2018-2019届中考数学总复习(13)平面直角坐标系-精练精析(2)及答案解析
- 格式:doc
- 大小:222.00 KB
- 文档页数:14
2017-2018年中考数学专题复习题:平面直角坐标系一、选择题1.已知点平面内不同的两点和到x轴的距离相等,则a的值为A. B. C. 1或 D. 1或2.已知点在y轴的负半轴上,则点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知点是平面直角坐标系中第二象限的点,则化简的结果是A. B. 2a C. D. 04.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为,,则表示棋子“炮”的点的坐标为A. B. C. D.5.已知A,B两点的坐标是,,若AB平行于x轴,且,则的值为A. B. 9 C. 12 D. 6或126.已知点,,,则射线AM和射线AN组成的角的度数A. 一定大于B. 一定小于C. 一定等于D. 以上三种情况都有可能7.如图,在平面直接坐标系中,有若干个横坐标分别为整数的点,其顺序按图中根据这个规律,则第2016个点的横坐标为A. 44B. 45C. 46D. 478.已知点在第一、三象限的角平分线上,点在二、四象限的角平分线上,则A. ,B. ,C. ,D. ,9.如图,在平面直角坐标系中,六边形ABCDEF是半径为1的正六边形,点O为正六边形ABCDEF的中心,点P从点B出发,沿正六边形按顺时针方向运动,速度为每秒1个单位长度,则第2017秒时,点P的坐标是A.B.C.D.10.如图,在直角坐标系中,已知点、,对连续作旋转变换,依次得到、、、、,的直角顶点的坐标为A. B. C. D.二、填空题11.在y轴上离原点距离为的点的坐标是______.12.已知点,轴,,则点C的坐标是______ .13.如图,在平面直角坐标系中,边长为1的正方形的两边在坐标轴上,以它的对角线为边作正方形,再以正方形的对角线为边作正方形,以此类推、则正方形的顶点的坐标是______ .14.王明在班级的座位是“第3列第5排”,若用表示,则表示的实际意义是______.15.已知,,则线段 ______ ,线段AB的中点坐标为______ .16.若点在y轴上,则点A到原点的距离为______个单位长度.17.在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点已知点的终结点为,点的终结点为,点的终结点为,这样依次得到、、、、、,若点的坐标为,则点的坐标为______.18.如图,在平面直角坐标系中,的顶点坐标分别为,,,点绕点A旋转得到点,点绕点B旋转得到点,点绕点C旋转得到点,点绕点A旋转得到点,,按此作法进行下去,则点的坐标为______ .19.如图,在平面直角坐标系中,等腰直角三角形的直角边在y轴的正半轴上,且,以为直角边作第二个等腰直角三角形,以为直角边作第三个等腰直角三角形,,依此规律,得到等腰直角三角形,则点的坐标为______.三、计算题20.若点在第二象限,且点M到x轴与y轴的距离相等,试求的值.21.已知点是平面直角坐标系上的点.若点P在第一象限的角平分线上,求x的值;若点P在第三象限,且到两坐标轴的距离之和为16,求x的值.22.在一个不透明的口袋里装有分别标有数字、、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.从中任取一球,求抽取的数字为正数的概率;从中任取一球,将球上的数字记为a,求关于x的一元二次方程有实数根的概率;从中任取一球,将球上的数字作为点的横坐标,记为不放回;再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图或列表法表示出点所有可能出现的结果,并求点落在第二象限内的概率.23.如图,奥运福娃在的方格每小格边长为上沿着网格线运动贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负如果从A到B记为:,从B到A记为:,其中第一个数表示左右方向,第二个数表示上下方向,那么图中______ ,______ ,______ ,______ , ______ ;若贝贝的行走路线为,请计算贝贝走过的路程;若贝贝从A处去寻找妮妮的行走路线依次为,,,,请在图中标出妮妮的位置E点.【答案】1. A2. A3. A4. D5. D6. C7. B8. A9. A10. A11. 或12. 或13.14. 第5列第3排15. 6;16. 517.18.19. 或20. 解:点在第二象限,且点M到x轴与y轴的距离相等,,解得,.21. 解:由题意得,解得;由题意得,则,解得.22. 解:根据题意得:抽取的数字为正数的情况有1个,则;方程有实数根,,且,解得:,则关于x的一元二次方程有实数根的概率为;列表如下:所有等可能的情况有12种,其中点落在第二象限内的情况有2种,则.23. ;;;0;A。
中考数学试题考点分类平面直角坐标系(含答案)————————————————————————————————作者:————————————————————————————————日期:平面直角坐标系考点1:特殊点坐标的特点1.在x轴上的点的_____坐标为__________,在y轴上的点的_____坐标为__________。
2.在第一象限内的点的横坐标为______,纵坐标为______.在第二象限内的点的横坐标为______,纵坐标为______.在第三象限内的点的横坐标为______,纵坐标为______.在第四象限内的点的横坐标为______,纵坐标为______.1.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,点(1,3)位于第________象限。
3.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.若点P(a,a-2)在第四象限,则a的取值范围是().A.-2<a<0 B.0<a<2 C.a>2 D.a<0考点2:轴对称的坐标1、关于x轴对称:两个点关于x轴对称,横坐标不变,纵坐标变相反。
即A(a,b)关于x轴对称的点的坐标为(____,____)。
2、关于y轴对称:两个点关于y轴对称,纵坐标不变,横坐标变相反。
即A(a,b)关于y轴对称的点的坐标为(____,____)。
3、关于原点对称:两个点关于原点对称,横坐标变相反,纵坐标变相反。
即A(a,b)关于原点对称的点的坐标为(____,____)。
1.点M(-2,1)关于x轴对称的点的坐标是().A.(-2,-1)B.(2,1)C.(2,-1)D.(1,-2)2.点P(-3,2)关于x轴对称的点P`的坐标是.3.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为().A.(3, 2)B.(-2,-3)C.(-2, 3)D.(2,-3)4.平面直角坐标系中,与点(2,-3)关于原点中心对称的点是().A.(-3,2)B.(3,-2)C.(-2,3)D.(2,3)5.点P(1,2)关于原点的对称点P′的坐标为___________.6.如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形OABC绕点O旋转180°,旋转后的图形为矩形OA 1B1C1,那么点B1的坐标为( ).A. (2,1)B.(-2,l)C.(-2,-l)D.(2,-1)7.若点A(2,a)关于x轴的对称点是B(b,-3)则ab的值是.8.在平面直角坐标系中,点A(1,2)关于y轴对称的点为点B(a,2),则a=.9.在平面直角坐标系中,点P(2,3)与点P (2a+b,a+2b)关于原点对称,则a-b的值为_________考点3:考平移后点的坐标1.将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(____,____)(或(_____,____));2.将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(____,_____)(或(____,____)).1.在平面直角坐标系中,将点(-2,-3)向上平移3个单位,则平移后的点的坐标为_______.2.如图,在平面直角坐标系中,点P(-1,2)向右平移3个单位长度后的坐标是()A.(2,2)B.(-4,2)C.(-1,5)D.(-1,-1)3.将点P(-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P/,则点P/的坐标为。
图解平面直角坐标系知识点+真题反馈一.平面直角坐标系定义1.【两个完全相同的数轴】【原点重合】【相互垂直】构成平面直角坐标系。
2.水平的数轴叫横轴或x轴,取向右方向为正方向;3.铅直的数轴叫纵轴或y轴,取向上方向为正方向;4.两数轴的交点叫做坐标原点;5.x轴和y轴把坐标平面分成四个部分,称四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限.注意:两条坐标轴不属于任何一个象限.二.象限点和坐标轴点特征1.各象限内点的坐标的特征点P(x,y)在第一象限 x>0,y>0点P(x,y)在第二象限 x<0,y>0点P(x,y)在第三象限x<0,y<0点P(x,y)在第四象限x>0,y<02.坐标轴上的点的特征点P(x,y)在x轴正半轴上,x>0,y=0点P(x,y)在x轴负半轴上,x<0,y=0点P(x,y)在y轴正半轴上,x=0,y>0点P(x,y)在y轴负半轴上,x=0,y<0点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点三.特殊线上的点特征1.点P(x,y)在第一、三象限夹角平分线上x与y相等2.点P(x,y)在第二、四象限夹角平分线上x与y互为相反数3.平行于x轴/垂直于y轴的直线上的各点的纵坐标相同4.平行于y轴/垂直于x轴的直线上的各点的横坐标相同。
四.与距离有关公式1.点P(x,y)到x轴的距离=|y|2.点P(x,y)到y轴的距离=|x|3.点P(x,y)到原点的距离d,d²=x²+y²4.点P(x,y)与点Q(m,n)的距离f,f²=(x-m)²+(y-n)²五.中点坐标公式:点A和点B的中点横坐标等于点A,点B横坐标之和除以2;点A和点B的中点纵坐标等于点A,点B纵坐标之和除以2。
六.与图形变换结合点坐标规律1.平移规律:上加下减,右加左减。
2.对称规律(1)点P(x,y)关于x轴的对称点是A(x,-y);(2)点P(x,y)关于y轴的对称点是B(-x,y);(3)点P(x,y)关于坐标原点的对称点是C(-x,-y);巧记:关于谁,谁不变,另一个互为相反数。
平面直角坐标系一、选择题1.在平面直角坐标系中,点P(-1,2)所在的象限是()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限2.点P(x﹣1,x+1)不可能在()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限4.在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是()A. B.C.D.5.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)6. 抛物线(m是常数)的顶点在()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限7. 在平面直角坐标系中,点关于原点的对称点的坐标是()A. B.C.D.8. 已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根 C. 没有实数根 D. 无法判断9.如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A. 横坐标相等B. 纵坐标相等C. 横坐标的绝对值相等D. 纵坐标的绝对值相等10.如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是()A. B. ﹣C.D. ﹣11. 小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A. (﹣2,1)B. (﹣1,1) C. (1,﹣2) D. (﹣1,﹣2)12.如图,小手盖住的点的坐标可能为()A. (-4,-5)B. (-4,5) C. (4,5) D. (4,-5)二、填空题13.如果在y轴上,那么点P的坐标是________ .14.平面直角坐标系内,点P(3,-4)到y轴的距离是 ________15.已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=________.16.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为________。
2019年中考数学总复习专题二《平面直角坐标系》精练卷一、选择题1.(2018·金华市,7,3分) 小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( ▲ )A.(5,30)B.(8,10)C.(9,10)D.(10,10)2.(2018•枣庄市,7,3)在平面直角坐标系中,将点A (-1,-2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点B ′的坐标为 ( )A .(-3,- 2)B .(2,2)C .(-2,2)D .(2,-2)3.(2018·扬州市,6,3分)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,-4)B .(4,-3)C .(-4,3)D .(-3,4)4.(2018·山东潍坊,10,3分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O 称为极点;从点O 出发引一条射线Ox 称为极轴;线段OP 的长度称为极径.点P 的极坐标就可以用线段OP 的长度以及从Ox 转动到OP 的角度(规定逆时针方向转动角度为正)来确定,即P (3,60°)或P (3,-300°)或P (3,420°)等,则点P 关于点O 成中心对称的点Q 的极坐标表示不正确的是( )A .Q (3,240°)B .Q (3,-120°)C .Q (3,600°)D .Q (3,-500°)y Px单位:mm4030 10 16 50 O5(2018·绍兴,8,4分)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20.如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是6.(2018·长沙市,10,3分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家.下图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象下列说法正确的是A、小明吃早餐用了25minB、小明读报用了30 minC、食堂到图书馆的距离为0.8kmD、小明从图书馆回家的速度为0.8km /min二、填空题1.(2018·绵阳,14,3分)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为.2.(2018·台州市,15,5分) 如图,把平面内一条数轴x 绕原点O 逆时针旋转角θ(0°<θ <90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:过点P 作y 轴的平行线,交X 轴于点A ,过点P 作x 轴的平行线,交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P 的斜坐标.在某平面斜坐标系中,已知θ=60°,点M 的斜坐标为(3,2),点N 与点M 关于y 轴对称,则点N 的斜坐标为 .O yxθA B P (a ,b )【解析卷】2019年中考数学总复习专题二《平面直角坐标系》精练卷一、选择题1.(2018·金华市,7,3分) 小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( ▲ )A.(5,30)B.(8,10)C.(9,10)D.(10,10)答案.C ,解析:根据轴对称性质:对应点连线被对称轴垂直平分,即可判断P 点的横坐标为9,继而可判断P 点的横坐标为40-30=10,所以P 点坐标为(9,10).2.(2018•枣庄市,7,3)在平面直角坐标系中,将点A (-1,-2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点B ′的坐标为 ( )A .(-3,- 2)B .(2,2)C .(-2,2)D .(2,-2)答案:B ,解析:∵点A 向右平移3个单位后得到点B (-1+3,-2)即(2,-2),∴点B (2,-2)关于x 轴对称的点B ′的坐标为(2,2),故选项B 正确.3.(2018·扬州市,6,3分)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,-4)B .(4,-3)C .(-4,3)D .(-3,4)C ,解析:设M 的坐标为(x ,y ),∵点M 在第二象限内,则x <0,y >0;点M 到x 轴的距离为3,到y 轴的距离为4,∴x =﹣4,y =3.故选C .4.(2018·山东潍坊,10,3分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O 称为极点;从点O 出发引一条射线Ox 称为极轴;线段OP 的长度称为极径.点P 的极坐标就可以用线段OP 的长度以及从Ox 转动到OP 的角度(规定逆时针方向转动角度为正)来y Px单位:mm4030 10 16 50 O确定,即P(3,60°)或P(3,-300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°) B.Q(3,-120°) C.Q(3,600°) D.Q(3,-500°)D,解析:因为点P与点Q关于点O成中心对称,故点P只需再旋转180°就得到点Q.则P(3,60°)再按顺时针旋转180°得到Q(3,240°);或P(3,60°)按逆时针旋转180°得到Q(3,-120°);Q(3,240°)按顺时针旋转360°后回到原位置,故还可表示为Q(3,600°);或Q(3,-120°)按逆时针再旋转360°后回到原位置,故还可表示为Q(3,-480°),故(3,-500°)是错误的5(2018·绍兴,8,4分)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20.如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是答案:B,解析:由题知A选项所表示的班级序号为1×23+0×22+1×21+0×20=10,B选项所表示的班级序号为0×23+1×22+1×21+0×20=6,C选项所表示的班级序号为1×23+0×22+0×21+1×20=9,D选项所表示的班级序号为0×23+1×22+1×21+1×20=11,因此选B.6.(2018·长沙市,10,3分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家.下图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象下列说法正确的是A、小明吃早餐用了25minB、小明读报用了30 minC、食堂到图书馆的距离为0.8kmD、小明从图书馆回家的速度为0.8km /min答案.B,解析:A选项,吃早餐用的时间为(25-8)min=17min;C选项,食堂到图书馆距离应为(0.8-0.6)km=0.2km;D选项,小明从图书馆回家的速度应为0.8km/10min =0.08km/min.故选项B正确.二、填空题1.(2018·绵阳,14,3分)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为.答案:(-2,-2),解析:解法1:根据“相”和“兵”的坐标画出平面直角坐标系,然后根据“卒”的位置确定其坐标;解法2:直接找出“兵”和“卒”之间的位置关系:“卒”可以看成由“兵”先右移一个单位长度再下移三个单位长度得到的.2.(2018·台州市,15,5分)如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交X 轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标.在某平面斜坐标系中,已知θ=60°,点M的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为 .答案(-3,5),解析:作点M 关于y 轴的对称点N ,根据60度角产生的直角三角形可求出纵坐标为5,所以N 点坐标为(-3,5).O yxθA B P (a ,b )。
