冶炼烟气余热回收—余热发电技术
- 格式:docx
- 大小:15.27 KB
- 文档页数:2
国内烟气余热利用技术的新进展国内烟气余热利用技术的新进展是当前能源领域的一个研究热点,也是节能减排的重要技术之一,已得到了广泛的应用,相关的尖端技术在不断发展。
烟气余热利用技术指的是从烟气中捕获余热,将余热转化为可利用的能源。
首先,国内烟气余热利用技术主要有三大技术方案:一是余热回收技术,即将烟气余热吸收到烟道内部的余热回收装置,通过烟气保温隔热系统,将烟气余热转化为温度更高的热水或蒸汽供企业使用;二是余热利用技术,即将烟气余热通过热交换器热力机等设备转化为可利用的能源,如电能、水冷却能源等;三是余热回收利用技术,即将烟气余热收集到烟道内部,然后由烟道内部的热交换器转化为可利用的能源。
其次,此外,还有一些新技术可以实现烟气余热的精细利用,如烟气热泵技术。
烟气热泵技术是利用烟气的温度差,将低温的烟气加热到较高的温度,再用来加热需要的热水或蒸汽,从而节约能源。
烟气热泵技术的优点在于它能够有效地利用烟气的余热,大大提高烟气余热的利用率,并且具有运行成本低、节能效果明显等优点。
此外,关于烟气余热利用技术,还有一些新的进展,如烟气余热回收利用技术,烟气余热回收利用技术是利用烟道内部的热交换器,将烟气余热转化为可利用的能源,如电能、水冷却能源等,从而节约能源。
再者,烟气余热利用技术还有一些新的发展,如余热发电技术。
余热发电技术是利用烟气余热,将其转化为电能,从而实现节能减排。
余热发电技术的优点在于可以有效地利用烟气余热,大大提高烟气余热的利用率,并且具有运行成本低、节能效果明显等优点。
最后,烟气余热利用技术还有一些新的发展,如余热蒸汽技术。
余热蒸汽技术是利用烟气余热,将其转化为可利用的蒸汽,从而实现节能减排。
余热蒸汽技术的优点在于可以有效地利用烟气余热,大大提高烟气余热的利用率,并且具有运行成本低、节能效果明显等优点。
总之,国内烟气余热利用技术已经取得了很大的进展,其中包括余热回收、余热利用、烟气热泵、余热发电、余热蒸汽等技术,它们可以有效利用烟气余热,从而节约能源,减少污染,为节能减排作出贡献。
转炉烟气余热回收流程转炉是一种用于冶炼钢铁的设备,在生产过程中会产生大量的烟气。
这些烟气中含有大量的热能,如果不能有效地回收利用,不仅会造成能源的浪费,还会对环境造成污染。
因此,利用转炉烟气余热回收技术,将其中的热能回收利用,不仅可以降低能源消耗,还可以减少环境污染。
转炉烟气余热回收流程主要包括烟气净化、余热回收和余热利用三个步骤。
第一步,烟气净化。
转炉烟气中含有大量的粉尘、二氧化硫、氮氧化物等有害物质,需要进行净化处理。
烟气净化的方式主要包括干法和湿法两种方式。
干法烟气净化主要是利用静电除尘器、布袋除尘器等设备将烟气中的粉尘和微小颗粒物过滤掉。
湿法烟气净化则是将烟气通过喷淋等方式与水接触,使烟气中的有害气体转化为水溶液,进而进行分离和回收。
第二步,余热回收。
在烟气净化后,烟气中的热能仍然很高,需要通过余热回收设备进行回收利用。
常用的余热回收设备包括烟气余热锅炉、烟气换热器等。
烟气余热锅炉是利用烟气中剩余的热量产生蒸汽或热水的设备。
烟气换热器则是利用烟气与其他介质接触,将烟气中的热能传递给其他介质,进而产生蒸汽或热水。
这些蒸汽或热水可以用于工业生产或供热等领域。
第三步,余热利用。
回收到的余热可以直接供应给工业生产中的热源,也可以通过热电联产等方式将其转化为电能供应给电网。
热电联产技术是利用余热锅炉产生的高温高压蒸汽驱动汽轮机发电,并将过程中产生的低温余热通过换热器回收利用,从而实现能量的高效利用。
转炉烟气余热回收技术不仅可以降低能源消耗,还可以减少环境污染。
目前,该技术已经在钢铁、化工、建材等领域得到广泛应用,为企业节能减排、提高经济效益做出了贡献。
烟气余热回收技术方案1. 背景介绍烟气是许多工业生产过程中产生的一种重要废气。
燃烧产生的烟气中含有大量的热量,如果不进行有效的回收利用,将会造成能源的浪费和环境的污染。
因此,烟气余热回收技术成为了重要的研究方向之一。
本文将介绍一种烟气余热回收技术方案,以实现高效能源利用和环境保护。
2. 技术原理该烟气余热回收技术方案基于换热原理,通过烟气与工艺流体之间的热量交换,实现热能回收。
