2014年广东中考数学【机密试题】20140501
- 格式:doc
- 大小:177.50 KB
- 文档页数:7
2014 年广东省中考数学试卷一、选择题(本大题 10 小题,每小题 3 分,共 30 分)1.(3 分)在 1,0,2,﹣3 这四个数中,最大的数是( ) A .1 B .0 C .2 D .﹣32.(3 分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()3.(3 分)计算 3a ﹣2a 的结果正确的是( ) A .1 B .a C .﹣a D .﹣5a4.(3 分)把 x ﹣9x 分解因式,结果正确的是( )A .x (x ﹣9)B .x (x ﹣3)C .x (x +3)D .x (x +3)(x ﹣3) 5.(3 分)一个多边形的内角和是 900°,这个多边形的边数是( ) A .10 B .9 C .8 D .76.(3 分)一个不透明的布袋里装有 7 个只有颜色不同的球,其中 3 个红球,4 个白球,从 布袋中随机摸出一个球,摸出的球是红球的概率是( )A .B .C .D .7.(3 分)如图, ABCD 中,下列说法一定正确的是()A .AC=BDB .AC ⊥BD C .AB=CD D .AB=BC8.(3 分)关于 x 的一元二次方程 x ﹣3x +m=0 有两个不相等的实数根,则实数 m 的取值范 围为( )A .B .C .D .9.(3 分)一个等腰三角形的两边长分别是 3 和 7,则它的周长为( ) A .17 B .15 C .13 D .13 或 1710.(3 分)二次函数 y=ax +bx +c (a ≠0)的大致图象如图,关于该二次函数,下列说法错 误的是( )32 2 22 2A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0二、填空题(本大题6小题,每小题4分,共24分)11.(4分)计算:2x÷x=.12.(4分)据报道,截止2013年12月我国网民规模达618000000人.将618000000用科学记数法表示为.13.(4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE= .14.(4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.15.(4分)不等式组的解集是.16.(4分)如图△,ABC绕点A顺时针旋转45°得到△AB△′C′,若∠BAC=90°,AB=AC= 则图中阴影部分的面积等于.,3三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)17.(6 分)计算: +|﹣4|+(﹣1) ﹣( ) .18.(6 分)先化简,再求值:(+ )•(x ﹣1),其中 x=.19.(6 分)如图,点 D 在△ABC 的 AB 边上,且∠ACD=∠A .(1)作∠BDC 的平分线 DE ,交 BC 于点 E (用尺规作图法,保留作图痕迹,不要求写作 法);(2)在(1)的条件下,判断直线 DE 与直线 AC 的位置关系(不要求证明).四、解答题(二)(本大题 3 小题,每小题 7 分,共 21 分)20.(7 分)如图,某数学兴趣小组想测量一棵树 CD 的高度,他们先在点 A 处测得树顶 C 的仰角为 30°,然后沿 AD 方向前行 10m ,到达 B 点,在 B 处测得树顶 C 的仰角高度为 60° (A 、B 、D 三点在同一直线上).请你根据他们测量数据计算这棵树 CD 的高度(结果精确 到 0.1m ).(参考数据: ≈1.414, ≈1.732)21.(7 分)某商场销售的一款空调机每台的标价是 1635 元,在一次促销活动中,按标价的 八折销售,仍可盈利 9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机 100 台,问盈利多少元?22.(7 分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡 导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天 午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不 完整的统计图.0 ﹣1 2(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.24.(9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.25.(9分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.2014 年广东省中考数学试卷参考答案与试题解析一、选择题(本大题 10 小题,每小题 3 分,共 30 分)1.(3 分)(2014•汕头)在 1,0,2,﹣3 这四个数中,最大的数是( )A .1B .0C .2D .﹣3 【考点】有理数大小比较.【分析】根据正数大于 0,0 大于负数,可得答案. 【解答】解:﹣3<0<1<2, 故选:C .【点评】本题考查了有理数比较大小,正数大于 0,0 大于负数是解题关键.2.(3 分)(2014•汕头)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、是轴对称图形,不是中心对称图形.故错误; B 、不是轴对称图形,也不是中心对称图形.故错误; C 、是轴对称图形,也是中心对称图形.故正确;D 、不是轴对称图形,也不是中心对称图形.故错误. 故选 C .【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴, 图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转 180 度后与原图 重合.3.(3 分)(2014•汕头)计算 3a ﹣2a 的结果正确的是( )A .1B .aC .﹣aD .﹣5a 【考点】合并同类项.【分析】根据合并同类项的法则,可得答案.【解答】解:原式=(3﹣2)a=a , 故选:B .【点评】本题考查了合并同类项,系数相加字母部分不变是解题关键.4.(3 分)(2014•汕头)把 x ﹣9x 分解因式,结果正确的是( )A .x (x ﹣9)B .x (x ﹣3)C .x (x +3)D .x (x +3)(x ﹣3) 【考点】提公因式法与公式法的综合运用.32 2 2【专题】因式分解.【分析】先提取公因式 x ,再对余下的多项式利用平方差公式继续分解.【解答】解:x ﹣9x ,=x (x ﹣9),=x (x +3)(x ﹣3). 故选:D .【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公 因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5.(3 分)(2014•汕头)一个多边形的内角和是 900°,这个多边形的边数是( )A .10B .9C .8D .7 【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n ﹣2)•180°,列式求解即可. 【解答】解:设这个多边形是 n 边形,根据题意得,(n ﹣2)•180°=900°, 解得 n=7. 故选:D .【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.6.(3 分)(2014•汕头)一个不透明的布袋里装有 7 个只有颜色不同的球,其中 3 个红球, 4 个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .B .C .D .【考点】概率公式.【分析】直接根据概率公式求解即可.【解答】解:∵装有 7 个只有颜色不同的球,其中 3 个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率= .故选:B .【点评】本题考查的是概率公式,熟知随机事件 A 的概率 P (A )=事件 A 可能出现的结果 数与所有可能出现的结果数的商是解答此题的关键.7.(3 分)(2014•汕头)如图, ABCD 中,下列说法一定正确的是( )A .AC=BDB .AC ⊥BD C .AB=CD D .AB=BC 【考点】平行四边形的性质.【分析】根据平行四边形的性质分别判断各选项即可. 【解答】解:A 、AC ≠BD ,故 A 选项错误;B 、AC 不垂直于 BD ,故 B 选项错误;C 、AB=CD ,利用平行四边形的对边相等,故 C 选项正确;32D 、AB ≠BC ,故 D 选项错误; 故选:C .【点评】此题主要考查了平行四边形的性质,正确把握其性质是解题关键.8.(3 分)(2014•汕头)关于 x 的一元二次方程 x ﹣3x +m=0 有两个不相等的实数根,则实 数 m 的取值范围为( )A .B .C .D .【考点】根的判别式. 【专题】判别式法.【分析】先根据判别式的意义得 △到=(﹣3) ﹣4m >0,然后解不等式即可.【解答】解:根据题意 △得=(﹣3) ﹣4m >0,解得 m < .故选:B .【点评】本题考查了一元二次方程 ax +bx +c=0(a ≠0)的根的判别 △式=b ﹣4ac : △当>0,方程有两个不相等的实数根;当△=0△ ,方程有两个相等的实数根;当△<△ 0,方程没有实数 根.9.(3 分)(2014•汕头)一个等腰三角形的两边长分别是 3 和 7,则它的周长为( ) A .17 B .15 C .13 D .13 或 17【考点】等腰三角形的性质;三角形三边关系. 【专题】分类讨论.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为 3;(2)当 等腰三角形的腰为 7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为 3,底为 7 时,3+3<7 不能构成三角形; ②当等腰三角形的腰为 7,底为 3 时,周长为 3+7+7=17. 故这个等腰三角形的周长是 17. 故选:A .【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.(3 分)(2014•汕头)二次函数 y=ax +bx +c (a ≠0)的大致图象如图,关于该二次函数, 下列说法错误的是( )A .函数有最小值B .对称轴是直线 x=2222 2 2C .当 x < ,y 随 x 的增大而减小D .当﹣1<x <2 时,y >0【考点】二次函数的性质. 【专题】压轴题;数形结合.【分析】根据抛物线的开口方向,利用二次函数的性质判断 A ; 根据图形直接判断 B ;根据对称轴结合开口方向得出函数的增减性,进而判断 C ;根据图象,当﹣1<x <2 时,抛物线落在 x 轴的下方,则 y <0,从而判断 D .【解答】解:A 、由抛物线的开口向上,可知 a >0,函数有最小值,正确,故 A 选项不符 合题意;B 、由图象可知,对称轴为 x= ,正确,故 B 选项不符合题意;C 、因为 a >0,所以,当 x < 时,y 随 x 的增大而减小,正确,故 C 选项不符合题意;D 、由图象可知,当﹣1<x <2 时,y <0,错误,故 D 选项符合题意. 故选:D .【点评】本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题. 二、填空题(本大题 6 小题,每小题 4 分,共 24 分)11.(4 分)(2014•汕头)计算:2x ÷x= 2x . 【考点】整式的除法. 【专题】计算题.【分析】直接利用整式的除法运算法则求出即可.【解答】解:2x ÷x=2x .故答案为:2x .【点评】此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.(4 分)(2014•汕头)据报道,截止 2013 年 12 月我国网民规模达 618 000 000 人.将 618 000 000 用科学记数法表示为 6.18×10 .【考点】科学记数法—表示较大的数. 【专题】常规题型.【分析】科学记数法的表示形式为 a ×10 的形式,其中 1≤|a |<10,n 为整数.确定 n 的 值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当 原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:将 618 000 000 用科学记数法表示为:6.18×10 .故答案为:6.18×10 .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 a ×10 的形式,其中 1 ≤|a |<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.13.(4 分)(2014•汕头)如图,在△ABC 中,D ,E 分别是边 AB ,AC 的中点,若 BC=6, 则 DE= 3 .32 3 228 n 8 8n【考点】三角形中位线定理.【分析】由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.【解答】解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为:3.【点评】本题用到的知识点为:三角形的中位线等于三角形第三边的一半.14.(4分)(2014汕头)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.【考点】垂径定理;勾股定理.【分析】作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=4,然后在△R t AOC中利用勾股定理计算OC即可.【解答】解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在△R t AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(4分)(2014•汕头)不等式组的解集是1<x<4.【考点】解一元一次不等式组.【专题】计算题.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.(4分)(2014•汕头)如图△,ABC绕点A顺时针旋转45°得△到AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.【考点】旋转的性质;等腰直角三角形.【专题】压轴题.【分析】根据题意结合旋转的性质以及等腰直角三角形的性质得出A D= BC=1,AF=FC′=sin45°AC′=AC′=1,进而求出阴影部分的面积.【解答】解:∵△ABC绕点A顺时针旋转45°得到△AB△′C′,∠BAC=90°,AB=AC=∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=sin45°AC′=AC′=1,,∴图中阴影部分的面积等于:S﹣S=×1×1﹣×(△△故答案为:﹣1.﹣1)=﹣1.AFC′DEC′2【点评】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出 A D ,AF , DC ′的长是解题关键.三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)17.