最新人教版初中初三九年级数学上册23.2.1__中心对称(人教版九年级上)
- 格式:ppt
- 大小:2.88 MB
- 文档页数:18
人教版九年级数学上册23.2.2.1《中心对称》教学设计一. 教材分析人教版九年级数学上册23.2.2.1《中心对称》是中心对称图形的相关知识,主要介绍了中心对称图形的定义、性质及运用。
通过本节课的学习,学生能够理解中心对称图形的概念,掌握中心对称图形的性质,并能运用中心对称解决实际问题。
二. 学情分析九年级的学生已经具备了一定的图形认知能力和空间想象力,他们对平面几何图形有一定的了解。
但是,对于中心对称图形的概念和性质,学生可能初次接触,需要通过实例和操作来加深理解。
此外,学生可能对实际运用中心对称解决问题的关键点把握不准,需要教师的引导和启发。
三. 教学目标1.知识与技能:理解中心对称图形的定义,掌握中心对称图形的性质,并能运用中心对称解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象力、逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:中心对称图形的定义、性质及运用。
2.难点:中心对称图形的性质的证明和运用。
五. 教学方法1.情境教学法:通过生活中的实例,引发学生的兴趣,引导学生主动探究中心对称图形的性质。
2.操作教学法:让学生通过实际操作,观察、总结中心对称图形的性质。
3.合作学习法:引导学生分组讨论,共同解决问题,培养学生的团队合作精神。
六. 教学准备1.教学素材:准备相关的图片、实例,制作PPT。
2.教学工具:黑板、粉笔、多媒体设备。
七. 教学过程1.导入(5分钟)利用生活中的实例,如剪纸、城市规划等,引出中心对称图形的概念,激发学生的兴趣。
2.呈现(10分钟)通过PPT展示中心对称图形的定义和性质,引导学生观察、思考。
3.操练(10分钟)让学生分组讨论,每组找一个中心对称图形,分析其性质,并制作PPT进行展示。
教师在这个过程中给予适当的引导和指导。
人教版九年级数学上册23.2.2《中心对称》教学设计一. 教材分析人教版九年级数学上册第23.2.2节《中心对称》是中心对称图形部分的内容。
这部分内容是在学生已经掌握了平面几何的基本概念和性质的基础上进行讲解的。
本节内容主要介绍中心对称图形的定义、性质和判定方法,以及如何通过中心对称来解决一些几何问题。
教材通过具体的图形和实例,引导学生探究中心对称图形的性质,培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析九年级的学生在数学方面已经有了一定的基础,对平面几何的概念和性质有一定的了解。
但是,对于中心对称图形的理解和运用可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、推理等方法,逐步理解中心对称图形的性质和判定方法,提高他们解决问题的能力。
三. 教学目标1.了解中心对称图形的定义和性质。
2.学会判断一个图形是否为中心对称图形。
3.能够运用中心对称图形的性质解决一些几何问题。
4.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.中心对称图形的定义和性质。
2.中心对称图形的判定方法。
3.如何运用中心对称图形的性质解决几何问题。
五. 教学方法1.引导法:通过问题引导,让学生主动探究中心对称图形的性质和判定方法。
2.操作法:让学生通过实际操作,观察和分析中心对称图形的性质。
3.讨论法:让学生通过小组讨论,共同解决问题,培养学生的合作能力。
六. 教学准备1.教学课件:制作中心对称图形的课件,包括图片、实例和动画等。
2.教学素材:准备一些中心对称图形的实例,用于讲解和练习。
3.教学工具:准备黑板、粉笔、直尺、圆规等教学工具。
七. 教学过程1.导入(5分钟)通过一个具体的图形,引导学生观察和思考,提出问题:“这个图形有什么特殊性质?”让学生回顾平面几何的知识,为新课的学习做铺垫。
2.呈现(10分钟)讲解中心对称图形的定义和性质,通过具体的实例和动画,让学生直观地理解中心对称图形的概念。
