高中数学必修5高中数学必修5等差数列复习教案 (1)
- 格式:doc
- 大小:64.00 KB
- 文档页数:3
等差数列复习
知识归纳
1. 等差数列这单元学习了哪些内容?
2. 等差数列的定义、用途及使用时需注意的问题:
n ≥2,a n -a n -1=d (常数)
3. 等差数列的通项公式如何?结构有什么特点?
a n =a 1+(n -1) d a n =An +B (d =A ∈R )
4. 等差数列图象有什么特点?单调性如何确定?
5. 用什么方法推导等差数列前n 项和公式的?公式内容? 使用时需注意的问题? 前n 项和公式结构有什么特点?
2)1(2)(11d n n na a a n S n n -+=+=
S n =An 2+Bn (A ∈R) 注意: d =2A !
6. 你知道等差数列的哪些性质?
等差数列{a n }中,(m 、 n 、p 、q ∈N+):
①a n =a m +(n -m )d ;
②若 m +n =p +q ,则a m +a n =a p +a q ;
等差数列定义通项
前n 项和
主要性质n a n d <0n a n d >0
③由项数成等差数列的项组成的数列仍是等差数列;
④每n项和S n, S2n-S n , S3n-S2n…组成的数列仍是等差数列.
知识运用
1.下列说法:
(1)若{a n}为等差数列,则{a n2}也为等差数列
(2)若{a n} 为等差数列,则{a n+a n+1}也为等差数列
(3)若a n=1-3n,则{a n}为等差数列.
(4)若{a n}的前n和S n=n2+2n+1, 则{a n}为等差数列.
其中正确的有( (2)(3) )
2. 等差数列{a n}前三项分别为a-1,a+2, 2a+3, 则a n=3n-2 .
3.等差数列{an}中, a1+a4+a7=39, a2+a5+a8=33, 则a3+a6+a9=27 .
4.等差数列{a n}中, a5=10, a10=5, a15=0 .
5.等差数列{a n}, a1-a5+a9-a13+a17=10, a3+a15=20 .
6. 等差数列{a n}, S15=90, a8= 6 .
7.等差数列{an}, a1= -5, 前11项平均值为5, 从中抽去一项,余下的平均值为4, 则抽取的项为( A )
A. a11
B. a10
C. a9
D. a8
8.等差数列{a n}, Sn=3n-2n2, 则( B)
A. na1<S n<na n
B. na n<S n<na1
C. na n<na1<S n
D. S n<na n<na1能力提高
1. 等差数列{a n}中, S10=100, S100=10, 求S110.
2. 等差数列{a n}中, a1>0, S12>0, S13<0,S1、S2、…S12哪一个最大?
课后作业《习案》作业十九.