(6 分)(2014•汕头)计算: +|﹣4|+(﹣1) ﹣( ) .【考点】实数的运算;零指数幂;负整数指数幂. 【专题】计算题.【分析】本题涉及零指数幂、负指数幂、二次根式化简3 个考点.在计算时,需要针对每个 考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+4+1﹣2 =6.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类 题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6 分)(2014•汕头)先化简,再求值:(+)•(x ﹣1),其中 x=【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把 x 的值代入进行计算即可..【解答】解:原式= =2x +2+x ﹣1 =3x +1,当 x=时,原式=.•(x ﹣1)【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 19.(6 分)(2014•汕头)如图,点 D 在△ABC 的 AB 边上,且∠ACD=∠A .(1)作∠BDC 的平分线 DE ,交 BC 于点 E (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线 DE 与直线 AC 的位置关系(不要求证明).0 ﹣1 22【考点】作图—基本作图;平行线的判定.【专题】作图题.【分析】(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDC,再根据同位角相等两直线平行可得结论.【解答】解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A= ∠BDC,∴∠A=∠BDE,∴DE∥AC.【点评】此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2014•汕头)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【专题】几何图形问题.【分析】首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.【解答】解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.(7分)(2014•汕头)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【考点】分式方程的应用.【专题】销售问题.【分析】(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.【点评】本题考查了分式方程的应用,解题的关键是了解利润率的求法.22.(7分)(2014•汕头)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.【解答】解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【考点】反比例函数与一次函数的交点问题.【专题】代数几何综合题.【分析】(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.【解答】解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y= 图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得××(x+4)=×|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).【点评】本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.24.(9分)(2014•汕头)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.【考点】切线的判定;弧长的计算.【专题】几何综合题;压轴题.【分析】(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)连接AP,PC,证出PC为EF的中垂线,再利△用CEP∽△CAP找出角的关系求解.【解答】(1)解:∵AC=12,∴CO=6,∴==2π;答:劣弧PC的长为:2π.(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:法一:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OPA,由(2)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OPA=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OPA,∵∠OPA+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.法二:设⊙O的半径为r.∵OD⊥AB,∠ABC=90°,∴OD∥BF,∴△ODE≌△CFC又∵OD=OE,∴FC=EC=r﹣OE=r﹣OD=r﹣BC∴BF=BC+FC=r+BC∵PD=r+OD=r+BC∴PD=BF又∵PD∥BF,且∠DBF=90°,∴四边形DBFP是矩形∴∠OPF=90°OP⊥PF,∴PF是⊙O的切线.【点评】本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.25.(9分)(2014汕头)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD 的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P 到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.【考点】相似形综合题. 涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第 (2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾 股定理、解一元二次方程等知识点,重点考查了分类讨论的数学思想. 【专题】几何综合题;压轴题;动点型.【分析】(1)如答图 1 所示,利用菱形的定义证明;(2)如答图 2 所示,首先求出△PEF 的面积的表达式,然后利用二次函数的性质求解; (3)如答图 3 所示,分三种情形,需要分类讨论,分别求解.【解答】(1)证明:当 t=2 时,DH=AH=4,则 H 为 AD 的中点,如答图 1 所示. 又∵EF ⊥AD ,∴EF 为 AD 的垂直平分线, ∴AE=DE ,AF=DF .∵AB=AC ,AD ⊥BC 于点 D , ∴AD ⊥BC ,∠B=∠C . ∴EF ∥BC ,∴∠AEF=∠B ,∠AFE=∠C , ∴∠AEF=∠AFE , ∴AE=AF ,∴AE=AF=DE=DF ,即四边形 AEDF 为菱形.(2)解:如答图 2 所示,由(1)知 EF ∥BC , ∴△AEF ∽△ABC ,∴,即 ,解得:EF=10﹣ t .S= EF •DH= (10﹣ t )•2t=﹣ t +10t=﹣ (t ﹣2) +10(0<t < △∴当 t=2 秒时,S 存在最大值,最大值为 10cm ,此时 BP=3t=6cm . △(3)解:存在.理由如下:①若点 E 为直角顶点,如答图 3①所示, 此时 PE ∥AD ,PE=DH=2t ,BP=3t .),∵PE ∥AD ,∴,即,此比例式不成立,故此种情形不存在;②若点 F 为直角顶点,如答图 3②所示, 此时 PF ∥AD ,PF=DH=2t ,BP=3t ,CP=10﹣3t .∵PF ∥AD ,∴,即 ,解得 t=;2 2 PEF 2PEF③若点 P 为直角顶点,如答图 3③所示.过点 E 作 EM ⊥BC 于点 M ,过点 F 作 FN ⊥BC 于点 N ,则 EM=FN=DH=2t ,EM ∥FN ∥AD . ∵EM ∥AD ,∴,即 ,解得 BM= t ,∴PM=BP ﹣BM=3t ﹣ t= t .在 △R t EMP 中,由勾股定理得:PE =EM +PM =(2t ) +( t ) = ∵FN ∥AD ,∴,即 ,解得 CN= t ,∴PN=BC ﹣BP ﹣CN=10﹣3t ﹣ t=10﹣t .在 △R t FNP 中,由勾股定理得:PF =FN +PN =(2t ) +(10﹣ t ) =在 △R t PEF 中,由勾股定理得:EF =PE +PF ,t .t ﹣85t +100.即:(10﹣ t ) =(t )+(t ﹣85t +100)化简得:解得:t=t ﹣35t=0,或 t=0(舍去).∴t=综上所述,当 t=秒或 t=秒时,△PEF 为直角三角形.【点评】本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角 形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.2 2 2 2 222 2 22 222 2 2 2 222参与本试卷答题和审题的老师有:2300680618;caicl;星期八;sjzx;CJX;gbl210;gsls;HJJ;王岑;lanchong;nhx600;sks;ZJX;sd2011;zhjh;lantin;wkd;未来(排名不分先后)菁优网2016年12月20日考点卡片1.有理数大小比较(1)有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示 的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及 0 的大小, 利用绝对值比较两个负数的大小. (2)有理数大小比较的法则:①正数都大于 0; ②负数都小于 0;③正数大于一切负数;④两个负数,绝对值大的其值反而小. 【规律方法】有理数大小比较的三种方法1.法则比较:正数都大于0,负数都小于 0,正数大于一切负数.两个负数比较大小,绝对 值大的反而小.2.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数. 3.作差比较:若 a ﹣b >0,则 a >b ; 若 a ﹣b <0,则 a <b ; 若 a ﹣b=0,则 a=b .2.科学记数法—表示较大的数(1)科学记数法:把一个大于 10 的数记成 a ×10 的形式,其中 a 是整数数位只有一位的 数,n 是正整数,这种记数法叫做科学记数法.【科学记数法形式:a ×10 ,其中1≤a <10, n 为正整数.】(2)规律方法总结:①科学记数法中 a 的要求和 10 的指数 n 的表示规律为关键,由于 10 的指数比原来的整数 位数少 1;按此规律,先数一下原数的整数位数,即可求出 10 的指数 n .②记数法要求是大于 10 的数可用科学记数法表示,实质上绝对值大于 10 的负数同样可用 此法表示,只是前面多一个负号.3.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、 乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算 乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行. 另外,有理数的运算律在实数范围内仍然适用.【规律方法】实数运算的“三个关键”1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0 指数)运算、根 式运算、特殊三角函数值的计算以及绝对值的化简等.n n2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从 左到右依次运算,无论何种运算,都要注意先定符号后运算.3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.4.合并同类项(1)定义:把多项式中同类项合成一项,叫做合并同类项.(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不 变. (3)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同 系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数 会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母 和字母的指数不变.5.整式的除法 整式的除法:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式 里含有的字母,则连同他的指数一起作为商的一个因式.关注:从法则可以看出,单项式除以单项式分为三个步骤:①系数相除;②同底数幂相除; ③对被除式里含有的字母直接作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加. 说明:多项式除以单项式实质就是转化为单项式除以单项式.多项式除以单项式的结果仍是 一个多项式.6.提公因式法与公式法的综合运用 提公因式法与公式法的综合运用.7.分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注 意运算的结果要化成最简分式或整式.【规律方法】分式化简求值时需注意的问题1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺 少必要的步骤,代入求值的模式一般为“当…时,原式=…”.2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选 择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式 都有意义,且除数不能为 0.8.零指数幂零指数幂:a =1(a ≠0)由 a ÷a =1,a ÷a =a =a 可推出 a =1(a ≠0)注意:0 ≠1.第 24 页(共 31 页)m m m m m ﹣m 0 0 0。