具体的技术原理如下:1.烟气预处理:在烟气进入烟道前,对其进行预处理,去除大颗粒的烟尘和其他污染物,以确保烟气的净化程度和换热器的正常运行。
2.烟气与工艺流体换热:将烟气通过烟道引导至烟气换热器中,与工艺流体进行热量交换。
工艺流体可以是水、油等,在换热器内与烟气进行流体间的热交换,使烟气中的热量传递给工艺流体,从而实现热能的回收利用。
3.对工艺流体进行冷却:烟气中的热能传递给工艺流体后,工艺流体温度升高。
为了保证回收后的热能能够有效利用,需要对工艺流体进行冷却。
这可以通过使用冷却器或进行进一步的热量转移实现。
4.回收后的热能利用:冷却后的工艺流体可以用于供热、供暖或其他工业生产过程中的热能需求,从而实现能源的高效利用。
3. 技术优势该烟气余热回收技术方案具有以下优势:•高效能源利用:通过回收烟气中的热能,将原本浪费的能源转化为可用的能源,提高能源利用率。
•环境保护:减少煤、油等能源的消耗,降低二氧化碳等温室气体的排放,对环境具有积极的影响。
•经济效益:通过烟气余热的回收利用,降低了企业的能源消耗成本,提高了企业的经济效益。
•可持续发展:烟气余热回收技术是一种可持续发展的技术,有助于提高能源的可再生利用率,减少对自然资源的依赖。
4. 技术应用烟气余热回收技术可以应用于各个领域,包括但不限于以下几个方面:•工业生产:适用于钢铁、化工、电力等工业生产过程中产生的烟气,将烟气中的余热转化为工艺流体的热能需求,减少能源浪费。
•建筑供热:可将烟气余热应用于建筑供热系统中,为建筑提供温暖的供暖水源,减少传统能源的消耗。
重有色冶金炉窑余热回收利用技术规范(送审稿)编制说明《重有色冶金炉窑余热回收利用技术规范》编制组2019年11月《重有色冶金炉窑余热回收利用技术规范》编制说明1.工作简况1.1重有色冶金可持续发展的需要随着社会的不断进步以及经济的快速发展,人们对有色金属的冶炼也提出了越来越高的要求。
其中,能源消耗大和环境保护要求高是有色冶炼行业中面临的主要问题。
为满足各项环保指标要求和降低能源消耗成本,开发针对有色金属冶炼系统中主要能耗设备冶金炉窑的预热回收技术至关重要。
当前,冶金炉窑的余热回收目前在国内外已有多种成熟的技术,各类技术不尽相同,缺少对该技术的技术性指导文件。
因此,通过制定《重有色冶金炉窑余热回收利用技术规范》来对冶金炉窑的余热回收规范化管理,有利于技术的标准化和规范化,同时将为贯彻执行相关法律法规及产业政策起到纽带作用。
我国有色金属工业单位产品能耗(标煤)约为 4.76t,约占全国能源消费量的3.5%以上。
其中铜、铝、铅、锌冶炼能耗占有色金属工业总能耗90%以上。
余热利用率低是造成能耗高的重要原因之一。
从另一角度看,我国工业余热资源丰富,广泛存在于工业各行业生产过程中,余热资源约占其燃料消耗总量的17%~67%,其中可回收率达60%,余热利用率提升空间大,节能潜力巨大。
工业余热回收利用被认为是一种“新能源”,近年来成为推进我国节能减排工作的重要内容。
有色金属工业作为高能耗行业,生产集中度小,但能耗高。
随着当今社会经济水平的不断提高以及现代工业的快速发展,有色金属的冶炼作为工业生产过程中的重要环节,其能源消耗情况以及资源回收利用水平不仅会对企业自身效益产生极其重要的直接影响,还会对社会经济、节能环保等方面产生间接影响。
伴随工业产业的不断发展以及能源消耗总量的不断增加,资源短缺也成为了未来一个时期人类发展所面对的一项重要问题,而烟气余热的回收和利用正是应对该问题的一个有效解决方案。
未来,余热回收在节能工作中仍占有极为重要的地位。
钢铁冶金行业余热发电技术电炉冶炼过程中产生200~1000℃的高温含尘废气,采用余热锅炉将其回收,电炉烟气属于周期波动热源,因此余热锅炉产生的蒸汽需要经过蓄能器调节后方可进入汽轮机发电。
加热炉余热加热炉有两处余热可以利用:一处是炉内支撑梁的汽化冷却系统,另一处是烟道高温烟气。
根据炉型不同,加热炉的烟气量在7000~300000Nm3/h,若用来发电,以烟气量10万Nm3,烟气温度400℃计算,发电量约2000kWh,折合标煤0.8t;汽化冷却系统可生产0.4~1.0Mpa的饱和蒸汽,每吨蒸汽(0.5Mpa)可发电120kWh,折合标煤48kg。
