光纤传感器实验—径向光场强度分布
- 格式:xlsx
- 大小:8.60 KB
- 文档页数:5
实验二十六 光纤位移传感器测位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。
二、基本原理:光纤传感器是利用光纤的特性研制而成的传感器。
光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。
光纤传感器主要分为两类:功能型光纤传感器及非功能型光纤传感器(也称为物性型和结构型)。
功能型光纤传感器利用对外界信息具有敏感能力和检测功能的光纤,构成“传”和“感”合为一体的传感器。
这里光纤不仅起传光的作用,而且还起敏感作用。
工作时利用检测量去改变描述光束的一些基本参数,如光的强度、相位、偏振、频率等,它们的改变反映了被测量的变化。
由于对光信号的检测通常使用光电二极管等光电元件,所以光的那些参数的变化,最终都要被光接收器接收并被转换成光强度及相位的变化。
这些变化经信号处理后,就可得到被测的物理量。
应用光纤传感器的这种特性可以实现力,压力、温度等物理参数的测量。
非功能型光纤传感器主要是利用光纤对光的传输作用,由其他敏感元件与光纤信息传输回路组成测试系统,光纤在此仅起传输作用。
本实验采用的是传光型光纤位移传感器,它由两束光纤混合后,组成Y 形光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。
两光束混合后的端部是工作端亦称探头,它与被测体相距d ,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,如图26—1所示。
发射光接收光(a)光纤测位移工作原理 (b)Y 形光纤图26—1 Y 形光纤测位移工作原理图传光型光纤传感器位移量测是根据传送光纤之光场与受讯光纤交叉地方视景做决定。
光纤基础实验教学指导光导纤维(optical fiber),简称光纤,是一种可传导光波的玻璃纤维。
光纤在20世纪50年代首先应用于图像传输,主要在医学上用于观察人体内部。
当时用的光纤传输损耗很大,即使最透明的优质光学玻璃,损耗也达到1000dB/km。
在理论的指导下,人们不断改进光纤制造工艺,光纤的损耗已经达到2dB/km。
从而使长距离多路通信传输成为可能。
随着光纤研究的深入,人们发现某些光纤易受温度、压力、电场、和磁场等环境因素的影响,导致光强、相位、频率、偏振态和波长的变化。
光纤无需其他中介就能把待测量和光纤内的传导光联系起来,能够很容易的制成以光纤为传感媒质的传感器。
从而诞生了一门全新的光纤传感技术。
它的基本工作原理是:将稳定光源发出的光送入光纤并传输到测量现场,在测量现场的被测量对光的特性,如光的振幅、偏振态、相位、频率等进行调制,然后由同一根光纤或另一根光纤返回到光探测器,根据光特性的变化测出被测信号。
或者把光信号转化为电信号后进行测量。
光纤传感器以其高灵敏度,抗电磁干扰,可绕曲,结构简单,体积小,易于微机连接,便于遥测等优点,获得广泛应用。
本实验将学习光纤的光学特性数值孔径的测试方法、光纤的切割、耦合的理论知识和实验方法,光纤Mach-Zehnder干涉仪的原理,对温度和应变传感的测量。
一、教学目的1、掌握光纤端面制备方法和光纤端面耦合方法。
2、数值孔径的概念和测量方法。
二、教学要求1、实验三小时完成。
2、学习训练光纤端面制备技术。
3、学习掌握光纤与光源耦合技术。
4、定性观察M-Z双光纤干涉实验。
三、教学重点和难点1、重点:数值孔径的测量。
2、难点:光纤端面制备技巧。
