2018年全国高考新课标2卷理科数学考试(解析版)
- 格式:pdf
- 大小:1.56 MB
- 文档页数:9
2018 年一般高等学校招生全国一致考试新课标2 卷理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及稿本纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要 求的。
1+2i1. 1-2i =( )4 3 4 3 343 4A .- 5-5iB . - 5 + 5iC .- 5-5iD . - 5 + 5i分析:选 D2.已知会集 A={(x,y)|x2+y 2≤ 3,x ∈Z,y ∈ Z } ,则 A 中元素的个数为 ( )A . 9B . 8C . 5D . 4分析:选 A 问题为确立圆面内整点个数3.函数 f(x)=e x -e -x的图像大体为 ( ) x 2分析:选 B f(x) 为奇函数,消除A,x>0,f(x)>0,消除 D, 取 x=2,f(2)=e 2-e -2>1, 应选 B44.已知向量 a , b 满足 |a|=1 , a · b=-1 ,则 a · (2a-b)= ( )A . 4B . 3C . 2D . 0分析:选 B a · (2a-b)=2a 2-a ·b=2+1=32-y 25.双曲线 x22 =1(a > 0, b > 0) 的离心率为 3,则其渐近线方程为( )ab23A . y= ± 2xB . y=± 3xC . y=± 2 xD . y=± 2 x分析:选 A e=222a3 c =3a b=C 56.在 ABC 中, cos 2= 5 , BC=1, AC=5,则 AB= ( )A .4 2B . 30C . 29D .2 5分析:选 A cosC=2cos2C3 222-1= -AB=AC+BC-2AB · BC ·cosC=32 AB=4 2251 / 61 1 - 1 1 1( )7. 算 S=1- +3+⋯⋯+- , 了右 的程序框 , 在空白框中 填入2 499100开始N 0,Ti 1是100 否i1S NTN NiT T1出 Si 1束A . i=i+1 B. i=i+2C . i=i+3D. i=i+4分析: B8.我国数学家 景 在哥德巴赫猜想的研究中获得了世界 先的成就. 哥德巴赫猜想是“每个大于2 的偶数可以表示 两个素数的和”,如30=7+23.在不超 30 的素数中,随机 取两个不一样的数,其和等于30 的概率是 ()1111A .B .C .D .121415 18 分析: C不超30 的素数有 2, 3, 5, 7, 11, 13, 17,19, 23, 29 共 10 个,从中 2 个其和 30 的3 2= 17+23, 11+19, 13+17,共 3 种情况,所求概率 P= 15C109.在 方体 ABCD-AB C D 中, AB=BC=1, AA =3, 异面直 AD 与 DB 所成角的余弦 ()1 1 1 11111552A .B .C .D .5652分析: C建立空 坐 系,利用向量 角公式可得。
2018年全国高考新课标2卷理科数学考试(解析版)作者:日期:2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要 求的。
434 3 3 4 3 4 A ・ 一 T 一 弓 B * -5 + 5i c ∙ - 5 ' 5i D * - 5 + 5i解析:选D2. 已知集合A={(x,y) ∣χ2+y2≤3,x∈Z,y∈Z },则A 中元素的个数为( ) A. 9B. 8C. 5D ・ 4解析:选A 问题为确定圆面内整点个数 3. 函数f (x)=E 2的图像大致为()-、选择题:本题共12小题, 1.l+2i F r2解析:选B f(x)为奇函数,排除 A,x>0,f (x)>0,排除 D,取 x=2,f (2) = e 2-e^24 力,故选B4. 已知向量 a, b 满足 Ial=1, a ∙ b 二-1,则 a ∙ (2a~b)=( ) A. 4B. 3C. 2D.5.双曲线= I (a>0, b>0)的离心率为\龙,则其渐近线方程为( C. y=±迟X9A. y=±j∖βxB. y 二±ι∖βx=∖β C2 二 3¥ b=∖βa C √5 歹专,BC=I,AC 二 5, B. √30C 3 解析:选 A CoSo2cos 右-I= - ~ 2 5解析:选A e-6-在ΔABC 中,COS 则 AB 二() D. y=±A. 4√2 AB^AO+BC2-2AB ∙ BC ∙ COSC=322√5 AB=4√2 D.7. ................................................... 为计算S=I- 2 + 3 ^ 4 ++^ T∞,设计了右侧的程序框图,则在空白框中应填入()A. i=i+lB. i 二i+2C. i 二i+3D. i 二i+4解析:选B8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数 可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的 概率是()3为7+23, 11+19, 13+17,共3种情形,所求概率为P=FF109. 在长方体ABCD-ABc I D I 中,AB=BC=I, AAi=W 则异面直线AD】与DBl 所成角的余弦值为(D.解析:选C 建立空间坐标系,利用向量夹角公式可得。
2018年普通高等学校招生全国统一考试全国2卷数学(理科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。
1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,> )A .y =B .y =C .y x =D .y x =6.在ABC △中,cos 2C =,1BC =,5AC =,则AB =( )A .B C D .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( ) A .15B .56C .55D .2210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( ) A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1212ii+=- 43. 55A i -- 43. 55B i -+ 34. 55C i -- 34. 55D i -+2.已知集合(){}22,3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为. 9A. 8B . 5C . 4D3.函数2()x xe ef x x--=的图象大致为4.已知向量,a b 满足1,1a a b =⋅=-,则()2a a b ⋅-=. 4A . 3B . 2C . 0D5.双曲线()222210,0x y a b a b-=>>的离心率为3,则其渐近线方程为. 2A y x =± . 3B y x =± 2. 2C y x =± 3. 2D y x =±6.在ABC ∆中,5cos ,1,5,25C BC AC ===则AB = . 42A . 30B . 29C. 25D 7.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入. 1A i i =+ . 2B i i =+ . 3C i i =+ . 4D i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23. 在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是1.12A 1. 14B 1. 15C 1. 18D 9.