楼面等效均布活荷载在工程实践中的应用_付守维
- 格式:pdf
- 大小:4.53 MB
- 文档页数:1
库房楼面等效均布活荷载取值方法探讨王晶;赵艳青;尚建华【摘要】工业建筑中的大型仓储类库房,楼面一般都有货架和叉车共同作用.本文以某核电厂库房为例,根据规范方法分别对用于不同结构构件内力计算的楼面等效均布活荷载进行计算分析,并讨论了不同类型的楼板等效均布活荷载的取值.另外,使用有限元软件ANSYS进行对比分析,对不同计算方法的取值进行了探讨,对今后的设计工作有一定的借鉴意义.【期刊名称】《低温建筑技术》【年(卷),期】2018(040)004【总页数】5页(P54-57,61)【关键词】等效均布活荷载;库房;有效分布宽度;绝对最大弯矩;有限元分析【作者】王晶;赵艳青;尚建华【作者单位】中国核电工程有限公司郑州分公司,郑州 450052;中国核电工程有限公司郑州分公司,郑州 450052;中国核电工程有限公司郑州分公司,郑州 450052【正文语种】中文【中图分类】TU3110 引言用于仓储的大型库房类建筑,根据使用功能的要求,其内部设置多排货架并有叉车用于堆放、取用及运输货物。
对于此类多层仓库,其楼面荷载的种类形式和大小的选择是否恰当,不仅关系到结构在它的使用年限内是否安全可用,还关系到建筑物建设费用是否经济合理,而工艺专业提供的条件局限于货架整体荷载及叉车样本中的有关参数。
因此,对于该类库房如何确定货架和叉车作用在结构楼板上的等效均布活荷载是结构设计人员必须面临的问题。
图1 结构平面布置图(单位:mm)本文基于某核电厂配套BOP子项中的中小型备件库的设计实例,通过计算分析,确定库房楼面等效均布活荷载的取值,并对取值方法进行探讨,以供设计人员参考。
1 工程概况本工程为现浇钢筋混凝土框架结构,采用主次梁楼盖体系,基础形式为柱下独立基础。
采用防震缝分为①~⑩轴、 [11]~ [20]轴两个结构单元,柱距为6.0m×7.5m。
该库房共2层,一层层高7.5m,二层层高5.5m,局部出屋面。
⑦~⑧轴为货运通道,其他房间均为库房。
《建筑结构荷载规范》(GBJ 9-87)3.3.1民用建筑楼面均布活荷载的标准值及其准永久值系数,应按表3.1.1的规定采用。
民用建筑楼面均布活荷载标准值及其准永久值系数表3.1.1注:①本表所给各项活荷载适用于一般使用条件,当使用荷载较大时,应按实际情况采用。
②第9项活荷载只适用于停放轿车的车库。
当单向板板跨小于2m时,可按附录二规定,将车轮局部荷载换算为等效均布荷载,局部荷载值取4.5kN,间距1.5m,分布在0.2X0.2m的面积上。
③第12项楼梯活荷载,对预制楼梯踏步平板,尚应按1.5kN集中荷载验算。
④第13项挑出阳台荷载,当人群有可能集中时,宜按3.5kN/m2采用。
⑤本表各项荷载未包括隔墙自重。
民用建筑楼面均布活荷载标准值及其准永久值系数(高规)【资料来源】《钢筋混凝土高层建筑结构设计与施工规程》(JGJ 3-91)3.1.1 高层建筑结构的楼面活荷载应按《建筑结构荷载规范》GBJ9-87第3.1.1条采用。
该条未规定者,可按本规程表3.1.1条采用。
民用建筑楼面均布活荷载表3.1.1楼面活荷载标准值折减系数《建筑结构荷载规范》GBJ9-87第3.1.2条的规定采用。
4.1.1 民用建筑楼面均布活荷载的标准值及其组合值、频遇值和准永久值系数,应按表4.1.1 的规定采用。
表4.1.1 民用建筑楼面均布活荷载标准值及其组合值、频遇值和准永久值系数注:1 本表所给各项活荷载适用于一般使用条件,当使用荷载较大或情况特殊时,应按实际情况采用。
2 第6 项书库活荷载当书架高度大于2M 时,书库活荷载尚应按每米书架高度不小于`2.5KN//M^2` 确定。
3 第8 项中的客车活荷载只适用于停放载人少于9 人的客车;消防车活荷载是适用于满载总重为300KN 的大型车辆;当不符合本表的要求时,应将车轮的局部荷载按结构效应的等效原则,换算为等效均布荷载。
4 第11 项楼梯活荷载,对预制楼梯踏步平板,尚应按1.5KN 集中荷载验算。
建筑荷载楼面等效均布活荷载的确定方法附录C楼面等效均布活荷载的确定方法C.0.1楼面(板、次梁及主梁)的等效均布活荷载,应在其设计控制部位上,根据需要按内力、变形及裂缝的等值要求来确定。
在一般情况下,可仅按内力的等值来确定。
C.0.2连续梁、板的等效均布活荷载,可按单跨简支计算。