2019年中考数学专题复习10——平面直角坐标系(含答案解析)一、选择题(共10小题;共50分)1. 在平面直角坐标系中,点的坐标为,将点向右平移个单位长度后得到A. B. C. D.2. 在平面直角坐标系中,点关于A. C.3. 已知平面直角坐标系中,点A. C. D.4. 第六届北京农业嘉年华在昌平区兴寿镇草莓博览园举办,某校数学兴趣小组的同学根据数学知识将草莓博览园的游览线路进行了精简.如图,分别以正东、正北方向为轴、轴建立平面直角坐,表示科技生活馆的点的坐标为,则表A. B.5. “单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.如图描述了某次单词复习中,,,四位同学的单词记忆效率与复习的单词个数A. B. C. D.6. 中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,所在位置的坐标为,所在位置的坐标为,那么,所在位置的A. B. D.7. 如图,点在观测点的北偏东方向,且与观测点的距离为千米,将点的位置记作,用同样的方法将点,点的位置分别记作,,则观测点的位A. B. C. D.8. 如图,将北京市地铁部分线路图置于正方形网格中,若设定崇文门站的坐标为,雍和宫站的坐标为A. B. C. D.9. 如图,直线,在某平面直角坐标系中,,,点的坐标为,点的,则点A. C.10. 雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为,其中:表示目标与探测器的距离;表示以正东为始边,逆时针旋转的角度.如图,雷达探测器显示在点,,处有目标出现,其中目标的位置表示为,目标的位置表示为.用这种方法表示目标B. C. D.二、填空题(共10小题;共50分)11. 如图,这是怀柔区部分景点的分布图,若表示百泉山风景区的点的坐标为,表示慕田峪长,则表示雁栖湖的点的坐标为.12. 某雷达探测目标得到的结果如图所示,若记图中目标的位置为,目标的位置为,目标的位置为,则图中目标的位置可记为.13. 如图是一组密码的一部分,为了保密,许多情况下可采用不同的密码,请你运用所学的知识找到破译的“钥匙”,目前,已破译出“今天考试”的真实意思是“努力发挥”,若“今”所处的位置为,你找到的密码钥匙是,破译“正做数学”的真实意思是.14. 如图,每个小正方格都是边长为个单位长度的正方形,如果用表示点的位置,用表示点的位置,那么点的位置可表示为.15. 已知,,若白棋飞挂后,黑棋尖顶.黑棋的坐标为.16. 如图所示的象棋盘上,若帅位于点上,相位于点上,则炮所在点的坐标是.17. 在平面直角坐标系中,点绕坐标原点顺时针旋转后,恰好落在如图中阴影区域(包括边界)内,则的取值范围是.18. 如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移,轴对称,旋转)得到的,写出一种由得到的过程:.19. 如图,在平面直角坐标系中,每个最小方格的边长均为个单位长,,,,,均在格点上,其顺序按图中“”方向排列,如:,,,,,根据这个规律,点的坐标为.20. 如图在坐标系中放置一菱形,已知,.先将菱形沿轴的正方向无滑动翻转,每次翻转,连续翻转次,点的落点依次为,,,,则的坐标为.三、解答题(共10小题;共130分)21. 如图,写出的各顶点坐标,并画出关于轴对称的,写出关于轴对称的的各点坐标.22. 如图,在平面直角坐标系中,,,.(1)求出的面积.(2)在图中作出关于轴的对称图形.(3)写出点,,的坐标.23. 在平面直角坐标系中,的顶点坐标是,,.线段的端点坐标是,.(1)试说明如何平移线段,使其与线段重合;(2)将绕坐标原点逆时针旋转,使的对应边为,请直接写出点的对应点的坐标;(3)画出()中的,并和同时绕坐标原点逆时针旋转.画出旋转后的图形.24. 如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)画出关于轴对称的图形,并直接写出点坐标;(2)以原点为位似中心,位似比为,在轴的左侧,画出放大后的图形,并直接写出点坐标;(3)如果点在线段上,请直接写出经过(2)的变化后点的对应点的坐标.25. 如图所示,写出各顶点的坐标以及关于轴对称的的各顶点坐标,并画出关于对称的.并求的面积.26. 如图,正方形网格中,为格点三角形(顶点都是格点),个单位长度的小正方形.(1)先画出关于轴对称的图形;(2)再画出绕原点顺时针旋转后得到的图形;(3)直接写出的长.27. 如图,在边长为的正方形网格中,的顶点均在格点上,点,的坐标分别是,,把绕点逆时针旋转后得到.(1)画出,直接写出点,的坐标;(2)求在旋转过程中,所扫过的面积.28. 如图,在平面直角坐标系中,每个小正方形的边长都为,和的顶点都在格点上,回答下列问题:(1)可以看作是经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由得到的过程:;(2)画出绕点逆时针旋转的图形;(3)在()中,点所形成的路径的长度为.29. 如图,在坐标系中,已知,,过点分别作,垂直于轴、轴,垂足分别为,两点.动点从点出发,沿轴以每秒个单位长度的速度向右运动,运动时间为秒.(1)当为何值时,;(2)当为何值时,;(3)以点为圆心,的长为半径的随点的运动而变化,当与的边(或边所在的直线)相切时,求的值.30. 如图,在每个小正方形的边长为的网格中,,为小正方形边的中点,,为格点,为,的延长线的交点.(1)的长等于;(2)若点在线段上,点在线段上,且满足,请在如图所示的网格中,用无刻度的直尺,画出线段,并简要说明点,的位置是如何找到的(不要求证明).答案第一部分1. D2. A 【解析】点关于轴的对称点的坐标是.3. C4. C5. C6. D7. A8. D9. C10. C第二部分11.12.13. 对应文字横坐标加,纵坐标加,祝你成功【解析】已破译出“今天考试”的真实意思是“努力发挥”,“今”所处的位置为,所对应的文字的位置是,找到的密码钥匙是:对应文字横坐标加,纵坐标加.“正”的位置为对应文字位置是即为“祝”,“做”的位置为对应文字位置是即为“你”,“数”的位置为对应文字位置是即为“成”,“学”的位置为对应文字位置是即为“功”,“正做数学”的真实意思是:祝你成功.14.17.18. 答案不唯一,如:将沿轴向下翻折,在沿轴向左平移个单位长度得到19.20.【解析】连接,可得是等边三角形,画出第次、第次、第次翻转后的图形,由图可知:每翻转次,图形向右平移.因,故点向右平移(即)到点.由图可得,所以.第三部分21. 的各顶点的坐标分别为:,,;所画图形如下所示,的各点坐标分别为:,,.22. (1)(平方单位).(2)如图.(3),,.23. (1)将线段先向右平移个单位,再向下平移个单位(答案不唯一).(2).(3)它们旋转后的图形分别是和.24. (1)如图所示:,即为所求,点坐标为:;(2)如图所示:,即为所求,点坐标为:;(3)如果点在线段上,经过(2)的变化后的对应点的坐标为:.25. 各顶点的坐标以及关于轴对称的的各顶点坐标:,,,,,,如图所示:,即为所求.26. (1)(2)(3).27. (1)所求作如图所示:由,可建立如图所示坐标系,则点的坐标为,点的坐标为;(2),在旋转过程中,所扫过的面积为:28. (1)答案不唯一.例如:先沿轴翻折,再向右平移个单位,向下平移个单位【解析】先向左平移个单位,向下平移个单位,再沿轴翻折.(2)如图所示.(3)29. (1),,四边形是平行四边形.,.当时,.(2),,,解得.(3)①与相切时,如图所示:显然时,与相切;②与相切时,如图所示:过点作垂直于的延长线于点,则,所以,即,解得;③与相切时,如图所示:过点作垂直于的延长线于点,则,所以,即,解得.30. (1)【解析】.(2)如图,与网格线相交,得点,取格点,连接并延长与交于点,连接,则线段即为所求.。
第五章函数及其图象第13课时平面直角坐标系(65分)一、选择题(每题5分,共35分)1.[2018·扬州]在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,-4) B.(4,-3)C.(-4,3) D.(-3,4)2.[2018·成都]在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是()A.(3,-5) B.(-3,5)C.(3,5) D.(-3,-5)3.[2019·滨州]在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是()A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)4.[2019·嘉兴]如图,在平面直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,-1) B.(1,-2)C.(-2,1) D.(-2,-1)5.[2018·广安]已知点P(1-a,2a+6)在第四象限,则a的取值范围是()A.a<-3 B.-3<a<1 C.a>-3 D.a>16.[2019·金华]如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5 km处C.在南偏东15°方向5 km处D.在南偏东75°方向5 km处7.[2019·荆州]如图,在平面直角坐标系中,点A的坐标为(1,3),以原点为中心,将点A顺时针旋转30°得到点A′,则点A′的坐标为()A.(3,1) B.(3,-1)C.(2,1) D.(0,2)二、填空题(每题4分,共20分)8.[2019·陇南]中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点____________.9.[2019·广安]点M(x-1,-3)在第四象限,则x的取值范围是____________.10.[2019·济宁]已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标________________.11.[2019·泸州]在平面直角坐标系中,点M(a,b)与点N(3,-1)关于x轴对称,则a +b的值是________.12.[2019·福建]如图,在平面直角坐标系xOy中,已知▱OABC的三个顶点O(0,0),A(3,0),B(4,2),则第四个顶点是________.三、解答题(共10分)13.(10分)[2018·南宁]如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)(15分)14.(15分)[2018·枣庄]如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中,画出一个与△ABC成中心对称的格点三角形;(2)在图②中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图③中,画出△ABC绕点C按顺时针方向旋转90°后的三角形.(20分)15.(10分)[2019·菏泽]如图,在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,……,第n次移动到点A n,则点A2 019的坐标是()A.(1 010,0) B.(1 010,1)C.(1 009,0) D.(1 009,1)16.(10分)[2019·广安]如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°……按此规律进行下去,则点A2的坐标为____________.019参考答案1.C 2.C 3.A 4.A 5.A 6.D7.A8.(-1,1)9.x>110.答案不唯一,如(1,-1)11.412.(1,2)13.(1)略(2)略(3)△OA1B为等腰直角三角形14.(1)略(2)略(3)略15.C16.(-22 017,22 0173)。
函数一一平面直角坐标系2一•选择题(共8小题)1若a是2的相反数,|b|=3,在直角坐标系中,点M(a, b)的坐标为( )A.( 2,3)或(—2, 3)B. (2, 3 )或(—2,—3)C. (—2, 3)或(—2,—3)D. (—2, 3), (—2,—3), (2, 3)或(2, —3)2. 平面直角坐标系中点P (a, b)到x轴的距离是2,到y轴的距离是3,则这样的点P共有( )A. 1个B. 2个C. 3个D. 4个3. 已知点A (a+2, a —1)在平面直角坐标系的第四象限内,贝U a的取值范围为( ) A.- 2v a v 1 B.- 2w a wl C. —1 v a v2 D.- 1 w a W24.某数用科学记数法表示为a x 10n,若点(a, n)在第三象限,则这个数可能是下列的() A. 3200000 B.—3200000 C. 0.0000032 D.- 0.00000325. 在第一象限的点是( )A. (2,—1)B. (2, 1)C. (—2, 1)D. (—2, —1)6. 如图,矩形BCDE勺各边分别平行于x轴或y轴,物体甲和物体乙由点A (2, 0)同时出发,沿矩形BCDE勺边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2013次相遇地点的坐标是( )A. ( 2, 0)B. (—1, 1)C.( —2 , 1)D. (—1 , —1)7.如图,在一单位为1的方格纸上,△ AA1A2,^A 2A B A4 , △A4A5A6,^A6A7A e,-,都是一边在x轴上、边长分别为1, 2, 3, 4,…的等边三角形.若△ AA 1A2的顶点坐标分别为 A (0,0),A「'),A (1,0),则依如图所示规律,心的坐标为()/\//A\77A\X/y A北左//\V/7為A. (504, 0)B. (— _C.(—…'「)D. (0,- 504)2 2 2 2&若点M的坐标是(a, b)在第二象限,则点N (b,玄)在()A.第一象限B .第二象限C .第三象限D .第四象限二•填空题(共7小题)9. 如图,在平面直角坐标系中,已知点A (- 4,0),B(0,3),对A OAB连续作旋转变换, 依次得到三角形(1)、(2)、(3)、(4)…,那么第(7)个三角形的直角顶点的坐标是 _ ,第(2014)个三角形的直角顶点的坐标是_________________________________ .10. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1, 1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,11. ________________________________________________________ 点P (a,a- 3)在第四象限,贝U a的取值范围是_________________________________________ .12. 在平面直角坐标系中,点(2,- 4)在第__________________ 象限.13. _________________________________________________ 在平面直角坐标系中,点(1,2)位于第____________________________________________________ 象限.14. ____________________________________________________________ 已知点M(m- 1,m)在第二象限,贝U m的取值范围是________________________________________15. 若0v a v 1,则点 M( a - 1, a )在第 _ _ 象限.三•解答题(共7小题)16. 在直角坐标系 xOy 中,已知(-5, 2+b )在x 轴上,N (3- a , 7+a )在y 轴上,求b 和ON 的值. 17. 已知点P (1 - x , 5 - x )到x 轴的距离为2个单位长度,求该点 P 的坐标. 18. 当m 为何值时,点 A ( m+1 3m- 5)到x 轴的距离是到y 轴距离的两倍? 19.在平面直角坐标系中,已知点 B(a , b ),线段BAL x 轴于A 点,线段Bd y 轴于C 点,且( a - b+2) 2+|2a - b - 2|=0 . (1 )求A B , C 三点的坐标;(2)若点D 是AB 的中点,点E 是OD 的中点,求△ AEC 的面积;20.已知点M(2a - 5, a - 1),分别根据下列条件求出点M 的坐标.(1 )点N 的坐标是(1 , 6),并且直线MIN/y 轴; (2 )点M 在第二象限,横坐标和纵坐标互为相反数.21. 如图所示,长方形 ABCD 各边均与坐标轴平行或垂直,已知 A C 两点的坐标为 A (二, -1)、C (- V^, 1).(1 )求B D 两点的坐标; (2 )求长方形 ABCD 勺面积;(3)将长方形ABCD 先向左平移 二个单位,再向下平移一个单位,所得四边形的四个顶点 的坐标分别是多少?cB---------DA22. 如图:在直角坐标系中, 第一次将厶AOB 变换成△ OA 1B 1,第二次将三角形变换成厶OA 2B 2, 第三次将厶 OA 2B 2,变换成厶 OA 3B 3,已知 A ( 1, 3), A (3, 3), A 2 (5, 3) , A 3 (7 , 3) ; B ( 2 , 0),(3)在(2)的P ( 2, a ),且 S ^AEF =S ^AEC , 求a 的值.B (4 , 0), B2 (8 , 0) , B3 (16 , 0).(1 )观察每次变换前后的三角形有何变化,找出规律,按此变化规律再将△OA 3B3变换成△ OAB,贝V A的坐标是___________ ,B的坐标是____________ .(2)若按(1)找到的规律将△ OAB进行了n次变换,得到△ OA n B n,比较每次变换中三角形顶点有何变化,找出规律,推测A的坐标是—_ , B的坐标是—_ .函数——平面直角坐标系2参考答案与试题解析一•选择题(共8小题)1若a是2的相反数,|b|=3,在直角坐标系中,点M(a, b)的坐标为( )A. (2, 3)或(—2, 3) B •(2, 3)或(—2, - 3)C. (- 2, 3 )或(-2,- 3)D. (- 2, 3) (-2, - 3),( 2, 3 )或(2, - 3)考点:点的坐标.分析:根据相反数的定义和绝对值的概念解答.解答:解:Ta是2的相反数,a= —2,•- |b|=3 ,••• b=± 3,•••点M( a, b )的坐标为(-2, 3)或(-2,- 3).故选C.点评:本题主要考查了相反数的概念,绝对值的定义,这是需要识记的内容.2. 平面直角坐标系中点P (a, b)到x轴的距离是2,到y轴的距离是3,则这样的点P共有( )A. 1个B. 2个C. 3个D. 4个考点:点的坐标.分析:根据到x轴的距离是2可得|b|=2 ,到y轴的距离是3可得|a|=3 ,进而得到答案.解答:解:••点P (a, b)到x轴的距离是2,到y轴的距离是3,•|a|=3 , |b|=2 ,• a=±3, b=±2,•••这样的点P共有4个,故选:D.点评:此题主要考查了点的坐标,关键是掌握到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值.3. 已知点A (a+2, a - 1)在平面直角坐标系的第四象限内,贝U a的取值范围为( ) A. - 2v a v 1 B.- 2w a wl C.- 1v a v 2 D. - 1w a W2考点:点的坐标;解一元一次不等式组.分析:根据第四象限点的横坐标是正数,纵坐标是负数列出不等式组,然后求解.解答:解:••点A (a+2, a- 1)第四象限内,何2〉(XD 由①得,a>- 2,由②得,a v 1,所以,a的取值范围是-2v a v 1.故选A.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+, +);第二象限(-,+);第三象限(-,-);第四象限(+,-)•4. 某数用科学记数法表示为a x I0n,若点(a, n)在第三象限,则这个数可能是下列的()A. 3200000 B.- 3200000 C. 0.0000032 D. - 0.0000032考点:点的坐标;科学记数法—表示较小的数.分析:第三象限点的横纵坐标的符号为负,负;说明此数为负小数.解答:解:•••点(a,n)在第三象限,••• a v 0, n v 0,••• a x 10n为负小数,故只有选项D符合条件.故选D.点评:本题涉及到的知识点为:第三象限的点的符号为(-,-);科学记数法a x 10n中 a 为负数, n 为负数,此数为负小数.5. 在第一象限的点是()A. (2,-1)B.(2, 1)C.(-2, 1)D. (-2,- 1)考点:点的坐标.分析:根据各象限内的点的坐标特对各选项分析判断后利用排除法求解.解答:解:A、(2,- 1)在第四象限,故本选项错误;B、(2,1 )C、(- 2,在第一象限,故本选项正确;1 )在第二象限,故本选项错误;- 1 )在第三象限,故本选项错误.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+, +);第二象限(-, +);第三象限(-,-);第四象限(+,-).6. 如图,矩形BCDE勺各边分别平行于x轴或y轴,物体甲和物体乙由点A (2, 0)同时出发,沿矩形BCDE勺边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第201 3次相遇地点的坐标是()* C•1-2AD-1EA.(2, 0)B . (- 1,1)C. (- 2, 1)D. (- 1,- 1)考点: 规律型:点的坐标. 专题: 规律型.分析:先求出一次相遇的时间为4秒,再根据慢的物体甲确定出回到点A 时的相遇次数为3,然后用2013除以3,再根据余数的情况确定第 2013次相遇的地点的坐标即可. 解答:解:矩形的周长为 2 (2+4) =12,所以,第一次相遇的时间为 12+( 1+2) =4秒, 此时,甲走过的路程为 4X 仁4, •/ 12 十 4=3,•••第3次相遇时在点A 处,以后3的倍数次相遇都在点 A 处, •/ 2013+ 3=671,•••第2013次相遇地点是 A ,坐标为(2, 0). 故选:A. 点评:本题是对点的坐标变化规律的考查,求出一次相遇的时间,然后确定出第3次相遇恰好在点 A 处是解题的关键. 7.如图,在一单位为 1的方格纸上,△AA 1A,AA 2AA '△A4AA,AA6AA,…,都是一边在x 轴上、边长分别为1, 2, 3, 4,…的等边三角形.若△ AA 1A 2的顶点坐标分别为 A (0,// A \/A \ \/ / /\ \X / y y£\K /\ r0), A (丄,,A (1 , 0),则依如图所示规律,A. (504, 0)B. (—)C. ('■考点:规律型:点的坐标. A013的坐标为D. (0,- 504)分析:根据已知图象得出A2013的坐标与A l点的横坐标位置相同,在平行于y轴的直线上,进而得出A点的横纵坐标特点,进而得出答案.解答:解:由题意可得出A点的坐标变化是4种变化,分别在x轴正半轴和x轴负半轴以及y轴负半轴以及横坐标为平行于y轴的直线上,•/ 2013- 4=503…1,•'•A2013的坐标与A i点的横坐标位置相同,在平行于y轴的直线上,•••Ai (2 迪),△A 4A5A6是一边在x轴上,边长为3的等边三角形,2 22同理可得出:A(,=)•••2•A 2013 的横坐标为:,•/ 5=1 X 4+1, 9=2X 4+1, 13=3X 4+1,…• 2013=503X 4+1,其纵坐标分母为2,分子是连续奇数与二的积,•A2013是与A1点的横坐标相同,且在平行于y轴的直线上的第504个数据,心的纵坐标为:—j「Il2 2•A 2013的坐坐标为:(,---- ).2故选B.点评:此题主要考查了点的规律以及勾股定理和等边三角形的性质等知识,根据已知得出点的变化规律是解题关键.&若点M的坐标是(a, b)在第二象限,则点N (b,玄)在()A. 第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.专题:常规题型.分析:先根据点M在第二象限确定出a、b的正负情况,再根据各象限的点的坐标的特点解答.解答:解:••点M的坐标是(a, b)在第二象限,• a v 0, b> 0,•••点N (b, a)在第四象限.故选D.点评:本题主要考查了各象限的点的坐标的特点,各象限内点的坐标的横坐标与纵坐标的正负情况需要熟练掌握.二.填空题(共7小题)9.如图,在平面直角坐标系中,已知点 A (- 4, 0), B (0, 3),对A OAB连续作旋转变换,依次得到三角形(1 )、( 2 )、(3)、(4)…,那么第(7)个三角形的直角顶点的坐标是(24,0)—,第(2014)个三角形的直角顶点的坐标是(8052, 0).考点:规律型:点的坐标;坐标与图形变化-旋转.分析:观察不难发现,每三次旋转为一个循环组依次循环,第7个直角三角形的直角顶点与第6个直角三角形的直角顶点重合,然后求出一个循环组旋转过的距离,即可得解;用2014除以3,根据商和余数的情况确定出直角顶点的坐标即可.