在长方体1111ABCD A B C D -中,11,3,AB BC AA ===则异面直线1AD 与1DB 所成角的余弦值为1. 5A5. 6B 5. 5C 2.2D 10.若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是.4A π.2B π3.4C π .D π-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________11.已知()f x 是定义域为(),-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=. 50A -. 0B . 2C . 50D12.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F ∆为等腰三角形,12120F F P ∠=,则C 的离心率为2. 3A 1. 2B 1. 3C 1. 4D二、填空题(本题共4小题,每小题5分,共20分)13.曲线2ln(1)y x =+在点()0,0处的切线方程为_____________.14.若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为________.15.已知sin cos 1,cos sin 0αβαβ+=+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA 、SB 所成角的余弦值为78,SA 与圆锥底面所成角为45.若SAB ∆的面积为则该圆锥的侧面积为__________.三、解答题(共70分。
WORD 格式整理绝密★启用前2018 年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12 小题,每小题 5 分,共60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.1 2i1 2iA.4 35 5i B.4 35 5i C.3 45 5i D.3 45 5i2.已知集合 2 2 3A x,y x y ≤,x Z,y Z,则A中元素的个数为A.9 B.8 C.5 D.4x xe e3.函数 2f xx的图像大致为4.已知向量a,b满足|a| 1 ,a b 1 ,则a(2a b)A.4 B.3 C.2 D.02 2x y5.双曲线2 2 1( 0, 0)a ba b的离心率为3,则其渐近线方程为A.y 2x B.y 3x C.2y x D.23y x26.在△ABC 中,cos C52 5,BC 1 ,AC 5 ,则ABA.4 2 B.30 C.29 D.2 5分享专业知识WORD 格式整理1 1 1 1 17.为计算S 1 ⋯,设计了右侧的程序框图,2 3 4 99 100开始N 0,T 0 则在空白框中应填入i 1 A.i i 1B.i i 2 是否i 100C.i i 3D.i i 4 N N 1iS N T 1输出ST Ti 1结束8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 7 23 .在不超过30 的素数中,随机选取两个不同的数,其和等于30 的概率是A.112B.114C.115D.1189.在长方体A BCD A1B1C1D1 中,AB BC 1 ,A A ,则异面直线AD1 与1 3 DB 所成角的余弦值为1A.15B.56C.55D.2210.若 f (x) cos x sin x 在[ a, a] 是减函数,则 a 的最大值是A.π4B.π2C.3π4D.π11.已知 f (x) 是定义域为( , ) 的奇函数,满足 f (1 x) f (1 x) .若 f (1) 2 ,则f (1) f (2) f (3) ⋯ f (50)A.50 B.0 C.2 D.5012.已知F1 ,2 2x yF 是椭圆:的左,右焦点,A是C 的左顶点,点P 在过A且斜率C 2 2 1(a b 0)2a b为36的直线上,△PF1F2 为等腰三角形,F1 F2 P 120 ,则C 的离心率为A.23B.12C.13D.14二、填空题:本题共 4 小题,每小题 5 分,共20 分。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =C .2y x = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .2B 30C 29 D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA ,则异面直线1AD 与1DB 所成角的余弦值为 A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试(新课标全国卷Ⅱ)数学(理科)一、选择题(本大题共12小题,共60.0分)1.1+2i1−2i=()A. −45−35i B. −45+35i C. −35−45i D. −35+45i2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A. 9B. 8C. 5D. 43.函数f(x)=e x−e−xx2的图象大致为()A. B.C. D.4.已知向量a⃗,b⃗ 满足|a⃗|=1,a⃗⋅b⃗ =−1,则a⃗⋅(2a⃗−b⃗ )=()A. 4B. 3C. 2D. 05.双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A. y=±√2xB. y=±√3xC. y=±√22x D. y=±√32x6.在△ABC中,,BC=1,AC=5,则AB=()A. 4√2B. √30C. √29D. 2√57.为计算S=1−12+13−14+⋯+199−1100,设计了如图的程序框图,则空白框中应填入()A. i=i+1B. i=i+2C. i=i+3D. i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(注:素数又叫质数)的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A. 112B. 114C. 115D. 1189.在长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=√3,则异面直线AD1与DB1所成角的余弦值为()A. 15B. √56C. √55D. √2210.若f(x)=cos x−sin x在[−a,a]上是减函数,则a的最大值是()A. π4B. π2C. 3π4D. π11.已知f(x)是定义域为的奇函数,满足f(1−x)=f(1+x),若f(1)=2,则)A. −50B. 0C. 2D. 5012.已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为√36的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A. 23B. 12C. 13D. 14二、填空题(本大题共4小题,共20.0分)13.曲线y=2ln(x+1)在点(0,0)处的切线方程为______.14.若x,y满足约束条件{x+2y−5≥0x−2y+3≥0x−5≤0,则z=x+y的最大值为______.15.已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=______.16.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角为45°,若△SAB的面积为5√15,则该圆锥的侧面积为__________.三、解答题(本大题共7小题,共82.0分)17.