但计算内力时,仍应按连续考虑。
C.0.3由于生产、检修、安装工艺以及结构布置的不同,楼面活荷载差别较大时,应划分区域分别确定等效均布活荷载。
C.0.4单向板上局部荷载(包括集中荷载)的等效均布活荷载可按下列规定计算:1等效均布活荷载q e可按下式计算:式中:l——板的跨度;b——板上荷载的有效分布宽度,按本附录C.0.5确定;M max——简支单向板的绝对最大弯矩,按设备的最不利布置确定。
2计算M max时,设备荷载应乘以动力系数,并扣去设备在该板跨内所占面积上由操作荷载引起的弯矩。
C.0.5单向板上局部荷载的有效分布宽度b,可按下列规定计算:1当局部荷载作用面的长边平行于板跨时,简支板上荷载的有效分布宽度b为(图C.0.5-1):2当荷载作用面的长边垂直于板跨时,简支板上荷载的有效分布宽度b按下列规定确定(图C.0.5-2):图C.0.5-4悬臂板上局部荷载的有效分布宽度C.0.6双向板的等效均布荷载可按与单向板相同的原则,按四边简支板的绝对最大弯矩等值来确定。
C.0.7次梁(包括槽形板的纵肋)上的局部荷载应按下列规定确定等效均布活荷载:1等效均布活荷载应取按弯矩和剪力等效的均布活荷载中的较大者,按弯矩和剪力等效的均布活荷载分别按下列公式计算:式中:s——次梁间距;l——次梁跨度;M max、V max——简支次梁的绝对最大弯矩与最大剪力,按设备的最不利布置确定。
2按简支梁计算M max与V max时,除了直接传给次梁的局部荷载外,还应考虑邻近板面传来的活荷载(其中设备荷载应考虑动力影响,并扣除设备所占面积上的操作荷载),以及两侧相邻次梁卸荷作用。
楼面等效均布活荷载的计算方法楼面等效均布活荷载的计算方法建筑结构荷载规范关于双向板楼面等效荷载计算方法的表达比较含糊,引起了对规范说明不同的理解,本文根据对规范的理解提出两种不同的计算方式,经过比较分析提出正确的计算方式根据《建筑结构荷载规范》GB50009-2012附录B“楼面等效均布活荷载的确定方法”的规定,对于单向板的计算已经有比较明确的公式和规定,本文不进行叙述,对于双向板的等效均布荷载计算方法,规范仅指出可按与单向板相同的原则,按四边简支板的绝对最大弯矩等值来确定。
这样对规范的表述就有了不同理解,第一种理解为:按与单向板相同的计算方式进行计算;第二种理解:按四边简支板绝对最大弯矩等值的原则进行计算。
两种方法计算比较如下:1 按与单向板相同的计算原则进行计算计算简图 11.1 基本资料周边支承的双向板,板的跨度Lx=2800mm,板的跨度Ly=3500mm,板的厚度h =150mm;局部集中荷载N=42kN,荷载作用面的宽度btx=1000mm,荷载作用面的宽度bty =1000mm;垫层厚度s=100mm ;荷载作用面中心至板左边的距离x=1400mm,最左端至板左边的距离x1=900mm,最右端至板右边的距离x2=900mm荷载作用面中心至板下边的距离y=1750mm,最下端至板下边的距离y1=1250mm,最上端至板上边的距离y2=1250mm1.2 计算结果1.2.1 荷载作用面的计算宽度bcx=btx+2*s+h=1000+2*100+150=1350mmbcy=bty+2*s+h=1000+2*100+150=1350mm1.2.2 局部荷载的有效分布宽度按上下支承考虑时局部荷载的有效分布宽度当bcy≥bcx,bcx≤0.6Ly 时,取bx=bcx+0.7Ly=1350+0.7*3500=3800mm按左右支承考虑时局部荷载的有效分布宽度当bcx≥bcy,bcy≤0.6Lx 时,取by=bcy+0.7Lx=1350+0.7*2800=3310mm1.2.3 绝对最大弯矩1.2.3.1 按两端简支计算Y 方向绝对最大弯矩将局部集中荷载转换为Y 向线荷载qy=N*btx/(btx*bty)=42*1/(1*1)=42kN/m根据静力计算手册得出简支梁局部均布荷载作用下的弯矩:MmaxY=qy*bty*Ly(2-bty/Ly)/8=42*1*3.5*(2-1/3.5)/8=31.5kN·m1.2.3.2 按两端简支计算X 方向绝对最大弯矩,将局部集中荷载转换为X 向线荷载qx=N*bty/(btx*bty)=42*1/(1*1)=42kN/m 根据静力计算手册得出简支梁局部均布荷载作用下的弯矩:MmaxX=qx*btx*Lx(2-btx/Lx)/8=42*1*2.8*(2-1/2.8)/8=24.15kN·m1.2.4 由绝对最大弯矩等值确定的等效均布荷载按上下支承考虑时的等效均布荷载qey=8MmaxY/(bx*Ly^2)=8*31.5/(3.8*3.5^2)=5.41kN/m.