1-1.1第2课时分类加法计数原理与分步乘法计数原理的综合应用
- 格式:ppt
- 大小:1.55 MB
- 文档页数:51
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用计数原理解决实际问题的能力。
3. 引导学生通过合作交流,提高思维能力和创新能力。
二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。
(2)学会运用分类加法计数原理解决问题。
2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。
(2)学会运用分步乘法计数原理解决问题。
三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。
(2)分步乘法计数原理的应用。
2. 教学难点:(1)理解分类加法计数原理的含义。
(2)理解分步乘法计数原理的含义。
四、教学方法1. 采用问题驱动法,引导学生主动探究。
2. 运用实例分析,让学生直观理解计数原理。
3. 组织小组讨论,培养学生合作交流能力。
五、教学准备1. 课件、黑板、粉笔等教学工具。
2. 相关实例和练习题。
教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。
2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。
3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。
二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。
2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。
3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。
2. 讲解分类加法计数原理的概念和步骤。
3. 让学生举例说明并计算。
二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。
2. 讲解分步乘法计数原理的概念和步骤。
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 让学生学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:(1)概念介绍:同一类对象的数量相加得到总数。
(2)实例讲解:学校举办运动会,参加跑步的有20人,参加跳高的有15人,参加跳远的有10人,请问参加运动会的总人数是多少?a. 班级里有男生30人,女生20人,请问班级里总共有多少人?b. 图书馆里有小说50本,科普书籍30本,请问图书馆里总共有多少本书?2. 分步乘法计数原理:(1)概念介绍:完成一项任务需要多个步骤,每个步骤的数量相乘得到总数量。
(2)实例讲解:做一份报纸,需要先排版(10分钟),印刷(20分钟),装订(10分钟),请问完成这份报纸需要多长时间?a. 制作一个蛋糕,需要打发鸡蛋(10分钟),加入面粉和糖(5分钟),烘烤(20分钟),请问制作一个蛋糕需要多长时间?b. 工厂生产一批玩具,每台机器每小时可以生产10个玩具,共有3台机器工作,请问每小时可以生产多少个玩具?三、教学方法1. 采用讲授法,讲解分类加法计数原理和分步乘法计数原理的概念及应用。
2. 利用实例讲解,让学生更好地理解计数原理。
3. 设计练习题,让学生动手实践,巩固所学知识。
四、教学评价1. 课堂问答:检查学生对分类加法计数原理和分步乘法计数原理的理解。
2. 练习题解答:评价学生运用计数原理解决问题的能力。
3. 课后作业:布置相关题目,让学生进一步巩固所学知识。
五、教学资源1. PPT课件:展示分类加法计数原理和分步乘法计数原理的概念及实例。
2. 练习题:提供丰富的练习题,让学生动手实践。
3. 教学视频:可选用的相关教学视频,辅助学生理解计数原理。
4. 黑板、粉笔:用于板书关键词和讲解实例。
六、教学步骤1. 引入新课:通过一个简单的实例,让学生感受分类加法计数原理和分步乘法计数原理的应用。
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。
2. 学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:定义:如果一个事件可以分成几个互斥的部分,这个事件发生的总次数就等于各部分事件发生次数的和。
公式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:定义:如果一个事件可以分成几个相互独立的步骤,这个事件发生的总次数等于各步骤事件发生次数的乘积。