解答:解:由图可知,第4个三角形与第1个三角形的所处形状相同,即每三次旋转为一个循环组依次循环,•••一个循环组旋转过的长度为12, 2X 12=24,•••第7个直角三角形的直角顶点与第6个直角三角形的直角顶点重合,为(24, 0);•/ 2013- 3=671 …1,•••第(2014)的直角顶点为第671循环后第一个直角三角形的直角顶点,12X 67仁8052,•第(2014)的直角顶点的坐标是(8052, 0).故答案为:(24, 0); (8052, 0).点评:本题考查了坐标与图形变化-旋转,是对图形变化规律,观察出每三次旋转为一个循环组依次循环,并且下一组的第一个直角三角形与上一组的最后一个直角三角形的直角顶点重合是解题的关键,也是本题的难点.10•如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1, 1),第2次接着运动到点(2, 0),第3次接着运动到点(3, 2),…,按这样的运动规律,经过第2015次运动后,动点P的坐标是(2015, 2).(3, 2)(7, 2) (11, 2)O (2, 0) (4, 0) (6, 0) (S, 0) (10, 0) (12, 0) 工考点:规律型:点的坐标.分析:根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1, 0, 2, 0,每4次一轮这一规律,进而求出即可.解答:解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1 , 1),第2次接着运动到点(2, 0),第3次接着运动到点(3, 2),•••第4次运动到点(4 , 0),第5次接着运动到点(5 , 1),…,•横坐标为运动次数,经过第2015次运动后,动点P的横坐标为2015 ,纵坐标为1 , 0, 2 , 0,每4次一轮,•经过第2015次运动后,动点P的纵坐标为:2015- 4=503余3 ,故纵坐标为四个数中第3个,即为2,•••经过第2015次运动后,动点P的坐标是:(2015, 2),故答案为:(2015,2).点评:此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.11. 点P (a, a-3)在第四象限,贝U a的取值范围是0v a v 3 .考点:点的坐标;解一元一次不等式组.分析:根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.解答:解:•••点P (a, a - 3)在第四象限,.门>0…s- 3<0,解得0v a v 3.故答案为:0v a v 3.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+, +);第二象限(-, +);第三象限(-,-);第四象限(+,-).12. 在平面直角坐标系中,点(2, - 4)在第四象限.考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(2,- 4)在第四象限.故答案为:四.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+, +);第二象限(-,+);第三象限(-,-);第四象限(+,-).13. 在平面直角坐标系中,点(1 , 2)位于第一象限.考点:点的坐标.专题:压轴题.分析:根据各象限的点的坐标特征解答.解答:解:点(1, 2)位于第一象限.故答案为:一.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+, +);第二象限(-,+);第三象限(-,-);第四象限(+,-).14. 已知点M(m- 1, m)在第二象限,则m的取值范围是0v m v 1 .考点:点的坐标;解一元一次不等式组.根据第二象限的点的横坐标是负数, 纵坐标是正数列出不等式组,求解即可.解:•••点M ( m- 1, m )在第二象限,1<0 ①由①得,m< 1,所以,不等式组的解集是 0 v R K 1, 即m 的取值范围是0v m v 1. 故答案为:0 v m v 1. 点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的 坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限( +, +);第二象限(-,+);第三象限(-,-);第四象限(+,-).15. 若0v a v 1,则点 M ( a - 1, a )在第 二 象限. 考点: 点的坐标.分析: 根据a 的取值范围确定出a - 1的正负情况,然后根据各象限内点的坐标特征解答. 解答:解:T 0v a v 1, •••- 1 v a - 1 v 0,•••点M ( a - 1, a )在第二象限. 故答案为:二. 点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限( +, +);第二象限(-,+);第三象限(-,-);第四象限(+,-). 三.解答题(共7小题)16. 在直角坐标系 xOy 中,已知(-5, 2+b )在x 轴上,N (3- a , 7+a )在y 轴上,求b 和ON 的值. 考点: 点的坐标.分析: 根据x 轴上点的纵坐标为 0列式求出b ,再根据y 轴上点的横坐标为 0列式 求出a ,然后求出 ON 即可.解答: 解:•••(- 5, 2+b )在x 轴上,• 2+b=0, 解得b=- 2;••• N ( 3 - a , 7+a )在 y 轴上, 3 — a=0, 解得a=3,所以,点N (0, 10), ON=10 点评: 本题考查了点的坐标,熟记 x 轴上点的纵坐标为 0, y 轴上点的横坐标为 0 是解题的关键.分析: 解答:17. 已知点P (1 - X , 5 - x )到x 轴的距离为2个单位长度,求该点 P 的坐标. 考点: 点的坐标.分析: 根据点到x 轴的距离等于纵坐标的长度列出方程求出x ,然后求解即可.解答: 解:•••点P (1 - x , 5 -x )到x 轴的距离为2个单位长度,••• |5 - x|=2 ,/• 5- x=2 或 5 - x= - 2, 解得x=3或x=7 ,当 x=3 时,点 P (- 2, 2), 当 x=7 时,点 P (- 6, - 2),综上所述,点P 的坐标为(-2, 2)或(-6, - 2). 点评: 本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度是解题的关键.18. 当m 为何值时,点 A ( m+1 3m- 5)到x 轴的距离是到y 轴距离的两倍? 考点: 点的坐标.分析: 根据点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度列 出方程,然后求解即可.解答:解:由题意得,|3m - 5|=2|m+1| , 所以,3m- 5=2 ( m+1)或 3m- 5= - 2 (m+1), 解得m=7或m 三 点评:本题考查了点的坐标, 熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度并列出绝对值方程是解题的关键.考点: 坐标与图形性质;三角形的面积. 专题: 计算题.19. 在平面直角坐标系中,已知点 且(a - b+2) 2+|2a - b - 2|=0 . (1 )求A B , C 三点的坐标; (2)若点D 是AB 的中点,点E 是B(a , b ),线段BAL x 轴于A 点,线段Bd y 轴于C 点,0D 的中点,求△ AEC 的面积; P ( 2, a ),且 S ^AEF =S ^AEC , 求a 的值.分析:(1)根据非负数的性质得a-b+2=0, 2a-b-2=0,解得a=4, b=6,则B点坐标为(4, 6),由于线段BA^x轴于A点,线段BCL y轴于C点,易得A点坐标为(4, 0), C 点坐标为(0,6);(2)利用线段中点坐标公式得到点D的坐标为(4, 3),点E的坐标为(2,),再根据三角形面积公式和S^AEC=S\AOC- S^AOE- S^COE进行计算;(3)由于点P ( 2 , a),点E的坐标为(2,),贝y PE=|a - | ,由于S M E P=&AEC,根据三角形面积公式?2?|a - |=3 ,然后去绝对值可计算出a的值.解答:2解:(1 )•( a - b+2) +|2a - b- 2|=0 ,a- b+2=0 2a- b- 2=0a=4 b=6■-B点坐标为(4 , 6),• •线段BA Lx轴于A点,线段BC Ly轴于C点, ■-A点坐标为(4 , 0), C点坐标为(0 , 6); (2)•••点D是AB的中点,•••点D的坐标为(4 , 3),••点E是OD的中点,•点 E 的坐标为( 2 )•S △AEC=S^AOC—S^AOE-S^COE=X 6X 4-X 4X-X 6X2=3;(3)•••点P (2 , a),点 E 的坐标为(2,),•PE=|a- |•S △AEP=S^AEC?•?2?|a- |=3• a=-或.点评:本题考查了坐标与图形性质:能根据点的坐标表示它到两坐标轴的距离,记住坐标轴上点的坐标特征.也考查了三角形的面积公式.20. 已知点M(2a- 5, a- 1),分别根据下列条件求出点M的坐标.(1 )点N的坐标是(1 , 6),并且直线MIN/y轴;(2 )点M在第二象限,横坐标和纵坐标互为相反数.考点:坐标与图形性质.专题:计算题.分析:(1)根据平行于y轴的直线上的点的横坐标相等列式求出a,然后解答即可;(2)根据互为相反数的两个数的和等于0列出方程求出a,再求解即可.解答:解:(1 )••直线MIN/y轴,• 2a- 5=1,解得a=3,•a- 1=3- 1=2,•••点M的坐标为(1, 2);(2 )•••横坐标和纵坐标互为相反数,••• 2a- 5+a- 1=0,解得a=2,• 2a- 5=2X 2 - 5= - 1,a- 1=2 - 1=1,•••点M的坐标为(-1, 1).点评:本题考查了坐标与图形性质,主要利用了平行于y轴的直线上的点的坐标特征,互为相反数的定义,是基础题,需熟记.21. 如图所示,长方形ABCD各边均与坐标轴平行或垂直,已知A C两点的坐标为 A ( ■:,-1)、C (^ Vs, 1).(1 )求B D两点的坐标;(2 )求长方形ABCD勺面积;(3)将长方形ABCD先向左平移「个单位,再向下平移一个单位,所得四边形的四个顶点的坐标分别是多少?考点:坐标与图形性质;三角形的面积;坐标与图形变化-平移.分析:(1)根据矩形的性质即可得出 B D两点的坐标;(2)求出AD, CD的长度,即可计算面积;(3)求出各点横坐标减去:x,纵坐标减去1后的点的坐标即可.解答:解:(1)v长方形ABCD各边均与坐标轴平行或垂直, A ^3,- 1)、C(-「,1) _ _•••点 B (近,1),点 D (-頁,-1);(2) AD=2 :, CD=2• S 矩形ABC=AD< CD=4 ■:.(3 )点 A (0, - 2),点 B (0, 0),点 C (- 2 二,0),点 D (- 2~\, - 2). 点评:本题考查了坐标与图形的性质,注意掌握平移变换的规律.22. 如图:在直角坐标系中,第一次将厶AOB变换成△ OA1B1,第二次将三角形变换成厶OA 2B2 , 第三次将厶OA2B2,变换成△ OA3B3 ,已知A ( 1 , 3), A (3 , 3), A ( 5 , 3) , A3 (7 , 3) ;B ( 2 ,0), B (4 , 0), Ba (8 , 0), B3 (16 , 0).(1 )观察每次变换前后的三角形有何变化,找出规律,按此变化规律再将△OA 3B3变换成△ OAB4 ,贝U A的坐标是 (9 , 3) , B4的坐标是(32, 0) .(2)若按(1)找到的规律将△ OAB进行了n次变换,得到△ OA n B n,比较每次变换中三角形顶点有何变化,找出规律,推测A的坐标是(2n+1 , 3),B的坐标是(2n+1, 0)考点:坐标与图形性质.专题:规律型.分析:对于A,A2, A n坐标找规律可将其写成竖列,比较从而发现A的横坐标为2n+1, 而纵坐标都是3,同理B , R, B也一样找规律.解答:解:(1)已知 A (1 , 3), A i (3, 3) , A(5, 3) , A(7, 3);对于A , A, A n坐标找规律比较从而发现A的横坐标为2n +1,而纵坐标都是3;同理B , Ba, Bn也一样找规律,规律为B的横坐标为2"1,纵坐标为0.由上规律可知:(1)A的坐标是(9, 3), B4的坐标是(32, 0);(2)A n的坐标是(2n+1, 3) , Bi的坐标是(21, 0)点评:本题是观察坐标规律的问题,需要分别从横坐标,纵坐标两方面观察规律,写出答案.。
知识回顾微专题专题12平面直角坐标系考点一:平面直角坐标系之坐标特点1.有序数对:有顺序的两个数a 与b 组成的数对叫做有序数对。
表示为()b a ,,可以用来表示位置。
2.平面直角坐标系各部分的坐标特点:①x 轴上的所有点的坐标可表示为()0 ,x 。
②y 轴上的所有点的坐标可表示为()y ,0。
③第一象限内的所有点的坐标横纵坐标都是正数。
即(﹢,﹢)。
④第二象限内的所有点的坐标横坐标是负数,纵坐标是正数。
即(﹣,﹢)。
⑤第三象限内的所有点的坐标横纵坐标都是负数。
即(﹣,﹣)。
⑥第四象限内的所有点的坐标横坐标是正数,纵坐标是负数。
即(﹢,﹣)。
3.点到坐标轴的距离:点()b a ,到横坐标的距离等于纵坐标的绝对值。
即b 。
点()b a ,到纵坐标的距离等于横坐标的绝对值。
即a 。
1.(2022•六盘水)两个小伙伴拿着如图的密码表玩听声音猜动物的游戏,若听到“咚咚﹣咚咚,咚﹣咚,咚咚咚﹣咚”表示的动物是“狗”,则听到“咚咚﹣咚,咚咚咚﹣咚咚,咚﹣咚咚咚”时,表示的动物是()A .狐狸B .猫C .蜜蜂D .牛【分析】根据点的坐标解决此题.【解答】解:由题意知,咚咚﹣咚咚对应(2,2),咚﹣咚对应(1,1),咚咚咚﹣咚对应(3,1).∴咚咚﹣咚对应(2,1),表示C;咚咚咚﹣咚咚对应(3,2),表示A;咚﹣咚咚咚对应(1,3),表示T.∴此时,表示的动物是猫.故选:B.2.(2022•柳州)如图,这是一个利用平面直角坐标系画出的某学校的示意图,如果这个坐标系分别以正东、正北方向为x轴、y轴的正方向,并且综合楼和食堂的坐标分别是(4,1)和(5,4),则教学楼的坐标是()A.(1,1)B.(1,2)C.(2,1)D.(2,2)【分析】根据综合楼和食堂的坐标分别是(4,1)和(5,4),建立适当的平面直角坐标系,即可解答.【解答】解:建立如图所示的平面直角坐标系:∴教学楼的坐标是(2,2),故选:D.3.(2022•铜仁市)如图,在矩形ABCD中,A(﹣3,2),B(3,2),C(3,﹣1),则D的坐标为()A.(﹣2,﹣1)B.(4,﹣1)C.(﹣3,﹣2)D.(﹣3,﹣1)【分析】先根据A、B的坐标求出AB的长,则CD=AB=6,并证明AB∥CD∥x轴,同理可得AD∥BC ∥y轴,由此即可得到答案.【解答】解:∵A(﹣3,2),B(3,2),∴AB=6,AB∥x轴,∵四边形ABCD是矩形,∴CD=AB=6,AB∥CD∥x轴,同理可得AD∥BC∥y轴,∵点C(3,﹣1),∴点D的坐标为(﹣3,﹣1),故选:D.4.(2022•宜昌)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为(1,3).若小丽的座位为(3,2),以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是()A.(1,3)B.(3,4)C.(4,2)D.(2,4)【分析】直接利用点的坐标特点得出与小丽相邻且能比较方便地讨论交流的同学的座位位置.【解答】解:如图所示:与小丽相邻且能比较方便地讨论交流的同学的座位是(4,2).故选:C.5.(2022•扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据平方数非负数判断出点P的纵坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵a2≥0,∴a2+1≥1,∴点P(﹣3,a2+1)所在的象限是第二象限.故选:B.6.(2022•乐山)点P(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标符号直接判断的判断即可.【解答】解:∵P(﹣1,2),横坐标为﹣1,纵坐标为:2,∴P点在第二象限.故选:B.7.(2022•攀枝花)若点A(﹣a,b)在第一象限,则点B(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第一象限内点的坐标特点得出a、b的符号,进而得出答案.【解答】解:∵点A(﹣a,b)在第一象限内,∴﹣a>0,b>0,∴a<0,∴点B(a,b)所在的象限是:第二象限.故选:B.8.(2022•衢州)在平面直角坐标系中,点A(﹣1,﹣2)落在()A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据第三象限中点的坐标特征:横坐标为负数,纵坐标为负数,由此可确定A 点位置.【解答】解:∵﹣1<0,﹣2<0,∴点A (﹣1,﹣2)在第三象限,故选:C .9.(2022•河池)如果点P (m ,1+2m )在第三象限内,那么m 的取值范围是()A .﹣21<m <0B .m >﹣21C .m <0D .m <﹣21【分析】根据点P 在第三象限,即横纵坐标都是负数,据此即可列不等式组求得m 的范围.【解答】解:根据题意得,解①得m <0,解②得m <.则不等式组的解集是m <﹣.故选:D .10.(2022•兰州)如图,小刚在兰州市平面地图的部分区域建立了平面直角坐标系,如果白塔山公园的坐标是(2,2),中山桥的坐标是(3,0),那么黄河母亲像的坐标是.【分析】根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系,然后根据点的坐标的表示方法写出黄河母亲像的坐标;【解答】解:如图,根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系,∴黄河母亲像的坐标是(﹣4,1).故答案为:(﹣4,1).11.(2022•广安)若点P(m+1,m)在第四象限,则点Q(﹣3,m+2)在第象限.【分析】根据点P(m+1,m)在第四象限,求出m的取值范围,得到1<m+2<2,进而得到点Q所在的象限.【解答】解:∵点P(m+1,m)在第四象限,∴,∴﹣1<m<0,∴1<m+2<2,∴点Q(﹣3,m+2)在第二象限,故答案为:二.12.(2022•鄂州)中国象棋文化历史久远.某校开展了以“纵横之间有智慧攻防转换有乐趣”为主题的中国象棋文化节.如图所示是某次对弈的残局图,如果建立平面直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),那么“兵”在同一坐标系下的坐标是.【分析】应用平面内点的平移规律进行计算即可得出答案.【解答】解:根据平面内点的平移规律可得,把“帅”向左平移两个单位,向上平移3个单位得到“兵”的位置,∴(﹣1﹣2,﹣2+3),即(﹣3,1).故答案为:(﹣3,1).13.(2022•烟台)观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为.【分析】直接利用已知点坐标得出原点位置进而得出答案.【解答】解:如图所示:“帅”所在的位置:(4,1),故答案为:(4,1).考点二:平面直角坐标系之坐标变换知识回顾微专题1.平行于x 轴(垂直于y 轴)的直线上的点的坐标:纵坐标相等。
2018中考数学试题分类汇编:考点13 平面直角坐标系与函数基础知识一.选择题(共31小题)1.(2018•港南区一模)在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据非负数的性质确定出点P的纵坐标是正数,然后根据各象限内点的坐标特征解答.【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.2.(2018•东营)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.3.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据第二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.4.(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.5.(2018•呼和浩特)下列运算及判断正确的是()#ERR1A.﹣5×÷(﹣)×5=1B.方程(x2+x﹣1)x+3=1有四个整数解C.若a×5673=103,a÷103=b,则a×b=D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限【分析】依据有理数的乘除混合运算法则、零指数幂、同底数幂的乘法法则以及点的坐标,进行判断即可得出结论.【解答】解:A.﹣5×÷(﹣)×5=﹣1×(﹣5)×5=25,故错误;B.方程(x2+x﹣1)x+3=1有四个整数解:x=1,x=﹣2,x=﹣3,x=﹣1,故正确;C.若a×5673=103,a÷103=b,则a×b=×=,故错误;D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限或第四象限或x轴正半轴上,故错误;故选:B.6.(2018•广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B. m2 C. m2 D.1009m2【分析】由OA4n=2n知OA2018=+1=1009,据此得出A2A2018=1009﹣1=1008,据此利用三角形的面积公式计算可得.【解答】解:由题意知OA4n=2n,∵2018÷4=504…2,∴OA2018=+1=1009,∴A2A2018=1009﹣1=1008,则△OA2A2018的面积是×1×1008=504m2,故选:A.7.(2018•北京)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④ D.①②③④【分析】由天安门的位置确定原点,再进一步得出广安门和左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论错误;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(6,﹣5),此结论错误;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.8.(2018•宿迁)函数y=中,自变量x的取值范围是()A.x≠0 B.x<1 C.x>1 D.x≠1【分析】根据分母不等于零分式有意义,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.9.