烧结余热烧结线余热烧结生产线有两部分余热,一是冷却机产生的热风,二是烧结机尾的高温烟气。
用余热锅炉将这两部分余热来产生蒸汽,再通过汽轮机发电。
据经验数据,每10m2的烧结面积可产生1.5t/h的蒸汽,可发电300kW,折合标煤120kg/h。
转炉余热转炉汽化冷却烟道间歇产生的蒸汽,通过蓄能器变为连续的饱和蒸汽,采用我公司的专利——机内除湿再热的多级冲动式汽轮机发电。
每炼1t钢,可产生80kg饱和蒸汽,每吨饱和蒸汽大约可发电150kWh,折合标煤60kg。
转炉煤气经过汽化冷却烟道冷却后温度仍高达800~900℃,采用我公司的干法煤气显热回收技术,通过下降管烟道、急冷换热器回收显热生产蒸汽,经蓄能器调节后发电。
电炉余热冲渣热水。
每吨铁排出约0.3t渣,每吨渣可产生80~95℃,5~10t的冲渣水,将这部分热水减压产生低压蒸汽,再进入饱和蒸汽凝汽式汽轮机发电。
每吨90℃热水可发电1.5kWh,折标煤0.6kg,80℃热水可发电1kWh,折标煤0.4kg。
干法熄焦采用惰性气体来冷却红焦,加热后的气体在余热锅炉中产生蒸汽,蒸汽可发电或并入蒸汽管网。
吨焦可生产3.9Mpa、300℃的蒸汽0.45t~0.6t,可发电85~115kWh,折合标煤35~46kg。
高炉煤气余压利用高炉炉顶煤气的压力能和热能,通过透平膨胀机做功发电,但不影响煤气后续利用。
烟气余热回收技术方案一、引言工业生产过程中产生的烟气中含有大量的余热能量,如果能够将这部分余热回收并有效利用,不仅可以提高能源利用率,减少能源消耗,还可以减少对环境的污染。
因此,烟气余热回收技术的开发和应用对于企业的可持续发展具有重要意义。
二、烟气余热回收技术的原理烟气余热回收技术主要包括两个方面的内容:烟气的热量回收和余热的利用。
烟气的热量回收主要是通过烟气净化设备对烟气中的热量进行回收,常见的技术有烟气换热器、烟气脱硫设备等。
余热的利用则需要通过适当的设备将余热转化为可用能源,常见的方式有蒸汽循环、制冷循环等。
三、烟气换热器的设计和应用烟气换热器是烟气余热回收的核心设备,其主要功能是通过换热器将烟气中的热量传递给工艺流体,从而实现能量的转化。
烟气换热器的设计应考虑以下几个因素:1.换热器的材料选择:应根据烟气中存在的腐蚀物质和工艺流体的特性选择合适的材料,常见的材料有不锈钢、碳钢等。
2.换热器的热交换效率:应通过优化换热器的结构和流体的流动方式,提高热交换效率。
可以采用流体的迂回流动、增加流体的速度等方式提高换热效率。
3.换热器的清洁方式:由于烟气中含有灰尘和颗粒物等杂质,容易在换热器的表面形成污垢,影响换热效果。
因此,应考虑对换热器进行清洗和维护。
四、余热利用技术方案1.蒸汽循环技术:将回收的余热用于蒸汽发生器中,产生蒸汽用于工艺或供暖等用途。
蒸汽循环技术的优点是热效率高,适用于大量余热的回收利用。
2.制冷循环技术:将回收的余热用于制冷设备中,通过制冷设备产生低温热能,可用于制冷或其他低温工艺需求。
制冷循环技术的优点是适用于低温余热的回收利用。
3.热泵技术:热泵是一种将低温热能转化为高温热能的装置,通过热泵技术可以将回收的低温余热升温并利用于工艺流程。
热泵技术的优点是能够实现高效率的能量转化,适用于低温余热的回收利用。
五、烟气余热回收技术应用案例1.钢铁行业:钢铁生产中烟气中含有大量高温余热,可以通过烟气换热器将余热回收并用于烧结热风炉、蒸汽发生器等设备,提高能源利用率。
余热发电工作原理
余热发电是一种利用工业生产过程中产生的余热能量来产生电能的技术。
其工作原理可以概括为以下步骤:
1. 余热回收:在工业生产过程中,往往会产生大量的余热,例如高温烟气、冷却水、废热等。
余热发电系统首先通过各种方法将这些余热捕捉和回收,使其不再散失。
2. 热能转换:捕捉到的余热经过预处理后,进入热能转换设备。
常见的热能转换设备包括蒸汽发生器、热交换器等。
在这些设备中,余热的能量会被转化为热能载体(如蒸汽或热水)。
3. 动力转换:热能载体进一步传导到汽轮机或发电机组等动力装置上。
汽轮机利用高温高压的蒸汽来驱动转子旋转,而发电机组则将旋转的机械能转变为电能。
4. 电能输出:通过发电机将机械能转换为电能,从而实现余热发电。