2014年广东数学中考试卷一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是( )A 、1B 、0C 、2D 、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A 、B 、C 、D 、 3、计算3a -2a 的结果正确的是( )A 、1B 、aC 、-aD 、-5a 4、把39x x -分解因式,结果正确的是( )A 、()29x x -B 、()23x x - C 、()23x x + D 、()()33x x x +-5、一个多边形的内角和是900°,这个多边形的边数是( ) A 、10 B 、9 C 、8 D 、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A 、47 B 、37 C 、34 D 、137、如图7图,□ABCD 中,下列说法一定正确的是(A 、AC=BDB 、AC ⊥BDC 、AB=CD D 、AB=BC题7图 8、关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A 、94m >B 、94m <C 、94m =D 、9-4m <9、一个等腰三角形的两边长分别是3和7,则它的周长为( ) A 、17 B 、15 C 、13 D 、13或17 10、二次函数()20y ax bx c a =++≠的大致图象如题10图所示, 关于该二次函数,下列说法错误的是( )A 、函数有最小值B 、对称轴是直线x =21DC 、当x <21,y 随x 的增大而减小 D 、当 -1 < x < 2时,y >0 二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ; 13、如题13图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC=6,则DE= ;14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O到AB 的距离为 ;15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ;16、如题16图,△ABC 绕点A 顺时针旋转45°得到△'''A B C ,若∠BAC=90°,AB=AC=2, 题16图 则图中阴影部分的面积等于 。
2014年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔走宝自已的考生号、姓名;走宝考场室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. (0)a a ≠的相反数是 ( )A .a -B .2aC .||aD .1a2.下列图形中,是中心对称图形的是 ( ) A . B . C . D .3.如图1,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点均在格点上,则tan A =( )A .35 B .45 C .34 D .434.下列运算正确的是( )A .54ab ab -=B .112a b a b +=+C .624a a a ÷=D .2353()a b a b =5.已知1O 和2O 的半径分别为2cm 和3cm ,若127cm O O =,则1O 和2O 的位置关系是( )A . 外离B .外切C .内切D .相交6.计算242x x --,结果是 ( ) A .2x - B .2x + C .42x - D .2x x+7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是 ( )A . 中位数是8B . 众数是9C . 平均数是8D . 极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当90B ∠=︒时,如图2-①,测得2AC =.当60B ∠=︒时,如图2-②,AC =( )图2-① 图2-②A B .2 C D .9.已知正比例函数(0)y kx k =<的图象上两点11(,)A x y 、22(,)B x y ,且12x x <,则下列不等式中恒成立的是( )A .120y y +>B .120y y +<C .120y y ->D .120y y -<10.如图3,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O .设AB a =,()CG b a b =>.下列结论:①BCG DCE ∆≅∆;②BG DE ⊥;③DG GO GC CE =;④22()EFO DGO a b S b S ∆∆-⋅=⋅.其中结论正确的个数是 ( )A .4个B .3 个C .2个D .1个第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11. ABC ∆中,已知60A ∠=︒,80B ∠=︒,则C ∠的外角..的度数是______︒. 12. 已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为点D 、E ,10PD =,则PE 的长度为______.13. 代数式11x -有意义时,x 应满足的条件为______. 14. 一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积...为______.(结果保留π)15. 已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是 命题(填“真”或“假”).16. 若关于x 的方程222320x mx m m +++-=有两个实数根1x 、2x ,则21212()x x x x ++的最小值为______.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解不等式:523x x -≤,并在数轴上表示解集.18.(本小题满分9分)如图5,ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F ,求证:AOE COF ∆≅∆.19.(本小题满分10分)已知多项式2(2)(1)(2)3A x x x =++-+-(1)化简多项式A ;(2)若2(1)6x +=,求A 的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a b ,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5 名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分)已知一次函数6y kx =-的图象与反比例函数2k y x =-的图象交于A B 、两点,点A 的横坐标为2.(1)求k 的值和点A 的坐标;(2)判断点B 所在的象限,并说明理由.22.(本小题满分12分) 从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图6,ABC ∆中,AB AC ==cos C =. (1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:DE CE =;②求点D 到BC 的距离。
2014年广东数学中考试卷年级姓名一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是()A、1B、0C、2D、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A、B、C、D、3、计算3a-2a的结果正确的是()A、1B、aC、-a D、-5a4、把39x x-分解因式,结果正确的是()A、()29x x-B、()23x x-C、()23x x+D、()()33x x x+-5、一个多边形的内角和是900°,这个多边形的边数是()A、10B、9C、8D、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A、47B、37C、34D、137、如图7图,□ABCD中,下列说法一定正确的是()A、AC=BD B、AC⊥BDC、AB=CDD、AB=BC题7图8、关于x的一元二次方程230x x m-+=有两个不相等的实数根,则实数m的取值范围为()A、94m>B、94m<C、94m=D、9-4m<9、一个等腰三角形的两边长分别是3和7,则它的周长为( )A、17 B、15 C、13D、13或1710、二次函数()20y ax bx c a=++≠的大致图象如题10图所示,关于该二次函数,下列说法错误的是()ABD题10图A 、函数有最小值 B、对称轴是直线x =21 C 、当x <21,y 随x 的增大而减小 D、当 -1 < x < 2时,y>0 二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ;13、如题13图,在△ABC 中,点D ,E 分别是AB,AC 的中点,若BC=6,则DE= ;题13图 题14图 14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 ;15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ; 16、如题16图,△AB C绕点A 顺时针旋转45° 得到△'''A B C ,若∠BAC=90°,AB=AC=2, 题16图则图中阴影部分的面积等于 。
广东省2014年中考数学试卷及答案解析(精品真题) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2014年)在1,0,2,-3这四个数中,最大的数是( )A .1B .0C .2D .-32.(2014年)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3.(2014年)计算3a -2a 的结果正确的是( )A .1B .AC .-aD .-5a4.(2014年)把分解因式,结果正确的是( ) A .B .C .D .5.(2014年)一个多边形的内角和是900°,这个多边形的边数是( )A .10B .9C .8D .76.(2014年)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .47B .37C .34D .137.(2014年)如图,在▱ABCD 中,下列说法一定正确的是( )A .AC =BDB .AC ⊥BD C .AB =CD D .AB =BC8.(2014年)关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A .94m >B .94m <C .94m =D .9-4m < 9.(2014年)一个等腰三角形的两边长分别是3和7,则它的周长为( )A .17B .15C .13D .13或17 10.(2014年)二次函数()20y ax bx c a =++≠的大致图象如图所示,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线x=C .当x<,y 随x 的增大而减小 D .当 -1 < x < 2时,y>0二、填空题11.(2014年)计算32x x ÷=_______;12.(2014年)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为______;13.(2014年)如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,若BC=6,则DE=_______.14.(2014年)如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为_______;15.(2014年)不等式组2841+2x x x ⎧⎨-⎩<>的解集是________. 16.(2014年)如图,△ABC 绕点A 顺时针旋转45°得到△'''A B C ,若∠BAC=90°,AB=AC=________.17.(20140114(1)()2=_____.三、解答题18.(2014年)先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x = 19.(2014年)如图,点D 在△ABC 的AB 边上,且∠ACD=∠A(1)作△BDC 的平分线DE ,交BC 于点E (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE 与直线AC 的位置关系(不要求证明)20.(2014年)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60°(A 、B 、D 三点在同一直线上).请你根据他们测量数据计算这棵树CD 的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)21.(2014年)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价:(利润率=利润∶进价=(售价-进价):进价)(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?22.(2014年)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?23.(2014年)如图,已知A14,2⎛⎫-⎪⎝⎭,B(-1,2)是一次函数y kx b=+与反比例函数myx=(0,0m m <)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 坐标.24.(2014年)如图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作OD ⊥AB 于点D ,延长DO 交⊙O 于点P ,过点P 作PE ⊥AC 于点E ,作射线DE 交BC 的延长线于F 点,连接PF .(1)若∠POC=60°,AC=12,求劣弧PC 的长;(结果保留π)(2)求证:OD=OE ;(3)求证:PF 是⊙O 的切线.25.(2014年)如图,在△ABC 中,AB=AC ,AD ⊥BC 点D ,BC=10cm ,AD=8cm ,点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2cm 的速度沿DA 方向匀速平移,分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时,点P 与直线m 同时停止运动,设运动时间为t 秒(t >0).(1)当t=2时,连接DE 、DF ,求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的△PEF 的面积存在最大值,当△PEF 的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使△PEF 为直角三角形?若存在,请求出此时刻t 的值,若不存在,请说明理由.参考答案1.C【解析】试题分析:在有理数的比较大小中,正数大于负数;0大于负数小于正数;两个负数比较大小,绝对值越大的数反而越小;两个正数比较大小,绝对值越大的数就越大.本题中-3<0<1<2.考点:有理数的大小比较2.C【分析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【点睛】考点:1、中心对称图形;2、轴对称图形3.B【解析】试题分析:将同类项的系数相加减作为结果的系数,字母和字母的指数不变.原式=3a-2a=(3考点:合并同类项计算.4.D【解析】试题分析:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.考点:1、提公因式法分解因式;2、公式法分解因式5.D【详解】解:根据多边形的内角和公式可得:(n-2)×180°=900°,解得:n=7.故选D6.B【解析】袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为37,故选B.7.C【解析】试题分析:平行四边形的两组对边分别平行且相等,对角线互相平分. 考点:平行四边形的性质.8.B【分析】根据方程有两个不等的实数根,故△>0,得不等式解答即可.【详解】试题分析:由已知得△>0,即(﹣3)2﹣4m>0,解得m<94.故选B.