记S n为等差数列{a n}的前n项和,已知a1=−7,S3=−15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.18.下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:ŷ=−30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:ŷ=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.20.如图,在三棱锥P−ABC中,AB=BC=2√2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M−PA−C为30°,求PC与平面PAM所成角的正弦值.21. 已知函数f(x)=e x −ax 2.(1)若a =1,证明:当x ≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a .22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =2cosθy =4sinθ,(θ为参数),直线l 的参数方程为{x =1+tcosαy =2+tsinα,(t 为参数). (1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.23. 设函数f(x)=5−|x +a|−|x −2|.(1)当a =1时,求不等式f(x)≥0的解集;(2)若f(x)≤1恒成立,求a 的取值范围.答案和解析1.【答案】D【解析】【分析】本题考查复数的代数形式的乘除运算,是基本知识的考查.利用复数的除法的运算法则化简求解即可.【解答】解:1+2i1−2i =(1+2i)(1+2i)(1−2i)(1+2i)=−35+45i.故选:D.2.【答案】A【解析】【分析】本题主要考查集合元素个数的判断,利用分类讨论的思想是解决本题的关键.【解答】解:当x=−1时,y2≤2,得y=−1,0,1,当x=0时,y2≤3,得y=−1,0,1,当x=1时,y2≤2,得y=−1,0,1,即集合A中元素有9个,故选:A.3.【答案】B【解析】【分析】本题主要考查函数的图象的识别和判断,利用函数图象的特点分别进行排除是解决本题的关键.判断函数的奇偶性,利用函数的定点的符号的特点分别进行判断即可.【解答】解:函数f(−x)=e −x−e x(−x)2=−e x−e−xx2=−f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e−1e>0,排除D,当x→+∞时,f(x)→+∞,排除C.故选B.4.【答案】B【解析】【分析】本题考查了向量的数量积公式,属于基础题.根据向量的数量积公式计算即可.【解答】解:向量a⃗,b⃗ 满足|a⃗|=1,a⃗⋅b⃗ =−1,则a⃗⋅(2a⃗−b⃗ )=2a⃗2−a⃗⋅b⃗ =2+1=3,故选:B.5.【答案】A【解析】【分析】根据双曲线离心率的定义求出a,c的关系,结合双曲线a,b,c的关系进行求解即可.本题主要考查双曲线渐近线的求解,结合双曲线离心率的定义以及渐近线的方程是解决本题的关键.【解答】解:∵双曲线的离心率为e=ca=√3,则ba =√b2a2=√c2−a2a2=√(ca)2−1=√3−1=√2,即双曲线的渐近线方程为y=±bax=±√2x,故选:A.6.【答案】A【解析】【分析】本题考查余弦定理的应用,考查三角形的解法以及计算能力.利用二倍角公式求出C的余弦函数值,利用余弦定理转化求解即可.【解答】解:在△ABC中,,,∵BC=1,AC=5,则AB=√BC2+AC2−2BC⋅ACcosC=√1+25+2×1×5×35=√32=4√2.故选:A.7.【答案】B【解析】【分析】本题考查了循环程序的应用问题,是基础题.模拟程序框图的运行过程可知:该程序运行后输出的S=N−T(奇数项为正,偶数项为负),由此可知空白处应填入的条件为i=i+2.【解答】解:模拟程序框图的运行过程可知,该程序运行后输出的是S=N−T=(1−12)+(13−14)+⋯+(199−1100);累加步长是2,则在空白处应填入i =i +2.故选B .8.【答案】C【解析】【分析】本题主要考查古典概型的概率的计算,求出不超过30的素数是解决本题的关键,属于基础题.利用列举法先求出不超过30的所有素数,利用古典概型的概率公式进行计算即可.【解答】解:在不超过30的素数中有2,3,5,7,11,13,17,19,23,29共10个,从中选2个不同的数有C 102=45种,和等于30的有(7,23),(11,19),(13,17),共3种,则对应的概率p =345=115,故选:C .9.【答案】C【解析】【分析】本题考查异面直线所成角的余弦值的求法,属于基础题.以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AD 1与DB 1所成角的余弦值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,∵在长方体ABCD −A 1B 1C 1D 1中,AB =BC =1,AA 1=√3,∴A(1,0,0),D 1(0,0,√3),D(0,0,0),B 1(1,1,√3), AD 1⃗⃗⃗⃗⃗⃗⃗ =(−1,0,√3),DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,√3),设异面直线AD 1与DB 1所成角为θ,则|cosθ|=|AD 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅DB 1⃗⃗⃗⃗⃗⃗⃗⃗ ||AD 1⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|DB 1⃗⃗⃗⃗⃗⃗⃗⃗ |=2√5=√55, ∴异面直线AD 1与DB 1所成角的余弦值为√55. 故选C .10.【答案】A【解析】【分析】本题考查了两角和与差的正弦函数公式的应用,三角函数的求值,属于基本知识的考查,是基础题.利用两角和差的正弦公式化简f(x),由−π2+2kπ≤x −π4≤π2+2kπ,k ∈Z ,得−π4+2kπ≤x ≤34π+2kπ,k ∈Z ,取k =0,得f(x)的一个减区间为[−π4,34π],结合已知条件即可求出a 的最大值.【解答】解:f(x)=cosx −sinx =−(sinx −cosx)=−√2sin(x −π4),由−π2+2kπ≤x −π4≤π2+2kπ,k ∈Z ,得−π4+2kπ≤x ≤34π+2kπ,k ∈Z ,取k =0,得f(x)的一个减区间为[−π4,34π],由f(x)在[−a,a]是减函数,得{−a ≥−π4a ≤3π4,∴a ≤π4. 则a 的最大值是π4.故选:A .11.【答案】C【解析】【分析】根据函数奇偶性和对称性的关系求出函数的周期是4,结合函数的周期性和奇偶性进行转化求解即可.本题主要考查函数值的计算,根据函数奇偶性和对称性的关系求出函数的周期性是解决本题的关键.【解答】解:∵f(x)是奇函数,且f(1−x)=f(1+x),∴f(1−x)=f(1+x)=−f(x −1),f(0)=0,则f(x +2)=−f(x),则f(x +4)=−f(x +2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1−2)=f(−1)=−f(1)=−2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0−2+0=0,则f(1)+f(2)+f(3)+⋯+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50) =f(1)+f(2)=2+0=2,故选:C.12.【答案】D【解析】【分析】本题考查椭圆的性质,直线方程的应用,考查转化思想,属于中档题.