(2018•包头)函数y=中,自变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>1【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x﹣1≠0,解得x>1.故选:D.10.(2018•重庆)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣7【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.11.(2018•通辽)小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A.B.C.D.【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是故选:B.12.(2018•自贡)回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是()A.数形结合 B.类比 C.演绎 D.公理化【分析】从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.【解答】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选:A.13.(2018•随州)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在图中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.14.(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.15.(2018•滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.16.(2018•齐齐哈尔)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.17.(2018•绍兴)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C (2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.18.(2018•达州)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.19.(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.20.(2012•内江)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.21.(2018•潍坊)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【解答】解:当0≤t<2时,S=2t××(4﹣t)=﹣t2+4t;当2≤t<4时,S=4××(4﹣t)=﹣2t+8;只有选项D的图形符合.故选:D.22.(2018•孝感)如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选:C.23.(2018•河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.24.(2018•东营)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知: =,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.25.(2018•烟台)如图,矩形ABCD 中,AB=8cm ,BC=6cm ,点P 从点A 出发,以lcm/s 的速度沿A→D→C 方向匀速运动,同时点Q 从点A 出发,以2cm/s 的速度沿A→B→C 方向匀速运动,当一个点到达点C 时,另一个点也随之停止.设运动时间为t (s ),△APQ 的面积为S (cm 2),下列能大致反映S 与t 之间函数关系的图象是( )A .B .C .D .【分析】先根据动点P 和Q 的运动时间和速度表示:AP=t ,AQ=2t ,①当0≤t ≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,发现是开口向上的抛物线,可知:选项C 、D 不正确;②当4<t ≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,发现是一次函数,是一条直线,可知:选项B 不正确,从而得结论.【解答】解:由题意得:AP=t ,AQ=2t ,①当0≤t ≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =AP•AQ==t 2,故选项C 、D 不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,S△APQ=AP•AB==4t,故选项B不正确;故选:A.26.(2018•广东)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.27.(2018•香坊区)如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()A. B.C.D.【分析】过点B作BE⊥AD于点E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图象.【解答】解:如图,过点B作BE⊥AD于点E,∵∠A=60°,设边AB的长为x,∴BE=AB•sin60°=x.∵平行四边形ABCD的周长为12,∴AD=(12﹣2x)=6﹣x,∴y=AD•BE=(6﹣x)×x=﹣x2+3x(0≤x≤6).则该函数图象是一开口向下的抛物线的一部分,观察选项,C选项符合题意.故选:C.28.(2018•广安)已知点P为某个封闭图形边界上的一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A.B.C.D.【分析】先观察图象得到y与x的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,利用圆的定义,P点在圆上运动时,PM总上等于半径,则可对D进行判断,从而得到正确选项.【解答】解:y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B、C选项不正确;D选项中的封闭图形为圆,y为定中,所以D选项不正确;A选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM的长有最小值.故选:A.29.(2018•安徽)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【分析】当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,由此即可判断;【解答】解:当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,∴函数图象是A,故选:A.30.(2018•黄石)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M 重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.【分析】在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x ≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.【解答】解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=C D•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,故选项A正确;故选:A.31.(2018•乌鲁木齐)如图①,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P、Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图②所示.以下结论:①BC=10;②cos∠ABE=;③当0≤t≤10时,y=t2;④当t=12时,△BPQ是等腰三角形;⑤当14≤t≤20时,y=110﹣5t中正确的有()A.2个B.3个C.4个D.5个【分析】根据题意,确定10≤t≤14,PQ的运动状态,得到BE、BC、ED问题可解.【解答】解:由图象可知,当10≤t≤14时,y值不变,则此时,Q点到C,P从E到D.∴BE=BC=10,ED=4故①正确.∴AE=6Rt△ABE中,AB=∴cos∠ABE=;故②错误当0≤t≤10时,△BPQ的面积为∴③正确;t=12时,P在点E右侧2单位,此时BP>BE=BCPC=∴△BPQ不是等腰三角形.④错误;当14≤t≤20时,点P由D向C运动,Q在C点,△BPQ的面积为则⑤正确故选:B.二.填空题(共10小题)32.(2018•柳州)如图,在平面直角坐标系中,点A的坐标是(﹣2,3).【分析】直接利用平面直角坐标系得出A点坐标.【解答】解:由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).33.(2018•临安区)P(3,﹣4)到x轴的距离是 4 .【分析】根据点在坐标系中坐标的几何意义即可解答.【解答】解:根据点在坐标系中坐标的几何意义可知,P(3,﹣4)到x轴的距离是|﹣4|=4.故答案为:4.34.(2018•新疆)点(﹣1,2)所在的象限是第二象限.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣1,2)所在的象限是第二象限.故答案为:二.35.(2018•齐齐哈尔)在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为32019.【分析】根据题意,分别找到AB、A1B1、A2B2……及 BA1、B1A2、B2A3……线段长度递增规律即可【解答】解:由已知可知点A、A1、A2、A3……A2018各点在正比例函数y=的图象上点B、B1、B2、B3……B2018各点在正比例函数y=的图象上两个函数相减得到横坐标不变的情况下两个函数图象上点的纵坐标的差为:①由已知,Rt△A1B1A2,…,到Rt△B2017A2018B2018都有一个锐角为30°∴当A(B)点横坐标为时,由①AB=2,则BA1=2,则点A1横坐标为,B1点纵坐标为9=32当A1(B1)点横坐标为3时,由①A1B1=6,则B1A2=6,则点A2横坐标为,B2点纵坐标为27=33当A2(B2)点横坐标为9时,由①A2B2=18,则B2A3=18,则点A3横坐标为,B3点纵坐标为81=34依稀类推点B2018的纵坐标为32019故答案为:3201936.(2018•绵阳)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为(﹣2,﹣2).【分析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【解答】解:“卒”的坐标为(﹣2,﹣2),故答案为:(﹣2,﹣2).37.(2018•资阳)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是(0,21007).【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【解答】解:由已知,点A每次旋转转动45°,则转动一周需转动8次,每次转动点A到原点的距离变为转动前的倍∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018==21007故答案为:(0,21007)38.(2018•黑龙江)在函数y=中,自变量x的取值范围是x≥﹣2且x≠0 .【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.39.(2018•香坊区)函数y=中自变量x的取值范围是x≠﹣3 .【分析】该函数是分式,分式有意义的条件是分母不等于0,故分母x+3≠0,解得x的范围.【解答】解:根据分式有意义的条件得:x+3≠0,解得:x≠﹣3.故答案为:x≠﹣3.40.(2018•大庆)函数y=的自变量x取值范围是x≤3 .【分析】根据二次根式的性质,被开方数大于等于0可知:3﹣x≥0,解得x的范围.【解答】解:根据题意得:3﹣x≥0,解得:x≤3.故答案为:x≤3.41.(2018•枣庄)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP 的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12 .【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12三.解答题(共1小题)42.(2018•嘉兴)小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?【分析】(1)根据图象和函数的定义可以解答本题;(2)①根据函数图象可以解答本题;②根据函数图象中的数据可以解答本题.【解答】解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数;(2)①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;②由图象可知,秋千摆动第一个来回需2.8s.。
(易错题精选)初中数学函数之平面直角坐标系知识点总复习含答案解析一、选择题1.若点M的坐标为(2-a,|b|+1),则下列说法中正确的是()A.点M在x轴正半轴上B.点M在x轴负半轴上C.点M在y轴正半轴上D.点M在y轴负半轴上【答案】C【解析】【分析】首先根据二次根式的定义及绝对值的性质分别判断出点M的横、纵坐标的符号;然后根据坐标轴上点的坐标特征进行分析即可作出判断.【详解】∵2a 有意义,则-a2≥0,∴a=0.∵|b|≥0,∴|b|+1>0,∴点M在y轴的正半轴上.故选C.【点睛】本题考查的是点的坐标的知识,解题关键是熟练掌握坐标轴上点的坐标特征.2.如果点在第四象限,那么m的取值范围是().A.B.C.D.【答案】D【解析】【分析】横坐标为正,纵坐标为负,在第四象限.【详解】解:∵点p(m,1-2m)在第四象限,∴m>0,1-2m<0,解得:m>,故选D.【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.3.若点P(x,y)在第三象限,且点P到x轴的距离为3,到y轴的距离为2,则点P的坐标是( )A .(-2,3)B .(-2,-3)C .(2,-3)D .(2,3)【答案】B【解析】【分析】根据点P 到x 轴的距离为3,则这一点的纵坐标是3或-3,到y 轴的距离为2,那么它的横坐标是2或-2,再根据点P 所处的象限即可确定点P 的坐标.【详解】∵点P 到x 轴的距离为3,∴点的纵坐标是3或-3,∵点P 到y 轴的距离为2,∴点的横坐标是2或-2,又∵点P 在第三象限,∴点P 的坐标为:(-2,-3),故选B.【点睛】本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.4.点P(1﹣2x ,5x ﹣1)在第四象限,则x 的范围是( )A .15x <B .12x <C .1152x <<D .12x > 【答案】A【解析】【分析】根据点的位置得出不等式组,求出不等式组的解集即可.【详解】解:∵点P (1﹣2x ,5x ﹣1)在第四象限,120510x x ->⎧∴⎨-<⎩, 解得:15x <, 故选:A .【点睛】本题考查了点的位置和解一元一次不等式组,能根据题意得出不等式组是解此题的关键.5.如果点P (3x+9,12x ﹣2)在平面直角坐标系的第四象限内,那么x 的取值范围在数轴上可表示为( )A .B .C .D .【答案】C【解析】解:由点P(3x+9,12x﹣2)在平面直角坐标系的第四象限内,得:3901202xx+⎧⎪⎨-⎪⎩><.解得:﹣3<x<4,在数轴上表示为:故选C.6.如图,ABCDEF是中心为原点O,顶点A,D在x轴上,半径为4的正六边形,则顶点F的坐标为()A.()2,23B.()2,2-C.()2,23-D.()1,3-【答案】C【解析】【分析】连接OF,设EF交y轴于G,那么∠GOF=30°;在Rt△GOF中,根据30°角的性质求出GF,根据勾股定理求出OG即可.【详解】解:连接OF,在Rt△OFG中,∠GOF=13603026⨯=oo,OF=4.∴GF=2,3∴F(-2,3).故选C.【点睛】本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识,熟练掌握正六边形的对称性是解答本题的关键.7.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为( )A .(3,1)B .(-1,1)C .(3,5)D .(-1,5)【答案】C【解析】 解:∵正方形ABCD 的边长为4,点A 的坐标为(﹣1,1),AB 平行于x 轴,∴点B 的横坐标为:﹣1+4=3,纵坐标为:1,∴点B 的坐标为(3,1),∴点C 的横坐标为:3,纵坐标为:1+4=5,∴点C 的坐标为(3,5).故选C .点睛:本题考查坐标与图形性质,解题的关键是明确正方形的各条边相等,能根据图形找出它们之间的关系.8.在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为2个单位长度/秒,点在弧线上的速度为23π个单位长度/秒,则2019秒时,点P 的坐标是( )A .()2019,0B .(3C .(2019,3-D .()2018,0【答案】C【解析】【分析】 如图,过半径OA 的端点A 作AB x ⊥轴于点B ,设第n 秒运动到点n P (n 为自然数),根据锐角三角函数和扇形的弧长公式求得414+34+442(413),(42,0),(43,3),(44,0)n n n n P n P n P n P n +++++-+,根据201945043=⨯+即可求解点P 的坐标.【详解】如图,过半径OA 的端点A 作AB x ⊥轴于点B ,设第n 秒运动到点n P (n 为自然数)2,60OA AOB ︒=∠=Qsin 3cos 1AB OA AOB OB OA AOB ∴=⋅∠==⋅∠=,圆心角为60°的扇形的弧长为60221803ππ⨯= 12345(13),(2,0),(3,3)(4,0),3),,P P P P P ∴-L1244(413),n n P n P ++∴+4+34+4(42,0),(43,3),(44,0)n n n P n P n ++-+201945043=⨯+Q∴2019秒时,点P 的坐标为(2019,3-故答案为:C .【点睛】本题考查了坐标类的规律题,掌握各点坐标的规律是解题的关键.9.在平面直角坐标系中,长方形ABCD 的三个顶点()(32),(12),1,1,A B C ---,,则第四个顶点D 的坐标是( ).A .()2,1-B .(3,1)-C .()2,3-D .(3,1)-【答案】B【解析】【分析】根据矩形的性质(对边相等且每个角都是直角),由矩形ABCD 点的顺序得到CD ⊥AD ,可以把D 点坐标求解出来.【详解】解:根据矩形ABCD 点的顺序可得到CD ⊥AD , 又∵()(32),(12),1,1,A B C ---,, ∴A 、B 纵坐标相等,B 、C 横坐标相等,∴A 、D 横坐标相等,即3;D 、C 纵坐标相等,即-1,因此(31)D -,【点睛】本题主要考查了矩形的性质和直角坐标系的基本概念,利用矩形四个角都是直角、对边相等是解题的关键.10.下列结论:①坐标为3-的点在经过点(3,0)-且平行于y 轴的直线上;②0m ≠时,点()2,P m m -在第四象限;③点()3,4-关于y 轴对称的点的坐标是(3,4)--;④在第一象限的点N 到x 轴的距离是1,到y 轴的距离是2,则点N 的坐标为(2,1). 其中正确的是( ).A .①③B .②④C .①④D .②③ 【答案】C【解析】【分析】依据点的坐标的概念,关于坐标轴对称的点的特征以及不同象限内点的坐标特征,即可得到正确结论.【详解】①横坐标为3-的点在经过点(3,0)-且平等于y 轴的直线上,故正确;②当0m ≠时,点()2,P m m -在第四象限或第一象限,故错误;③与点()3,4-关于y 对称点的坐标是(3,4),故错误;④在第一象限的点N 到x 轴的距离是1,到y 轴的距离是2,则点N 的坐标为(2,1),故正确.故选:C .【点睛】本题考查了点的坐标的概念,关于坐标轴对称的点的特征以及不同象限内点的坐标特征.11.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.12.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5【答案】A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.13.平面直角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B ( 2,-l ),C (-m,-n),则点D的坐标是()A.(-2 ,l ) B.(-2,-l ) C.(-1,-2 ) D .(-1,2 )【答案】A【解析】【分析】【详解】试题分析:∵平行四边形ABCD是中心对称图形,对称中心是对角线的交点,而A、C关于原点对称,故B、D也关于原点对称∴D(-2 ,l ).故选A.考点:平行四边形的性质;坐标与图形性质.14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0).根据这个规律探索可得,第100个点的坐标为()A.(14,8)B.(13,0)C.(100,99)D.(15,14)【答案】A【解析】【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8;∴第100个点的坐标为(14,8).故选A .【点睛】本题主要考查了根据图形的变化找规律的方法,首先要分析图形中每一列的点人个数的变化规律是,1,2,3,4,5,…,由此找出第100个点所在的列,再根据奇数列是从上往下依次增加1,偶数列是从下往上依次增加1,由此即可找到第100个点所对应的坐标.15.已知()0,2A 、()10B ,,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标为( ) A .()6,0B .()4,0-C .()4,0-或()6,0D .无法确定【答案】C【解析】【分析】根据A 点的坐标可知BP 边上的高为2,而△PAB 的面积为5,点P 在x 轴上,说明BP=5,已知点B 的坐标,可求P 点坐标.【详解】解:∵B (1,0),A (0,2),点P 在x 轴上,∴BP 边上的高为2,又△PAB 的面积为5,∴BP=5,而点P 可能在点B (1,0)的左边或者右边,∴P (-4,0)或(6,0).