此题考查了一元二次方程根的判别式.9.A【详解】试题分析:当3为腰时,则3+3=6<7,不能构成三角形,则等腰三角形的腰长为7,底为3,则周长为:7+7+3=17.考点:等腰三角形的性质10.D【解析】试题分析:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故本选项不符合题意;B、由图象可知,对称轴为x=,正确,故本选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故本选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故本选项符合题意.故选D.考点:二次函数的性质11.2x2【解析】试题分析:2x3÷x=2x2考点:单项式除法12.6.18×108【详解】试题分析:科学计数法是指a×10n,1≤a<10,n为原数的整数位数减一.考点:科学计数法13.3 .【解析】试题分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出ED=12BC=3.故答案为3. 考点: 三角形中位线定理.14.3【解析】试题分析:过点O 作OC ⊥AB 于C ,连结OA ,如图,∵OC ⊥AB ,∴AC=BC=AB=×8=4,在Rt △AOC 中,OA=5,∴OC==3, 即圆心O 到AB 的距离为3.考点:1、垂径定理;2、勾股定理15.14x <<【详解】试题分析:, 由①得:x <4;由②得:x >1,则不等式组的解集为1<x <4.考点:解一元一次不等式组16【分析】根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=12BC=1,AF=FC ′=sin45°AC ′=2AC ′=1,进而求出阴影部分的面积.【详解】解:∵△ABC 绕点A 顺时针旋转45°得到△A ′B ′C ′,∠BAC=90°, ∴BC=2,∠C=∠B=∠CAC ′=∠C ′=45°,∴AD ⊥BC ,B ′C ′⊥AB ,∴AD=12BC=1,AF=FC ′=sin45°AC ′=2AC ′=1,∴图中阴影部分的面积等于:S △AFC ′﹣S △DEC ′=12×1×1﹣121)21.1.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD ,AF ,DC ′的长是解题关键.17.6.【详解】解:原式=3+4+1﹣2=6.故答案为6.【点睛】实数的运算;零指数幂;负整数指数幂.18.3x+1【解析】试题分析:首先将括号里面的分式进行通分,然后根据分式的乘法法则进行计算.试题解析:原式=[2(1)1(1)(1)(1)(1)x x x x x x +-++-+-]⋅(x+1)(x -1)=221(1)(1)x x x x ++-+-⋅(x+1)(x -1)=3x+1当x=13时,原式=3x+1=3×13考点:分式的化简求值.19.(1)作图见解析;(2)DE ∥AC.【分析】(1)、根据角平分线的画法画出角平分线;(2)、根据角平分线的性质和三角形外角的性质得出DE 和AC 平行.【详解】解:(1)、如图所示:(2)DE ∥AC∵DE 平分∠BDC ,∴∠BDE=12∠BDC , ∵∠ACD=∠A ,∠ACD+∠A=∠BDC ,∴∠A=12∠BDC , ∴∠A=∠BDE ,∴DE ∥AC .(2)、DE ∥AC.考点:(1)、角平分线的画法;(2)、角平分线的性质.20.这棵树CD 的高度为8.7米【解析】试题分析:首先利用三角形的外角的性质求得∠ACB 的度数,得到BC 的长度,然后在直角△BDC 中,利用三角函数即可求解.试题解析:∵∠CBD=∠A+∠ACB ,∴∠ACB=∠CBD ﹣∠A=60°﹣30°=30°,∴∠A=∠ACB ,∴BC=AB=10(米).在直角△BCD 中,CD=BCsin ∠CBD=105×1.732=8.7(米). 答:这棵树CD 的高度为8.7米.考点:解直角三角形的应用21.(1)这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为10800元.【分析】(1)由“利润率=利润∶进价=(售价-进价):进价”这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.【详解】解:(1)设这款空调每台的进价为x 元,根据题意得: 16350.8x x⨯-=9%, 解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.考点:分式方程的应用22.(1)1000;(2)图形见解析;(3)该校18000名学生一餐浪费的食物可供3600人食用一餐.【分析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.【详解】解:(1)这次被调查的同学共有400÷40%=1000(名)故答案为:1000(2)剩少量的人数是:1000-400-250-150=200(名),(3)()2001803601000人⨯= 答:该校1800名学生一餐浪费的食物可供360人食用一餐.23.(1)当﹣4<x <﹣1时,一次函数大于反比例函数的值;(2)一次函数的解析式为y=x+;m=﹣2;(3)P 点坐标是(﹣,).【详解】 试题分析:(1)根据一次函数图象在反比例函数图象上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式以及m 的值;(3)设P 的坐标为(x ,x+)如图,由A 、B 的坐标可知AC=,OC=4,BD=1,OD=2,易知△PCA 的高为x+4,△PDB 的高(2﹣x ﹣),由△PCA 和△PDB 面积相等得,可得答案. 试题解析:(1)由图象得一次函数图象在反比例函数图象上方时,﹣4<x <﹣1, 所以当﹣4<x <﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b ,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P的坐标为(x,x+)如图,由A、B的坐标可知AC=,OC=4,BD=1,OD=2,易知△PCA的高为x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB 面积相等得××(x+4)=×|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).考点:反比例函数与一次函数的交点问题24.(1)劣弧PC 的长为2π;(2)证明见解析;(3)证明见解析.【分析】(1)由弧长公式180n r l π=进行计算即可; (2)证明△POE ≌△ADO 可得DO=EO ;(3)连接AP ,PC ,证出PC 为EF 的中垂线,再利用△CEP ∽△CAP 找出角的关系求解.【详解】(1)∵AC=12,∴CO=6,∴劣弧PC 的长为606l 180π⋅⋅==2π; (2)∵ OD ⊥AB ,PE ⊥AC∴ ∠ADO=∠PEO=90°在△ADO 和△PEO 中,ADO PEO AOD POE OA OP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ADO ≌△PEO∴ OD=OE(3)连接PC ,由AC 是直径知BC ⊥AB ,又OD ⊥AB ,∴ PD ∥BF∴ ∠OPC=∠PCF ,∠ODE=∠CFE由(2)知OD=OE ,则∠ODE=∠OED ,又∠OED=∠FEC∴ ∠FEC=∠CFE∴ EC=FC由OP=OC 知∠OPC=∠OCE∴ ∠PCE =∠PCF在△PCE 和△PFC 中,EC FC PCE PCF PC PC =⎧⎪∠=∠⎨⎪=⎩∴ △PCE ≌△PFC∴ ∠PFC =∠PEC=90°由∠PDB=∠B=90°可知∠ODF=90°即OP ⊥PF∴ PF 是⊙O 的切线考点:1、切线的判定;2、弧长的计算;3、三角形全等的判定与性质.25.(1)证明见解析;BP=6cm ;当或时,△PEF 为直角三角形.【解析】试题分析:(1)由对角线互相垂直平分的四边形是菱形进行证明;(2)首先求出△PEF 的面积的表达式,然后利用二次函数的性质求解;(3)分三种情形,需要分类讨论,分别求解.试题解析:(1)当t=2时,DH=AH=4,由AD ⊥AB ,AD ⊥EF 可知EF ∥BC,∴EH=BD ,FH=CD , 又∵ AB=AC ,AD ⊥BC∴ BD=CD∴ EH=FH∴ EF 与AD 互相垂直平分∴ 四边形AEDF 为菱形(2)依题意得DH=2t,AH=8-2t,BC=10cm,AD=8cm,由EF∥BC知△AEF∽△ABC∴即,解得EF=10-t∴即△PEF的面积存在最大值10cm2,此时BP=3×2=6cm.(3)过E、F分别作EN⊥BC于N,EM⊥BC于M,易知EF=MN=EN=FM,由AB=AC可知BN=CM=在Rt△ACD和Rt△FCM中,由,即,解得FM=EN=2t,又由BP=3t知CP=10-3t,,则,分三种情况讨论:①若∠EPF=90°,则,解得,(舍去)②若∠EFP=90°,则,解得,(舍去)③若∠FEP=90°,则,解得,(均舍去)综上所述,当或时,△PEF为直角三角形.考点:1、菱形的判定;2、相似三角形;3、二次函数的性质;4、分类讨论的数学思想.。
2014年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣32.(3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)计算3a﹣2a的结果正确的是()A.1 B.a C.﹣a D.﹣5a4.(3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)5.(3分)一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9 C.8 D.76.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.7.(3分)如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC8.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.9.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1710.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0二、填空题(本大题6小题,每小题4分,共24分)11.(4分)计算:2x3÷x=.12.(4分)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为.13.(4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=.14.(4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB 的距离为.15.(4分)不等式组的解集是.16.(4分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:+|﹣4|+(﹣1)0﹣()﹣1.18.(6分)先化简,再求值:(+)•(x2﹣1),其中x=.19.(6分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)21.(7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?22.(7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P 坐标.24.(9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.25.(9分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.2014年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣3【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,也不是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)计算3a﹣2a的结果正确的是()A.1 B.a C.﹣a D.﹣5a【分析】根据合并同类项的法则,可得答案.【解答】解:原式=(3﹣2)a=a,故选:B.【点评】本题考查了合并同类项,系数相加字母部分不变是解题关键.4.(3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选:D.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5.(3分)一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9 C.8 D.7【分析】根据多边形的内角和公式(n﹣2)•180°,列式求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:D.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.6.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.【分析】直接根据概率公式求解即可.【解答】解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选:B.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC【分析】根据平行四边形的性质分别判断各选项即可.【解答】解:A、AC≠BD,故A选项错误;B、AC不垂直于BD,故B选项错误;C、AB=CD,利用平行四边形的对边相等,故C选项正确;D、AB≠BC,故D选项错误;故选:C.【点评】此题主要考查了平行四边形的性质,正确把握其性质是解题关键.8.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.【分析】先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0【分析】根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.【解答】解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A 选项不符合题意;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.【点评】本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)计算:2x3÷x=2x2.【分析】直接利用整式的除法运算法则求出即可.【解答】解:2x3÷x=2x2.故答案为:2x2.【点评】此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.(4分)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将618 000 000用科学记数法表示为:6.18×108.故答案为:6.18×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE= 3.