产生的电能可以用于工业生产过程的自用,也可以被馈回电网供电。
总的来说,余热发电就是通过捕捉和利用工业生产过程中产生的余热能量,将其转换为电能,并将电能供应给需要的地方使用,从而实现能源的高效利用和节能减排的目的。
烟气余热回收技术方案
一、回收烟气余热的技术方案
1.回收烟气余热技术方案的主要内容
回收烟气余热技术方案的主要目的是通过烟气余热回收、再利用技术,实现“重组能源”的功能,将非均一能源转化为可重复使用的热能,最大
限度的提高燃烧过程的热效率,从而实现能源节约和降低污染的目的。
实施回收烟气余热技术方案的主要内容包括:
(1)分析烟气余热特性。
(2)设计回收烟气余热系统,确定余热回收等效回收量,以及系统
布局、内部功率分配等必要参数;
(3)烟气余热回收装置的选定及其它设备的选型;
(4)烟气余热回收热工计算及热网计算;
(5)制定完善的烟气余热回收技术装置的安装、运行、维护等配套
技术措施。
2.烟气余热回收装置的选定
在回收烟气余热技术方案中,烟气余热回收装置是重要的组成部分,
常用的余热回收装置主要有烟气余热回收热交换器、余热回收汽轮机、余
热回收锅炉等。
(1)烟气余热回收热交换器:烟气余热回收热交换器是一种通过热
能传输机构实现烟气余热回收的设备,烟气余热回收热交换器的优点在于
结构简单、安装方便,节能效。
余热回收技术有哪些?一、废热回收技术废热是指工业生产过程中产生的无用热能,如果有效回收利用,将极大地提高能源利用效率和减少环境污染。
目前常见的废热回收技术主要包括以下几种:1.余热发电技术:通过余热发电机组将废热转化为电能。
这种技术可以广泛应用于钢铁、石化、焦化等行业,能够有效提高能源利用效率。
2.余热利用技术:如利用废热进行加热、蒸汽产生、供暖等,可以节约大量的能源消耗。
例如,在炼钢过程中,可以利用高温废气进行热交换,提高冷却水温度,减少能源的损耗。
3.余热回收利用技术:可以利用余热来驱动制冷机组,实现制冷的同时回收废热。
这种技术被广泛应用于一些需要冷却的工业生产过程中,能够节约能源消耗,提高能源利用效率。
二、废水回收技术废水回收是指对生产过程中排放的废水进行处理和回收利用,以减少水资源的浪费和环境污染。
以下是常见的废水回收技术:1.生物处理技术:利用生物降解、吸附、生长等原理对废水进行处理,将其中的污染物转化为无害物质。
生物处理技术具有处理效率高、成本低、不产生二次污染等优点,已广泛应用于废水回收领域。
2.膜分离技术:通过逆渗透、纳滤等膜分离技术,将废水中的溶解物、悬浮物、重金属离子等分离出来,得到清洁的水资源。
膜分离技术在废水处理中具有高效、节能、无二次污染等优势。
3.化学处理技术:采用化学药剂对废水进行处理,如加氯、加碱、加酸等。
通过化学反应的方式去除废水中的污染物,达到净化水质的目的。
三、废气回收技术废气回收是指将工业生产过程中产生的废气进行处理和再利用,减少环境污染和节约能源。
以下是常见的废气回收技术:1.脱硫技术:针对含有二氧化硫的废气,采用湿法或干法脱硫技术,将二氧化硫转化为硫酸盐,达到减少大气污染的目的。
2.脱硝技术:针对含有氮氧化物的废气,采用催化还原法、吸收法等技术进行脱硝,将氮氧化物转化为无害物质,减少大气污染。
3.吸附技术:利用吸附剂对废气中的有害物质进行吸附和储存,减少有害气体的排放和对环境的影响。
烟气余热回收烟气余热回收是一种利用工业烟气中的热能,将其转化为有用的能源的技术。
在工业生产过程中,许多设备会产生大量的烟气,并且其中蕴含着大量的热能。
如果不加以回收利用,这些烟气中的热能将会成为一种浪费。
利用烟气余热回收技术,可以将这些烟气中的热能转化为电力、热水等形式,实现能源的有效利用。
一、烟气余热回收的原理烟气余热回收的原理是利用烟气中所含的高温热能,通过热交换器等设备将其传递给工作介质,使其温度升高,从而实现能量的转化。
具体而言,烟气在经过工业设备后温度较高,热能丰富,而同一工艺中的其他设备或介质却需要能量供应才能进行正常运行。
通过在烟气和工作介质之间设置热交换器,将烟气中的热能传递给工作介质,使其温度升高并得到利用。
烟气在释放了热能后会冷却下来,然后被排出。
二、烟气余热回收的应用领域1. 电力发电领域烟气余热回收技术在电力发电领域得到了广泛应用。