按左右支承考虑时的等效均布荷载qex=8MmaxX/(by*Lx^2)=8*24.15/(3.31*2.8^2)=7.44kN/m.等效均布荷载qe=Max{qex,qey}=Max{5.41,7.44}=7.44kN/m.2 按四边简支板绝对最大弯矩等值的原则进行计算2.1 按四边简支计算跨中最大弯矩,计算条件同第一种计算方式2.1.1 根据计算条件,应用建筑结构静力计算手册(p227)中局部均布荷载作用下的弯矩系数表查出弯矩系数如下:泊松比μ=0;X 方向表中系数=0.1268,Y 方向表中系数=0.1017;计算跨中弯矩:Mx=表中系数×q×btx×bty=0.1268×42×1×1=5.33kN/m.My=表中系数×q×btx×bty=0.1017×42×1×1=4.27kN/m.调整为钢筋混凝土泊松比,重新计算跨中弯矩,μ=1/6Mx(μ)=Mx+μMy=5.33+4.27/6=6.04kN/m.My(μ)=My+μMx=4.27+5.33/6=5.16kN/m.2.2 根据跨中弯矩相等原则用查表法反算等效均布荷载2.2.1 根据计算条件,应用建筑结构静力计算手册(p216 页)中均布荷载作用下的弯矩系数表查出弯矩系数如下:泊松比μ=0;X 方向表中系数=0.0561,Y 方向表中系数=0.0334;计算跨中弯矩:(据公式M=表中系数×qL2,L 为Lx 与Ly 中较小者)Mx=表中系数×q×L2=0.0561×q×2.82My=表中系数×q×L2=0.0334×q×2.82调整为钢筋混凝土泊松比,重新计算跨中弯矩,μ=1/6,带入局部荷载作用下的最大弯矩得:Mx(μ)=Mx+μMy=0.0561×q×2.82+0.0334×q×2.82/6=6.04(1) My(μ)=My+μMx=0.0334×q×2.82+0.0561×q×2.82/6=5.16(2)由(1)式得q=12.49kN/m.;由(2)式得q=15.39kN/m.;取大值,等效均布荷载q=15.39kN/m.3 结果比较及结语由计算结果可以明显看出,第一种计算方法得出的计算结果比第二种小很多,根据内力等值的原则,第二种计算方法应该是合理的,应该选用第二种计算方法。
楼面双向板等效均布活荷载的计算方法这个题目来自于《建筑结构荷载规范GB50009-2001》的附录B,要弄清它需要先知道楼面等效均布活荷载。
规范中虽然介绍了计算的原则,但究其本源,其实就是为了方便地统一处理各种类型的局部活荷载,也就是说寻找一个均布面荷载值,使它对结构产生的效果与局部活荷载产生的效果相同(也就是等效的含义),这样我们对结构荷载问题的处理就比较统一,因为我们进行结构分析时,已习惯输入KN/m2这样的荷载方式,甚至有时候对某些楼面(比如地下室顶板)进行荷载值限定时,会写下该处的荷载不能超过多少KN/m2这样的说明文字。
所谓“等效”,主要是指内力的等值,而且对于连续跨也常常是按单跨简支来考虑。
在处理单向板和悬臂板时,很容易理解,规范中也给出了计算的原则。
但是对于双向板而言,规范中仅给出一条简单的说明:“按四边简支板的绝对最大弯矩等值来确定”,让很多人望而却步。
有些耐心的结构工程师在针对具体的工程项目时,还是可以得到一些关于这个问题的结果的。
他可以近似地让局部荷载作用于双向板的跨中,因为这种荷载布置以及均布荷载下的四边简支双向板的绝对最大弯矩都可以在《建筑结构静力计算手册》中查表得到。
有多些耐心的结构工作者还可以通过有限元分析来得到结果,这些结构人士以高校老师诸多。
其实学过《板壳理论》的力学专业出身的人可能会有这样的印象,那就是薄板理论中首先推导的就是双向板局部荷载下的挠曲面方程,对其偏导就可以得到弯矩方程,结果是一个级数方程式。
我们可以在程序中取前面几项,就可以得到足够近似的值。
你可以通过访问的在线计算部分得到结果。
这里有两个问题需要特别强调一下,有些程序处理双向板时,可能是因为规范的嘎然而止,导致其武断地用两个方向的单向板来分别计算,取其中大者作为结果,这是偏不安全的。
(Morgain好像是这样计算的)。
还有个问题是关于绝对最大弯矩的问题,这是针对当局部荷载不是作用在板的正中间的情况。