求得直线AP的方程:根据题意求得P点坐标,代入直线方程,即可求得椭圆的离心率.【解答】解:由题意可知:A(−a,0),F1(−c,0),F2(c,0),直线AP的方程为:y=√36(x+a),由∠F1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,√3c),代入直线AP:√3c=√36(2c+a),整理得:a=4c,∴题意的离心率e=ca =14.故选D.13.【答案】y=2x【解析】【分析】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=2ln(x+1),∴y′=2x+1,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x,故答案是y=2x.14.【答案】9【解析】【分析】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【解答】解:由x ,y 满足约束条件{x +2y −5≥0x −2y +3≥0x −5≤0作出可行域如图,化目标函数z =x +y 为y =−x +z ,由图可知,当直线y =−x +z 过A 时,z 取得最大值,由{x =5x −2y +3=0,解得A(5,4), 目标函数有最大值,为z =9.故答案为:9.15.【答案】−12【解析】解:sinα+cosβ=1,两边平方可得:sin 2α+2sinαcosβ+cos 2β=1,①,cosα+sinβ=0,两边平方可得:cos 2α+2cosαsinβ+sin 2β=0,②,由①+②得:2+2(sinαcosβ+cosαsinβ)=1,即2+2sin(α+β)=1, ∴2sin(α+β)=−1.∴sin(α+β)=−12. 故答案为:−12.把已知等式两边平方化简可得2+2(sinαcosβ+cosαsinβ)=1,再利用两角和差的正弦公式化简为2sin(α+β)=−1,可得结果.本题考查了两角和与差的正弦函数公式的应用,三角函数的求值,属于基本知识的考查,是基础题.16.【答案】40√2π【解析】【分析】本题考查圆锥的结构特征,母线与底面所成角,圆锥的侧面面积的求法,考查空间想象能力以及计算能力.利用已知条件求出圆锥的母线长,利用直线与平面所成角求解底面半径,然后求解圆锥的侧面积.【解答】解:圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,可得sin∠ASB =√1−(78)2=√158. 由△SAB 的面积为5√15,可得12SA 2sin∠ASB =5√15,即12SA 2×√158=5√15,即SA =4√5.SA 与圆锥底面所成角为45°,可得圆锥的底面半径为:√22×4√5=2√10. 则该圆锥的侧面积:2√10×4√5π=40√2π.故答案为:40√2π.17.【答案】解:(1)∵等差数列{a n }中,a 1=−7,S 3=−15,∴a 1=−7,3a 1+3d =−15,解得a 1=−7,d =2,∴a n =−7+2(n −1)=2n −9;(2)∵a 1=−7,d =2,a n =2n −9,∴S n =n 2(a 1+a n )=12(2n 2−16n) =n 2−8n =(n −4)2−16,∴当n =4时,前n 项的和S n 取得最小值为−16.【解析】本题主要考查了等差数列的通项公式,考查了等差数列的前n 项的和公式,属于基础题.(1)根据a 1=−7,S 3=−15,可得a 1=−7,3a 1+3d =−15,求出等差数列{a n }的公差,然后求出a n 即可;(2)由a 1=−7,d =2,a n =2n −9,得S n =n 2(a 1+a n )=12(2n 2−16n)=n 2−8n =(n −4)2−16,由此可求出S n 以及S n 的最小值.18.【答案】解:(1)根据模型①:ŷ=−30.4+13.5t , 计算t =19时,ŷ=−30.4+13.5×19=226.1; 利用这个模型,求出该地区2018年的环境基础设施投资额的预测值是226.1亿元;根据模型②:ŷ=99+17.5t , 计算t =9时,ŷ=99+17.5×9=256.5;. 利用这个模型,求该地区2018年的环境基础设施投资额的预测值是256.5亿元;(2)模型②得到的预测值更可靠;因为从总体数据看,该地区从2000年到2016年的环境基础设施投资额是逐年上升的, 而从2000年到2009年间递增的幅度较小些,从2010年到2016年间递增的幅度较大些,所以,利用模型②的预测值更可靠些.【解析】(1)根据模型①计算t =19时y ^的值,根据模型②计算t =9时y ^的值即可;(2)从总体数据和2000年到2009年间递增幅度以及2010年到2016年间递增的幅度比较,即可得出模型②的预测值更可靠些.本题考查了线性回归方程的应用问题,是基础题.19.【答案】解:(1)抛物线C :y 2=4x 的焦点为F(1,0),由题意可知直线AB 的方程为:y =k(x −1),设A(x 1,y 1),B(x 2,y 2),则{y =k(x −1)y 2=4x,整理得:k 2x 2−2(k 2+2)x +k 2=0, 则x 1+x 2=2(k 2+2)k 2,x 1x 2=1,由|AB|=x 1+x 2+p =2(k 2+2)k 2+2=8,解得:k 2=1,则k =1,∴直线l 的方程y =x −1;(2)由(1)可得AB 的中点坐标为D(3,2),则直线AB 的垂直平分线方程为y −2=−(x −3),即y =−x +5,设所求圆的圆心坐标为(x 0,y 0),则{y 0=−x 0+5(x 0+1)2=(y 0−x 0+1)22+16, 解得:{x 0=3y 0=2或{x 0=11y 0=−6, 因此,所求圆的方程为(x −3)2+(y −2)2=16或(x −11)2+(y +6)2=144.【解析】本题考查抛物线的性质,直线与抛物线的位置关系,抛物线的焦点弦公式,考查圆的标准方程,考查转换思想,属于中档题.(1)设直线AB 的方程为y =k(x −1),代入抛物线方程,根据抛物线的焦点弦公式即可求得k 的值,即可求得直线l 的方程;(2)设圆心坐标为(x 0,y 0),结合题意构建方程,求得圆的方程.20.【答案】(1)证明:连接BO ,∵AB =BC =2√2,O 是AC 的中点,∴BO ⊥AC ,且BO =2,又PA =PC =PB =AC =4,∴PO ⊥AC ,PO =2√3,则PB 2=PO 2+BO 2,则PO ⊥OB ,∵OB ∩AC =O ,OB ⊂平面ABC ,AC ⊂平面ABC ,∴PO ⊥平面ABC ;(2)建立以O 坐标原点,OB ,OC ,OP 分别为x ,y ,z 轴的空间直角坐标系如图:A(0,−2,0),P(0,0,2√3),C(0,2,0),B(2,0,0),BC ⃗⃗⃗⃗⃗ =(−2,2,0),设BM ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ =(−2λ,2λ,0),0≤λ<1,则AM ⃗⃗⃗⃗⃗⃗ =BM ⃗⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ =(−2λ,2λ,0)−(−2,−2,0)=(2−2λ,2λ+2,0),则平面PAC 的法向量为m⃗⃗⃗ =(1,0,0), 设平面MPA 的法向量为n⃗ =(x,y ,z), 则PA⃗⃗⃗⃗⃗ =(0,−2,−2√3), 则{n ⃗ ·PA ⃗⃗⃗⃗⃗ =−2y −2√3z =0n ⃗ ·AM ⃗⃗⃗⃗⃗⃗ =(2−2λ)x +(2λ+2)y =0, 令z =1,则y =−√3,x =(λ+1)√31−λ, 即n ⃗ =((λ+1)√31−λ,−√3,1), ∵二面角M −PA −C 为30°,∴cos30°=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ ||n ⃗⃗ |=√32, 即(λ+1)√31−λ1·√(√3·1−λ)2+3+1=√32, 解得λ=13或λ=3(舍),则平面MPA 的法向量n ⃗ =(2√3,−√3,1),PC⃗⃗⃗⃗⃗ =(0,2,−2√3), PC 与平面PAM 所成角的正弦值sinθ=|cos <PC ⃗⃗⃗⃗⃗ ,n ⃗ >|=|√3−2√3√16⋅√16|=4√316=√34.