故选:C .【点睛】本题考查了直角坐标系中,利用三角形的面积公式来求出三角形的底边.16.如果(,)p a b ab +在第二象限,那么点(,)Q a b -在第( )象限A .一B .二C .三D .四【答案】D【解析】【分析】由点P 在第二象限得到a+b<0,ab>0,即可得到a 与b 的符号,由此判断点Q 所在的象限.【详解】∵点P 在第二象限,∴a+b<0,ab>0,∴a<0,b<0,∴-a>0,∴点(,)Q a b -在第四象限,故选:D.【点睛】此题考查象限中点的坐标特点,熟记每个象限中的点坐标特点是解题的关键.17.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的13,则点A的对应点A′的坐标是( )A.(2,3) B.(6,1) C.(2,1) D.(3,3)【答案】A【解析】【分析】先写出点A的坐标为(6,3),纵坐标保持不变,横坐标变为原来的13,即可判断出答案.【详解】点A变化前的坐标为(6,3),将纵坐标保持不变,横坐标变为原来的13,则点A的对应点A′坐标是(2,3).故选A.【点睛】本题考查的是坐标,熟练掌握坐标是解题的关键.18.如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为()2,3,则菱形OABC的面积是()A .6B .13C .3132D .313【答案】D【解析】【分析】 作CH ⊥x 轴于点H ,利用勾股定理求出OC 的长,根据菱形的性质可得OA =OC ,即可求解.【详解】如图所示,作CH ⊥x 轴于点H ,∵四边形OABC 是菱形,∴OA =OC ,∵点C 的坐标为()2,3,∴OH =2,CH =3,∴OC =22OH CH +=2223+=13∴菱形OABC 的面积=OA·CH =313 故选:D【点睛】本题考查菱形的性质、勾股定理、坐标与图形的性质、菱形的面积公式,解题的关键是学会添加辅助线,构造直角三角形.19.在平面直角坐标系中,以A (0,2),B (﹣1,0),C (0.﹣2),D 为顶点构造平行四边形,下列各点中,不能作为顶点D 的坐标是( )A .(﹣1,4)B .(﹣1,﹣4)C .(﹣2,0)D .(1,0) 【答案】C【解析】【分析】根据平行四边形的判定,可以解决问题.【详解】若以AB 为对角线,则BD ∥AC ,BD=AC=4,∴D (-1,4)若以BC 为对角线,则BD ∥AC ,BD=AC=4,∴D (-1,-4)若以AC为对角线,B,D关于y轴对称,∴D(1,0)故选C.【点睛】本题考查了平行四边形的判定,关键是熟练利用平行四边形的判定解决问题.20.已知点A的坐标为(a+1,3﹣a),下列说法正确的是()A.若点A在y轴上,则a=3B.若点A在一三象限角平分线上,则a=1C.若点A到x轴的距离是3,则a=±6D.若点A在第四象限,则a的值可以为﹣2【答案】B【解析】【分析】依据坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,即可得出结论.【详解】解:A.若点A在y轴上,则a+1=0,解得a=﹣1,故本选项错误;B.若点A在一三象限角平分线上,则a+1=3﹣a,解得a=1,故本选项正确;C.若点A到x轴的距离是3,则|3﹣a|=3,解得a=6或0,故本选项错误;D.若点A在第四象限,则a+1>0,且3﹣a<0,解得a>3,故a的值不可以为﹣2;故选:B.【点睛】本题主要考查了坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,解题时注意:横轴上点的纵坐标为0,纵轴上点的横坐标为0.。
平面直角坐标系与点的坐标一、选择题1. (2018•山东威海,第7题3分)已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的11223C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2018的纵坐标为()3×(OCOC=3×(=3×((OC,OC=3×(OCy轴对称,则m+n= 0 .),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)分析:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选A.点评:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.二、填空题1.(2018•四川宜宾,第13题,3分)在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是(2,﹣2).三、解答题1. (2018•四川巴中,第24题7分)如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2.(3)求△A 1B1C1与△A2B2C2的面积比,即:= 1:4 (不写解答过程,直接写出结果).考点:平面直角坐标系,相似三角形的面积比.分析:(1)根据关于x轴对称点的性质得出对应点位置进而得出答案;(2)根据将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得出各点坐标,进而得出答案;(3)利用位似图形的性质得出位似比,进而得出答案.解答:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求;(3)∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2的相似比为:1:2,∴:=1:4.故答案为:1:4.点评:此题主要考查了位似变换以及轴对对称变换,得出对应点位置是解题关键.。
平面直角坐标系一、选择题1.在平面直角坐标系中,点P(-1,2)所在的象限是()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限2.点P(x﹣1,x+1)不可能在()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限4.在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是()A. B.C.D.5.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)6. 抛物线(m是常数)的顶点在()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限7. 在平面直角坐标系中,点关于原点的对称点的坐标是()A. B.C.D.8. 已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根 C. 没有实数根 D. 无法判断9.如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A. 横坐标相等B. 纵坐标相等C. 横坐标的绝对值相等D. 纵坐标的绝对值相等10.如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是()A. B. ﹣C.D. ﹣11. 小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A. (﹣2,1)B. (﹣1,1) C. (1,﹣2) D. (﹣1,﹣2)12.如图,小手盖住的点的坐标可能为()A. (-4,-5)B. (-4,5) C. (4,5) D. (4,-5)二、填空题13.如果在y轴上,那么点P的坐标是________ .14.平面直角坐标系内,点P(3,-4)到y轴的距离是 ________15.已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=________.16.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为________。
中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角系中,点A的坐标是(0,4)在x轴上任取一点B连接AB作线段AB的垂直平分线1l过点B作x轴的垂线2l记1l2l的交点为P.设点P的坐x y.标为(,)(1)用含x y二个字母的代数式表示PA的长度.(2)当点B在x轴上移动时点P也随之运动请求出点P的运动路径所对应的函数解析式.2.如图1 在平面直角坐标系中,点B的坐标是(0,2)动点A从原点O出发沿着x轴正方向移动ABP是以AB为斜边的等腰直角三角形(点A B P顺时针方向排列).(1)当点A 与点O 重合时 得到等腰直角OBC △(此时点P 与点C 重合) 则BC =______.当2OA =时 点P 的坐标是______; (2)设动点A 的坐标为(,0)(0)t t ≥.①点A 在移动过程中,作PM y ⊥轴于M PN OA ⊥于N 求证:四边形PMON 是正方形;①用含t 的代数式表示点P 的坐标为:(______ ______);(3)在上述条件中,过点A 作y 轴的平行线交MP 的延长线于点Q 如图2 是否存在这样的点A 使得AQB 的面积是AOB 的面积的3倍?若存在 请求出A 的坐标 若不存在 请说明理由.3.如图,在平面直角坐标系中,点O 是坐标原点 直线3y x分别交x 轴 y 轴于点A B .(1)求ABO ∠的度数;(2)点C 是线段AB 上一点 连接OC 以OC 为直角边作等腰直角OCD 其中OC OD=且点D在第三象限连接AD.设点C的横坐标为t ACD的面积为S 求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下点E为x轴正半轴上的一点连接BE点F是BE的中点连∥交x轴于点H若接CF并延长交x轴于点G过点D作DH CFCG DH=求点D的坐标.∠-∠=︒345AEB ADH4.如图,在直角平面坐标系中,ABC的边AB在x轴上且3AB=点A的坐标为-点C的坐标为(2,5).(5,0)(1)求这样的ABC一共几个?并写出符合条件的点B的坐标;(2)试求ABC的面积.5.如图,平面直角坐标系中有点()1,0B 和y 轴上一动点(0,)A a - 其中0a > 以点A 为直角顶点在第四象限内作等腰直角ABC 设点C 的坐标为(,)c d .(1)当2a =时 点C 的坐标为 .(2)动点A 在运动的过程中,试判断+c d 的值是否发生变化 若不变 请求出其值;若发生变化 请说明理由.(3)当3a =时 在坐标平面内是否存在一点P (不与点C 重合) 使PAB 与ABC 全等?若存在 请直接写出点P 的坐标;若不存在 请说明理由.6.如图,在平面直角坐标系中,()2,0A - ()0,3B .(1)如图1 以A 为直角顶点在第二象限内作等腰直角三角形ABE 过点E 作EF x ⊥轴于点F 求点F 的坐标;(2)如图2 点()0,P P y 为y 轴正半轴上一动点 以AP 为直角边作等腰直角三角形APC 点(),C C C x y 在第一象限 90APC ∠=︒ 当点P 运动时 P C y y -的值是否发生变化?若不变 求出其值;若变化 请说明理由.(3)如图3 点P 在y 轴负半轴上 以AP 为直角边作等腰直角三角形APC 90APC ∠=︒ 点C 在第一象限 点H 在AC 延长线上 作HG x ⊥轴于G 当(),2H m 探究线段PH AG OP 之间的数量关系 并证明你的结论.7.已知在平面直角坐标系中,()()4003A B ,,, 以线段AB 为直角边在第一象限内作等腰直角三角形90ABC AB AC BAC =∠=︒,,.(1)直接写出OA OB ⋅的值. (2)求点C 坐标.(3)若点A B ,是x y ,轴正半轴上的动点 BQ AQ ,分别是ABy ∠和BAx ∠的角平分线 交点为Q 求Q ∠的大小.8. 在平面直角坐标系中,点A B ,分别在x 轴负半轴 y 轴正半轴上运动 且满足AB BC = 90ABC ∠=︒ 点C 在第二象限.(1)如图1 当点()()4002A B -,,,时 点C 的坐标为________; (2)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图2 连接AD 和OC 且相交于点P 判断AD 和OC 的数量关系与位置关系 并说明理由;(3)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图3 连接CD 交y 轴于点Q 在点,A B 的运动过程中,判断BQ 与OA 的数量关系 并说明理由.9.在平面直角坐标系中,AOB 为等腰直角三角形 ()4,4A .(1)直接写出B 点坐标;(2)如图2 若C 为x 轴正半轴上一动点 以AC 为直角边作等腰直角ACD =90ACD ∠︒ 连接OD 求AOD ∠度数;(3)如图3 过点A 作y 轴的垂线交y 轴于E F 为x 轴负半轴上一点 G 在EF 的延长线上 以EG 为直角边作等腰Rt EGH 过A 作x 轴的垂线交EH 于点M 连接FM 等式1AM FMOF-=是否成立?若成立 请证明;若不成立 说明理由.10.如图,在平面直角坐标系中,直线24y x =-+交坐标轴于A B 两点 过x 轴负半轴上一点C 作直线CD 交y 轴正半轴于点D 且AOB DOC △≌△.(1)OC =________ OD =________.(2)点()1,M a -是线段CD 上一点 作ON OM ⊥交AB 于点N 连接MN 求点N 的坐标;(3)若()1,E b 为直线AB 上的点 P 为y 轴上的点 请问:直线CD 上是否存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 若存在 请直接写出此时Q 点的坐标;若不存在 请说明理由.象限内作等腰直角ABC则点b点D在第一象限作等腰直角BDE△c ABO,=∠(1)如图1 点A 关于x 轴的对称点为P 点 则点P 的坐标为________ 当PB 最短时 点B 的坐标为________;(结果均用a 表示)(2)如图2 当AB y ⊥轴 且垂足为点A 时 以OA 为边作正方形ABQO M 在x 轴的正半轴 且OM OA < 以OM 为边在x 轴上方作正方形OMNH 连接AN 若6QM = 两个正方形面积之和为20 求AHN 的面积;(3)如图3 当AB y ⊥轴 且垂足为点A 时 点F 在线段OB 上运动(不与端点重合) 点C 是线段BF 的中点 连接AF AC , 以A 为直角顶点 AF 为直角边在第二象限内作等腰Rt EAF △ 连接OE 交AC 于点G 探究线段OE 与AC 的关系 并说明理由.13.如图,在平面直角坐标系中,点A B C 都在坐标轴上 08A BO CO BC ===,.(1)点A 坐标为(______ _______).(2)过点C 作x 轴的垂线l 动点Р从点C 出发 沿着直线①向上运动 若点Р的速度是1个单位/秒 时间是t 连接PA PB , 请用含t 的式子表示PABS.(3)在(2)的条件下 连接AP 以AP 为斜边 在AP 下方作等腰直角APD △ 连接BD 并延长至点Q 连接PO QC , 当点D 为BQ 中点时 请判断PCQ △的形状 并说明理由.14.如图,在平面直角坐标系中,(0,2)A (3,0)B 过点B 作直线ly 轴 点P 是直线l 上的动点 以AP 为边在AP 右上侧作等腰直角APQ △ 使90APQ ∠=︒.(1)如图1当点P 落在点B 时 则点Q 的坐标是________; 学生甲认为点Q 的坐标一定跟点P 有关 于是进行了如下探究:(2)如图2 小聪同学画草图时 让点P 落在1P 2P 3P 不同的特殊位置时(1P 在x 轴上 2P A 与x 轴平行 当Q 落在x 轴上时对应点3P ) 画出了几个点对应的1Q 2Q 3Q 三个不同的位置 发现1Q 2Q 3Q 在同一条直线上 请你根据学生甲的猜测及题目条件 求出点Q 所在直线的解析式;(3)在(2)中,虽然求出了点Q 所在直线的解析式 但是小明同学认为几个特殊点确定解析式是一种猜测 当点P 在l 上运动时 所有的Q 点都在一条直线上吗?就解设了点Q 的坐标为(,)x y 希望用一般推理的方式求出x 和y 满足的关系式 请你帮助小明给出解答.15.在平面直角坐标系中,直线AB 与x 轴交于点()6,0A - 与y 轴交于点B 且45ABO ∠=︒.(1)求点B 坐标和ABO 的面积;(2)如图2 点D 为OA 上的一条延长线的一个动点 以BD 为直角边 以点D 为直角顶点 作等腰三角形BDE 求证AB AE ⊥;(3)如图3 AF 平分OAB ∠ 点M 是射线AF 上一动点 点N 是线段AO 上一动点 判断是否存在这样的点M N 使得OM NM +的值最小 若存在 求出此时点N 的坐标 并加以说明;若不存在 则说明理由.参考答案: 1.(1)解:过点A 作2AH l ⊥于点H 如图所示:①点A 的坐标是(0,4) 点P 的坐标为(,)x y①4OA = ||OB x =①||AH OB x == 4BH OA ==①|4|HP y =-根据勾股定理 得()2222224816PA AH HP x y x y y =+=+-=+-+ 即22816PA x y y =+-+;(2)根据题意 可知点B 坐标为(,0)x①点P 在线段AB 的垂直平分线上①PA PB =①222816y x y y =+-+①2128y x =+ 2.(1)解:①OBC △是等腰直角三角形①,90BC AC C =∠=︒①2OB BC =①点B 的坐标是(0,2)①2OB =①22OB BC ==;①OAB是等腰直角三角形∠=∠OAB①ABP是等腰直角三角形ABP∠=∠∠=∠OBP四边形OAPB==BP OA点P的坐标为①ABP是等腰直角三角形∠=APB90∠=∠MPB在BPM△和APN中∠=∠=︒ANP BMP90≌△△BPM APNPMON是正方形;△△BPM≌①2AN t AN +=-①22t AN -=①22t OM ON +==①点P 的坐标为22,22t t ++⎛⎫⎪⎝⎭;故答案为:22t +;22t +(3)解:存在设点A 的坐标为()(),00m m ≥ 则OA m =①11222AOB S OA OB m m =⨯=⨯=由(2)①得:点P 的坐标为22,22m m ++⎛⎫ ⎪⎝⎭ 则22m OM +=根据题意得:90OMP AOB OAQ ∠=∠=∠=︒①四边形OAQM 是矩形①2,2m MQ OA m AQ OM +====①()2112122224ABQ m S AQ OA m m m +=⨯=⨯=+①AQB 的面积是AOB 的面积的3倍①()21234m m m +=解得:10m =或0(舍去)即存在点()10,0A 使得AQB 的面积是AOB 的面积的3倍. 3.(1)解:在3y x 中,当0x =时 3y = 当0y =时 03x =+ 解得3x =-①()30A -, ()0,3B①3OA OB ==①BAO ABO ∠=∠①90AOB ∠=︒①45BAO ABO ∠=∠=︒.(2)解:如图1 过点C 作CR y ⊥轴于点R .Rt BCR 中,90BCR =︒-∠BR CR t ==-2BC BR =+COD AOB =∠在ACD 中,12S AD =⨯3)解:如图所示①90BOE ∠=︒ BF EF =①OF BF EF ==①FOE FEO ∠=∠设ADH a ∠=①45AEB a ∠=+︒①45FOE FEO a ∠=∠=+︒ 45AHD OAD ADH a ∠=∠-∠=︒- ①DH CG ∥①45CGO AHD a ∠=∠=︒-①454590CFO FOG FGO a a ∠=∠+∠=︒++︒-=︒取OC 的中点K 连接FK 交OB 于点P 过点F 作FL OB ⊥于点L过点K 分别作KM OB ⊥于点M KN FL ⊥交FL 的延长线于点N 连接KL . ①四边形KMLN 是矩形;①90CFO ∠=︒ CK OK =①FK OK CK ==①BF OF = FL OB ⊥①BL OL =①KL BC ∥①45OLK OBC ∠=∠=︒①904545NLK NLO OLK ∠=∠-∠=︒-︒=︒①KM KN =①Rt Rt KOM KFN ≌△△①KOM KFN ∠=∠又①OPK FPL ∠=∠①90KOM OPK KFN FPL ∠+∠=∠+∠=︒①90OKP ∠=︒①FK OC ⊥①CF OF =①45CFK OFK ∠=∠=︒①45OCF ∠=︒①90COD ∠=︒ OC OD =在Rt ODS △中,()22223910()44OS OD DS =-=-= ①点D 的坐标为93,44⎛⎫-- ⎪⎝⎭. 4.1)解:如图所示 符合条件的ABC 有两个 分别为1AB C 2AB C 其中12(2,0)(8,0)B B --、;(2)点C 的坐标为(2,5)115|2(5)|57.522ABC S ∴=⨯---⨯==△. 5.(1)解:如下图 过点C 作CE y ⊥轴于点E 则CEA AOB ∠=∠①ABC 是等腰直角三角形①,90AC BA BAC =∠︒=①90ACE CAE BAO CAE ∠+∠=︒=∠+∠①ACE BAO ∠=∠.在ACE △和BAO 中CEA AOB ACE BAO AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩①ACE BAO≌(AAS)①(0,1),(0,2)B A-①12BO AE AO CE====,①123OE=+=①2,3C-();(2)解:动点A在运动的过程中,+c d的值不变.理由如下:由(1)知ACE BAO≌①(0,1)B(0,)A a-①1,BO AE AO CE a====①1OE a=+①(,1)C a a--又①点C的坐标为(,)c d①11c d a a+=--=-即+c d的值不变;(3)解:存在一点P使PAB与ABC全等符合条件的点P的坐标是(4,)1-或(3,2)--或(2,1)-分为三种情况讨论:①如下图过点P作PE x⊥轴于点E则90PBA AOB PEB∠=∠=∠=︒①90,90EPB PBE PBE ABO∠+∠=︒∠+∠=︒①EPB ABO∠=∠在PEB△和BOA△中EPB OBAPEB BOAPB BA∠=∠⎧⎪∠=∠⎨⎪=⎩①PEB BOA△≌△(AAS)①1,3PE BO EB AO ====①314OE =+=即点P 的坐标是(4,)1-①如下图 过点C 作CM x ⊥轴于点M 过点P 作PE x ⊥轴于点E则90CMB PEB ∠=∠=︒.①CAB PAB △≌△①45,PBA CBA BC BP ∠=∠=︒=①90CBP ∠=︒①90,90MCB CBM CBM PBE ∠+∠=︒∠+∠=︒①MCB PBE ∠=∠在CMB 和BEP △中MCB EBP CMB BEP BC PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①CMB BEP △≌△(AAS )①,PE BM CM BE ==.①3,4),10C B -((,)①2,413PE OE BE BO ==-=-=即点P 的坐标是(3,2)--;①如下图 过点P 作PE x ⊥轴于点E 则90BEP BOA ∠=∠=︒.①CAB PBA △≌△①,90AB BP CAB ABP =∠=∠=︒①90,90ABO PBE PBE BPE ∠+∠=︒∠+∠=︒①ABO BPE ∠=∠.