发电厂中燃气轮机、燃煤发电等设备产生的烟气中含有大量的热能,通过热交换器回收这些热能,可以增加发电系统的整体效率,并减少对外部能源的依赖。
2. 石油化工领域在石油化工生产过程中,许多工艺所产生的烟气含有高温热能,通过烟气余热回收技术进行回收利用,不仅可以提高生产过程的能源利用率,还可以降低生产成本。
3. 钢铁冶炼领域钢铁冶炼过程中,高炉煤气以及其它烟气所含的热能可以通过余热回收技术回收利用。
回收过程中,烟气中的热能被传递给工作介质,使其升温后可以用于生产过程中的加热需求,从而实现能源的循环利用。
4. 建材行业在建材行业中,如水泥生产过程中,熟料窑炉烟气中的高温热能可以通过余热回收设备回收利用,为其他工艺提供热能,减少能源的消耗。
三、烟气余热回收的优势1. 提高能源利用效率通过烟气余热回收技术,可以将烟气中的热能转化为有用的能源,在一定程度上提高了能源的利用效率。
这有助于减少对外部能源的需求,降低能源消耗成本。
2. 减少环境污染利用余热回收技术,可以减少工业排放的烟尘、废气等污染物的含量,起到了环保的作用。
典型有色金属冶炼烟气余热回收利用分析摘要:虽然金属熔炼过程对能量的耗费是很大的,可是由于在冶金过程中所耗费能量而形成的余热却占总能源消耗的六成左右,而在这种重要的余热资源中,烟气余热则最高达到了八成。
这样,在金属熔炼过程中对烟气余热的利用与再利用,显得尤为重要。
本文以目前中国常规金属熔炼的主要工艺流程为立足点,就处理过程中对烟气余热回收利用所存在的问题,及其完善后的处理方法展开了简要的分析研究,并就合理地提高中国典型金属熔炼烟气余热利用技术水平展开研究。
关键词:有色金属、冶炼烟气、余热回收利用引言:在当前,关于工业流程中所形成的余电烟尘,最常见的处理方式一般有:使用余电来完成水力发电、使用气体预热器来形成热风等。
采用上述方式不但降低了能源消耗,也大大提高了工业企业的能耗效益,而且降低了烟尘的总量,对企业投资、环境保护等领域也具有显著效果。
不过,因为上述方式所形成的历史时期相对较短,相应的基础理论研究成果也没有相当的完备性,这也导致了在实际应用的工作过程中常常会存在着一些热循环使用方面的问题。
而针对这些情况,可以发现其在排烟余热利用方面所存在的问题,本文就当前行业发展状况提供了合理的处理办法。
一、烟气余热回收工作存在的问题1、缺乏综合性利用当前,大多数的有色冶金企业对收集的烟气余热所采取的方式都是一次热使用的办法,而不是根据这些企业收集燃料的质量和程度实行分类供热,而更多的是对部分品位较高的热能采用了简易的一个降压设备,将整个能源系统的压力逐步减小后再使用其去解决部分的高参数用户的能源需求。
这些能量循环使用方法的出现,导致这些可利用的烟气余热能量在使用中产生了巨大的损耗。
因此,锅炉中生成的压力为1.3MPa的饱和蒸汽,其本身所具有的能量可利用值约为1005kJ/kg,而一旦工业企业采用了减压设备使之变成压力为0.3Pa来利用,则将会使之丧失约172kJ/kg的能量,而丧失的使用价值约是原来数量的百分之十七,如此计算来,该技术使用的领域和数量越大,所带来的能量损耗和风险也越大。
科技成果——矿热炉烟气余热利用技术
适用范围
钢铁行业、硅系铁合金冶炼、化工电石行业等
成果简介
1、技术原理
通过余热回收装置,利用生产过程中产生的高温烟气及辐射热量,进行二次回收利用,在余热锅炉内产生中低压蒸汽,进而推动发电设备进行发电。
2、关键技术
矿热炉高温烟气导入余热锅炉,蒸汽驱动汽轮机组从而带动发电。
当余热发电设备出现故障或进行正常维修时进行烟气导出转换,恢复现有除尘状态。
主要技术指标
16台14000kVA矿热炉余热利用系统,年发电量可达1.92亿kWh。
典型案倒
典型用户:青海百通高纯材料开发有限公司
建设规模:8台13t余热锅炉,24000kW余热发电机组及配套设施,设计年发电量为1.92亿kWh。
主要技改内容:将原来的烟气净化空冷却器全部拆除,安装8台13t余热锅炉及相关配套管网,安装24000kW蒸汽发电机及配套余热锅炉和输电设备,改造硅铁矿鼎炉烟罩,建冷却池、冷却塔、化学水处理、给排水及相应土建工程。
主要设备为16台14000kVA矿热炉烟罩、8台13t余热锅炉和24000kW余热发电机组及配套设施。