【解析】本题主要考查空间直线和平面的位置关系的应用以及二面角,线面角的求解,建立坐标系求出点的坐标,利用向量法是解决本题的关键.(1)利用线面垂直的判定定理证明PO ⊥AC ,PO ⊥OB 即可;(2)根据二面角的大小求出平面PAM 的法向量,利用向量法即可得到结论.21.【答案】证明:(1)当a =1时,函数f(x)=e x −x 2.则f′(x)=e x −2x ,令g(x)=e x −2x ,则g′(x)=e x −2,令g′(x)=0,得x =ln2.当∈(0,ln2)时,ℎ′(x)<0,当∈(ln2,+∞)时,ℎ′(x)>0,∴ℎ(x)≥ℎ(ln2)=e ln2−2⋅ln2=2−2ln2>0,∴f(x)在[0,+∞)单调递增,∴f(x)≥f(0)=1,解:(2)f(x)在(0,+∞)只有一个零点⇔方程e x −ax 2=0在(0,+∞)只有一个根, ⇔a =e x x 2在(0,+∞)只有一个根,即函数y =a 与G(x)=e x x 2的图象在(0,+∞)只有一个交点. G′(x)=e x (x−2)x 3,当x ∈(0,2)时,G′(x)<0,当∈(2,+∞)时,G′(x)>0,∴G(x)在(0,2)递增,在(2,+∞)递增,当→0时,G(x)→+∞,当→+∞时,G(x)→+∞,∴f(x)在(0,+∞)只有一个零点时,a =G(2)=e 24.【解析】(1)通过两次求导,利用导数研究函数的单调性极值与最值即可证明,(2)分离参数可得a =e xx 在(0,+∞)只有一个根,即函数y =a 与G(x)=e x x 的图象在(0,+∞)只有一个交点.结合图象即可求得a .本题考查了利用导数探究函数单调性,以及函数零点问题,考查了转化思想、数形结合思想,属于中档题.22.【答案】解:(1)曲线C 的参数方程为{x =2cosθy =4sinθ(θ为参数),转换为直角坐标方程为:y 216+x 24=1.直线l 的参数方程为{x =1+tcosαy =2+tsinα(t 为参数). 转换为直角坐标方程为:xsinα−ycosα+2cosα−sinα=0.(2)把直线的参数方程{x =1+tcosαy =2+tsinα(t 为参数), 代入椭圆的方程得到:(2+tsinα)216+(1+tcosα)24=1整理得:(4cos 2α+sin 2α)t 2+(8cosα+4sinα)t −8=0,则:t 1+t 2=−8cosα+4sinα4cos 2α+sin 2α,(由于t 1和t 2为A 、B 对应的参数)由于(1,2)为中点坐标,所以利用中点坐标公式t 1+t 22=0,则:8cosα+4sinα=0,解得:tanα=−2,即:直线l 的斜率为−2.【解析】(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用直线和曲线的位置关系,在利用中点坐标求出结果.本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线和曲线的位置关系的应用,中点坐标的应用.23.【答案】解:(1)当a=1时,f(x)=5−|x+1|−|x−2|={2x+4,x≤−1 2,−1<x<2−2x+6,x≥2.当x≤−1时,f(x)=2x+4≥0,解得−2≤x≤−1,当−1<x<2时,f(x)=2≥0恒成立,即−1<x<2,当x≥2时,f(x)=−2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[−2,3],(2)∵f(x)≤1,∴5−|x+a|−|x−2|≤1,∴|x+a|+|x−2|≥4,∴|x+a|+|x−2|=|x+a|+|2−x|≥|x+a+2−x|=|a+2|,∴|a+2|≥4,解得a≤−6或a≥2,故a的取值范围(−∞,−6]∪[2,+∞).【解析】本题考查了绝对值的不等式和绝对值的几何意义,属于中档题.(1)去绝对值,化为分段函数,求出不等式的解集即可;(2)由题意可得|x+a|+|x−2|≥4,根据据绝对值的几何意义即可求出.。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1212ii+=- 43. 55A i -- 43. 55B i -+ 34. 55C i -- 34. 55D i -+2.已知集合(){}22,3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为. 9A. 8B . 5C . 4D3.函数2()x xe ef x x--=的图象大致为4.已知向量,a b 满足1,1a a b =⋅=-,则()2a a b ⋅-=. 4A . 3B . 2C. 0D5.双曲线()222210,0x y a b a b-=>>,则其渐近线方程为. A y =. B y= . 2C y x =±. D y x = 6.在ABC ∆中,cos1,5,2C BC AC ===则AB =A BCD 7.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入. 1A i i =+ . 2B i i =+ . 3C i i =+ . 4D i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23. 在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是1.12A 1. 14B 1.C 1. 18D 9.在长方体1111ABCD A B C D -中,11,AB BC AA ===则异面直线1AD与1DB 所成角的余弦值为1. 5AB .C .2D 10.若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是.4A π.2B π3.4C π .D π-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________11.已知()f x 是定义域为(),-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=. 50A -. 0B . 2C . 50D 12.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F ∆为等腰三角形,12120F F P ∠=,则C 的离心率为2. 3A 1. 2B 1. 3C 1. 4D二、填空题(本题共4小题,每小题5分,共20分)13.曲线2ln(1)y x =+在点()0,0处的切线方程为_____________.14.若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为________.15.已知sin cos 1,cos sin 0αβαβ+=+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA 、SB 所成角的余弦值为78,SA 与圆锥底面所成角为45.若SAB ∆的面积为则该圆锥的侧面积为__________.三、解答题(共70分。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =C .2y x = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .2B 30C 29 D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA ,则异面直线1AD 与1DB 所成角的余弦值为 A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。