四、讲授内容(约20分钟)1.光纤结构图1是光纤结构示意图。
它呈同心圆柱状,在折射率为n1的圆柱形纤芯外面是折射率为n2(n1>n2)的同心圆柱包层。
纤芯的作用是传导光波,包层的作用是将光波封闭在纤芯中传播。
光纤是玻璃细丝,性脆,易折断,为此在包层的外面又加上涂敷层,它一般由硅桐树脂或丙烯盐酸材料制成,可增加光纤的韧性和机械强度,防止光纤受外界损伤。
光纤传感器的测试原理
光纤传感器的测试原理是基于光的传输和衰减特性。
它通过将光纤连接到测试装置上,通过发送和接收光信号来测量和监测光纤中的物理量或环境参数。
光纤传感器测试原理的基本步骤如下:
1. 发送光信号:测试装置通过激光发射器或光源发送光信号进入光纤。
2. 光信号传输:光信号在光纤中以光的全反射方式传输,一直传播到光纤的另一端。
3. 光信号接收:接收器或光电二极管接收由光纤传输的光信号。
接收器将光信号转换为电信号。
4. 信号处理:测试装置对接收到的电信号进行处理和分析,得到与被测物理量相关的信息。
5. 结果显示:测试装置将处理后的结果显示给用户。
不同类型的光纤传感器根据测量的物理量或环境参数不同,采用的原理也有所差异。
常见的光纤传感器包括光纤光栅传感器、光纤微弯传感器、光纤光弯传感器等。
它们利用了光的干涉、散射或衍射等现象来实现对不同物理量的测量。
总体来说,光纤传感器的测试原理是基于光的传输和衰减特性,通过光信号的发送、传输、接收和信号处理等步骤来实现对物理量或环境参数的测量和监测。
光纤传感实验光纤特性的研究和应用是20世纪70年代末发展起来的一个新的领域。
光纤传感器件具有体积小、重量轻、抗电磁干扰强、防腐性好、灵敏度高等优点;用于测量压力、应变、微小折射率变化、微振动、微位移等诸多领域。
特别是光纤通信已经成为现代通信网的主要支柱。
光纤通信的发展极为迅速,新的理论和技术不断产生和发展。
因此,在大学物理实验课程中开设“光纤特性研究实验”已经成为培养现代高科技人才的必然趋势。
传感器是信息技术的三大技术之一。
随着信息技术进入新时期,传感技术也进入了新阶段。
“没有传感器技术就没有现代科学技术”的观点已被全世界所公认,因此,传感技术受到各国的重视,特别是倍受发达国家的重视,我国也将传感技术纳入国家重点发展项目。
光纤特性研究和应用是一门综合性的学科,理论性较强,知识面较广,可以激发学生对理论知识的学习兴趣,培养学生的实践动手和创新能力,光纤干涉系列实验教学的开设就显得非常重要了。
基于这个目的,我们对光纤干涉实验教学进行了初步探索,在此基础上,该实验还可以进行一些设计性及研究性实验。
一、实验目的1.学习光纤数值孔径的物理含义、光纤与光源耦合方法的原理;2.理解M—Z干涉的原理和用途;了解传感器原理;3.实测光纤压力传感器和温度传感器实验数据。
二、实验仪器激光器及电源,光纤夹具,光纤剥线钳,宝石刀,激光功率计,五位调整架,显微镜,光纤传感实验仪,CCD及显示器,等等三、实验原理1.光纤数值孔径、光纤的耦合方法(1)光纤数值孔径光纤数值孔径是描述光纤与光源、探测器和其他光学器件耦合时的特性,它的大小反映光纤收集光的能力。
数值孔径是光纤传光性质的结构参数之一,是表示光学纤维集光能力的一个参量。
光在光纤中的传播可以用全反射原理来说明。
图1 光纤剖面图光纤的基本结构如图1,它主要包括三层(工程上有时有四层或五层,图中是四层结构):1.纤芯;2.包层;3.起保护作用的涂敷层;4.较厚的保护层。
纤芯和包层的折射率分别是1n 和2n ,如图2,为了使光线在光纤中传播,纤芯的折射率(1n )必须比包层(2n )的折射率大,这样才会产生全反射。