节能技改投资额1.71亿元,建设期18个月。
每年可节约67200tce (按年发电量1.92亿kWh计算),年节能经济效益6144万元,投资回收期2.5年。
钢铁行业烧结余热发电技术
一、所属行业:钢铁行业
二、技术名称:钢铁行业烧结余热发电技术
三、适用范围:钢铁行业
四、技术内容:
1.技术原理
钢铁行业烧结、热风炉、炼钢、加热炉等设备产生的废烟气,通过高效低温余热锅炉产生蒸汽,带动汽轮发电机组进行发电。
2.关键技术
通过分级利用余热,使得余热锅炉能最大限度的利用200~400℃的低温余热。
3.工艺流程
烟气收集→余热锅炉→汽轮发电机。
五、主要技术指标:
1.与该节能技术相关生产环节的能耗现状:
200~400℃的低温余热废气,基本没有得到利用。
2.主要技术指标:
可利用烟气温度为200~400℃。
六、技术应用情况:
目前钢铁冶金行业才开始推广应用。
七、典型用户及投资效益:
典型用户马钢
某钢铁投资1.7亿元人民币,安装了低温余热锅炉及汽轮发电机组,年发电量达1.4亿kWh,年取得经济效益7000万元人民币,投资回收期2.5年。
八、推广前景和节能潜力:
钢铁企业的烧结、冶炼、加热等设备产生大量的低温废气,基本没有得到合理利用,所以其推广前景广阔,节能潜力巨大。
“十一五”期间该技术在行业推广到的比例为10%~20%,需要总投资为5亿元人民币,年可发(节)电12亿kWh。
九、推广措施及建议:
钢铁生产过程中,都会产生大量低温烟气,若将其低温余热充分合理利用,将会产生很大的节能效益。
建议政府应积极支持、鼓励,制定特殊政策,激励企业利用低温余热的积极性,节约大量一次能源,创造更多社会效益。
冶炼烟气制酸转化工序余热的回收再利用某冶炼厂原有一系列、二系列制酸系统是利用冶炼工段的闪速炉和转炉烟气,经余热锅炉和电收尘,再经净化、转化和吸收工序进行制酸。
烟气转化后的多余热量通过SO3冷却后排入大气,烟气中的余热不但没有回收加以利用,反而还消耗大量能源,既增加了生产成本,又浪费了能源。
另一方面,该企业原有的冶炼工艺过程需消耗大量的低压蒸汽,厂区的蒸汽90%由燃煤锅炉提供,在能源供应十分紧缺的今天,对低温烟气的余热回收及利用显得极为重要。
在众多形式的余热锅炉中,热管技术在低温烟气余热回收中的应用显示出其显著的特点和优势。
一、热管特点1、热管简介及工作原理热管是一种具有特高导热性能的新颖传热元件。
热管起源于二十世纪六十年代的美国,1967年一根不锈钢——水热管首次被送入地球卫星轨道并运行成功,热管理论一经提出就得到了各国科学家的高度重视,并展开了大量的研究工作,使得热管技术得以很快发展。
热管技术开始主要用于航天航空领域,我国自二十世纪70年代开始对热管进行研究,自80年代以来相继开发了热管气-气换热器、热管气-水换热器、热管余热锅炉、热管蒸汽发生器、热管热风炉等各类热管产品,使得热管在建材工业、冶金工业、化工及石油化工、动力工程、纺织工业、玻璃工业、电子电器工程等领域内得到广泛的应用。
图1 热管结构热管结构如图1所示。
由管壳、封头、吸液芯、工质等组成。
管内有工质,工质被吸附在多孔的毛细吸液芯内,一般为气、液两相共存,并处于饱和状态。
对应于某一个环境温度,管内有一个与之相应的饱和蒸汽压力。
热管与外部热源相接触的一端,称为蒸发段;与被加热体相接触的一端,称为冷凝段。
热管从外部热源吸热,蒸发段吸液芯中工质蒸发,局部空间的蒸汽压力升高,管子两端形成压差,蒸汽在压差作用下被驱送到冷凝段,其热量通过热管表面传输给被热体,热管内工质冷凝后又返回蒸发段,形成一个闭式循环,包括三个过程:吸热段液相工质吸热蒸发;被蒸发的工质在放热段放热冷凝;冷凝的工质又返回吸热段再蒸发。
烟气余热利用回收再热的原理随着能源需求的不断增长,如何高效利用能源成为了一个重要的课题。
在工业生产过程中,许多设备会产生大量的烟气,其中蕴含着大量的能量。
烟气余热利用回收再热技术就是利用这些烟气中的余热来进行再热,从而提高能源利用效率。
烟气余热是指在工业生产过程中,烟气在排放之前所带走的热能。
这些烟气通常具有较高的温度,蕴含着大量的能量。
如果这些烟气中的余热能够得到有效利用,不仅可以提高能源利用效率,还可以减少环境污染。