公式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理的概念和公式。
分步乘法计数原理的概念和公式。
2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决实际问题。
四、教学方法1. 采用讲授法讲解分类加法计数原理和分步乘法计数原理的概念和公式。
2. 运用案例分析法引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
3. 开展小组讨论法,让学生分组讨论和解决问题,培养学生的团队协作能力。
五、教学步骤1. 导入新课,介绍分类加法计数原理和分步乘法计数原理的概念。
2. 讲解分类加法计数原理的公式和应用示例。
3. 讲解分步乘法计数原理的公式和应用示例。
4. 开展案例分析,让学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
5. 进行小组讨论,让学生分组讨论和解决问题,分享解题心得。
六、教学评估1. 课堂问答:通过提问学生,了解学生对分类加法计数原理和分步乘法计数原理的理解程度。
2. 案例分析报告:评估学生在案例分析中的表现,包括问题解决能力和逻辑思维能力。
3. 小组讨论评价:评价学生在小组讨论中的参与程度、团队合作能力和问题解决能力。
七、教学反思1. 反思教学内容:检查教学内容是否全面、清晰,是否需要调整或补充。
高中数学第一章计数原理1.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分步乘法计数原理的应用练习(含解析)新人教A版选修23A级基础巩固一、选择题1.植树节那天,四位同学植树,现有3棵不同的树,若一棵树限1人完成,则不同的植树方法种数有( )A.1×2×3 B.2×3×4C.34D.43解析:完成这件事分三步.第一步,植第一棵树,有4种不同的方法;第二步,植第二棵树,有4种不同的方法;第三步,植第三棵树,也有4种不同的方法.由分步乘法计数原理得:N=4×4×4=43,故选D.答案:D2.从1,2,3,4,5五个数中任取3个,可组成不同的等差数列的个数为( ) A.2 B.4C.6 D.8解析:分两类:第一类,公差大于0,有以下4个等差数列:①1,2,3,②2,3,4,③3,4,5,④1,3,5;第二类,公差小于0,也有4个.根据分类加法计数原理可知,可组成的不同的等差数列共有4+4=8(个).答案:D3.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有( )A.4种B.5种C.6种D.12种解析:若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法.答案:C4.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,第一、二象限不同点的个数为( )A.18 B.16 C.14 D.10解析:分两类:一是以集合M中的元素为横坐标,以集合N中的元素为纵坐标有3×2=6个不同的点,二是以集合N中的元素为横坐标,以集合M中的元素为纵坐标有4×2=8个不同的点,故由分类加法计数原理得共有6+8=14个不同的点.答案:C5.有6种不同的颜色,给图中的6个区域涂色,要求相邻区域不同色,则不同的涂色方法共有( )A.4 320种B.2 880种C.1 440种D.720种解析:第1个区域有6种不同的涂色方法,第2个区域有5种不同的涂色方法,第3个区域有4种不同的涂色方法,第4个区域有3种不同的涂色方法,第5个区域有4种不同的涂色方法,第6个区域有3种不同的涂色方法,根据分步乘法计数原理,共有6×5×4×3×4×3=4 320种不同的涂色方法.答案:A二、填空题6.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________.(用数字作答)解析:甲、乙、丙均有7中不同的站法,故不考虑限制的不同站法有7×7×7=343种,其中三个人站在同一级台阶上有7种站法,故符合本题要求的不同站法有343-7=336.答案:3367.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有________种不同的推选方法.解析:分为三类:第一类,甲班选一名,乙班选一名,根据分步乘法计数原理,选法有3×5=15(种);第二类,甲班选一名,丙班选一名,根据分步乘法计数原理,选法有3×2=6(种);第三类,乙班选一名,丙班选一名,根据分步乘法计数原理,选法有5×2=10(种).综合以上三类,根据分类加法计数原理,不同选法共有15+6+10=31(种).答案:318.