⼤学物理实验光纤传感实验讲义光纤传感实验光纤特性的研究和应⽤是20世纪70年代末发展起来的⼀个新的领域。
光纤传感器件具有体积⼩、重量轻、抗电磁⼲扰强、防腐性好、灵敏度⾼等优点;⽤于测量压⼒、应变、微⼩折射率变化、微振动、微位移等诸多领域。
特别是光纤通信已经成为现代通信⽹的主要⽀柱。
光纤通信的发展极为迅速,新的理论和技术不断产⽣和发展。
因此,在⼤学物理实验课程中开设“光纤特性研究实验”已经成为培养现代⾼科技⼈才的必然趋势。
传感器是信息技术的三⼤技术之⼀。
随着信息技术进⼊新时期,传感技术也进⼊了新阶段。
“没有传感器技术就没有现代科学技术”的观点已被全世界所公认,因此,传感技术受到各国的重视,特别是倍受发达国家的重视,我国也将传感技术纳⼊国家重点发展项⽬。
光纤特性研究和应⽤是⼀门综合性的学科,理论性较强,知识⾯较⼴,可以激发学⽣对理论知识的学习兴趣,培养学⽣的实践动⼿和创新能⼒,光纤⼲涉系列实验教学的开设就显得⾮常重要了。
基于这个⽬的,我们对光纤⼲涉实验教学进⾏了初步探索,在此基础上,该实验还可以进⾏⼀些设计性及研究性实验。
⼀、实验⽬的1.了解光纤与光源耦合⽅法的原理;2.理解M—Z⼲涉的原理和⽤途;了解传感器原理;3.实测光纤温度传感器实验数据。
⼆、实验仪器激光器及电源,光纤夹具,光纤剥线钳,激光功率计,五位调整架,显微镜,光纤传感实验仪,CCD及显⽰器,等等三、实验原理(1)光纤的基础知识光纤的基本结构如图1,它主要包括三层(⼯程上有时有四层或五层,图中是四层结构):1.纤芯;2.包n 层;3.起保护作⽤的涂敷层;4.较厚的保护层。
纤芯和包层的折射率分别是1和2n ,如图2,为了使光线在光纤中图1.光纤剖⾯图传播,纤芯的折射率(1n )必须⽐包层(2n )的折射率⼤,这样才会产⽣全反射。
光线1以θ⾓⼊射在光纤端⾯上,光线经折射后进⼊光纤,以?⾓⼊射到纤芯和包层间的光滑界⾯上。
只要我们选择适当的⼊射⾓θ,总可以使?⾓⼤于临界⾓m ?,m ?的⼤⼩由公式)/arcsin(12n n m =?决定,使光线1在界⾯上发⽣全反射。
光纤传感器的测试原理光纤传感器是一种应用于光纤通信和光学仪器的重要组件,它能够通过测量光信号的变化来获得相关信息。
在现代科技领域中,光纤传感器已经广泛应用于环境监测、生物医学、工业自动化等领域。
本文将详细介绍光纤传感器的测试原理。
一、光纤传感器的工作原理光纤传感器通过光纤作为传输介质,将光信号引入传感器,并通过光的特性与被测物理量进行相互作用,最终将信号变化转化为光功率的变化。
常用的光纤传感器有反射型、透射型和弯曲型等。
反射型光纤传感器是通过光纤的表面反射来实现测量的。
当光信号入射到光纤表面时,会发生一部分光的反射,并沿着光纤继续传播。
当被测物理量发生变化时,如温度、压力或应力等,会改变光的传播路径,导致反射光的强度发生变化。
通过测量反射光的强度变化,即可获取被测量的物理量信息。
透射型光纤传感器则是将光信号引入光纤,在光纤的传输过程中,光信号会与被测物理量产生相应的作用。
这种作用可以改变光的强度、相位、频率或极化状态等,通过测量这些变化即可获得被测量的信息。
弯曲型光纤传感器则是利用光纤本身的弯曲灵敏性来实现测量。
当光纤弯曲时,光信号会受到弯曲部分的影响而发生损耗或偏移。
通过测量光信号的损耗或偏移情况,即可获得被测量的物理量信息。
二、光纤传感器的测试方法光纤传感器的测试方法多种多样,常见的有频域法、时域法和干涉法等。
频域法是一种基于频率或波长的测试方法,通过测量光信号的频率或波长随被测物理量变化所导致的变化,来获取被测量的信息。
这种测试方法具有灵敏度高、测量范围广的特点。