若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
1.(5分)(2018•新课标Ⅱ)=()A.i B. C. D.2.(5分)(2018•新课标Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A中元素的个数为()A.9 B.8 C.5 D.43.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)(2018•新课标Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.27.(5分)(2018•新课标Ⅱ)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+48.(5分)(2018•新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)(2018•新课标Ⅱ)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)(2018•新课标Ⅱ)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C. D.π11.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f (1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.5012.(5分)(2018•新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
1.(5分)(2018•新课标Ⅱ)=()A.i B.C.D.2.(5分)(2018•新课标Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A中元素的个数为()A.9 B.8 C.5 D.43.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A. B.C. D.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)(2018•新课标Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)(2018•新课标Ⅱ)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+48.(5分)(2018•新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)(2018•新课标Ⅱ)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)(2018•新课标Ⅱ)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是() A.B.C.D.π11.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.5012.(5分)(2018•新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P 在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
18年全国2卷理科数学一、选择题:本题共12小题,每小题5分,共60分。
1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果. 详解:因为渐近线方程为,所以渐近线方程为,选A.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
1.(5分)(2018•新课标Ⅱ)=()A.i B. C. D.2.(5分)(2018•新课标Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A中元素的个数为()A.9 B.8 C.5 D.43.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)(2018•新课标Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.27.(5分)(2018•新课标Ⅱ)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+48.(5分)(2018•新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)(2018•新课标Ⅱ)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)(2018•新课标Ⅱ)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C. D.π11.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.5012.(5分)(2018•新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018 年一般高等学校招生全国一致考试(新课标II 卷)理科数学本试卷 4 页, 23 小题,满分150 分.考试用时120 分钟.一、选择题:此题共12 小题,每题5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.12i()12iA .4 3 i B.4 3 i C.3 4 i D.3 4 i555555551.【分析】12i112i234i34i ,应选D.1 2i2i12i5552.已知会合A.9 2.【分析】A{( x, y) | x2y 23, x Z , y Z} ,则A中元素的个数为()B . 8C. 5D. 4A{( 1,1), ( 1,0), (1, 1), (0,1), (0,0), (0, 1),(1,1), (1,0), (1, 1)},元素的个数为9,应选 A .e x e x的图像大概为()3.函数f (x)2xy yA .1B.1O1x O1xy yC.1 D .1O1x O1xe x e xf ( x) ,即 f ( x) 为奇函数,清除A;由f (1) e1D;由3.【分析】 f ( x)20 清除x ef (4)e4 e 4 1 (e21)(e1)(e1)e1 f (1) 清除C,应选B.1616e2e e e4.已知向量a, b知足a 1 , a b1,则a(2a b)()A .4B . 3C. 2D. 04.【分析】a(2a b)2a b 2 13,应选B.2ax2y 21( a0, b0) 的离心率为 3 ,则其渐近线方程为()5.双曲线b2a2A .y2x B.y3x C.y2x D.y3 2x25.【分析】离心率c3c2 a 2b23 ,所以b2,渐近线方程为y 2 x ,应选A.ea 2a2aa6.在ABC 中,cos C5,BC1, AC5,则 AB()25A.4 2B.30C.29D.2 56.【分析】cosC 2 cos2C13,开始25由余弦定理得AB BC 2AC22BC ACcos4 2 ,N0, T0C应选 A.i17.为计算S11111,设计了右边的是i否13499100 21001程序框图,则在空白框中应填入()N Ni S N TA .i i11B .i i2T T输出 Si 1C.i i3结束D .i i47.