【分析】由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.【解答】解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为:3.【点评】本题用到的知识点为:三角形的中位线等于三角形第三边的一半.14.(4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB 的距离为3.【分析】作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=4,然后在Rt△AOC中利用勾股定理计算OC即可.【解答】解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(4分)不等式组的解集是1<x<4.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.(4分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.【分析】根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=sin45°AC′=AC′=1,进而求出阴影部分的面积.【解答】解:∵△ABC绕点A顺时针旋转45°得到△AB′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=sin45°AC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.【点评】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:+|﹣4|+(﹣1)0﹣()﹣1.【分析】本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+4+1﹣2=6.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)先化简,再求值:(+)•(x2﹣1),其中x=.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).【分析】(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDC,再根据同位角相等两直线平行可得结论.【解答】解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.【点评】此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)【分析】首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.【解答】解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.(7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【分析】(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.【点评】本题考查了分式方程的应用,解题的关键是了解利润率的求法.22.(7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?【分析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.【解答】解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P 坐标.【分析】(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.【解答】解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得××(x+4)=×|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).【点评】本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.24.(9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.【分析】(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)方法1、连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解.方法2、先计算判断出PD=BF,进而判断出四边形PDBF是矩形即可得出结论;方法3、利用三个内角是90度的四边形是矩形判断出四边形PDBF是矩形即可得出结论.【解答】(1)解:∵AC=12,∴CO=6,∴==2π;答:劣弧PC的长为:2π.(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:法一:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OPA,由(2)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OPA=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OPA,∵∠OPA+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.法二:设⊙O的半径为r.∵OD⊥AB,∠ABC=90°,∴OD∥BF,∴△ODE∽△CFE又∵OD=OE,∴FC=EC=r﹣OE=r﹣OD=r﹣BC∴BF=BC+FC=r+BC∵PD=r+OD=r+BC∴PD=BF又∵PD∥BF,且∠DBF=90°,∴四边形DBFP是矩形∴∠OPF=90°∴OP⊥PF,∴PF是⊙O的切线.方法3、∵AC为直径,∴∠ABC=90°又∵∠ADO=90°,∴PD∥BF∴∠PCF=∠OPC∵OP=OC,∴∠OCP=∠OPC∴∠OCP=∠PCF,即∠ECP=∠FCP ∵PD∥BF,∴∠ODE=∠EFC∵OD=OE,∴∠ODE=∠OED又∵∠OED=∠FEC,∴∠FEC=∠EFC∴EC=FC在△PEC与△PFC中∴△PEC≌△PFC(SAS)∴∠PFC=∠PEC=90°∴四边形PDBF为矩形∠DPF=90°,即PF为圆的切线.【点评】本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.25.(9分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.【分析】(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.【解答】(1)证明:当t=2时,DH=AH=4,则H为AD的中点,如答图1所示.又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥BC于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,∴,即,解得:EF=10﹣t.S△PEF=EF•DH=(10﹣t)•2t=﹣t2+10t=﹣(t﹣2)2+10(0<t<),存在最大值,最大值为10cm2,此时BP=3t=6cm.∴当t=2秒时,S△PEF(3)解:存在.理由如下:①若点E为直角顶点,如答图3①所示,此时PE∥AD,PE=DH=2t,BP=3t.∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;②若点F为直角顶点,如答图3②所示,此时PF∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t.在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.【点评】本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.。
2014年广东省中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.(3分)(2014•广东)若二次根式有意义,则x 的取值范围是( )2.(3分)(2014•广东)下列标志中,可以看作是中心对称图形的是( )A B C D 3.(根据表中数据可知,全班同学答对的题数所组成的样本的中位数和众数分别是( ) A .8、8 B . 8、9 C .9、9 D .9、8 4.(3分)(2014•广东)下列函数:①y x =-;②2y x =;③1y x=-;④2y x =.当0x <时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 5.(3分)(2014•广东)圆锥的底面直径是80cm ,母线长90cm ,则它的侧面展开图的圆心角是( ) A. 320° B. 40° C. 160° D. 80° 6.(3分)(2014•广东)下列四个几何体中,俯视图为四边形的是( )A B C D7.(3分)(2014•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为( )A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D.12.6×1011元 8.(3分)(2014•广东)已知实数a 、b ,若a >b ,则下列结论正确的是( )A. a ﹣5<b ﹣5B. 2+a <2+bC.D. 3a >3b9.(3分)(2014•广东)如图,AC ∥DF ,AB ∥EF ,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是( )A.30°B.40° C .50° D.60°10.(3分)(2014•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A B C D二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上. 11.(4分)(2014•广东).计算:2()a a-÷=.12.(4分)(2014•广东)如图1,在O⊙中,20ACB∠=°,则AOB∠=_______度.13.(4分)(2014•广东)如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____________次旋转而得到,每一次旋转_______度.14.(4分)(2014•广东)小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图3所示.根据图中的信息,小张和小李两人中成绩较稳定的是.15.(4分)(2014•广东)如图4,把一个长方形纸片沿EF折叠后,点D C、分别落在11D C、的位置.若65EFB∠=°,则1AED∠等于_______度.16.(4分)(2014•广东)如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有个,第n幅图中共有个.C图1……第1幅第2幅第3幅第n幅图5图3A E DCFBD1C1图4三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2014•广东)如图 6,已知线段AB ,分别以A B 、为圆心,大于12AB长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC .那么: (1)∠ ADC =________度; (2)当线段460AB ACB =∠=,°时,ACD ∠= ______度,ABC △的面积等于_________(面积单位). 18.(5分)(2014•广东):1012)4cos30|3-⎛⎫++- ⎪⎝⎭°19.(5分)(2014•广东)先化简,再求值:2224441x x xx x x x --+÷-+-,其中32x =.四、解答题(二)(本大题3小题,每小题8分,共24分) 20.(8分)(2014•广东)如图 8,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G .(1)求证:CDF BGF △∽△;(2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.CBDA 图6D C F EA G图821.(8分)(2014•广东)“五·一”假期,某公司组织部分员工到A、B、C三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9.根据统计图回答下列问题:(1)前往A地的车票有_____张,前往C地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去B地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?22.(8分)(2014•广东)如图10,已知抛物线233y x x=-+x轴的两个交点为A B、,与y轴交于点C.(1)求A B C,,三点的坐标;(2)求证:ABC△是直角三角形;(3)若坐标平面内的点M,使得以点M和三点A B C、、为顶点的四边形是平行四边形,求点M的坐标.(直接写出点的坐标,不必写求解过程)x四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014•广东)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.24.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sinC=时,求⊙O的半径.25.(9分)(2014•广东)如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.部分答案:解:(1)30;20. ·················································································································· 2 分 (2)12. ·································································································································· 4 分 (3)可能出现的所有结果列表如下:或画树状图如下:共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为63168P ==;则小李获得车票的概率为35188-=. ∴这个规则对小张、小李双方不公平. 8 分22. (1)解:令0x =,得y =(0C . ··················································· 1分 令0y =,得20x =,解得1213x x =-=,, ∴(10)(30)A B -,,,. ······································································································ 3分(2)法一:证明:因为22214AC =+=, 222231216BC AB =+==,, ·························· 4分 ∴222AB AC BC =+, ················································· 5分 ∴ABC △是直角三角形. ············································ 6分 法二:因为13OC OA OB ===,,∴2OC OA OB =, ··················································································································· 4分1 2 3 4 1 1 2 3 4 2 1 2 3 4 3 1 2 3 44开始小张 小李 x21题图M 1 3∴OC OBOA OC=,又AOC COB ∠=∠, ∴Rt Rt AOC COB △∽△. ···································································································· 5分 ∴90ACO OBC OCB OBC ∠=∠∠+∠=,°, ∴90ACO OCB ∠+∠=°,∴90ACB ∠=°, 即ABC △是直角三角形. ······················································· 6 分(3)1(4M ,2(4M -,3(2M .(只写出一个给1分,写出2个,得1.5分) 8分sinC=求出sinA=sinC===,即可求出半径.sinC=sinA=sinC=,sinA==,r=,的半径是,OP=,)的坐标代入,得k,y=x×﹣,(,DE= AC===∴,,,3+)或(﹣。