在BOA △和PEB △中ABO BPE BOA PEB BA PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①BOA PEB △≌△(AAS )①1,3PE BO BE OA ====①312OE BE BO =-=-=即点P 的坐标是(2,1)-综上所述 符合条件的点P 的坐标是(4,)1-或(3,2)--或(2,1)-. 6.(1)三角形ABE 是等腰直角三角形AE AB ∴= 90EAB ∠=︒90FAE BAO ∴∠+∠=︒.EF x ⊥轴90EFA ∴∠=︒90AEF FAE ∴∠+∠=︒AEF OAB ∴∠=∠.90AOB ∠=︒EFA AOB ∴∠=∠.在AEF △和BAO 中,,,AEF BAO EFA AOBAE BA ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AEF BAO ∴≌3AF BO ∴==235OF ∴=+=()5,0F ∴-;(2)不变 理由如下:如图2 作CF y ⊥轴于FC y OF ∴=90PFC CFO ∴∠=∠=︒90FPC FCP ∴∠+∠=︒.三角形APC 是等腰直角三角形 90APC ∠=︒ PA PC ∴=90APO OPC ∴∠+∠=︒.APO PCF ∴∠=∠.又90AOP PFC ∠=∠=︒.在AOP 和PFC △中,,,APO PCF AOP PFC PA CP ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AOP PFC ∴△≌△AO PF .2P C y y OP OF PF AO ∴-=-===;(3)AG PH OP =+ 证明如下:在OG 上取一点M 使MG OP = 连接HM 并延长交AP 的延长线于N 如图3所示()2,0A -2AO ∴=HG x ⊥轴于G (),2H m2HG ∴=AO HG ∴=90AOP HGM ∠=∠=︒ MG OP =()SAS APO HMG ∴△≌△PAO MHG ∴∠=∠ AP HM =AMN HMG ∠=∠90ANM HGM ∴∠=∠=︒90APC ∠=︒ PC AP =45PAC ∴∠=︒AHN ∴是等腰直角三角形45PAH MHA ∴∠=∠=︒又AP HM = AH HA =()SAS APH HMA ∴△≌△PH MA ∴=AG AM MG =+AG PH OP ∴=+.7.(1)解:()()4003A B ,,,4∴=OA 3OB =4312OA OB ⋅=⨯=∴;(2)解:如图,作CD x ⊥轴于点D 则90AOB CDA ∠=∠=︒90ACD CAD ∴∠+∠=︒90BAC ∠=︒90CAD BAO ∴∠+∠=︒ACD BAO ∴∠=∠在BAO 和ACD 中90AOB CDA ACD BAOAB CA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS BAO ACD ∴≌3AD OB ∴== 4CD OA ==437OD OA AD ∴=+=+=()74C ∴,;(3)解:如图BQ 平分ABy ∠ AQ 平分BAx ∠12ABQ ABy ∴∠=∠ 12BAQ BAx ∠=∠ABO∠+∴∠=ABy∴∠+ABQ(1180=︒21︒=-180∠+∠Q ABQ ∴∠=Q180 8.(1)解:作①()SAS CBO ABD ≌△△①AD OC = BCO BAD ∠=∠①BCO ABC BAD APC ∠+∠=∠+∠又90ABC ∠=︒①90APC ∠=︒ 即AD OC ⊥;(3)解:2OA BQ = 理由如下:作CF y ⊥轴于点F同理 ()AAS BAO CBF ≌△△ ①CF OB = BF OA =①90OB BD OBD =∠=︒,①=CF BD CF BD ∥①QCF QDB ∠=∠ 90QFC QBD ∠=∠=︒①()ASA QCF QDB ≌△△ ①BQ FQ =①1122BQ BF OA == 即2OA BQ =. 9.(1)解:如图,作AE OB ⊥于点E①()4,4A①4OE =①AOB 为等腰直角三角形 AE OB ⊥①=2=8OB OE①()8,0B ;①ACD 为等腰直角三角形AC DC =即ACF ∠+∠FDC ∠+∠ACF ∠=∠又①DFC ∠①()DFC CEA AAS ≌EC DF = FC =()4,4A4AE OE ===FC OE 即OF +①AOB 为等腰直角三角形45AOB ∠==AOD ∠∠AM FM -①()4,4A ①4AE OE ==又①==90EAN EOF ∠∠︒ AN OF =①()EAN EOF SAS ≌①=OEF AEN ∠∠ EF EN =又①EGH 为等腰直角三角形①45GEH ∠=︒ 即=45OEF OEM ∠+∠︒ ①=45AEN OEM ∠+∠︒又①90AEO ∠=︒①=45=NEM FEM ∠︒∠又①EM EM =①()NEM FEM SAS ≌①MN MF =①==AM MF AM MN AN --①=AM MF OF -即1AM FM OF-=.10.(1)解:把0x =代入24y x =-+得:4y =①点()04B ,①4OB =把0y =代入24y x =-+得:2x =①点()20A ,①2OA =①AOB DOC △≌△①(ASA OBN OCM ≌OM ON =分别过点M N 作ME①OFN OEM ∠=∠①BON COM OM ON ∠=∠=,①()AAS OFN OEM ≌①312OF OE FN EM ====, ①点N 的坐标为312⎛⎫ ⎪⎝⎭,; (3)解:直线CD 上存在点Q 使EPQ △是以E 为直角顶点的等腰三角形. ①()1E b ,为直线AB 上的点①2142b =-⨯+=①()12E ,①当点P 在点B 下方时 如图,连接DE 过点Q 作QM DE ⊥ 交DE 的延长线于M 点①()02D ,①DE y ⊥轴 1DE = 点M 的纵坐标为2 90M EDP ∠=∠=︒ ①EPQ △是以E 为直角顶点的等腰直角三角形①(AAS DEP MQE ≌1MQ DE ==Q 点的纵坐标为3把3y =代入12y x =+点()23Q ,;①()AAS EQM PEN ≌1EM PN ==()12E ,①M 点的纵坐标为1①Q 点的纵坐标为1把1y =代入122y x =+中得:2x =- ①()21Q -,; 综上所述 直线CD 上存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 Q 点的坐标为()23,或()21-,. 11.(1)解:()2430a b -+-= ()240a -≥ 30b -≥ 40a ∴-= 30b -=4a ∴= 3b =()()00A a B b ,、,4∴=OA 3OB =如图,过点C 作CN y ⊥轴于N则90BNC ∠=︒90ABC AOB ∠︒∠==90CBN ABO 90BAO ABO ∠+∠=︒ CBN BAO ∴∠=∠90BNC AOB ∠=∠=︒ BC AB =()AAS BNC AOB ∴≌4BN AO ∴== 3CN BO ==7ON OB BN ∴=+=()37C ∴,故答案为:()37,; (2)证明:如图,过E 作EF x ⊥轴于F 则90EFD ∠=︒a b =OA OB ∴=90AOB ∠=︒OAB ∴是等腰直角三角形45ABO BAO ∴∠=∠=︒BDE 是等腰直角三角形 90BDE ∠=︒BD DE ∴=90EDF BDO ∠+∠=︒ 90DEF EDF ∠+∠=︒ BDO DEF ∴∠=∠90EFD DOB ∠=∠=︒()AAS DEF BDO ∴≌EDF DBO ∴∠=∠ DF OB = EF OD = OB OA =DF OA ∴=DF AD OA OD ∴+=+ 即AF OD =AF EF ∴=AEF ∴是等腰直角三角形45EAF AEF ∴∠=∠=︒45EDF EAF AED AED ∠=∠+∠=︒+∠ 45DBO OBA ABD ABD ∠=∠+∠=︒+∠ ABD AED ∴∠=∠;(3)解:如图,过点D 作DM y ⊥轴于M DH x ⊥轴于H DG BA ⊥交BA 的延长线于G()33D -,3DM DH OM OH ∴====BD 平分ABO ∠ ⊥DM OB DG AB ⊥DM DG ∴=BD BD =()Rt Rt HL BDG BDM ∴≌同理可得:()Rt Rt HL ADH ADG ≌AH AG ∴=OA a = OB b = AB c =a b c OA OB AB ∴-+=-+()()()OH AH BM OM BG AG =+--+-33AH BM BG AG =+-++-6=即6a b c -+=.12.(1)解:①点A 关于x 轴的对称点为P 点 ①点P 的坐标为(0,)a -;由垂线段最短 当PB l ⊥时 PB 最短 过点B 作BD y ⊥轴于D 点 如图①直线l 平分坐标系的第二 四象限①45BOD ∠=︒①PB l ⊥①45BOD OPB ∠=∠=︒①OBP 是等腰直角三角形 OB PB =①BD y ⊥轴 OP a =22⎝⎭a a⎛⎫①()ACF QCB SAS △≌△①QB AF AE == QB AF ∥①180QBA BAF ∠+∠=︒又①90EAF BAO ∠=∠=︒①180BAF EAO ∠+∠=︒①QBA EAO ∠=∠又①BA AO =①(SAS)QBA EAO ≌△△①2OE AQ AC == BAQ AOE ∠=∠①90AOE GAO GAO BAQ ∠+∠=∠+∠=︒ ①90AGO ∠=︒①OE AC ⊥13.(1)OB OC = 8BC =4OB OC ∴==4OA OB ==()0,4A ∴故答案为:0 4;(2)4OC =()4,0C ∴.PC BC ⊥()4,P t ∴4OA OB OC ∴=== PC t =①当08t ≤<时 如图1PAB AOB BCP AOCP S S S S =+-梯形PAB PBC AOB SS S S =--梯形1122BC PC OA OB =⨯-⨯(1118444t =⨯⨯-⨯⨯-PAB S ⎧-⎪=⎨⎪⎩是等腰直角三角形;延长PD 至ADP 是等腰直角三角形AD ∴垂直平分AP AH ∴=90BAC ∠=︒BAH PAC ∴∠=∠在ABH 和ACP △中AH AP BAH CAP AB AC =⎧⎪∠=∠⎨⎪=⎩()SAS ABH ACP ∴≌45ABH ACP ∴∠=∠=︒ BH PC =45ABC ∠=︒∴点H 在BC 上点D 是BD 的中点BD QB ∴=在PDQ 和HDB 中DP DH PDQ HDB BD QD =⎧⎪∠=∠⎨⎪=⎩()SAS PDQ HDB ∴≌PQ BH ∴∥ PQ BH =BH PC =PC PQ ∴=PQ BC ∥ 90BCP ∠=︒90CPQ BCP ∴∠=∠=︒PAQ ∴是等腰直角三角形;14.(1)解:作QG l ⊥于点G①(0,2)A (3,0)B①2AO = 3BO =①AP PQ = 90APQ ∠=︒①90APO APG QPG ∠=︒-∠=∠①APO QPG ≌△△①2QG AO == 3BG BO ==①点Q 的坐标是()53,故答案为:()53,; (2)解:当点Q 在于直线l 上时 如图2223P Q AP OB ===①点2Q 的坐标是()35,由(1)知点1Q 的坐标是()53,设点Q 所在直线的解析式为y kx b =+则5335k b k b +=⎧⎨+=⎩ 解得18k b =-⎧⎨=⎩①点Q 所在直线的解析式为8y x =-+;(3)解:如图,作PM OA ⊥于M QN MP ⊥于N①90APQ ∠=︒①四边形OBPM 是矩形PA PQ = 90APQ ∠=︒①90APM QPN ∠+∠=︒ 90QPN PQN ∠+∠=︒APM PQN ∴∠=∠在PAM △和QPN 中AMP PNQ APM PQN AP PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩PAM QPN ∴≌△△QN PM ∴= AM PN =①点Q 的坐标为(,)x y①MN x = 3PN x =- 3PB y QN y PM y =-=-=- ()2223AM OM PB y =-=-=--①AM PN =①()233y x --=-整理得8y x =-+.15.(1)①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA ==①()0,6B11661822ABO S OA OB ==⨯⨯=. (2)过点E 作EF x ⊥轴①90EDB ∠=︒①90FED ODB FDE ∠=∠=︒-∠①FED ODB EFD DOB ED DB ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS EFD DOB ≌①(ASA AGH AOH ≌6AG AO == OH ①O G 是对称点故OM GM =根据垂线段最短故OM NM +最小①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA == 45BAO ∠=︒ ①45AGN ∠=︒①AN GN =①222236AN GN AN +== 解得32,32AN AN ==-(舍去) ①632ON OA AN =-=-. 故()326,0N -.。
2019 初三数学中考复习 平面直角坐标系与函数 专项复习训练题1.函数y =x -3x -4的自变量x 的取值范围是( ) A .x>3 B .x ≥3 C .x>4 D .x ≥3且x≠42. 象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为( )A .(-3,3)B .(3,2)C .(1,3)D .(0,3)3. 若函数y = 有意义,则( )A .x>1B .x<1C .x =1D .x ≠14. 使函数y =x 的取值范围是( )A .x <2B .x ≤2C .x ≥2D .x >25. 在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标是( )A .(2,5)B .(-8,5)C .(-8,-1)D .(2,-1)6. 已知点A(m 2-2,5m +4)在第一象限角平分线上,则m 的值为 ( )A .6B .-1C .2或3D .-1或67. 在方格纸上有A ,B 两点,若以点A 为原点,建立平面直角坐标系,点B 的坐标为(2,3),则以点B 为原点,建立平面直角坐标系,则点A 的坐标为( )A .(2,3)B .(2,-3)C .(-2,-3)D .(-2,3)8. 如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则11x -点P的坐标不可能是( )A.(2,0) B.(4,0) C.(-8,0) D.(3,0)9. 函数y=1x+2中自变量x的取值范围是( )A.x>-2 B.x<-2 C.x≠-2 D.x≠010. 长方形的周长为240,两邻边长为x,y,则它们的关系是( ) A.y=120-x(0<x<120) B.y=120-x(0≤x≤120)C.y=240-x(0<x<240) D.y=240-x(0≤x≤240)11. 已知点A的坐标为(-2,3),则点A关于原点对称的点B的坐标为____.12. 点P(m-1,2m+1)在第一象限,则m的取值范围是__ __.13.函数y=12-x的自变量取值范围是__ __.14. 直角三角形的一个锐角的度数y与另一个锐角的度数x之间的函数关系式为y=90-x,则x的取值范围是_____________.15. 某镇三个厂址的地理位置如下:汽车配件厂在饲料厂的正南1 000 m,酒厂在汽车配件厂的正西800 m处,若酒厂的坐标是(-800,-1 000),则选取的坐标原点是_________.16. 如图,长方形ABCD的面积为8,点C的坐标为(0,1),点D的坐标为(0,3),则点A的坐标为________,点B的坐标为_________.17. 点A(2,1)与点B关于原点对称,则点B的坐标是_________.18. 在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为_________.19. 已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1) 点P在y轴上;(2) 点P的纵坐标比横坐标大3;(3) 点P到x轴的距离为2,且在第四象限.20. 已知长方形周长为20,其中一条边长为x,设长方形面积为y,写出y与x 的函数表达式,并写出自变量x的取值范围.21. 高空的气温与距地面的高度有关,某地地面气温为24 ℃,且已知离地面距离每升高1 km,气温下降6 ℃.(1)写出该地空中气温T(℃)与高度h(km)之间的函数表达式;(2)求距地面3 km处的气温T;(3)求气温为-6 ℃处距地面的高度h.22. 在如图所示的图形中建立平面直角坐标系,使点B,C的坐标分别为(2,0)和(6,0),根据坐标系提供的数据:(1)求点A,D,E,F,G的坐标;(2)求三角形BCF及四边形ABFG的面积参考答案1---10 DCDAD ACDCA11. (2,-3)12. m>113. x≠214. 0<x<9015. 饲料厂16. (-4,3) (-4,1)17. (-2,-1)18. (1,3)19. 解:(1)∵点P(2m+4,m-1)在y轴上,∴2m+4=0,解得m=-2,∴m-1=-2-1=-3,∴点P的坐标为(0,-3);(2)∵点P的纵坐标比横坐标大3,∴(m-1)-(2m+4)=3,解得m=-8,m-1=-8-1=-9,2m+4=2×(-8)+4=-12,∴点P的坐标为(-12,-9);(3)∵点P到x轴的距离为2,∴|m-1|=2,解得m=-1或m=3,当m=-1时,2m+4=2×(-1)+4=2,m-1=-1-1=-2,此时,点P(2,-2),当m=3时,2m+4=2×3+4=10,m-1=3-1=2,此时,点P(10,2),∵点P在第四象限,∴点P的坐标为(2,-2).20. 解:y=x(10-x),即y=-x2+10x,0<x<1021. 解:(1)T=24-6h(2)当h=3 km时,T=24-6×3=6(℃)(3)当气温为-6 ℃时,-6=24-6h,∴h=5,即高度h为5 km 22. 解:(1)A(0,3),D(8,1),E(7,3),F(5,2),G(3,5)(2)S △BCF =12×4×2=4,S 四边形ABFG =52-4×12×3×2=13。
函数——平面直角坐标系1一.选择题(共9小题)1.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四2.若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定3.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(1,﹣2)C.(1,1)D.(﹣1,﹣1)4.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0 B.﹣3×()2013C.(2)2014D.3×()20135.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有()A.2个B.3个C.4个D.5个6.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第一象限B.第二象限 C.第三象限 D.第四象限7.若0<m<2,则点p(m﹣2,m)在()A.第一象限B.第二象限 C.第三象限 D.第四象限8.如果点P(a,b)在第四象限,那么点Q(﹣a,b﹣4)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限9.如果m是任意实数,则点P(m,1﹣2m)一定不在()A.第一象限B.第二象限 C.第三象限 D.第四象限二.填空题(共8小题)10.在平面直角坐标系中,点(﹣4,4)在第_________ 象限.11.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是_________ .12.如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为_________ .13.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为_________ .14.在平面直角坐标系中,若点P(m+3,m﹣1)在第四象限,则m的取值范围为_________ .15点P在第二象限内,且到两坐标轴的距离相等,则点P的坐标可以为_________ .(填一个即可)16.直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是_________ .17.点A(m﹣1,3﹣m)在第四象限,则m的取值范围是_________ .三.解答题(共6小题)18.在直角坐标系中,已知点A(﹣2,0),B(0,4),C(0,3),过点C作直线交x轴于点D,使得以D,O,C为顶点的三角形与△AOB相似,求点D的坐标.19.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B 两点.请你用两种不同方法表述点B相对点A的位置.20.请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(0,2),B点坐标为(﹣2,0);(2)在x轴上画点C,使△ABC为等腰三角形,请画出所有符合条件的点C,并直接写出相应的C点坐标.21.如图,四边形ABCD是一正方形,已知A(1,2),B(5,2)(1)求点C,D的坐标;(2)若一次函数y=kx﹣2(k≠0)的图象过C点,求k的值.(3)若y=kx﹣2的直线与x轴、y轴分别交于M,N两点,且△OMN的面积等于2,求k的值.22.已知点A在x轴上,点A与点B(1,3)的距离是5,求点A的坐标.23.如图,在平面直角坐标系中,已知点A(﹣2,0),B(2,0).(1)画出等腰三角形ABC(画一个即可);(2)写出(1)中画出的三角形ABC的顶点C的坐标.函数——平面直角坐标系1参考答案与试题解析一.选择题(共9小题)1.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四考点:点的坐标.分析:由平面直角坐标系判断出a<7,b<5,然后求出6﹣b,a﹣10的正负情况,再根据各象限内点的坐标特征解答.解答:解:∵(5,a)、(b,7),∴a<7,b<5,∴6﹣b>0,a﹣10<0,∴点(6﹣b,a﹣10)在第四象限.故选D.点评:本题考查了点的坐标,观察图形,判断出a、b的取值范围是解题的关键.2.若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定考点:点的坐标;完全平方公式.分析:利用完全平方公式展开得到xy=﹣1,再根据异号得负判断出x、y异号,然后根据各象限内点的坐标特征解答.解答:解:∵( x+y)2=x2+2xy+y2,∴原式可化为xy=﹣1,∴x、y异号,∴点M(x,y)在第二象限或第四象限.故选:B.