计算较烦琐.注意到100,101,102是连续的自然数,因此可考虑运用“两数和与这两数差的乘法公式”来简化运算.解:100×102-1012=(101-1)(101+1)-1012=1012-1-1012=-1.15.解:9-(2x)2+9x =3x -4x 2, 9-4x 2+9x =3x -4x 2, -4x 2+9x -3x +4x 2=-9, 6x =-9, x =-32.16.解:原式=4-x 2+x 2+4x -5=4x -1. 当x =32时,原式=4×32-1=5.17.解:(1)大正方形的面积为a 2,小正方形的面积为b 2,故图甲中阴影部分的面积为a 2-b 2.(2)长方形的长和宽分别为a +b ,a -b , 故图乙中阴影部分的面积为(a +b)(a -b).(3)可以验证平方差公式,比较(1)和(2)的结果,都表示同一阴影的面积,它们相等,即(a +b)(a -b)=a 2-b 2.18解:(1)长方体的体积为2a·2a·h=4a 2h , 长方体的表面积为2×2a·2a+4×2a·h=8a 2+8ah. (2)当a =3,h =12时,长方体的体积为4×32×12=18.当a =3,h =12时,长方体的表面积为8×32+8×3×12=84.(3)长方体的体积发生变化.理由:当长方体的长增加x ,宽减少x 时,长方体的体积为12(6+x)(6-x)=18-12x 2<18,故长方体的体积减小了. [素养提升]解:原式=(1-12)(1+12)(1+122)(1+124)×⎝ ⎛⎭⎪⎫1+128⎝ ⎛⎭⎪⎫1+1216×2+⎝ ⎛⎭⎪⎫1+1231=⎝ ⎛⎭⎪⎫1-122⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+124⎝ ⎛⎭⎪⎫1+128(1+1216)×2+(1+1231)=⎝ ⎛⎭⎪⎫1-124⎝ ⎛⎭⎪⎫1+124⎝ ⎛⎭⎪⎫1+128⎝ ⎛⎭⎪⎫1+1216×2+(1+1231)=⎝ ⎛⎭⎪⎫1-128⎝ ⎛⎭⎪⎫1+128⎝ ⎛⎭⎪⎫1+1216×2+⎝ ⎛⎭⎪⎫1+1231=⎝ ⎛⎭⎪⎫1-1216⎝ ⎛⎭⎪⎫1+1216×2+⎝ ⎛⎭⎪⎫1+1231 =⎝ ⎛⎭⎪⎫1-1232×2+⎝ ⎛⎭⎪⎫1+1231 =2-1231+1+1231=3.。