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)解析:若不考虑数字2,3至少都出现一次的限制,对个位,十位,百位,千位,每个“位置”都有两种选择,所以共有24=16个四位数,然后再减去“2 222,3 333”这两个数,故共有16-2=14个满足要求的四位数.答案:14三、解答题9.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解:从O型血的人中选1人有28种不同的选法,从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理,不同的选法有28+7+9+3=47(种).(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理,不同的选法有28×7×9×3=5 292(种).10.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条?解:按A或B能否为0分两类:第1类,当A或B为0时,表示的直线为y=0或x=0,共2条.第2类,当A,B不为0时,直线Ax+By=0被确定需分两步完成.第1步,确定A的值,有4种不同的方法;第2步,确定B的值,有3种不同的方法.由分步乘法计数原理知,共可确定4×3=12条直线.由分类加法计数原理知,方程所表示的不同直线共有2+12=14条.B级能力提升1.我国足球超级联赛(中超)的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积分33分,若不考虑顺序,该队胜、负、平的情况有( ) A.3种B.4种C.5种D.6种解析:设该队胜、负、平的场数分别为x,y,z,则依题意有x+y+z=15,3x+y=33,则y是3的倍数,列举为x=9,y=6,z=0;x=10,y=3,z=2,x=11,y=0,z=4,故根据分类加法计数原理得,该队胜、负、平的情况有3种.答案:A2.用4种不同的颜色涂图中的矩形A,B,C,D,要求相邻的矩形涂色不同,则不同的涂色方法共有________种.解析:C处有4种涂色方案,D处有3种涂法,B处有3种涂法,A处有2种涂法.由分步乘法计数原理得共有4×3×3×2=72种不同涂法.答案:723.某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A,B,C,A1,B1,C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有多少种?解:第一步,在点A1,B1,C1上安装灯泡,A1有4种方法,B1有3种方法,C1有2种方法,4×3×2=24,即共有24种方法.第二步,从A,B,C中选一个点安装第4种颜色的灯泡,有3种方法.第三步,再给剩余的两个点安装灯泡,共有3种方法,由分步乘法计数原理可得,安装方法共有4×3×2×3×3=216(种).。
分类加法计数原理与分步乘法计数原理教案一、教学目标:1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。
3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。
二、教学重点与难点:1. 教学重点:分类加法计数原理和分步乘法计数原理的理解和应用。
2. 教学难点:如何引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
三、教学方法:1. 采用问题驱动的教学方法,让学生在解决问题的过程中理解分类加法计数原理和分步乘法计数原理。
2. 使用案例分析和小组讨论的方式,培养学生的合作能力和沟通能力。
3. 运用数形结合的方法,帮助学生直观地理解分类加法计数原理和分步乘法计数原理。
四、教学准备:1. 教具准备:黑板、粉笔、多媒体教学设备。
2. 学具准备:学生用书、练习本、文具。
3. 教学素材:相关案例分析题、小组讨论题。
五、教学过程:1. 导入新课:通过一个实际问题,引入分类加法计数原理和分步乘法计数原理。
2. 讲解分类加法计数原理:解释分类加法计数原理的概念,并通过实例讲解如何运用。
3. 讲解分步乘法计数原理:解释分步乘法计数原理的概念,并通过实例讲解如何运用。
4. 案例分析:给出一个案例,让学生运用分类加法计数原理和分步乘法计数原理解决问题。
5. 小组讨论:学生分组讨论,分享各自解决问题的方法和答案。
7. 课堂练习:给出一些练习题,让学生巩固所学内容。
8. 课后作业:布置一些相关的作业题,让学生进一步巩固所学知识。
9. 课堂小结:对本节课的内容进行小结,强调重点和难点。
六、教学评价:1. 评价目标:通过课堂表现、练习完成情况和课后作业来评价学生对分类加法计数原理和分步乘法计数原理的理解和应用能力。
2. 评价方法:a) 课堂表现:观察学生在课堂上的参与程度、提问回答情况以及小组讨论的表现。
b) 练习完成情况:检查学生练习题的完成质量,包括解题思路、步骤和答案的正确性。