点评:本题考查了点的坐标,求出x、y异号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(1,﹣2)C.(1,1)D.(﹣1,﹣1)考点:规律型:点的坐标.专题:规律型.分析:根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答:解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即从点B 向下沿BC2个单位所在的点的坐标即为所求,也就是点(﹣1,﹣1).故选:D.点评:本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2014个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.4.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0 B.﹣3×()2013C.(2)2014D.3×()2013考点:规律型:点的坐标.专题:压轴题;规律型.分析:根据含30度的直角三角形三边的关系得OA2=OC2=3×;OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到OA2014=3×()2013,由于2014=4×503+2,则可判断点A2014在y轴的正半轴上,所以点A2014的纵坐标为3×()2013.解答:解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2=OC2=3×;∵OA2=OC3=3×,∴OA3=OC3=3×()2;∵OA3=OC4=3×()2,∴OA4=OC4=3×()3,∴OA2014=3×()2013,而2014=4×503+2,∴点A2014在y轴的正半轴上,∴点A2014的纵坐标为:3×()2013.故选:D.点评:本题考查了规律型,点的坐标:通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系.5.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有()A.2个B.3个C.4个D.5个考点:坐标与图形性质;三角形的面积.分析:根据点A、B的坐标判断出AB∥x轴,然后根据三角形的面积求出点C到AB的距离,再判断出点C的位置即可.解答:解:由图可知,AB∥x轴,且AB=3,设点C到AB的距离为h,则△ABC的面积=×3h=3,解得h=2,∵点C在第四象限,∴点C的位置如图所示,共有3个.故选:B.点评:本题考查了坐标与图形性质,三角形面积,判断出AB∥x轴是解题的关键.6.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.专题:计算题.分析:由点在x轴的条件是纵坐标为0,得出点A(﹣2,n)的n=0,再代入求出点B的坐标及象限.解答:解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B的坐标为(﹣1,1).则点B(n﹣1,n+1)在第二象限.故选B.点评:本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.7.若0<m<2,则点p(m﹣2,m)在()A.第一象限B.第二象限 C 第三象限D.第四象限考点:点的坐标.分析:根据m的取值范围求出(m﹣2)的正负情况,然后根据各象限内点的坐标特征解答.解答:解:∵0<m<2,∴m﹣2<0,∴点p(m﹣2,m)在第二象限.故选B.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.如果点P(a,b)在第四象限,那么点Q(﹣a,b﹣4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据第四象限的点的坐标特征确定出a、b的正负情况,再确定出点Q的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征判断即可.解答:解:∵点P(a,b)在第四象限,∴a>0,b<0,∴﹣a<0,b﹣4<0,∴点Q(﹣a,b﹣4)在第三象限.故选C.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.如果m是任意实数,则点P(m,1﹣2m)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:判断出m<0时,1﹣2m>0,再根据各象限内点的坐标特征解答.解答:解:∵m<0时,1﹣2m>0,∴点P(m,1﹣2m)一定不在第三象限.故选C.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).二.填空题(共8小题)10.在平面直角坐标系中,点(﹣4,4)在第二象限.考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(﹣4,4)在第二象限.故答案为:二.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣1).考点:规律型:点的坐标.专题:规律型.分析:根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答:解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即线段BC的中间位置,点的坐标为(﹣1,﹣1).故答案为:(﹣1,﹣1).点评:本题主要考查了点的变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2014个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.12.如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为(﹣22014,0).考点:规律型:点的坐标.专题:规律型.分析:根据题意得出A点坐标变化规律,进而得出点A2014的坐标位置,进而得出答案.解答:解:∵将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,A1(0,﹣2),A2(﹣4,0),A3(0,8),A4(16,0),∵2014÷4=503…2,∴点A2014与A2同在x轴负半轴,∵﹣4=﹣22,8=23,16=24,∴点A2014(﹣22014,0).故答案为:(﹣22014,0).点评:此题主要考查了点的坐标变化规律,得出A点坐标变化规律是解题关键.13.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为10070 .考点:规律型:点的坐标;坐标与图形变化-旋转.专题:压轴题;规律型.分析:首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.解答:解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,∴点B2014的横坐标为:×10=10070.故答案为:10070.点评:此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键.14.在平面直角坐标系中,若点P(m+3,m﹣1)在第四象限,则m的取值范围为﹣3<m<1 .考点:点的坐标.分析:点在第四象限的条件是:横坐标是正数,纵坐标是负数.解答:解:∵点P(m+3,m﹣1)在第四象限,∴可得,解得:﹣3<m<1.故填:﹣3<m<1.点评:本题主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.15.点P在第二象限内,且到两坐标轴的距离相等,则点P的坐标可以为(﹣2,2).(填一个即可)考点:点的坐标.专题:开放型.分析:根据四个象限内点的坐标符合,可得P点坐标横纵标为负,纵坐标为正,再根据到两坐标轴的距离相等可得答案.解答:解:∵点P在第二象限内,∴则P点坐标横纵标为负,纵坐标为正,∵到两坐标轴的距离相等,∴P(﹣2,2),故答案为:(﹣2,2).点评:此题主要考查了点的坐标,关键是掌握点的坐标符号.16.直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是(5,﹣2).考点:点的坐标.分析:根据第四象限点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.解答:解:∵第四象限内一点P到x轴的距离为2,到y轴的距离为5,∴点P的横坐标是5,纵坐标是﹣2,∴点P(5,﹣2).故答案为:(5,﹣2).点评:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.17.点A(m﹣1,3﹣m)在第四象限,则m的取值范围是m>3 .考点:点的坐标;解一元一次不等式组.分析:根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.解答:解:∵点A(m﹣1,3﹣m)在第四象限,∴,解不等式①得,m>1,解不等式②得,m>3,∴m>3.故答案为:m>3.点评:本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).三.解答题(共6小题)18.在直角坐标系中,已知点A(﹣2,0),B(0,4),C(0,3),过点C作直线交x轴于点D,使得以D,O,C为顶点的三角形与△AOB相似,求点D的坐标.考点:坐标与图形性质;相似三角形的判定.分析:过C点作AB的平行线,交x轴于D1点,由平行得相似可知D1点符合题意,根据对称得D2点;改变相似三角形的对应关系得D3点,利用对称得D4点,都满足题意.解答:解:过C点作AB的平行线,交x轴于D1点,则△DOC∽△AOB,,即,解得OD=,∴D1(﹣,0),根据对称得D2(,0);由△COD∽△AOB,得D3(﹣6,0),根据对称得D4(6,0).点评:本题考查了利用相似比求线段的长,根据线段长确定点的坐标的方法.19.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B 两点.请你用两种不同方法表述点B相对点A的位置.考点:坐标确定位置.分析:方法1:用有序实数对(a,b)表示;方法2:用方向和距离表示.解答:解:方法1:用有序实数对(a,b)表示.比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3).方法2:用方向和距离表示.比如:B点位于A点的东北方向(北偏东45°等均可),距离A点3处.点评:本题考查了确定物体位置的两种方法.无论运用哪种方法表示一个点在平面中的位置,都要用两个数据才能表示.20.请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(0,2),B点坐标为(﹣2,0);(2)在x轴上画点C,使△ABC为等腰三角形,请画出所有符合条件的点C,并直接写出相应的C点坐标.考点:坐标与图形性质;等腰三角形的性质.专题:网格型.分析:(1)根据A点坐标为(0,2),B点坐标为(﹣2,0),则点A所在的纵线一定是y轴,B 所在的横线一定是x轴.(2)分AB时底边或腰两种情况进行讨论.解答:解:(1)在网格中建立平面直角坐标系如图所示:(2)满足条件的点有4个:C1:(2,0);C2:(,0);C3:(0,0);C4:(,0).点评:本题考查了等腰三角形的性质及坐标与图形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.21.如图,四边形ABCD是一正方形,已知A(1,2),B(5,2)(1)求点C,D的坐标;(2)若一次函数y=kx﹣2(k≠0)的图象过C点,求k的值.(3)若y=kx﹣2的直线与x轴、y轴分别交于M,N两点,且△OMN的面积等于2,求k的值.考点:坐标与图形性质;待定系数法求一次函数解析式;正方形的性质.专题:代数几何综合题.分析:根据正方形的定义得到正方形的边长是4,C,D的坐标容易求出;把C点坐标代入一次函数y=kx﹣2(k≠0)的解析式,就可以求出k的值;根据△OMN的面积等于2,就可以求出k的值.解答:解:(1)∵ABCD为正方形,又A(1,2),B(5,2)则AB=4,∴C(5,6),D(1,6)(2分)(2)∵y=kx﹣2经过C点,∴6=5k﹣2,∴k==1.6 (4分)(3)y=kx﹣2与x轴的交点为My=0时,kx﹣2=0,x=,M(,0),N(0,﹣2)又S△OMA=|OM|•|ON|=×|﹣2|•||=2∴|K|=1,k=±1故k=±1时,△OMN的面积为2个单位(少一个k值扣1分)(6分).点评:本题结合坐标考查了函数的性质,注意结合图形是解决本题的关键.22.已知点A在x轴上,点A与点B(1,3)的距离是5,求点A的坐标.考点:两点间的距离公式.分析:根据已知条件“点A在x轴上”可以设点A的坐标为(x,0);然后利用两点间的距离公式列出关于x的一元二次方程(x﹣1)2=42,通过解方程即可求得x的值,即点A的坐标.解答:解:设点A的坐标为(x,0).根据题意,得∴(x﹣1)2=42∴x1=5,x2=﹣3,经检验:x1=5,x2=﹣3都是原方程的根,∴点A的坐标为(5,0)或(﹣3,0).点评:本题考查了两点间的距离公式.属于基础题,关键是掌握设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.23.如图,在平面直角坐标系中,已知点A(﹣2,0),B(2,0).(1)画出等腰三角形ABC(画一个即可);(2)写出(1)中画出的三角形ABC的顶点C的坐标.考点:坐标与图形性质;等腰三角形的性质.分析:(1)由题意可得,AB的中垂线是y轴,则在y轴上任取一点即可;(2)根据所画情况而定,如(0,3)解答:解:(1)如图;(2)C(0,3)或(0,5)都可以(答案不唯一).点评:本题综合考查了图形的性质和坐标的性质及等腰三角形的性质;发现并利用AB的中垂线是y轴是正确解答本题的关键.。
2018中考数学试题分类汇编13 平面直角坐标系与函数基础知识一.选择题(共31小题)1.(2018•江苏扬州•3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据地二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.【点评】本题考查了点的坐标,熟记点的坐标特征是解题关键.2.(2018·湖北省武汉·3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.(2018·湖北省宜昌·3分)如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)【分析】依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).【解答】解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O 是AC 的中点,∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形,∴BD 经过点O ,∵B 的坐标为(﹣2,﹣2),∴D 的坐标为(2,2),故选:A .【点评】本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.4.(2018•北京•2分) 右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-); ②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-); ④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是A .①②③B .②③④C .①④D .①②③④【答案】D【解析】显然①②正确;③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③正确;④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-,9-)时,表示左安门的点的坐标为(15,18-)”的基础上,将所有点向右平移1.5个单位,再向上平移1.5个单位得到,故④正确.【考点】平面直角坐标系,点坐标的确定,点的平移5.(2018•湖北荆门•3分)如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC 的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(2,﹣3)【分析】直接利用直角三角形的性质得出其内切圆半径,进而得出I点坐标,再利用旋转的性质得出对应点坐标.【解答】解:过点作IF⊥AC于点F,IE⊥OA于点E,∵A(4,0),B(0,3),C(4,3),∴BC=4,AC=3,则AB=5,∵I是△ABC的内心,∴I到△ABC各边距离相等,等于其内切圆的半径,∴IF=1,故I到BC的距离也为1,则AE=1,故IE=3﹣1=2,OE=4﹣1=3,则I(3,2),∵△ABC绕原点逆时针旋转90°,∴I的对应点I'的坐标为:(﹣2,3).故选:A.【点评】此题主要考查了旋转的性质以及直角三角形的性质,得出其内切圆半径是解题关键.6.(2018•湖北黄石•3分)如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,6)B.(﹣9,6)C.(﹣1,2)D.(﹣9,2)【分析】根据平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减即可解决问题;【解答】解:由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选:C.【点评】本题考查坐标与平移,解题的关键是记住平移规律:坐标,右移加,左移减;纵坐标,上移加,属于中考常考题型.1.(2018•港南区一模)在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据非负数的性质确定出点P的纵坐标是正数,然后根据各象限内点的坐标特征解答.【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.2.(2018•东营)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.3.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据第二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.4.(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.5.(2018•呼和浩特)下列运算及判断正确的是()#ERR1A.﹣5×÷(﹣)×5=1B.方程(x2+x﹣1)x+3=1有四个整数解C.若a×5673=103,a÷103=b,则a×b=D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限【分析】依据有理数的乘除混合运算法则、零指数幂、同底数幂的乘法法则以及点的坐标,进行判断即可得出结论.【解答】解:A.﹣5×÷(﹣)×5=﹣1×(﹣5)×5=25,故错误;B.方程(x2+x﹣1)x+3=1有四个整数解:x=1,x=﹣2,x=﹣3,x=﹣1,故正确;C.若a×5673=103,a÷103=b,则a×b=×=,故错误;D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限或第四象限或x轴正半轴上,故错误;故选:B.6.(2018•广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B.m2C.m2D.1009m2【分析】由OA4n=2n知OA2018=+1=1009,据此得出A2A2018=1009﹣1=1008,据此利用三角形的面积公式计算可得.【解答】解:由题意知OA4n=2n,∵2018÷4=504…2,∴OA2018=+1=1009,∴A2A2018=1009﹣1=1008,则△OA2A2018的面积是×1×1008=504m2,故选:A.7.(2018•北京)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④ D.①②③④【分析】由天安门的位置确定原点,再进一步得出广安门和左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论错误;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(6,﹣5),此结论错误;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.8.(2018•宿迁)函数y=中,自变量x的取值范围是()A.x≠0 B.x<1 C.x>1 D.x≠1【分析】根据分母不等于零分式有意义,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.9.(2018•包头)函数y=中,自变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>1【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x﹣1≠0,解得x>1.故选:D.10.(2018•重庆)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣7【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.11.(2018•通辽)小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A.B.C.D.【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是故选:B.12.(2018•自贡)回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是()A.数形结合 B.类比 C.演绎 D.公理化【分析】从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.【解答】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选:A.13.(2018•随州)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在图中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.14.(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.15.