时域法则是通过测量光信号的传输时间来实现测量,常见的是利用飞行时间法和时间差法。
飞行时间法是通过测量光信号从传感器到被测物体返回的时间差,来获得被测量的信息。
时间差法则是利用光信号与参考信号之间的时间差来实现测量。
干涉法是一种基于光的干涉现象来进行测试的方法。
常见的有干涉波长选择器和干涉强度测试法。
干涉波长选择器是通过选择不同波长的光信号,使其在光纤中产生干涉现象,通过测量干涉信号的特征来获得被测量的信息。
光纤位移/压力传感特性的研究摘要:本实验主要研究LED 光源的I-P 特性,光纤纤端光场的径向分布,光纤纤端光场的轴向分布,反射式光纤位移传感,以及微弯式光纤位移传感的特性。
关键词:光纤 I-P 特性 光场分布 位移传感引言:近年来,光纤传输由于其宽频带,低消耗,重量轻,抗干扰能力强,保真度高等优点而被广泛应用于医学,装饰,汽车,船舶等诸多领域。
本实验采用控制变量的方法,定量研究光纤纤端光场的径向、轴向分布,以及反射式、微弯式光纤的位移传感特性,从而让学生更好地掌握光纤的传输特性和应用方式。
实验原理 • 原理 1、 透射调制对于多模光纤,光纤端出射光场的场强分布由下式决定(,)23/222(/)1tan 002•exp 23/222(/)1tan 00I r z Z a a c r Z a a c πζσθζσθΦ=⎡⎤+⎢⎥⎣⎦⎡⎤⎢⎥-⎢⎥⎢⎥⎡⎤+⎢⎥⎢⎥⎣⎦⎣⎦式中,0I 为由光源耦合进入发送光纤中的光强,(,)r z Φ为纤端光场中位置(,)r Z 处的光通量密度,σ为一表征光纤折射率分布的相关参数,对于阶跃光纤,1σ=,0a 为光纤芯半径,ζ为与光源种类、光源跟光纤耦合情况有关的调制参数,c θ为光纤的最大出射角。
如果将同种光纤置于发送光纤纤端出射光场中作为探测接收器时,所接收到的光强可表示为20(,)(,)exp 22()()Ir I r z r z ds ds z z s s πωω⎡⎤⎢⎥=Φ=⎰⎰⎰⎰⎢⎥⎣⎦式中3/2(/)()1tan 00z z a a c ωσζθ⎡⎤=+⎢⎥⎣⎦式中,S 为接受光面,即纤芯面。
在光纤端出射光场的远场区,为简便计,可将接收光纤端面中心点处的光强作为整个纤芯面上的平均光强,在这种近似下,得到在接受光纤终端所探测到的光强公式为20(,)exp 22()()SIr I r z z z πωω⎡⎤⎢⎥=-⎢⎥⎣⎦透射调制时,通常入射光纤面不动,而接收光纤可以作纵(横)向位移。
光纤传感器的测试原理一、光纤传感原理:光纤传感原理是指利用光纤的光学特性进行传感测量。
光纤是一种具有高折射率的细长光导纤维,可以将光信号沿着光纤传输。
光纤传感器利用光纤的两种基本工作原理进行测量:1.光纤干涉原理:通过在光纤中引入干涉现象,实现对一些物理量的测量。
光纤干涉传感器包括两种类型:尖端反射型和拉曼散射型。
尖端反射型光纤干涉传感器是将光纤的一根端面加工成一个倒置的V型结构,光信号经过该结构后在光纤内发生反射,形成干涉现象。
当目标物体与传感结构发生位移或变形时,反射光发生相位差,利用干涉现象测量相位差的变化就可以得到目标物体的位移或变形信息。
拉曼散射型光纤干涉传感器是通过对光纤中的拉曼散射信号进行分析,实现对温度、压力等物理量的测量。
当光线在光纤中传输时,会发生拉曼散射现象,该散射光的频率与介质的温度和压力相关。
通过对散射光进行分析,可以得到物理量的信息。
2.光纤光栅原理:通过在光纤中引入光栅结构,实现对一些物理量的测量。
光栅是一种光学微结构,通过在光纤的芯部或包层中引入周期性的折射率变化,形成光栅,当光信号经过光栅时,会发生光栅衍射和干涉现象,根据衍射和干涉的规律,可以测量光纤中的温度、压力等物理量。