烟气余热利用回收再热技术的原理主要分为回收和再热两个步骤。
首先是烟气余热的回收。
在工业生产过程中,设备产生的烟气会通过烟囱排放到大气中。
而烟气中含有的热能会通过烟气余热回收设备进行回收。
常见的烟气余热回收设备包括烟气余热锅炉、烟气余热换热器等。
这些设备通过与烟气进行热交换,将烟气中的余热转移到工作介质中,从而实现烟气余热的回收。
接下来是烟气余热的再热。
回收到的烟气余热经过回收设备转移到工作介质中,然后通过再热设备进行再热。
再热设备通常采用蒸汽或者热水来进行热交换,将工作介质加热至一定温度,从而实现再热效果。
再热后的工作介质可以用于供热、发电或其他工业生产过程中的热能需求。
烟气余热利用回收再热技术的优势在于其高效利用了烟气中蕴含的热能,提高了能源利用效率,同时减少了对环境的污染。
通过回收烟气中的余热,不仅可以降低能源消耗和生产成本,还可以减少温室气体的排放,对环境保护起到了积极的作用。
烟气余热利用回收再热技术还具有一定的经济和社会效益。
通过提高能源利用效率,可以减少对传统能源的依赖,降低能源供需之间的矛盾。
同时,提高能源利用效率还可以减少能源消耗,降低能源开采和输送过程中的能源损耗。
然而,烟气余热利用回收再热技术也面临着一些挑战。
首先,烟气中的余热回收效率受到烟气温度、湿度等因素的影响。
如果烟气温度过低或者湿度过高,会导致余热回收效果不佳。
其次,烟气余热的再热效果也受到再热设备的性能和运行状态的影响。
余热发电技术的主要分类余热发电技术是一种利用工业生产过程中产生的余热来发电的技术。
它能有效提高能源利用效率,减少能源浪费,同时减少对环境的影响。
根据不同的工艺原理和应用场景,余热发电技术可以主要分为以下几类。
1. 蒸汽余热发电技术蒸汽余热发电技术是利用工业生产过程中产生的高温高压蒸汽来驱动汽轮机发电。
在工业生产中,许多工艺过程会产生大量的高温高压蒸汽,并通过余热锅炉回收这些余热蒸汽,使其驱动汽轮机发电。
这种技术适用于钢铁、化工、石油、纸浆造纸等行业。
2. 燃气余热发电技术燃气余热发电技术是利用燃气发电机组产生的高温废气来发电。
在燃气发电过程中,燃气燃烧产生的高温废气可以通过余热回收装置进行回收利用,驱动蒸汽轮机或燃气轮机发电。
这种技术适用于天然气、石油等行业。
3. 水热余热发电技术水热余热发电技术是利用工业生产过程中产生的高温废水来发电。
在工业生产中,许多行业会产生大量的高温废水,通过余热回收装置将废水中的热能转化为电能。
这种技术适用于钢铁、电力、化工等行业。
4. 生物质余热发电技术生物质余热发电技术是利用生物质燃烧产生的余热来发电。
在生物质能源利用过程中,燃烧产生的余热可以通过余热锅炉或余热回收装置来回收利用,驱动发电机组发电。
这种技术适用于生物质能源发电厂、生物质加工厂等。
5. 钛白粉余热发电技术钛白粉余热发电技术是利用钛白粉生产过程中产生的余热来发电。
在钛白粉生产过程中,会产生大量的高温废气和废水,通过余热回收装置将废气中的热能和废水中的热能转化为电能。
这种技术适用于钛白粉生产厂。
6. 煤矿余热发电技术煤矿余热发电技术是利用煤矿生产过程中产生的余热来发电。
在煤矿生产过程中,会产生大量的高温废气和废水,通过余热回收装置将废气中的热能和废水中的热能转化为电能。
这种技术适用于煤矿。
7. 钢铁余热发电技术钢铁余热发电技术是利用钢铁生产过程中产生的余热来发电。
在钢铁生产过程中,会产生大量的高温废气和废水,通过余热回收装置将废气中的热能和废水中的热能转化为电能。
有色冶金工业烟气余热利用2018年,中国十种有色金属产量5688万吨,比上年增长6%,增速比上年提高3个百分点。
其中,铜产量903万吨,增长8%,提高0.3个百分点;电解铝产量3580万吨,增长7.4%,提高5.8个百分点;铅产量511万吨,增长9.8%,提高0.1个百分点;锌产量568万吨,下降3.2%,降幅比上年扩大2.5个百分点。
氧化铝产量7253万吨,增长9.9%,增速比上年提高2个百分点。
有色金属工业持续快速发展,现在总产量已居世界第一,同时技术进步加快,产业结构升级,其在国际产业中的影响力和竞争力不断增强。
但是有色行业长期存在的高能耗问题仍然十分突出,单位产品能耗比国际先进水平高10%左右。