2014年广东省初中毕业生学业考试·数学第Ⅰ卷(选择题 共30分)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的. 1. 在1,0,2,-3这四个数中,最大的数是 ( )A. 1B. 0C. 2D. -32. 在下列交通标志图中,既是轴对称图形,又是中心对称图形的是 ( )3. 计算3a -2a 的结果正确的是 ( ) A. 1 B. a C. -a D. -5a4.把x 3-9x 分解因式,结果正确的是 ( )A. x (x 2-9)B. x (x -3)2C. x (x +3)2D. x (x +3)(x -3) 5. 一个多边形的内角和是900°,这个多边形的边数是 ( ) A. 10 B. 9 C. 8 D. 76. 一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为 ( )A. 47B. 37C. 34D. 137. 如图,在▱ABCD 中,下列说法一定正确的是 ( ) A. AC =BD B. AC ⊥BD C. AB =CD D. AB =BC第7题图 第10题图8. 若关于x 的一元二次方程x 2-3x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( ) A. m >94 B. m <94 C. m =94 D. m <-949. 一个等腰三角形的两边长分别为3和7,则它的周长为 ( ) A. 17 B. 15 C. 13 D. 13或1710. 二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,关于该二次函数,下列说法错误..的是 ( ) A. 函数有最小值 B. 对称轴是直线x =12C. 当x <12时,y 随x 的增大而减小 D. 当-1<x <2时,y >0第Ⅱ卷(非选择题 共90分)二、填空题(本大题6小题,每小题4分,共24分) 11. 计算:2x 3÷x = .12. 据报道,截至2013年12月我国网民规模达618000000人,将618000000用科学记数法表示为 .13. 如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC =6,则DE = .第13题图 第14题图 第16题图14. 如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 .15. 不等式组⎩⎪⎨⎪⎧2x <84x -1>x +2的解集是 .16. 如图,△ABC 绕点A 按顺时针旋转45°得到△AB ′C ′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于 .三、解答题(一)(本大题3小题,每小题6分,共18分)17. 计算:9+|-4|+(-1)0-(12)-1.18. 先化简,再求值:(2x -1+1x +1)·(x 2-1),其中x =3-13.19. 如图,点D 在△ABC 的AB 边上,且∠ACD =∠A.(1)作∠BDC 的平分线DE ,交BC 于点E (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,判断直线DE 与直线AC 的位置关系(不要求证明).第19题图四、解答题(二)(本大题3小题,每小题7分,共21分)20. 如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10 m ,到达B 点,在B 处测得树顶C 的仰角为60°(A 、B 、D 三点在同一直线上).请你根据他们的测量数据计算这棵树CD 的高度(结果精确到0.1 m ).(参考数据:2≈1.414,3≈1.732)第20题图21. 某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调机每台的进价;(利润率=利润进价=售价-进价进价)(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?22. 某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食.为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图①和图②所示的不完整的统计图.第22题图(1)这次被调查的同学共有 名; (2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有同学一餐浪费的食物可以供200人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图,已知A (-4,12),B (-1,2)是一次函数y =kx +b (k ≠0)与反比例函数y =mx (m ≠0,x <0)图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D.(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值? (2)求一次函数的解析式及m 的值;(3)P 是线段AB 上一点,连接PC ,PD ,若△PCA 与△PDB 的面积相等,求点P 的坐标.第23题图24. 如图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作线段OD ⊥AB 于点D ,延长DO 交⊙O 于点P ,过点P 作PE ⊥AC 于点E ,作射线DE 交BC 的延长线于点F ,连接PF .(1)若∠POC =60°,AC =12,求劣弧PC ︵的长(结果保留π); (2)求证:OD =OE ;(3)求证:PF 是⊙O 的切线.第24题图25. 如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,BC =10 cm ,AD =8 cm .点P 从点B 出发,在线段BC上以每秒3 cm的速度向点C匀速运动.与此同时,垂直于AD的直线m从底边BC出发,以每秒2 cm 的速度沿DA方向匀速平移,分别交AB、AC、AD于点E、F、H.当点P到达点C时,点P与直线m同时停止运动.设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF.求证:四边形AEDF是菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值.当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF是直角三角形?若存在,请求出此刻t的值;若不存在,请说明理由.2014年广东省中考数学试卷参考答案与试题解析1. C2. C3. B4. D5. D6. B7. C8. B9. A 10. D 11. 2x 2 12. 6.18×108 13. 3 14. 3 15. 1<x <4 16. 2-1 17.解:原式=3+4+1-2(4分) =6.(6分) 18.解:原式=2(x +1)+(x -1)(x +1)(x -1)·(x +1)(x -1)=2x +2+x -1 =3x +1. (4分) 当x =3-13时,原式=3×3-13+1= 3. (6分) 19.解:(1)如解图,线段DE 即为所求作的∠BDC 的平分线;第19题解图(2)DE ∥A C.(6分)【解法提示】 ∵DE 平分∠BDC , ∴∠BDE =12∠BDC ,∵∠ACD =∠A ,∠ACD +∠A =∠BDC , ∴∠A =12∠BDC ,∴∠A =∠BDE , ∴DE ∥A C. 20.解:如解图,∵∠CBD =∠BAC +∠BCA , ∴∠BCA =∠CBD -∠BAC =60°-30°=30°=∠BAC , ∴BC =AB =10 m ,(3分)第20题解图在Rt △BCD 中,∵sin ∠CBD =CDBC,∴CD =BC ·sin ∠CBD =10×sin 60° =10×32=53≈5×1.732≈8.7(m ).(6分)答:这棵树的高度CD 大约是8.7米 m . (7分) 21.解:(1)设这款空调机每台的进价为x 元. (1分) 由题意得:1635×80%-x =9%x ,(2分) 解得x =1200. (3分)答:这款空调机每台的进价为1200元; (4分)(2)商场销售这款空调机100台的盈利为:1200×9%×100=10800(元).(6分) 答:这次促销活动中,商场销售这款空调机100台的盈利为10800元.(7分) 22.解:(1)1000;【解法提示】由题可得总人数=400÷40%=1000(人). (2)补充条形图如解图所示:(5分)第22题解图【解法提示】剩少量的人数为:1000-400-250-150=200(人).(3)由题意得:180001000×200=3600(人).答:18000名学生一餐浪费的粮食可供3600人食用一餐.(7分) 23.解:(1)当-4<x <-1时,一次函数的值大于反比例函数的值;(3分) (2)把点A 、B 代入一次函数解析式,得: ⎩⎪⎨⎪⎧-4k +b =12-k +b =2,解得⎩⎨⎧k =12b =52,∴一次函数的解析式是y =12x +52. (5分)把点B (-1,2)代入y =mx ,得m =-2;(6分)(3) 连接PC 、PD ,如解图, 设P 点的坐标为(x ,12x +52).第23题解图由△PCA 和△PDB 面积相等得 12×12×(x +4)=12×|-1|×(2-12x -52), ∴x =-52,y =12x +52=54,∴P 点的坐标是(-52,54).( 9分)24.(1)解:∵AC =12,圆心角∠POC =60°, ∴半径OC =6,∴劣弧PC ︵的长=n πr 180=60π×6180=2π;(3分)(2)证明:在△OAD 和△OPE 中, ⎩⎪⎨⎪⎧∠ADO =∠PEO ∠AOD =∠POE ,OA =OP∴△OAD ≌△OPE (AAS ),(5分) ∴OD =OE; (6分)(3)解法一:证明:如解图①,连接PC ,由AC 是直径知BC ⊥AB , 又OD ⊥AB , ∴PD ∥BF ,∴∠OPC =∠PCF ,∠ODE =∠CFE ,(7分) 由(2)知OD =OE ,则∠ODE =∠OED ,第24题解图①又∠OED =∠FEC , ∴∠FEC =∠CFE , ∴EC =F C.由OP =OC 知∠OPC =∠OCP ,∴∠PCE =∠PCF .在△PCE 和△PCF 中, ⎩⎪⎨⎪⎧EC =FC ∠PCE =∠PCF ,PC =PC∴△PCE ≌△PCF (SAS ), ∴∠PFC =∠PEC =90°. 又由∠PDB =∠B =90°可知四边形PDBF 为矩形, ∴∠OPF =90°,即OP ⊥PF , ∴PF 是⊙O 的切线. (9分)解法二:证明:如解图②,延长OD 交⊙O 于点M ,连接MC ,连接O 与BC 的中点N .(7分)第24题解图②∵OM =OC ,OD =OE , ∴OD OM =OE OC, ∴DE ∥MC ,∵BC ⊥AB ,OD ⊥AB , ∴BF ∥MD ,∴四边形DMCF 是平行四边形, ∴CF =M D.∵OD 是△ABC 的中位线, ∴OD =CN =BN =12B C.∵OP =OD +DM , ∴OP =CF +CN ,∴四边形ONFP 是平行四边形. ∵∠ONC =∠ABC =90°, ∴四边形ONFP 是矩形. ∵∠OPF =90°,OP 为⊙O 的半径, ∴PF 是⊙O 的切线. (9分)25.第25题解图①(1)证明:当t =2时,DH =AH =4,则H 为AD 的中点,如解图①所示. 又∵EF ⊥AD ,∴EF 为AD 的垂直平分线, ∴AE =DE ,AF =DF .∵AB =AC ,AD ⊥BC 于点D , ∴∠B =∠C , ∴EF ∥BC ,∴∠AEF =∠B ,∠AFE =∠C , ∴∠AEF =∠AFE , ∴AE =AF ,∴AE =AF =DE =DF ,即四边形AEDF 为菱形;( 3分)第25题解图②(2)解:如解图②所示,由(1)知EF ∥BC , ∴△AEF ∽△ABC , ∴EF BC =AH AD ,即EF 10=8-2t 8,解得EF =10-52t , ∴S △PEF =12EF ·DH =12(10-52t )·2t=-52t 2+10t =-52(t -2)2+10,∴当t =2秒时,S △PEF 存在最大值,最大值为10,此时BP =3t =6;( 6分) (3)解:存在.理由如下:①若点E 为直角顶点,如解图③所示, 此时PE ∥AD ,PE =DH =2t ,BP =3t . ∵PE ∥AD , ∴PE AD =BP BD ,即2t 8=3t5,此比例式不成立,故此种情形不存在;( 7分) ②若点F 为直角顶点,如解图④所示,此时PF ∥AD ,PF =DH =2t ,BP =3t ,CP =10-3t . ∵PF ∥AD , ∴PF AD =CP CD ,即2t 8=10-3t 5,解得t =4017;( 8分)第25题解图③若点P 为直角顶点,如解图⑤所示.— 11 —过点E 作EM ⊥BC 于点M ,过点F 作FN ⊥BC 于点N ,则EM =FN =DH =2t ,EM ∥FN ∥A D. ∵EM ∥AD ,∴EM AD =BM BD ,即2t 8=BM 5,解得BM =54t , ∴PM =BP -BM =3t -54t =74t . 在Rt △EMP 中,由勾股定理得:PE 2=EM 2+PM 2=(2t )2+(74t )2=11316t 2. ∵FN ∥AD ,∴FN AD =CN CD ,即2t 8=CN 5,解得CN =54t , ∴PN =BC -BP -CN =10-3t -54t =10-174t . 在Rt △FNP 中,由勾股定理得:PF 2=FN 2+PN 2=(2t )2+(10-174t )2=35316t 2-85t +100. 在Rt △PEF 中,由勾股定理得:EF 2=PE 2+PF 2,即(10-52t )2=11316t 2+(35316t 2-85t +100), 化简得:1838t 2-35t =0, 解得t =280183或t =0(舍去), ∴t =280183. 综上所述,当t =4017 秒或t =280183秒时,△PEF 为直角三角形.( 9分)。