分类加法计数原理与分步乘法计数原理分类加法计数原理是指将一个计数问题分成若干个子问题,然后将子问题的计数结果相加得到最终的计数结果。
其基本思想是将问题中的元素分成若干个不重叠的类别,然后分别计数各个类别的元素个数,最后将各类别的计数结果相加。
这个原理常用于解决包含多个步骤的计数问题。
举个例子来说明分类加法计数原理的应用:假设有一个盒子,里面有红球、蓝球和绿球,分别有3个、4个和5个。
现在要从盒子中任选3个球,问有多少种选择方法。
我们可以将这个问题分为三个子问题:选取3个红球的方法数、选取3个蓝球的方法数和选取3个绿球的方法数。
然后分别计数这三个子问题的方法数,最后将它们相加得到总的方法数。
与分类加法计数原理相对应的是分步乘法计数原理。
分步乘法计数原理是指将一个计数问题分成若干个步骤,然后将各个步骤的计数结果相乘得到最终的计数结果。
这个原理常用于解决包含多个独立步骤的计数问题。
举个例子来说明分步乘法计数原理的应用:假设有一个密码锁,需要输入5位密码,每位密码都是从0到9的数字。
问一共有多少种可能的密码组合。
我们可以将这个问题分为5个步骤:第一位密码的选择、第二位密码的选择、第三位密码的选择、第四位密码的选择和第五位密码的选择。
然后计数每个步骤的可能性,最后将它们相乘得到总的可能性。
分步乘法计数原理也可以用于解决其他的计数问题,例如从一个字母表中选择若干个字母组成单词的方法数、从一个数列中选择若干个数的方法数等等。
总的说来,分类加法计数原理和分步乘法计数原理是解决组合数学中计数问题的重要方法。
它们可以帮助我们系统地分析和解决各种计数问题,提高我们的计算能力和思维能力。
无论是在学术研究还是在实际应用中,这两个原理都有着广泛的应用价值。
分类加法计数原理和分步乘法计数原理【要点梳理】要点一:分类加法计数原理(也称加法原理)1.分类加法计数原理:完成一件事,有n 类办法.在第1类办法中有1m 种不同方法,在第2类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同方法,那么完成这件事共有n m m m N +++=Λ21种不同的方法.2.加法原理的特点是:① 完成一件事有若干不同方法,这些方法可以分成n 类;② 用每一类中的每一种方法都可以完成这件事;③ 把每一类的方法数相加,就可以得到完成这件事的所有方法数.要点诠释:使用分类加法计数原理计算完成某件事的方法数,第一步是对这件事确定一个标准进行分类,第二步是确定各类的方法数,第三步是取和。
3.图示分类加法计数原理:由A 到B 算作完成一件事.直线型流程线表示第1类方案中包括的方法数,折线型流程线表示第2类方案中包括的方法数。
从图中可以看出,完成由A 到B 这件事,共有方法m+n 种。
要点诠释:用分类加法计数原理计算完成某件事的方法数,“类”要一竿到底,它的起点、终点就是完成这件事的开始与结束,图示分类加法计数原理,用意就在其中。
要点二、分步乘法计数原理1.分步乘法计数原理“做一件事,完成它需要分成n 个步骤”,就是说完成这件事的任何一种方法,都要分成n 个步骤,要完成这件事必须并且只需连续完成这n 个步骤后,这件事才算完成.2.乘法原理的特点:① 完成一件事需要经过n 个步骤,缺一不可;② 完成每一步有若干种方法;③ 把每一步的方法数相乘,就可以得到完成这件事的所有方法数.要点诠释:使用分步乘法计数原理计算完成某件事的方法数,第一步是对完成这件事进行分步,第二步是确定各步的方法数,第三步是求积。
3.图示分步乘法计数原理:由A到C算作完成一件事.设完成这件事的两个步骤为从A到B、从B到C。
要点诠释:从A到C算作完成一件事,A是起点,C是终点,点B是中间单元,从A到B是第1步,从B到C是第2步。
分类加法计数原理与分步乘法计数原理教案第一章:引言1.1 教学目标让学生理解分类加法计数原理和分步乘法计数原理的概念。
让学生掌握分类加法计数原理和分步乘法计数原理的运用方法。
1.2 教学内容分类加法计数原理:将问题划分为若干个互不重叠的分类,分别计算每个分类的数量,将结果相加得到总数。
分步乘法计数原理:将问题分解为若干个相互依赖的步骤,每个步骤的数量相乘得到最终结果。
1.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。
1.4 教学步骤引入分类加法计数原理和分步乘法计数原理的概念。
通过示例讲解分类加法计数原理的运用方法。
通过示例讲解分步乘法计数原理的运用方法。
学生练习题:让学生运用分类加法计数原理和分步乘法计数原理解决问题。
小组讨论:让学生分享解题心得,互相学习和交流。
第二章:分类加法计数原理2.1 教学目标让学生掌握分类加法计数原理的概念和运用方法。
2.2 教学内容分类加法计数原理:将问题划分为若干个互不重叠的分类,分别计算每个分类的数量,将结果相加得到总数。