【分析】依题意可知空白框中应填入i i2.第 1次循环:N1,T 1,i3;第 2次循环:2N 11,T11,i5;;第50 次循环:N111,T111, i101 ,结32439924100束循环得 S11111,所以选 B.1349910028.我国数学家陈景润在哥德巴赫猜想的研究中获得了世界当先的成就.哥德巴赫猜想是“每个大于 2 的偶数能够表示为两个素数的和”,如30723,在不超出30 的素数中,随机选用两个不一样的数,其和等于30的概率是()111D.1A .B.C.181214158.【分析】不超出30的素数有:2,3,5,7,11,13,17,19,23,29 ,共10个.从中选用两个不一样的数,其和等于 30的有: 7 与 23、 11与 19、 13 与 17 ,共3对.则所求概率为31,应选 C.C102159.在长方体ABCD A1B1C1 D1中,AB BC 1,AA1 3 ,则异面直线AD1与 DB1所成角的余弦值为()1552A .B.C.D.56529.【分析】成立以下图的空间直角坐标系,则 A(1,1,0) , D (1,0,3) ,D (1,0,0),B (0,1,3)11所以 AD1(0, 1, 3), DB1( 1,1,3) ,则cos AD1, DB1AD1DB125AD1DB1255C1z,B1D 1A1CByD,应选 C.Ax10.若f ( x)cos x sin x 在 [a,a] 上是减函数,则 a 的最大值是()A .B .3D .C.42410.【分析】由于f ( x)cos x sin x 2 cos( x)在区间 [3] 上是减函数,所以 a 的最大值是,,4444应选 A.11 .已知f (x)是定义域为(,) 的奇函数,满足 f (1x) f (1 x) .若 f (1) 2 ,则f (1) f ( 2) f (3) f (50)()A.50B.0C.2D.5011.【分析】由于 f (x) f ( x) ,所以 f (1 x) f (x1) ,则 f ( x1) f (x1), f ( x) 的最小正周期为T 4.又 f(1)2, f (2) f ( 0)0 , f (3) f (1)2, f (4) f (0) 0,所以f (1) f ( 2) f (3) f (50)12[ f (1) f (2) f (3) f ( 4)] f (49) f (50) f (1) f (2)2,选C.12.已知F1, F2是椭圆C :x2y 21( a b3 a2b20) 的左、右焦点,A是C的左极点,点P在过A且斜率为6的直线上,PF1F2为等腰三角形,F1F2 P 120,则 C 的离心率为()21C.11A .B.3D.32412.【分析】如图,由于PF1F2为等腰三角形,F1F2 P120 且F1F22c ,所以PF1 F2 30 ,则P的坐标为 (2c, 3c) ,故 k PA3c 3,化简得 4c a ,所以离心率 ec 1 ,应选 D .2c a6a 4yPAF 1 O F 2x二、填空题:此题共 4 小题,每题 5 分,共 20 分.13.曲线 y 2ln( x 1) 在点 (0,0) 处的切线方程为 .13.【分析】 y2y |x 02 ,则曲线 y2ln( x 1) 在点 (0,0) 处的切线方程为 y 2x .1xx 2 y 5 014.若 x, y 知足拘束条件x 2 y 3 0 ,则 z x y 的最大值为.x 514.【分析】可行域为 ABC 及其内部,当直线 yxz 经过点 B(5,4) 时, z max9 .15.已知 sin cos 1, cos sin0 ,则y sin().15.【分析】sincos2sin 22 sin cos cos 2 B 1,2cos 2sin2ACcossin2 cos sinO 0 ,5x-3则 sin 22sin coscos 2cos 2 2cos sinsin 2 011,即 2 2 sin cos2cossin1sin()1.216.已知圆锥的极点为 S ,母线 SA, SB 所成角的余弦值为7 ,与圆锥底面所成角为45 ,若SAB 的面8SA积为 5 15 ,则该圆锥的侧面积为.16.【分析】以下图,由于cos ASB 7 ,所以 sinASB15 ,S88SSAB1SA SBsin ASB15 SA 2 5 15 ,所以 SA 4 5 .216又 SA 与圆锥底面所成角为45 ,即SAO 45 ,AO则底面圆的半径 OA 210 ,圆锥的侧面积 SOA SA40 2 .B三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都一定作答.第22、 23 题为选考题,考生依据要求作答.(一)必考题:共 60 分.17.( 12 分)记 S n 为等差数列 a n 的前 n 项和,已知 a 17, S 315.( 1)求 a n 的通项公式;( 2)求 S n ,并求 S n 的最小值.17.【分析】( 1)设等差数列a n 的公差为 d ,则 由 a 1 7 , S 3 3a 1 3d 15 得 d2 ,所以 a n7 (n 1) 22n 9 ,即 a n 的通项公式为 a n 2n 9 ;( 2)由( 1)知 S nn(7 2n 9) n 2 8n ,2由于 S n (n 4)2 16 ,所以 n4 时, S n 的最小值为 16 .18.( 12 分)下列图是某地域 2000 年至 2016 年环境基础设备投资额 y (单位:亿元)的折线图.投资额240220220209200184180 171160148140 122 129120 1006053 5680353742424740192514202000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016年份为了展望该地域 2018 年的环境基础设备投资额,成立了y 与时间变量 t 的两个线性回归模型,依据 2000年至 2016 年的数据(时间变量 t 的值挨次为1,2, ,17)成立模型①: ?30.4 13.5t;依据 2010 年至 2016y年的数据(时间变量t的值挨次为 1,2,,7)成立模型②:y 99 17.5t.?( 1)分别利用这两个模型,求该地域2018 年的环境基础设备投资额的展望值;( 2)你以为哪个模型获得的展望值更靠谱?并说明原因.181t 19y 30.4 13.5 19 226.1 (亿元),.【分析】( )将代入模型①: ?所以依据模型①得该地域2018 年的环境基础设备投资额的展望值为226.1 亿元;将 t?99 17.5 9256.5 (亿元),9 代入模型②: y所以依据模型②得该地域2018 年的环境基础设备投资额的展望值为256.5 亿元.( 2)模型②获得的展望值更靠谱.原因以下:答案一:从折现图能够看出,2010 年至 2016 年的数据对应的点并无密切地均分散布在回归直线y?30.4 13.5t 的上下,2009年至2010年的环境基础设备投资额出现了显然的大幅度增添,这说明模型①不可以很好的反响环境基础设备投资额呈线性增添.而2010 年至 2016 年的数据对应的点密切的散布在回归直线 y? 99 17.5t 的邻近,这说明模型②能更好地反响环境基础设备投资额呈线性增添,所以模型②获得的展望值更靠谱.答案二:从计算结果来看,相关于2016 年的环境基础设备投资额为220 亿元,利用模型①获得的该地域2018 年的环境基础设备投资额的展望值为226.1亿元的增幅显然偏低,而利用模型②获得的该地域 2018 年的环境基础设备投资额的展望值为 256.5 亿元的增幅显然更合理,所以模型②获得的展望值更靠谱.19.( 12 分)设抛物线 C : y24x 的焦点为F,过F且斜率为 k (k 0) 的直线l与C交于 A, B 两点,AB8 .(1)求l的方程;(2)求过点A, B且与C的准线相切的圆的方程.19.