二、光信号测量原理:光信号测量原理是指利用光纤传感器将光信号转化为电信号,通过对电信号进行分析,实现对物理量的测量。
光信号转化为电信号的过程主要有两个步骤:光信号的采集和光信号的转化。
1.光信号采集:当光信号经过光纤传感器时,会与传感器中的物理量发生相互作用,改变光信号的特性。
光纤传感器会采集这些光信号,并将其传输到信号采集设备中。
2.光信号转化:信号采集设备将采集到的光信号转化为电信号。
一种常见的转化方式是利用光电二极管将光信号转化为光电流信号,再通过电路进行放大和处理,最终得到与物理量相关的电信号。
光信号的转化过程中还需要考虑光信号的衰减和噪声的干扰。
光信号在传输过程中会发生衰减,因此需要进行补偿。
标题:强度调制大形变光纤传感器的实验研究及应用引言在当今科技发展迅速的时代,光纤传感技术已经成为一种应用十分广泛的传感技术。
其中,强度调制大形变光纤传感器作为一种重要的光纤传感器,在工业、医疗、环保等领域都有着广泛的应用前景。
本文将从实验研究和应用两个方面对强度调制大形变光纤传感器进行全面探讨。
实验研究1. 强度调制大形变光纤传感器的原理在进行实验研究之前,我们首先要了解强度调制大形变光纤传感器的原理。
强度调制大形变光纤传感器是利用光纤在光强变化时的特性来检测形变的一种传感器。
通过在光纤中引入微弯曲、拉伸等形变,可以改变光纤中光的传播路径,从而实现对形变的检测和测量。
2. 实验设计与结果分析针对强度调制大形变光纤传感器的实验研究,我们设计了一系列实验,通过改变光纤的形态和材料等因素,观察其对光强的影响,并据此得出了一系列结论。
实验结果表明,不同形态的光纤在形变时有着不同的光强响应,而不同材料的光纤在形变时也表现出了不同的特性。
这为我们进一步的应用研究提供了重要的实验基础。
3. 技术改进与创新在实验研究的基础上,我们不断进行技术改进和创新,通过引入新材料、新工艺等手段,提高了强度调制大形变光纤传感器的灵敏度和稳定性。
这为该传感器的应用提供了更加可靠的技术支撑。
应用1. 工业领域的应用在工业领域,强度调制大形变光纤传感器可以应用于机械设备的监测与控制、结构件的形变检测等方面,为工业生产提供了重要的数据支持。
由于其高灵敏度和实时性,也可以应用于危险环境下的检测与监控,为工业生产安全保驾护航。
2. 医疗领域的应用在医疗领域,强度调制大形变光纤传感器可以应用于体内医疗设备的监测与控制、疾病诊断与治疗等方面。
其高精度和无创性的特点,为医疗技术的发展提供了新的可能性。
3. 环保领域的应用在环保领域,强度调制大形变光纤传感器可以应用于水质、大气等环境因素的监测与分析,为环境保护提供了重要的数据支持。
其高灵敏度和实时性,为环境监测技术的发展提供了新的思路。
光纤传感应用综合实验GCFS-B实验讲义武汉光驰科技有限公司Wuhan Guangchi Technology Co.,LTD0 / 1目录光纤端场传感实验的理论基础 (4)实验一、LD光源的P-I,V-I特性曲线 (12)实验二、透射式横(纵)向光纤位移传感(光纤数值孔径测量) 15 实验三、反射式光纤位移传感(光纤液位测量) (22)实验四、微弯式光纤位移/压力传感 (28)实验五、光纤端场角度传感 (33)实验六、光纤温度压力传感(传光型) (37)实验七、光纤火灾预警系统实验 (40)0 / 1实验八、光纤照明实验系统设计 (45)前言光纤是20世纪70年代的重要发明之一,它与激光器、半导体探测器一起构成了新的光学技术,创造了光电子学的新天地。