2.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。
2.4 教学步骤复习分类加法计数原理的概念。
通过示例讲解分类加法计数原理的运用方法。
学生练习题:让学生运用分类加法计数原理解决问题。
小组讨论:让学生分享解题心得,互相学习和交流。
第三章:分步乘法计数原理3.1 教学目标让学生掌握分步乘法计数原理的概念和运用方法。
3.2 教学内容分步乘法计数原理:将问题分解为若干个相互依赖的步骤,每个步骤的数量相乘得到最终结果。
3.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。
3.4 教学步骤复习分步乘法计数原理的概念。
通过示例讲解分步乘法计数原理的运用方法。
学生练习题:让学生运用分步乘法计数原理解决问题。
小组讨论:让学生分享解题心得,互相学习和交流。
第四章:应用举例4.1 教学目标让学生能够运用分类加法计数原理和分步乘法计数原理解决实际问题。
1.1分类加法计数原理与分步乘法计数原理(第一课时)教学设计一、教学内容解析(一)教材的地位和作用本节课是人教版《数学》选修2-3第一章第一节(第一课时)。
分类加法计数原理与分步乘法计数原理是人类在大量的实践经验的基础上归纳出的基本规律,是解决计数问题的最基本、最重要的方法,它们不仅是推导排列数、组合数计算公式的依据,而且其基本思想方法也贯穿在解决本章应用问题的始终,在本章中是奠基性的知识。
返璞归真的看两个原理,它们实际上是学生从小学就开始学习的加法运算与乘法运算的推广,它们是解决计数问题的理论基础。
从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;运用分步乘法计数原理是将一个复杂问题的解决过程分解为若干“步骤”,先对每个步骤进行细致分析,再整合为一个完整的过程。
这样做的目的是为了分解问题、简化问题。
由于排列、组合及二项式定理的研究都是作为两个计数原理的典型应用而设置的,因此,理解和掌握两个计数原理,是学好本章内容的关键。
(二)教学目标1.通过实例,能归纳总结出分类加法计数原理和分步乘法计数原理,经历从特殊到一般的思维过程,进一步提高学生学习数学、研究数学的兴趣;2.掌握分类加法计数原理与分步乘法计数原理,能说明两个计数原理的不同之处,能根据具体问题的特征、选择恰当的原理解决一些简单的实际问题,体现数学实际应用和理论相结合的统一美,经历从特殊到一般的思维过程;3.经历由实际问题推导出两个原理,再回归实际问题的解决这一过程,体会数学源于生活、高于生活、用于生活的道理,让学生体验到发现数学、运用数学的过程。
(三)教学重点与难点重点:归纳地得出分类加法计数原理和分步乘法计数原理,能应用它们解决简单的实际问题。
难点:正确地理解“完成一件事情”的含义;根据实际问题的特征、正确地区分“分类”或“分步”。
二、学生学情分析:1.认知基础:在学习必修2 “古典概型”时突出了树形图、列举法在计数中的作用;在学习和生活中,我们会不自觉地使用“分类”和“分步”的方法来思考解决问题。
n m ++种不2种不同的方n m ⨯⨯种不同例题4.(2022·江苏连云港·高二期中)用0,1,2,3,…,9十个数字可组成多少个不同的(1)三位数?(2)无重复数字的三位数?(3)小于500且没有重复数字的自然数?同类题型归类练1.(2022·吉林油田第十一中学高二期末)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )A .288个B .240个C .144个D .126个2.(2022·全国·高三专题练习)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( )A .18个B .15个C .12个D .9个3.(2022·全国·高二课时练习)设集合A ={0,1,2,3,4,5,6,7},如果方程x 2-mx -n =0 (m ,n ∈A )至少有一个根x 0∈A ,就称方程为合格方程,则合格方程的个数为( )A .13B .15C .17D .194.(2022·全国·高二课时练习)已知集合{}2,4,6,8A =,{}1,3,5,7,9B =,从A 中取一个数作为十位数字,从B 中取一个数作为个位数字,能组成______个不同的两位数,能组成______个十位数字小于个位数字的两位数.角度2:与几何有关的问题典型例题例题1.(2022·全国·高三专题练习)已知60C 分子是一种由60个碳原子构成的分子,它形似足球,因此又名足球烯,60C 是单纯由碳原子结合形成的稳定分子,它具有60个顶点和若干个面,.各个面的形状为正五边形或正六边形,结构如图.已知其中正六边形的面为20个,则正五边形的面为( )个.A.10 B.12C.16 D.20例题2.(2022·全国·高二期末)从正十五边形的顶点中选出3个构成钝角三角形,则不同的选法有().A.105种B.225种C.315种D.420种同类题型归类练1.