23.2.1 中心对称一、教学目标1.理解中心对称的定义.2.探究中心对称的性质.3.掌握中心对称的性质及其应用.二、课时安排1课时三、教学重点理解中心对称的定义. 探究中心对称的性质.四、教学难点掌握中心对称的性质及其应用.五、教学过程(一)导入新课1.从A旋转到B,旋转中心是什么?旋转角是多少度呢?2.从A旋转到C呢?3.从A旋转到D呢?(二)讲授新课探究内容1:(1)观察实例(教科书图23.2-1,23.2-2),(2)回答问题:其中一个图案绕点O旋转180°,你有什么发现?线段AC与BD相交于点O,OA=OC,OB=OD,把△OCD绕点O旋转180º,你有什么发现?(3)引导学生得出中心对称的概念归纳中心对称的定义:把一个图形绕某一个点旋转180º,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;点O叫做对称中心;这两个图形中的对应点叫做关于中心的对称点.活动内容2:1、如教科书图23.2-3,旋转三角板,画关于点O对称的两个三角形:(1) 画出△ABC;(2) 以三角板的一个顶点O为中心,把三角板旋转180º,画出△A′B′C′2、让学生在作图的基础上思考:(1)分别连接对应点AA′、 BB′、CC′.点O在线段AA′上吗?如果在,在什么位置?(2) △ABC与△A′B′C′全等吗?为什么?(3) △ABC与△A′B′C′有什么关系?(4)你能从中得到什么结论?归纳:(1) 关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2) 关于中心对称的两个图形是全等图形.(三)重难点精讲例1 (1)已知A点和O点,画出点A关于点O的对称点A'.解:第一步:连接AO,第二步:延长AO至A',使OA'=OA,则A'是所求的点.(2)已知线段AB和O点,画出线段AB关于点O的对称线段A' B' .简记为:一连接;二延长;三截取等长;四连线(3)如图,选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.△A′B′C′为所求作的三角形(四)归纳小结把握中心对称的定义并掌握旋转的性质,同时注意一下两点:(1)对称点的确定:旋转180º实际上是三点共线,我们可以以此来确定对称点和对称中心;(2)作图要规范,正确.(五)随堂检测1.判断正误:(1)轴对称的两个图形一定是全等形,但全等的两个图形不一定是轴对称的图形.()(2)成中心对称的两个图形一定是全等形.但全等的两个图形不一定是成中心对称的图形. ()(3)全等的两个图形,不是成中心对称的图形,就是成轴对称的图形. ( ) 2.如下所示的4组图形中,左边数字与右边数字成中心对称的有( )A.1组B.2组C.3组D.4组3.如图,已知△AOB 与△DOC 成中心对称,△AOB 的面积是6,AB =3,则△DOC 中CD 边上的高是( )A.2B.4C.6D.84.如图,已知等边三角形ABC 和点O ,画△A′B′C′,使△A′B′C′和△ABC 关于点O 成中心对称.【答案】 1. √,√,× 2.D 3.B4.A BC D O六.板书设计23.2.1 中心对称中心对称旋转性质作图步骤:注意事项:七、作业布置课本P66练习1、2练习册相关练习八、教学反思。
人教版九年级数学上册23.2.2.1《中心对称》教案一. 教材分析人教版九年级数学上册第23章《中心对称》是学生在学习了平面几何相关知识的基础上,进一步引导学生探索中心对称的性质和运用。
本节内容通过具体的实例,让学生了解中心对称的定义,掌握中心对称图形的性质,并能够运用中心对称解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生动手操作和观察分析的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习和操作来巩固。
此外,学生对实际问题的解决能力有待提高,需要通过具体的例子来引导和培养。
三. 教学目标1.了解中心对称的定义,掌握中心对称图形的性质。
2.能够运用中心对称解决实际问题,提高学生的应用能力。
3.培养学生的动手操作和观察分析能力,激发学生学习几何的兴趣。
四. 教学重难点1.中心对称的定义和性质。
2.中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过具体的实例和问题,引导学生探索中心对称的性质,培养学生的动手操作和观察分析能力。
同时,学生进行小组合作学习,鼓励学生发表自己的观点和思考,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图片和实例,用于引导学生探索中心对称的性质。
2.准备一些实际问题,用于巩固学生对中心对称的应用。
3.准备黑板和粉笔,用于板书重要的概念和性质。
七. 教学过程1.导入(5分钟)通过展示一些图片,如天安门、蝴蝶等,引导学生观察这些图片的共同特点,引发学生对中心对称的思考。
让学生发表自己的观点,教师总结并引入中心对称的概念。
2.呈现(10分钟)教师通过展示一些实例,如将一张纸折叠后,对折线两侧的图形完全重合,引导学生探索中心对称的性质。
教师引导学生动手操作,观察分析中心对称图形的性质,如对称轴的性质、对称点的性质等。
人教版数学九年级上册23.2.1《中心对称》教案一. 教材分析人教版数学九年级上册第23章《中心对称》是学生在学习了平面几何基本概念和性质的基础上进行的一节内容。