光纤的出现产生了光纤通信技术,而光纤传感技术是伴随着光通信技术的发展而逐步形成的.在光通信系统中,光纤被用作远距离传输光波信号的媒质,显然,在这类应用中,光纤传输的光信号受外界干扰越小越好.但是,在实际的光传输过程中,光纤易受外界环境因素影响,如温度,压力,电磁场等外界条件的变化将引起光纤光波参数如光强,相位,频率,偏振,波长等的变化.因而,人们发现如果能测出光波参数的变化,就可以知道导致光波参数变化的各种物理量的大小,于是产生了光纤传感技术.光纤传感器始于1977年,与传统的各类传感器相比有一系列的优点,如灵敏度高,抗电磁干扰,耐腐蚀,电绝缘性好,防爆,光路有挠曲性,便于与计算机联接,结构简单,体积小,重量轻,耗电少等.光纤传感器按传感原理可分为功能型和非功能型.功能型光纤传感器是利用光纤本身的特性把光纤作为敏感元件,所以也称为传感型光纤传感器,或全光纤传感器.非功能型光纤传感器是利用其它敏感元件感受被测量的变化,光纤仅作为传输介质,传输来0 / 1自远外或难以接近场所的光信号,所以也称为传光型传感器,或混合型传感器.光纤传感器按被调制的光波参数不同又可分为强度调制光纤传感器,相位调制光纤传感器,频率调制光纤传感器,偏振调制光纤传感器和波长(颜色)调制光纤传感器.光纤传感器按被测对象的不同,又可分为光纤温度传感器,光纤位移传感器,光纤浓度传感器,光纤电流传感器,光纤流速传感器,光纤液位传感器等.光纤传感器可以探测的物理量很多,已实现的光纤传感器物理量测量达70余种.然而,无论是探测哪种物理量,其工作原理无非都是用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已调制的光信号进行检测,从而得到被测量.因此,光调制技术是光纤传感器的核心技术.鉴于以上专业背景,我们开发并研制出了光纤传感实验系统.本实验系统的开放性,分立式可以增强学生对光纤传感的感性认识,提高学生的基本技能.在实验教学过程中,从实验原理,实验内容到实验仪器,实验方法等都很适合工科物理实验的教学要求,将应用技术和基础实验很好的结合起来.本手册仅供使用光纤传感实验系统从事物理实验以及光纤传感应用的教师,学生和技术人员参考.限于作者水平,手册中谬误难免,恳请读者不吝批评指正.衷心希望在我们的共同努力下,能够推进光纤传感这一先进技术的学习和普及.0 / 1光纤端场传感实验的理论基础光纤传感器一般可分为两大类,即功能型传感器(Function fiber optic sensor)和非功能型光纤传感器(Non-function fiber optic sensor)。
实验一 光纤位移传感器实验一、实验目的了解光纤位移传感器工作原理及其性能。
二、实验内容光纤位移传感器输出电压与位移的关系实验。
三、实验仪器ZY130Fsens12SB (光电传感器实验台)主机箱 一台 光纤传移传器实验模板 一个 PSD 传感器及位移装置 一套 螺旋测微头 一个 反射面 一个 反射式光纤 一根 导线 若干四、实验原理如图是线性位移测量装置,光从光源耦合到输入光纤射向被测物体,再被反射回另一光纤,由探测器接收。
设两根光纤的距离为d ,每根光纤的直径为2a ,数值孔径为N ,如图所示,这时bd tg 2=θ由于N 1sin-=θ,所以式可以写为()Ntg d b 1sin2-=很显然,当()[]N tg d b 1sin2/-<时,即接收光纤位于光纤像的光锥之外。
两光纤的耦合为零,无反射进入接收光纤:当()[]Ntg d b 1sin2/-≥时,即接收光纤位于光锥之内,两2a光纤耦合最强,接收光纤达到最大值。
d 的最大检测范围为()N tg a 1sin/-。