2014年广东省数学中考试卷22014年广东数学中考试卷一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是( )A 、1B 、0C 、2D 、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A B C D 3、计算3a -2a 的结果正确的是( )A 、1B 、aC 、-aD 、-5a 4、把39x x -分解因式,结果正确的是( )A 、()29x x -B 、()23x x - C 、()23x x + D 、()()33x x x +-5、一个多边形的内角和是900°,这个多边形的边数是( ) A 、10 B 、9 C 、8 D 、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A、47 B 、37 C 、34D 、137、如图7图,□ABCD 中,下列说法一定正确的是( )A 、AC=BDB 、AC ⊥BDC 、AB=CD D 、AB=BC 题7图8、关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A 、94m >B 、94m <C 、94m =D 、9-4m <9、一个等腰三角形的两边长分别是3和7,则它的周长为( )A 、17B 、15C 、13D 、13或17 10、二次函数()20y ax bx c a =++≠的大致图象如题10图所示,关于该二次函数,下列说法错误的是( )AB D题10图3A 、函数有最小值B 、对称轴是直线x =21C 、当x <21,y 随x 的增大而减小 D 、当 -1 < x < 2时,y >0二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ; 13、如题13图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC=6,则DE= ;题13图 14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8, 那么圆心O 到AB 的距离为 ; 题16图15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ;16、如题16图,△ABC 绕点A 顺时针旋转45°得到△'''A B C ,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于 。
广东省广州市2014年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014•广州)a(a≠0)的相反数是()A.﹣a B.a2C.|a| D.考点:相反数.分析:直接根据相反数的定义求解.解答:解:a的相反数为﹣a.故选:A.点评:本题考查了相反数:a的相反数为﹣a,正确掌握相反数的定义是解题关键.2.(3分)(2014•广州)下列图形中,是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称的定义,结合所给图形即可作出判断.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选:D.点评:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.3.(3分)(2014•广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.考点:锐角三角函数的定义.专题:网格型.分析:在直角△ABC中利用正切的定义即可求解.解答:解:在直角△ABC中,∵∠ABC=90°,∴tanA==.故选D.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.(3分)(2014•广州)下列运算正确的是()C.a6÷a2=a4D.(a2b)3=a5b3 A.5ab﹣ab=4 B.+=考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;分式的加减法.专题:计算题.分析:A、原式合并同类项得到结果,即可做出判断;B、原式通分并利用同分母分式的加法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式=4ab,错误;B、原式=,错误;C、原式=a4,正确;D、原式=a6b3,错误,故选C点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.5.(3分)(2014•广州)已知⊙O1和⊙O2的半径分别为2cm和3cm,若O1O2=7cm,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.内切D.相交考点:圆与圆的位置关系.分析:由⊙O1与⊙O2的半径分别为3cm、2cm,且圆心距O1O2=7cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1与⊙O2的半径分别为3cm、2cm,且圆心距O1O2=7cm,又∵3+2<7,∴两圆的位置关系是外离.故选A.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.6.(3分)(2014•广州)计算,结果是()D.A.x﹣2 B.x+2 C.考点:约分.分析:首先利用平方差公式分解分子,再约去分子分母中得公因式.解答:解:==x+2,故选:B.点评:此题主要考查了约分,关键是正确把分子分解因式.7.(3分)(2014•广州)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是()A.中位数是8 B.众数是9 C.平均数是8 D.极差是7考点:极差;加权平均数;中位数;众数.分析:由题意可知:总数个数是偶数的,按从小到大的顺序,取中间两个数的平均数为中位数,则中位数为8.5;一组数据中,出现次数最多的数就叫这组数据的众数,则这组数据的众数为9;这组数据的平均数=(7+10+9+8+7+9+9+8)÷8=8.375;一组数据中最大数据与最小数据的差为极差,据此求出极差为3.解答:解:A、按从小到大排列为:7,7,8,8,9,9,9,10,中位数是:(8+9)÷2=8.5,故本选项错误;B、9出现了3次,次数最多,所以众数是9,故本选项正确;C、平均数=(7+10+9+8+7+9+9+8)÷8=8.375,故本选项错误;D、极差是:10﹣7=3,故本选项错误.故选B.点评:考查了中位数、众数、平均数与极差的概念,是基础题,熟记定义是解决本题的关键.8.(3分)(2014•广州)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2C.D.2考点:等边三角形的判定与性质.分析:图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.解答:解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC===,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.点评:本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质.9.(3分)(2014•广州)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<0考点:一次函数图象上点的坐标特征.分析:根据k<0,正比例函数的函数值y随x的增大而减小解答.解答:解:∵直线y=kx的k<0,∴函数值y随x的增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>0.故选C.点评:本题考查了正比例函数图象上点的坐标特征,主要利用了正比例函数的增减性.10.(3分)(2014•广州)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()A.4个B.3个C.2个D.1个考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.分析:由四边形ABCD和四边形CEFG是正方形,根据正方形的性质,即可得BC=DC,CG=CE,∠BCD=∠ECG=90°,则可根据SAS证得①△BCG≌△DCE;然后根据全等三角形的对应角相等,求得∠CDE+∠DGH=90°,则可得②BH⊥DE.由△DGF与△DCE相似即可判定③错误,由△GOD与△FOE相似即可求得④.解答:证明:①∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,在△BCG和△DCE中,,∴△BCG≌△DCE(SAS),②∵△BCG≌△DCE,∴∠CBG=∠CDE,又∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE;③∵四边形GCEF是正方形,∴GF∥CE,∴=,∴=是错误的.④∵DC∥EF,∴∠GDO=∠OEF,∵∠GOD=∠FOE,∴△OGD∽△OFE,∴=()2=()2=,∴(a﹣b)2•S△EFO=b2•S△DGO.故应选B点评:此题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定和性质,直角三角形的判定和性质.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2014•广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140°.考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.12.(3分)(2014•广州)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为10.考点:角平分线的性质.分析:根据角平分线上的点到角的两边距离相等可得PE=PD.解答:解:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=10.故答案为:10.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.13.(3分)(2014•广州)代数式有意义时,x应满足的条件为x≠±1.考点:分式有意义的条件.分析:根据分式有意义,分母等于0列出方程求解即可.解答:解:由题意得,|x|﹣1≠0,解得x≠±1.故答案为:x≠±1.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.14.(3分)(2014•广州)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)考点:圆锥的计算;由三视图判断几何体.分析:根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积为,即可得出表面积.解答:解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的母线为:5,∴根据圆锥的侧面积公式:πrl=π×3×5=15π,底面圆的面积为:πr2=9π,∴该几何体的表面积为24π.故答案为:24π.点评:此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.15.(3分)(2014•广州)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题(填“真”或“假”).考点:命题与定理.分析:交换原命题的题设和结论即可得到该命题的逆命题.解答:解:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的面积相等,那么这两个三角形全等,假.点评:本题考查逆命题的概念,以及判断真假命题的能力以及全等三角形的判定和性质.16.(3分)(2014•广州)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.考点:根与系数的关系;二次函数的最值.分析:由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.解答:解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,则△=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0,∴m≤,∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(2m)2﹣(m2+3m﹣2)=3m2﹣3m+2=3(m2﹣m++)+2=3(m﹣)2 +;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为.点评:本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.三、解答题(共9小题,满分102分)17.(9分)(2014•广州)解不等式:5x﹣2≤3x,并在数轴上表示解集.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:移项,合并同类项,系数化成1即可.解答:解:5x﹣2≤3x,5x﹣3x≤2,2x≤2,x≤1,在数轴上表示为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,注意:解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,系数化成1.18.(9分)(2014•广州)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.考点:平行四边形的性质;全等三角形的判定.专题:证明题.分析:根据平行四边形的性质得出OA=OC,AB∥CD,推出∠EAO=∠FCO,证出△AOE≌△COF即可.解答:证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).点评:本题考查了平行四边形的性质,平行线的性质,全等三角形的判定的应用,关键是推出AO=CO.19.(10分)(2014•广州)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.考点:整式的混合运算—化简求值;平方根.分析:(1)先算乘法,再合并同类项即可;(2)求出x+1的值,再整体代入求出即可.