(2018•滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.16.(2018•齐齐哈尔)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.17.(2018•绍兴)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B (1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.18.(2018•达州)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.19.(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.20.(2012•内江)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C 的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.21.(2018•潍坊)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【解答】解:当0≤t<2时,S=2t××(4﹣t)=﹣t2+4t;当2≤t<4时,S=4××(4﹣t)=﹣2t+8;只有选项D的图形符合.故选:D.22.(2018•孝感)如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B 以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B 两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选:C.23.(2018•河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.24.(2018•东营)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.25.(2018•烟台)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s的速度沿A→D→C 方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.【分析】先根据动点P和Q的运动时间和速度表示:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,发现是开口向上的抛物线,可知:选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,发现是一次函数,是一条直线,可知:选项B不正确,从而得结论.【解答】解:由题意得:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,S△APQ=AP•AQ==t2,故选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,S△APQ=AP•AB==4t,故选项B不正确;故选:A.26.(2018•广东)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.27.(2018•香坊区)如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD 的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()A. B.C.D.【分析】过点B作BE⊥AD于点E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图象.【解答】解:如图,过点B作BE⊥AD于点E,∵∠A=60°,设边AB的长为x,∴BE=AB•sin60°=x.∵平行四边形ABCD的周长为12,∴AD=(12﹣2x)=6﹣x,∴y=AD•BE=(6﹣x)×x=﹣x2+3x(0≤x≤6).则该函数图象是一开口向下的抛物线的一部分,观察选项,C选项符合题意.故选:C.28.(2018•广安)已知点P为某个封闭图形边界上的一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A.B.C.D.【分析】先观察图象得到y与x的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,利用圆的定义,P点在圆上运动时,PM总上等于半径,则可对D进行判断,从而得到正确选项.【解答】解:y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B、C选项不正确;D选项中的封闭图形为圆,y为定中,所以D选项不正确;A选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM的长有最小值.故选:A.29.(2018•安徽)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【分析】当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,由此即可判断;【解答】解:当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,∴函数图象是A,故选:A.30.(2018•黄石)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.【分析】在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.【解答】解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,故选项A正确;故选:A.31.(2018•乌鲁木齐)如图①,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P、Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图②所示.以下结论:①BC=10;②cos∠ABE=;③当0≤t≤10时,y=t2;④当t=12时,△BPQ是等腰三角形;⑤当14≤t≤20时,y=110﹣5t中正确的有()A.2个B.3个C.4个D.5个【分析】根据题意,确定10≤t≤14,PQ的运动状态,得到BE、BC、ED问题可解.【解答】解:由图象可知,当10≤t≤14时,y值不变,则此时,Q点到C,P从E到D.∴BE=BC=10,ED=4故①正确.∴AE=6Rt△ABE中,AB=∴cos∠ABE=;故②错误当0≤t≤10时,△BPQ的面积为∴③正确;t=12时,P在点E右侧2单位,此时BP>BE=BCPC=∴△BPQ不是等腰三角形.④错误;当14≤t≤20时,点P由D向C运动,Q在C点,△BPQ的面积为则⑤正确故选:B.1.(2018·浙江临安·3分)P(3,﹣4)到x轴的距离是 4 .【考点】点的坐标的几何意义【分析】根据点在坐标系中坐标的几何意义即可解答.【解答】解:根据点在坐标系中坐标的几何意义可知,P(3,﹣4)到x轴的距离是|﹣4|=4.故答案为:4.【点评】本题考查的是点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.1.(2018四川省绵阳市)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为________。
2018年七年级数学下册平面直角坐标系知识清单+经典例题+专题复习试卷一、有序数对:有顺序的两个数a与b组成的数对。
1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。
二、平面直角坐标系1、构成坐标系的各种名称;2、各象限的点的横纵坐标的符号;3、各种特殊位置点的坐标特点:原点、坐标轴上的点、角平分线上的点;4、点A(x,y)到两坐标轴的距离;5、同一坐标轴上两点间的距离;6、根据已知条件求某一点的坐标。
三坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。
二、各象限内点的坐标特点:第一象限:P(x,y)x>0 y>0;第二象限:P(x,y)x<0 y>0第三象限:P(x,y)x<0 y<0 第四象限:P(x,y)x>0 y<0三、原点及坐标轴上点的坐标特点:原点:P(0,0);X轴上的点:P(x,0);Y轴上的点:P(0,y)四、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。
五、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。
六、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数七、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;•在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
【经典例题1】1、若点P(a,4﹣a)是第二象限的点,则a必须满足( )A.a<4B.a>4C.a<0D.0<a<42、平面直角坐标系中有一点P,点P到y轴的距离为2,点P的纵坐标为﹣3,则点P的坐标是( )A.(﹣3,﹣2)B.(﹣2,﹣3)C.(2,﹣3)D.(2,﹣3)或(﹣2,﹣3)3、在平面直角坐标系中,点(﹣1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限【经典例题2】4、在平面直角坐标系中,点A的坐标为(3,4),则A关于x轴对称的点的坐标是( )A.(-3,4)B.(3,-4)C.(-3,-4)D.(4,3)5、在平面直角坐标系中,点P(2,-1)关于y轴对称的点Q的坐标为A.(-2,-1)B.(-2,1)C.(2,1)D.(1,-2)6、点P(-2,-3)向左平移m个单位长度,再向上平移n个单位长度所得对应点Q(-3,0),则m+n 的值为( )A.3B.4C.5D.6【经典例题3】7、已知点A(m+2,3m﹣6)在第一象限角平分线上,则m的值为( )A.2B.﹣1C.4D.﹣28、若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(2,﹣3))=( )A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)9、如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2014次碰到矩形的边时,点P的坐标为( )A.(1,4)B.(5,0)C.(6,4)D.(8,3)【经典例题4】10、已知点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,那么点P的坐标是.11、在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是.12、在平面直角坐标系中,点C(3,5),先向右平移了5个单位,再向下平移了3个单位到达D点,则D点的坐标是 .【经典例题5】13、已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.14、如图,在平面直角坐标系中,A(-1,5)、B(-1,0)、C(-4,3)(1) 先把△ABC向左平移一个单位得到△A′B′C′,作出△A′B′C′关于y轴对称的△DEF(其中D、E、F分别是A′、B′、C′的对应点,不写画法)(2) 直接写出D、E、F三点的坐标(3) 在y轴的正半轴上存在一点P,使△PEF的面积等于△DEF的面积,则P的坐标为_________参考答案1、C.2、D3、B4、B5、A6、B7、C8、B9、B10、答案为:(﹣3,2).11、答案为:﹣4或6.12、答案为:(8,2).13、解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).14、解:(2) D(-2,-5)、E(-2,0)、F(-5,-3); (3) (7,0)2018年七年级数学下册平面直角坐标系期末复习试卷一、选择题:1、在直角坐标系中,点(2,1)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2、P(m,n)是第二象限内一点,则P′(m﹣2,n+1)位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、在平面直角坐标系中,若点P(x﹣3,x)在第二象限,则x的取值范围是()A.x>0 B.x<3 C.0<x<3 D.x>34、如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2) B.(2,0) C.(4,0) D.(0,﹣4)5、已知点P(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是( )A、 B、 C、 D、6、若点P(m,1﹣2m)的横坐标与纵坐标互为相反数,则点P一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7、在平面直角坐标系xOy中,已知点P在x轴下方,在y轴右侧,且点P到x轴的距离为3,到y轴的距离为4,则点P的坐标为()A.(﹣3,4) B.(﹣4,3) C.(3,﹣4) D.(4,﹣3)8、对任意实数x,点P(x,x2-2x)一定不在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限9、如图,已知点A,B的坐标分别为(4,0)、(0,3),将线段AB平移到CD,若点C的坐标为(6,3),则点D的坐标为()A.(2,6) B.(2,5) C.(6,2) D.(3,6)10、在平面直角坐标系中,若点P(3,a)和点Q(b,-4)关于x轴对称,则a+b的值为( )A.-7 B.7 C.1 D.-111、下列语句,其中正确的有()①点(3,2)与(2,3)是同一个点;②点(0,-2)在x轴上;③点(0,0)是坐标原点;④点(-2,-6)在第三象限内A、0个目B、1个C、2个D、3个12、如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1) B.(﹣1,1) C.(﹣1,﹣2) D.(1,﹣2)二、填空题:13、点M(-6,5)到x轴的距离是_____,到y轴的距离是______.14、在直角坐标系中,已知A(2,-1),B(1,3)将线段AB平移后得线段CD,若C的坐标是(-1,1),则D的坐标为;15、在平面直角坐标系中,点P(a,5)关于y轴对称点为Q(3,b),则a+b=__________.16、坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A 点在第二象限,则A点坐标是___________.17、如图,已知∠AOC=30°,∠BOC=150°,OD为∠BOA的平分线,则∠DOC=90°.若A点可表示为(2,30°),B点可表示为(4,150°),则D点可表示为________.18、在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,-n),如f(2,1)=(2,-1).(2)g(m,n)=(-m,-n),如g(2,1)=(-2,-1).按照以上变换有:f[g(3,4)]=f(-3,-4)=(-3,4),那么g[f(-3,2)]=________.三、解答题:19、已知△ABC中,点A(-1,2),B(-3,-2),C(3,-3)①在直角坐标系中,画出△ABC②求△ABC的面积20、如图,已知在平面直角坐标系中,三角形ABC的位置如图所示.(1)请写出A、B、C三点的坐标;(2)你能想办法求出三角形ABC的面积吗?(3)将三角形ABC向右平移6个单位,再向上平移2个单位,请在图中作出平移后的三角形,并写出三角形各点的坐标.21、已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.22、如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.23、在平面直角坐标中表示下面各点A(0,3),B(1,﹣3),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,7)(1)A点到原点O的距离是.(2)将点C向x轴的负方向平移6个单位它与点重合.(3)连接CE,则直线CE与y轴位置关系是.(4)点F分别到x、y轴的距离分别是.24、如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→D(,),C→B(,),B →(+3,-2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+1,+2),(+4,-1),(-2,+3),(-1,-1),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B →C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3-a,b-4),M→N(5-a,b-2),则N→A应记为什么?参考答案1、A2、B3、C4、B5、D6、D7、D8、C9、A10、B.11、C12、B13、5,614、(-2,5)或(0,-3)15、216、(-9,3);17、(5,90°)18、(3,2)19、解:(1)△ABC如图所示;(2)△ABC的面积=6×5﹣×2×4﹣×1×6﹣×5×4=30﹣4﹣3﹣10=30﹣17=13.20、⑴A(0,4);B(-2,2);C(-1,1)⑵2.21、△ABO的面积为4.22、解:(1);(2)由平移的性质可知,四边形AA′B′B是平行四边形,面积32.5;23、解:(1)A点到原点O的距离是3﹣0=3.(2)将点C向x轴的负方向平移6个单位它与点D重合.(3)连接CE,则直线CE与y轴位置关系是平行.(4)点F分别到x、y轴的距离分别是7,5.故答案为:3;D;平行;7,5.24、。
函数——平面直角坐标系2
一.选择题(共8小题)
1.若a是2的相反数,|b|=3,在直角坐标系中,点M(a,b)的坐标为()
A.(2,3)或(﹣2,3)B.(2,3)或(﹣2,﹣3)
C.(﹣2,3)或(﹣2,﹣3)D.(﹣2,3),(﹣2,﹣3),(2,3)或(2,﹣3)
2.平面直角坐标系中点P(a,b)到x轴的距离是2,到y轴的距离是3,则这样的点P共有()A.1个B.2个C.3个D.4个
3.已知点A(a+2,a﹣1)在平面直角坐标系的第四象限内,则a的取值范围为()
A.﹣2<a<1 B.﹣2≤a≤1C.﹣1<a<2 D.﹣1≤a≤2
4.某数用科学记数法表示为a×10n,若点(a,n)在第三象限,则这个数可能是下列的()A.3200000 B.﹣3200000 C.0.0000032 D.﹣0.0000032
5.在第一象限的点是()
A.(2,﹣1)B.(2,1)C.(﹣2,1)D.(﹣2,﹣1)
6.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2013次相遇地点的坐标是()
A.(2,0)B.(﹣1,1)C.(﹣ 2,1)D.(﹣1,﹣1)
7.如图,在一单位为1的方格纸上,△AA1A2,△A2A3A4,△A4A5A6,△A6A7A8,…,都是一边在x轴上、边长分别为1,2,3,4,…的等边三角形.若△AA1A2的顶点坐标分别为A(0,0),A1(),A2(1,0),则依如图所示规律,A2013的坐标为()
A.(504,0)B.()C.()D.(0,﹣504)
8.若点M的坐标是(a,b)在第二象限,则点N(b,a)在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二.填空题(共7小题)
9.如图,在平面直角坐标系中,已知点A(﹣4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1)、(2)、(3)、(4)…,那么第(7)个三角形的直角顶点的坐标是_________ ,第(2014)个三角形的直角顶点的坐标是_________ .
10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2015次运动后,动点P 的坐标是_________ .
11.点 P(a,a﹣3)在第四象限,则a的取值范围是_________ .
12.在平面直角坐标系中,点(2,﹣4)在第_________ 象限.
13.在平面直角坐标系中,点(1,2)位于第_________ 象限.
14.已知点M(m﹣1,m)在第二象限,则m的取值范围是_________ .
15.若0<a<1,则点M(a﹣1,a)在第_________ 象限.
三.解答题(共7小题)
16.在直角坐标系xOy中,已知(﹣5,2+b)在x轴上,N(3﹣a,7+a)在y轴上,求b和ON的值.
17.已知点P(1﹣x,5﹣x)到x轴的距离为2个单位长度,求该点P的坐标.
18.当m为何值时,点A(m+1,3m﹣5)到x轴的距离是到y轴距离的两倍?
19.在平面直角坐标系中,已知点B(a,b),线段BA⊥x轴于A点,线段BC⊥y轴于C点,且(a﹣b+2)2+|2a ﹣b﹣2|=0.
(1)求A,B,C三点的坐标;
(2)若点D是AB的中点,点E是OD的中点,求△AEC的面积;
(3)在(2)的条件下,若已知点P(2,a),且S△AEP=S△AEC,求a的值.
20.已知点M(2a﹣5,a﹣1),分别根据下列条件求出点M的坐标.
(1)点N的坐标是(1,6),并且直线MN∥y轴;
(2)点M在第二象限,横坐标和纵坐标互为相反数.
21.如图所示,长方形ABCD各边均与坐标轴平行或垂直,已知A、C两点的坐标为A(,﹣1)、C(﹣,1).
(1)求B、D两点的坐标;
(2)求长方形ABCD的面积;
(3)将长方形ABCD先向左平移个单位,再向下平移一个单位,所得四边形的四个顶点的坐标分别是多少?
22.如图:在直角坐标系中,第一次将△AOB变换成△OA1B1,第二次将三角形变换成△OA2B2,第三次将△OA2B2,变换成△OA3B3,已知A(1,3),A1(3,3),A2(5,3),A3(7,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).
(1)观察每次变换前后的三角形有何变化,找出规律,按此变化规律再将△OA3B3变换成△OA4B4,则A4的坐标是_________ ,B4的坐标是_________ .
(2)若按(1)找到的规律将△OAB进行了n次变换,得到△OA n B n,比较每次变换中三角形顶点有何变化,找出规律,推测A n的坐标是_________ ,B n的坐标是_________ .。