在有色冶金的能耗构成中,有效热只占了32%,另有8%的热量随着炉墙等散失掉,其余的60%都是有色金属冶炼过程中的余热量。
而在这些余热量中烟气余热占的比例高达80%左右,由此可见,回收有色冶金行业烟气余热对降低有色冶金行业能耗具有重要意义。
1、烟气余热回收利用概述1.1烟气余热在有色冶金行业的烟气余热中,温度高于1000℃的高温烟余热占总烟气余热的52%,而温度在600~1000℃之间的中温烟气余热和温度低于600℃的低温烟气余热分别占总烟气余热的26%和22%。
表1是部分有色冶金炉窑烟气的温度和热效率。
从表1可以看出,有色冶金炉窑的烟气带走的热量在总热量中占相当大的比重,烟气的温度越高,带走的热量就越多,从而炉窑的热效率也越低。
因此,尽可能回收烟气余热是提高炉膛热效率的必要措施。
另外,由于大多数有色金属冶炼所用的原材料都是硫化矿,炉窑产生的烟气中含SO2等腐蚀性气体较多,并且大部分的烟气温度很高,因此烟气容易对换热设备造成高温或低温腐蚀。
同时,烟气中的含尘量大,有些炉窑产生的烟气量随工艺周期性变化,这些烟气的特性对有色冶金炉窑烟气余热的回收利用有很大影响。
1.2回收状态目前,回收有色金属炉烟气余热的更常见方法有:(1)在烟道中安装余热锅炉以产生蒸汽;(2)利用余热发电;(3)利用烟气余热预热空气或材料;(4)安装汽化水套以产生低压蒸汽或安装冷却水套以产生热水等。
冶炼烟气余热回收—余热发电技术
一、所属行业:有色金属行业
二、技术名称:冶炼烟气余热回收—余热发电技术
三、适用范围:有色金属、钢铁、水泥等行业
四、技术内容:
1.技术原理
利用强制循环余热锅炉回收冶炼烟气余热,生产中压饱和蒸汽,配套饱和蒸汽汽轮机组,发电机组抽汽供热,实现供热、电联产,最大限度提高余热蒸汽利用效率。
2.关键技术
国内自行设计制造的耐高温腐蚀性、粘结性冶炼烟气余热锅炉。
工艺流程
原水→脱盐→除氧→余热锅炉→汽轮发电机组→凝结水→余热锅炉。
五、技术指标:
1.节能技术相关生产环节的能耗现状:
有色行业冶炼高温烟气余热损耗占较大比率,有色系统余热锅炉应用率不高,而配套余热发电站的企业更少,余热利用水平较低。
2.技术指标:
余热锅炉蒸汽量5-100t/h,工作压力3.0-5.0MPa,蒸汽温度一般为饱和温度(236-265℃)。
汽轮发电机入口压力3.0-5.0MPa,抽汽压力0.5-1.0MPa,排气压力
0.008-0.03 MPa,电站容量0.5-15MW。
六、技术鉴定及应用情况:
本技术已在云南铜业股份有限公司等多家企业投入商业运行,尚没有进行过技术鉴定。
在云南铜业股份有限公司、云南冶金集团驰宏锌锗股份公司、云南锡业股份有限公司、白银有色金属公司等多家企业投入运行,取得良好经济效益。
七、典型用户及投资效益:
应用典型案例一:云南铜业股份有限公司
余热电站规模9470kW,汽轮发电机组1台,另配套ISA炉余热锅炉1台,转炉余热锅炉2台、阳极炉余热锅炉2台。
总蒸汽量55-85t/h,蒸汽压力4.2MPa,蒸汽温度253℃。
建设期为1年,节能技改投资额为6232万元(不包括余热锅炉系统投资)。
年发电量达到68752MWh,年供热量573772GJ。
年创产值约为2539万元,新增利润总额1531万元,投资回收期4.8年。
应用典型案例二:云南锡业股份有限公司
国产汽轮发电机组1台,功率6000kW,电压6kV,进汽压力2.5MPa,蒸汽量30t/h;余热锅炉3台。
建设期为1年,余热发电站投资为2456万元(不包括余热锅炉系统投资)。
年发电量达到39600MWh,年创产值约为1660万元,新增利润总额880万元。
投资回收期3年。
八、推广前景和节能潜力:
本技术可用于有色行业的各个大、中型冶炼厂,其余热锅炉蒸汽量大于5t/h,压力大于1.0MPa。
也可用于钢铁、水泥等相关行业。
“十一五”期间,该技术在大、中型企业推广率可达85%以上,需要总投入约为2-3亿元,可取得总节能量444100吨标煤/年(按中等容量估算)。
九、推广措施及建议:
1.在项目立项和实施过程中,将冶炼烟气余热回收-余热发电同步立项,同步实施余热利用也应热电联产,提高余热利用效率。
2.政府部门给予优惠贷款、提高上网电价。
3.鼓励企业发展余热电站,取消某些地方存在的限制上网的规定。