解答:解:(1)A=(x+2)2+(1﹣x)(2+x)﹣3=x2+4x+4+2+x﹣2x﹣x2﹣3=3x+3;(2)∵(x+1)2=6,∴x+1=±,∴A=3x+3=3(x+1)=±3.∴A=±3.点评:本题考查了整式的混合运算和求值的应用,主要考查学生的化简和计算能力,题目比较好.20.(10分)(2014•广州)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球 b 0.32推铅球 5 0.10合计50 1(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.考点:游戏公平性;扇形统计图;列表法与树状图法.专题:计算题.分析:(1)根据表格求出a与b的值即可;(2)根据表示做出扇形统计图,求出“一分钟跳绳”对应扇形的圆心角的度数即可;(3)列表得出所有等可能的情况数,找出抽取的两名学生中至多有一名女生的情况,即可求出所求概率.解答:解:(1)根据题意得:a=1﹣(0.18+0.16+0.32+0.10)=0.24;b=×0.32=16;(2)作出扇形统计图,如图所示:根据题意得:360°×0.16=57.6°;(3)列表如下:男男男女女男﹣﹣﹣(男,男)(男,男)(女,男)(女,男)男(男,男)﹣﹣﹣(男,男)(女,男)(女,男)男(男,男)(男,男)﹣﹣﹣(女,男)(女,男)女(男,女)(男,女)(男,女)﹣﹣﹣(女,女)女(男,女)(男,女)(男,女)(女,女)﹣﹣﹣所有等可能的情况有20种,其中抽取的两名学生中至多有一名女生的情况有18种,则P==.点评:此题考查了游戏公平性,扇形统计图,列表法与树状图法,弄清题意是解本题的关键.21.(12分)(2014•广州)已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)先把x=2代入反比例函数解析式得到y=﹣k,则A点坐标表示为(2,﹣k),再把A(2,﹣k)代入y=kx﹣6可计算出k,从而得到A点坐标;(2)由(1)得到一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣,根据反比例函数与一次函数的交点问题,解方程组即可得到B点坐标.解答:解:(1)把x=2代入y=﹣得y=﹣k,把A(2,﹣k)代入y=kx﹣6得2k﹣6=k,解得k=2,所以A点坐标为(2,﹣2);(2)B点在第四象限.理由如下:一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣,解方程组得或,所以B点坐标为(1,﹣4),所以B点在第四象限.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.22.(12分)(2014•广州)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.考点:分式方程的应用.分析:(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可;解答:解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,根据题意得:﹣=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.点评:此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.(12分)(2014•广州)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.考点:作图—复杂作图.分析:(1)先作出AC的中垂线,再画圆.(2)边接AE,AE是BC的中垂线,∠DAE=∠CAE,得出=;(3)利用割线定理求出BD,再利用余弦求出BM,用勾股定理求出DM.解答:解:(1)如图(2)如图,连接AE,∵AC为直径,∴∠AEC=90°,∵AB=AC,∴∠DAE=∠CAE,∴=;(3)如图,连接AE,作DM⊥BC交BC于点M,∵AC为直径,∴∠AEC=90°,∵AB=AC=4,cosC=.∴EC=BE=4,∴BC=8,∵BD•BA=BE•BC∴BD×4=4×8∴BD=,∵∠B=∠C∴cos∠C=cos∠B=,∴=,∴BM=,∴DM===.点评:本题主要考查了复杂的作图,解题的关键是运用割线定理求出线段的长.24.(14分)(2014•广州)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.考点:二次函数综合题.分析:(1)待定系数法求解析式即可,求得解析式后转换成顶点式即可.(2)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<m<0,或3<m<4.(3)左右平移时,使A′D+DB″最短即可,那么作出点C′关于x轴对称点的坐标为C″,得到直线P″C″的解析式,然后把A点的坐标代入即可.解答:解:(1)∵抛物线y=ax2+bx﹣2(a≠0)过点A,B,∴,解得:,∴抛物线的解析式为:y=x2﹣x﹣2;∵y=x2﹣x﹣2=(x﹣)2﹣,∴C(,﹣).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能是∠APB为钝角,∴M(,0),⊙M的半径=.∵P是抛物线与y轴的交点,∴OP=2,∴MP==,∴P在⊙M上,∴P的对称点(3,﹣2),∴当﹣1<m<0或3<m<4时,∠APB为钝角.(3)存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP,第二种情况:向左平移,如图2所示,由(2)可知P(3,﹣2),又∵C(,﹣)∴C'(﹣t,﹣),P'(3﹣t,﹣2),∵AB=5,∴P″(﹣2﹣t,﹣2),要使AC′+BP′最短,只要AC′+AP″最短即可,点C′关于x轴的对称点C″(﹣t,),设直线P″C″的解析式为:y=kx+b,,解得∴直线y=x+t+,点A在直线上,∴﹣+t+=0∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.点评:本题考查了待定系数法求解析式,顶点坐标,二次函数的对称性,以及距离之和最小的问题.25.(14分)(2014•广州)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.考点:四边形综合题.分析:(1)利用梯形中位线的性质,证明△BCF是等边三角形;然后解直角三角形求出x 的值;(2)利用相似三角形(或射影定理)求出线段EG与BE的比,然后利用=求解;(3)依题意作出图形,当△BFE的外接圆与AD相切时,线段BC的中点O成为圆心.作辅助线,如答图3,构造一对相似三角形△OMP∽△ADH,利用比例关系列方程求出x的值,进而求出的值.解答:解:(1)当点F落在梯形ABCD中位线上时,如答图1,过点F作出梯形中位线MN,分别交AD、BC于点M、N.由题意,可知ABCD为直角梯形,则MN⊥BC,且BN=CN=BC.由轴对称性质,可知BF=BC,∴BN=BF,∴∠BFN=30°,∴∠FBC=60°,∴△BFC为等边三角形.∴CF=BC=4,∠FCB=60°,∴∠ECF=30°.设BE、CF交于点G,由轴对称性质可知CG=CF=2,CF⊥BE.在Rt△CEG中,x=CE===.∴当点F落在梯形ABCD的中位线上时,x的值为.(2)如答图2,由轴对称性质,可知BE⊥CF.∵∠GEC+∠ECG=90°,∠GEC+∠CBE=90°,∴∠GEC=∠CBE,又∵∠CGE=∠ECB=90°,∴Rt△BCE∽Rt△CGE,∴,∴CE2=EG•BE ①同理可得:BC2=BG•BE ②①÷②得:==.∴====.∴=(0<x≤5).(3)当△BFE的外接圆与AD相切时,依题意画出图形,如答图3所示.设圆心为O,半径为r,则r=BE=.设切点为P,连接OP,则OP⊥AD,OP=r=.过点O作梯形中位线MN,分别交AD、BC于点M、N,则OM为梯形ABED的中位线,∴OM=(AB+DE)=(3+5﹣x)=(8﹣x).过点A作AH⊥CD于点H,则四边形ABCH为矩形,∴AH=BC=4,CH=AB=3,∴DH=CD﹣CH=2.在Rt△ADH中,由勾股定理得:AD===2.∵MN∥CD,∴∠ADH=∠OMP,又∵∠AHD=∠OPM=90°,∴△OMP∽△ADH,∴,即,化简得:16﹣2x=,两边平方后,整理得:x2+64x﹣176=0,解得:x1=﹣32+20,x2=﹣32﹣20(舍去)∴x=﹣32+20,∴==139﹣80.点评:本题是几何综合题,考查了直角梯形、相似、勾股定理、等边三角形、矩形、中位线、圆的切线、解方程、解直角三角形等知识点,考查了轴对称变换与动点型问题,涉及考点较多,有一定的难度.。
2014年中考数学模拟试题
满分:120分 时间100分钟 班级: 姓名: 成绩:
一、 选择题(本题共10个小题,每小题3分,共30分)
1.无理数-3的相反数是( )
A .- 3
B : 3
C .
1
3 D .-
1
3
2.如图是一个由
4个相同的正方体组成的立体图形,它的三视图是( )
A :
B .
C .
D .
3.5月31日,星火教育学生总人数约为505 000人.505 000用科学记数法表示为( )
A .505×103
B .5.05×103
C .5.05×104
D :5.05×105
4.陈绕老师为了对学生乱花钱的现象进行教育指导,对承诺1班里每位同学一周大约花钱数额进行了统计,如下表:
花钱数额(元) 5 10 15 20 25 学生人数
7
12
18
10
3
根据这个统计可知,该班学生一周花钱数额的众数、平均数是() A:15,14 B .18,14 C .25,12 D .15,12 5、计算:()
2
3m n 的结果是( )
A 6m n
B : 62m n
C 52m n
D 32m n
6、如图,AB 是⊙O 的直径,C 、D 是⊙O 上一点,∠CDB=20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 等于( )
A .
40° B :
50° C .
60° D .
70°
第10题
B C A x
y 1
O
y 1=x y 2=4x
7、已知点P(a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是【 】 A.a 1<- B :31a 2-<<
C.3a 12-<<
D.3a 2
> 8、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A : 没有实数根 B 有两个相等的实数根
C. 有两个不相等的实数根 D 无法判断
9、四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )
A .23
B :22
C 。
114 D.554
图5
A
D
B
C
10、函数y 1=x (x ≥0),y 2=4
x (x >0)的图象如图所示,下列结论: ① 两函数图象的交点坐标为A (2,2); ② 当x >2时,y 2>y 1;
③ 直线x =1分别与两函数图象交于B 、C 两点,则线段BC 的长为3;
④ 当x 逐渐增大时,y 1的值随着x 的增大而增大,y 2的值随着x 的增大而减小. 则其中正确的是()
A .只有①②
B .只有①③
C .只有②④
D :只有①③④
二、选择题(本题共6个小题,每小题4分,共24分)
11、若二次根式
有意义,则x 的取值范围是
12、分解因式:=-2
3
ab a
13、若关于x 的一元二次方程(m ﹣2)x 2
+x+m 2
﹣4=0的一个根为0,则m 值是
14、正六边形的边心距与半径的比值为
15、如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边
中点,菱形ABCD 的周长为24,则OH 的长等于 .
16
、如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 个 .
二、解答题(本题共9个小题,共66分)
17、(本小题满分6分)计算:(-2 014)0+1
22-⎪⎪
⎭
⎫ ⎝⎛+||2-2-2cos60°.
18、(本小题满分6分)解不等式组:⎩
⎨
⎧+>-≥+x x x 21236
)5(2并把解集在数轴上表示出来。
19、(本小题满分6分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.
C
O
D A
B
图8
第20题
A C
B D
E
O ·
20、(本题满分7分)如图,已知R t △ABC ,∠ABC =90°,以直角边AB 为直径作O ,交斜边AC 于点D ,连结BD . (1)若AD =3,BD =4,求边BC 的长;
(2)取BC 的中点E ,连结ED ,试证明ED 与⊙O 相切.
21、(本题满分7分)马航MH370事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与搜索,如图,上午9时,海检船位于A 处,观测到某港口城市P 位于海检船的北偏西67.5°方向,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B 处,这时观察到城市P 位于海检船的南偏西36.9°方向,求此时海检船所在B 处与城市P 的距离? ⎝
⎛ 参考数据:sin 36.90≈35,tan 36.90≈34
,
⎭⎫sin 67.50≈1213,tan 67.50≈125
22、(本题满分7分)河南岸农产品批发市场菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.
(1)求平均每次下调的百分率;
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:
方案一:打九折销售;
方案二:不打折,每吨优惠现金200元.
试问小华选择哪种方案更优惠,请说明理由
23、(本题满分9分)为了解2014届星火教育中考承诺班各位同学化学成绩,在2014年4月5日进行了一次中考模拟考试,并且随机抽查了部分参加考试同学的成绩,整理并制作图表如下:
分数段频数频率
60≤x<70 30 0.1
70≤x<80 90 n
80≤x<90 m 0.4
90≤x≤10060 0.2
请根据以上图表提供的信息,解答下列问题:
(1)本次调查的样本容量为
(2)在表中:m= .n= ;
(3)补全频数分布直方图:
(4)参加化学考试的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在
分数段内;
(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是
24、(本题满分9分)如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.
(1)求这条抛物线的表达式;
(2)连结OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.
25、(本题满分9分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.
(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;
(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).。