【分析】( 1)焦点F为 (1,0) ,则直线 l :y k( x1) ,联立方程组y k( x1),得k 2x2( 224)x k20,yAy24x k令 A( x1 , y1 ), B( x2 , y2 ) ,则 x1x22k 241.k2,x1 x2- 1O F x依据抛物线的定义得AB x1x2 2 8 ,B 即 2k 24 6 ,解得k 1 (舍去k 1 ),k 2所以 l 的方程为y x1;( 2)设弦AB的中点为M,由( 1)知x1x2 3 ,所以M的坐标为(3,2) ,2则弦 AB 的垂直均分线为y x5,令所求圆的圆心为(m,5m) ,半径为 r ,2m5m12依据垂径定理得AB221234,r22m m由圆与准线相切得1221234 ,解得或.m m m m3m 11则所求圆的方程为:( x3) 2( y2) 216 或 ( x11) 2( y6) 214420.( 12 分)如图,在三棱锥P ABC 中,AB BC22,PA PB PC AC4, O 为 AC 的中点.( 1)证明:PO平面 ABC ;( 2)若点M在棱BC上,且二面角M PA C为30,求 PC 与平面 PAM 所成角的正弦值.20.【分析】( 1)证明:连结OB,PPA PC , O 为 AC 的中点,PO AC ,ABBC 2 2, AC 4,AB 2 BC 2AC 2,即 AB BC , OB1 AC2 ,2又 PO2 3,PB 4,则 OB 2PO 2 PB 2,即 OPOB ,AC OB O , PO 平面 ABC ;( 2)由( 1)知 OB,OC , OP 两两相互垂直, z以 O 为坐标原点成立以下图的空间直角坐标系,P则 B(2,0,0) , C(0,2,0) , A(0, 2,0) , P(0,0,2 3) ,BC ( 2,2,0) , AP(0,2,2 3), CP(0, 2,2 3)令 BMBC ,[ 0,1] .AOCy则 OMOBBC(22 ,2 ,0) , AM (22 ,22,0) ,M令平面 PAM 的法向量为 n(x, y, z) ,BxnAP2 y2 3z 0,取 x 31 ,得 n ( 31 , 31 ,1)由n AM(2 2 )x ( 22) y 0易知平面 PAC 的一个法向量为 m (1,0,0) ,所以 cosn, mn m3(1)3(1)3 ,1) 21) 2) 27 2cos302n m3( 3((1 27解得1 (舍去 3),即 n(43,2 3,2), 33 3 3n CP8 3 3 3由于 cosn, CP3.8,所以 PC 与平面 PAM 所成角的正弦值为n CP4 44321.( 12 分)已知函数 f ( x) e x ax 2 .( 1)若 a1,证明:当 x 0 时, f ( x) 1;( 2)若 f ( x) 在 (0,) 只有一个零点,求 a .21.【分析】( 1)方法 1:欲证明当 x 0 时, f ( x)令 g ( x)e x ,则 g ( x)e x (x 2 1) 2xe x2x22x 111,即证明e x 1 .2x 1(x1) 2 e x0 ,x 221则 g ( x) 为增函数, g (x) g (0) 1 ,得证.方法 2:a 1时,f ( x) e x x2,则 f ( x) e x2x ,令 f (x) g( x) ,则 g ( x)e x x [0, ln 2) 时, g (x)0 , g(所以 g( x) min g(ln 2)22ln 所以 f ( x) f (0) 1 ,2 ,x) 为减函数,x (ln 2, ) 时, g ( x)0 , g( x) 为增函数,2 0,即当x0 时, f (x)0 , f (x) 为增函数,所以 a 1 , x0 时, f (x) 1.( 2)方法1:若f ( x)在(0,) 只有一个零点,则方程e xa 只有一个实数根.x 2令 h(x)e xh( x) 的图像与直线y a 只有一个公共点.x2,等价于函数y又 h ( x)x2e x2xe x x 2 e xx4x3,x (0,2) 时, h ( x)0 , h( x) 为减函数, x (2,) 时, h ( x)0 , h( x) 为增函数,所以 h( x) min h(2)e20 时h(x), x时 h( x), x.4e2) 只有一个零点.则 a时, f ( x) 在 (0,4方法 2:若f ( x)在(0,) 只有一个零点,则方程e xax 只有一个实数根.x令 h(x)e xy h(x) 的图像与直线y ax 只有一个公共点.,等价于函数x当直线 y ax 与曲线y h(x) 相切时,设切点为(x0, e x0) ,x0又 h ( x)xe x e x x 1 e x x0 1 e x0e x0x0 2,此时a h ( x0 )e2 x 2x 2,则 h ( x0 )x02x02.4又当 x(0,1) 时, h ( x)0 , h( x) 为减函数,yx (1,) 时, h ( x)0 , h(x) 为增函数,所以 h( x) min h(1)e,且 x0 时h(x), x时 h( x).依据 y h( x) 与y ax 的图像可知,O 1 2xe2时,函数 y h(x) 的图像与直线y ax只有一个公共点,即 f ( x) 在 (0,) 只有一个零点.a4(二)选考题:共10 分.请考生在第22、 23 题中任选一题作答.假如多做,则按所做的第一题计分.22. [选修 4—4:坐标系与参数方程]( 10 分)在 直 角 坐 标 系 xOy 中 , 曲 线 C 的 参 数 方 程 为x 2 cos y( 为 参 数 ) , 直 线 l 的 参 数 方 程 为4sinx 1 t cos y2 (t 为参数 )t sin( 1)求 C 和 l 的直角坐标方程;( 2)若曲线 C 截直线 l 所得线段的中点坐标为(1,2) ,求 l 的斜率.22.【分析】( 1)消去参数,得 C 的直角坐标方程为x 2 y 2 41;16消去参数 t ,得 l 的直角坐标方程为 sin x cos y sin2 cos0 ;( l 的直角坐标方程也可写成:ytan (x 1)2() 或 x 1 .)2x 1 t cos22( 2)方法 1:将 l 的参数方程:(t 为参数 ) 代入 C : xy y 2 t sin4164 1 t cos22 t sin 216 ,即 1 3 cos2t24 2 cossint由韦达定理得 t 1t 24 2cos sin,13 cos2依题意,曲线 C 截直线 l 所得线段的中点对应t 1t 2 0 ,即 2 cossin2所以 l 的斜率为 2 .方法 2:令曲线 C 与直线 l 的交点为 A( x 1 , y 1 ), B(x 2 , y 2 ) ,x 1 2y 121416x 1 x 2 x 1x 2y 1y 2 y 1y 2则由得0 ,此中 x 1 x 22y 2 24161416所以x1x 2 y 1 y 2 0y 1 y 2 2 ,即 l 的斜率为 2 .24x 1 x 223. [选修 4—5:不等式选讲 ]( 10 分)设函数 f (x)5 x a x 2 .( 1)当 a1时,求不等式 f (x)0 的解集;( 2)若 f ( x) 1 ,求 a 的取值范围.23.【分析】( 1) a1时, f ( x)5 x 1 x 2 ,x1时, f( x) 5 x 1 x 2 2x 4 0 ,解得 2 x 1 ;1 x2 时, f ( x) 5x 1x 22 0 ,解得1 x2 ;1得:8 0 ,0 ,得 tan 2 .x 2 2, y 1 y 24 .x 2 时, f ( x) 5 x1x 22x60 ,解得2x 3,综上所述,当 a1时,不等式 f (x)0 的解集为 [2,3] .( 2)f (x)5x a x 2 1,即 x a x24,又 x a x 2 x a x 2 a 2 ,所以 a 2 4 ,等价于 a2 4 或 a24,解得 a 的取值范围为 { a | a2或 a6} .。