本节内容主要让学生了解中心对称的定义,掌握中心对称的性质和运用,能运用中心对称解决一些简单的几何问题。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的认识。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习来巩固。
三. 教学目标1.知识与技能:让学生理解中心对称的概念,掌握中心对称的性质,能运用中心对称解决一些简单的几何问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生团结协作、积极探究的精神。
四. 教学重难点1.重点:中心对称的概念和性质。
2.难点:中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生主动探究,合作交流,培养学生的几何思维能力。
六. 教学准备1.教具准备:多媒体课件、几何画板、黑板、粉笔。
2.学具准备:学生自带直尺、圆规、三角板。
七. 教学过程1. 导入(5分钟)利用多媒体课件展示一些生活中的中心对称图形,如天安门、蝴蝶、脸谱等,引导学生观察并思考:这些图形有什么共同特点?你想到了什么几何概念?2. 呈现(10分钟)教师通过讲解和示范,给出中心对称的定义,并用几何画板展示中心对称的性质。
同时,让学生尝试解释中心对称的概念,并找出生活中的中心对称现象。
3. 操练(15分钟)学生分组进行练习,运用中心对称的性质解决一些简单的几何问题。
教师巡回指导,及时纠正错误,帮助学生巩固知识。
4. 巩固(10分钟)教师选取一些典型的练习题,让学生在课堂上独立完成,检验学生对中心对称知识的掌握程度。
同时,教师对学生的解答进行点评,指出不足之处,巩固所学知识。
5. 拓展(10分钟)教师提出一些拓展问题,如中心对称与轴对称的关系,让学生进行思考和讨论。
人教版九年级数学上册23.2.1《中心对称》说课稿一. 教材分析人教版九年级数学上册第23.2.1节《中心对称》是整个初中数学知识体系中的一部分,主要介绍中心对称图形的概念及其性质。
这一节内容在教材中的位置是在学生已经掌握了平面几何的基本知识的基础上进行教学的,为学生后面学习对称变换、坐标与图形的变换等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的变换、对称性等概念有一定的了解。
但学生在学习这一节内容时,可能会对中心对称图形的概念和性质的理解存在一定的困难,因此,在教学过程中,需要教师耐心引导,通过大量的实例让学生深入理解中心对称图形的概念和性质。
三. 说教学目标1.知识与技能目标:让学生掌握中心对称图形的概念,理解中心对称图形的性质,能运用中心对称的知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象能力、逻辑思维能力和创新能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生良好的数学素养,使学生感受到数学的美。
四. 说教学重难点1.教学重点:中心对称图形的概念及其性质。
2.教学难点:中心对称图形的性质的证明和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的几何直观能力和逻辑思维能力。
2.教学手段:利用多媒体课件、几何画板等软件,展示中心对称图形的性质和变换过程,增强学生对知识的理解和记忆。
六. 说教学过程1.导入新课:通过展示一些生活中的对称现象,引导学生关注对称性,激发学生学习兴趣。
2.探究中心对称图形的概念:让学生通过观察、操作,发现中心对称图形的特征,从而引出中心对称图形的定义。
3.理解中心对称图形的性质:引导学生通过小组合作学习,探索中心对称图形的性质,教师进行讲解和总结。
4.应用中心对称图形的性质:让学生通过解决一些实际问题,运用中心对称图形的性质,巩固所学知识。
23.2.1中心对称知识点1.中心对称的概念把一个图形绕着某一个点旋转度,如果它能够与另一个图形,那么就说这两个图形关于这个点对称,也称。
这个点叫做,这两个图形中的对应点叫做关于中心的。
2.成中心对称的两个图形的特征(1)关于中心对称的两个图形是。
(2)关于中心对称的两个图形,对称点所连线段都经过,且被平分。
(3)成中心对称的两个图形,其对应线段位置关系是或,数量关系是。
3.画已知图形关于某点成中心对称的图形(1) 画一个点关于某点(对称中心)的对称点的画法是:①先连接与。
②延长取。
(2) 画一个图形关于某点的对称图形的画法是:①先找出图形中的几个特殊点(如多边形的顶点、线段的端点,圆的圆心等)。
②画出各点关于某点的点。
③顺次连接各。