(2022·全国·高三专题练习)若一个正方体绕着某直线l旋转不到一周后能与自身重合,那么这样的直线l的条数为()A.3B.4C.6D.13 2.(2022·全国·高三专题练习)一个国际象棋棋盘(由8×8个方格组成),其中有一个小方格因破损而被剪去(破损位置不确定).“L”形骨牌由三个相邻的小方格组成,如图所示.现要将这个破损的棋盘剪成数个“L”形骨牌,则()A.至多能剪成19块“L”形骨牌B.至多能剪成20块“L”形骨牌C.最多能剪成21块“L”形骨牌D.前三个答案都不对3.(2022·上海交大附中高二期中)正方体的8个顶点中,选取4个共面的顶点,有______种不同选法角度3:涂色问题典型例题例题1.(2022·吉林·长春吉大附中实验学校高二阶段练习)用4种不同颜色给如图所示的地图上色,要求相邻两块涂不同的颜色,不同的涂色方法共有()A.24种B.36种C.48种D.72种例题2.(2022·广东·佛山市顺德区东逸湾实验学校高二期中)用5种不同颜色给右图所示的五个圆环涂色,要求相交的两个圆环不能涂相同的颜色,共有()种不同的涂色方案.A.1140 B.1520 C.1400 D.1280例题3.(2022·内蒙古·赤峰二中高二阶段练习(理))如图,一花坛分成1,2,3,4,5五个区域,现有4种不同的花供选种,要求在每个1区域里面种1种花,且相邻的两个区域种不同的花,则不同的种法总数为_______.例题4.(2022·全国·高二课时练习)现有4种不同颜色要对如图的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有______种.同类题型归类练1.(2022·全国·高二课时练习)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是A.12 B.24 C.30 D.36 2.(2022·全国·高二课时练习)四色定理又称四色猜想,是世界近代三大数学难题之一.它是于1852年由毕业于伦敦大学的格斯里提出来的,其内容是“任何一张地图只用四种颜色就的能使具有共同边界的国家着上不同的颜色”.某校数学兴趣小组在研究给四棱锥P ABCD各个面涂颜色时,提出如下的“四色问题”:要求相邻面(含公共棱的面)不得使用同一颜色,现有4种颜色可供选择,则不同的涂法有()A.36种B.72种C.48种D.24种3.(2022·全国·高三专题练习)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种___________.(以数字作答)4.(2022·广东·罗定邦中学高二期中)现有5种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法种数为______.。
分类加法计数原理和分步乘法计数原理教学设计教学设计:分类加法计数原理和分步乘法计数原理一、教学目标1.了解分类加法计数原理和分步乘法计数原理的概念和应用;2.能够运用分类加法计数原理和分步乘法计数原理解决实际问题;3.培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1.分类加法计数原理的基本概念和应用;2.分步乘法计数原理的基本概念和应用;三、教学过程第一节:分类加法计数原理1.导入(5分钟)-引入生活中的例子,例如:一把铲子可以分为“红色”和“蓝色”两类,一双筷子可以分为“金属”和“木质”两类等。
-引出问题:如果有一个包里有3只红色的铲子和2只蓝色的铲子,这个包里一共有几只铲子?如何快速求解?2.概念解释(10分钟)-解释分类加法计数原理的概念:当一个集合可以分为若干互不相交的类别时,集合的元素个数等于各个类别元素的个数的和。
-通过教师提供的实例,进一步让学生理解概念。
3.核心内容讲解(20分钟)-通过黑板或幻灯片等方式,将分类加法计数原理的基本公式写出来,即:总数=类别1数目+类别2数目+类别3数目+...+类别n数目-以问题解决的方式,将公式的应用过程演示给学生。
4.练习应用(15分钟)-给学生发放习题册,让学生结合自己的实际情况完成其中的练习题。
-教师巡回指导,解答学生提出的问题。
第二节:分步乘法计数原理1.复习(5分钟)-复习分类加法计数原理的概念和应用,让学生回答一些与分类加法计数原理相关的问题。
-引出问题:如果有3件相同的红色上衣和2件相同的蓝色上衣,这些上衣一共有几种穿法?如何快速求解?2.概念解释(10分钟)-解释分步乘法计数原理的概念:当一个事件需要分为若干个步骤进行时,每一步的选择数目乘积等于总方案数。
-通过教师提供的实例,进一步让学生理解概念。
3.核心内容讲解(20分钟)-通过黑板或幻灯片等方式,将分步乘法计数原理的基本公式写出来,即:总方案数=第一步选择数目×第二步选择数目×第三步选择数目×...×第n步选择数目-以问题解决的方式,将公式的应用过程演示给学生。