一.选择1.下列两个电子数字成中心对称的是()2.下列命题中正确的命题的个数有()①在成中心对称的两个图形中,连接对称点的线段都被对称中心平分;②关于某一点成中心对称的两个三角形能重合;③两个能重合的图形一定关于某点中心对称;④如果两个三角形的对应点连线都经过同一点,那么这两个三角形成中心对称;⑤成中心对称的两个图形中,对应线段互相平行或共线。
A.1个B.2个C.3个D.4个3.下列说法中,正确的的是()A.形状和大小完全相同的两个图形成中心对称;B.成中心对称的两个图形一定重合;C.成中心对称的两个图形的形状和大小完全重合;D.旋转后能重合的两个图形成中心对称。
4.下列描述中心对称的特征语句中正确的是()A、成中心对称的两个图形中,连接对称点的线段不一定经过对称中心。
B、成中心对称的两个图形中,对称中心不一定平分连接对称点的线段。
C、成中心对称的两个图形中,连接对称点的线段经过对称中心,但不一定被对称中心平分。
D、成中心对称的两个图形中,连接对称点的线段一定经过对称中心,且被对称中心平分。
5.如图(1),将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是图(2)中的哪一个 ()(1) .(2)6.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为( )A. 15°或30°B. 30°或45°C. 45° 或60°D. 30°或60°7.如图,将△ABC 绕点C (0,-1)旋转180°得到△A'B'C ,设点A'的坐标为(,)a b ,则点A 的坐标为( )(A )(,)a b -- (B )(,1)a b --- (C )(,1)a b --+ (D )(,2)a b ---二 填空8.下列图形中符合中心对称的意义的是__①矩形 ②菱形 ③平行四边形 ④等腰梯形⑤等边三角形 9.上图中的△A ′B ′C ′是由△ABC 绕点P 旋转180°后得到的图形,根据旋转的性质回答下列问题:(1) PA 与PA ′的数量关系是__。
23.2.1中心对称知识点1.中心对称的概念把一个图形绕着某一个点旋转度,如果它能够与另一个图形,那么就说这两个图形关于这个点对称,也称。
这个点叫做,这两个图形中的对应点叫做关于中心的。
2.成中心对称的两个图形的特征(1)关于中心对称的两个图形是。
(2)关于中心对称的两个图形,对称点所连线段都经过,且被平分。
(3)成中心对称的两个图形,其对应线段位置关系是或,数量关系是。
3.画已知图形关于某点成中心对称的图形(1) 画一个点关于某点(对称中心)的对称点的画法是:①先连接与。
②延长取。
(2) 画一个图形关于某点的对称图形的画法是:①先找出图形中的几个特殊点(如多边形的顶点、线段的端点,圆的圆心等)。
②画出各点关于某点的点。
③顺次连接各。
一.选择1.下列两个电子数字成中心对称的是()2.下列命题中正确的命题的个数有()①在成中心对称的两个图形中,连接对称点的线段都被对称中心平分;②关于某一点成中心对称的两个三角形能重合;③两个能重合的图形一定关于某点中心对称;④如果两个三角形的对应点连线都经过同一点,那么这两个三角形成中心对称;⑤成中心对称的两个图形中,对应线段互相平行或共线。
A.1个B.2个C.3个D.4个3.下列说法中,正确的的是()A.形状和大小完全相同的两个图形成中心对称;B.成中心对称的两个图形一定重合;C.成中心对称的两个图形的形状和大小完全重合;D.旋转后能重合的两个图形成中心对称。
4.下列描述中心对称的特征语句中正确的是()A、成中心对称的两个图形中,连接对称点的线段不一定经过对称中心。
B、成中心对称的两个图形中,对称中心不一定平分连接对称点的线段。
C、成中心对称的两个图形中,连接对称点的线段经过对称中心,但不一定被对称中心平分。
D、成中心对称的两个图形中,连接对称点的线段一定经过对称中心,且被对称中心平分。
5.如图(1),将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是图(2)中的哪一个()(1).(2)6.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为()A. 15°或30°B. 30°或45°C. 45° 或60°D. 30°或60°7.如图,将△ABC 绕点C (0,-1)旋转180°得到△A'B'C ,设点A'的坐标为(,)a b ,则点A 的坐标为( )(A )(,)a b -- (B )(,1)a b ---(C )(,1)a b --+ (D )(,2)a b ---二 填空8.下列图形中符合中心对称的意义的是__①矩形 ②菱形 ③平行四边形 ④等腰梯形 ⑤等边三角形9.上图中的△A ′B ′C ′是由△ABC 绕点P旋转180°后得到的图形, 根据旋转的性质回答下列问题:(1) PA 与PA ′的数量关系是__。