如果要定量的计算光耦合系数,就必须计算出输入光纤像的发光锥体与接收锥体与接收光纤端面的交叠面积,如图所示,由于接收光纤芯径很小,常常把光锥边缘与接收光纤芯交界弧线看成是直线。
通过对交叠面简单的几何分析,不难得到交叠面积与光纤端面积之比α。
即⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=-a a a δδδπα1sin 11cos 11δ——光锥底与输入光纤芯端面交叠扇面的宽光纤发射锥与接收端面重叠面积计算示意图d tg b -⨯=θδ2三角形△ABC 面积ββcos sin a a S ⨯=ad输出光纤输入光纤扇形面积2a ⨯=β其中:()a a a /1/cos δδβ-=-=()[]a /1cossin sin 1δβ-=-输入光纤的光与光纤芯交叠面积之比()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=-=-=--a a a aS aS a δδδπβππβα1cossin 11cos 1/1/11222本实验采用的传光型光纤,它由两束光纤混合后组成,两光束混合后的端部是工作端亦称探头,它与被测体相距X ,由光源发出的光传到端部出射后再经被测体反射回来,由另一束光纤接收光信号经光电转换器转换成电量,而光电转换器的电量大小与间距X 有关,因此可用于测量位移。
实验四光纤纤端光场轴向、径向分布的测试光纤纤端光场的分布是反射式光纤传感实验的基础。
通过纤端光场的分布的测量可以给使用者以直观的印象,并且对光纤传光特性有一定的定性和定量的掌握。
同时,它的测量涉及到光纤传感器的设计、使用方法等基本问题,具有重要意义。
一、实验目的1、了解“光纤传感实验仪”的基本构造和原理,熟悉其各个部件,学习和掌握其正确使用方法;2、定性了解光纤纤端光场的分布,掌握其测量方法、步骤及计算方法;3、测量一种光纤的纤端光场分布,绘出纤端光场分布图。
二、实验仪器光纤传感实验仪主机、接收光纤、发射光纤、二维调节架。
如图a、b、c、d所示。
其中,LED-光源输出插座;PIN-光探测器输入插座;AUTO-自动步进键;PRO-编程控制键;UP、DOWN-配合PRO设定输出电流上下限;SET-设置键;UL、DL、mA、mV、mW-仪器显示状态指示灯。
(a)光纤传感实验仪主机(b)发射光纤组件(c)接收光纤组件(d)二维调节架图1 光纤传感实验仪示意图三、实验原理1.光纤纤端光场的径向分布按照光纤传输的模式理论,在光纤中光功率按模式分布。
叠加后的光纤纤端光场场强沿径向分布可近似由高斯型函数描写,称其为准高斯分布。
另外沿光纤传输的光可以近似看作平面波,此平面波在纤端出射时,可等价为平面波场垂直入射到不透明屏的圆孔表面上,形成圆孔衍射。
实际情况接近于两者的某种混合。
为分析方便起见,作以下假设:光纤端面:光场是由光强沿径向均匀分布的平面波和光强沿径向为高斯分布的高斯光束两部分构成的;出射光场:纤端出射光场由准平面波场的圆孔衍射和在自由空间中传输的准高斯光束叠加而成。
在以上假设下可推导出理论公式(1)()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-++⎪⎭⎫ ⎝⎛=2202220240222220202122020)(42exp )4()2(,ωωωλπωk z r k k z q a z kr J r a p I z r I (1)式(1)表明,纤端出射光场场强分布是由不同权重下的高斯分布和平面波场的圆孔衍射分布叠加的结果。
#### 实验目的1. 了解光纤传感技术的基本原理和操作方法。
2. 掌握光纤传感器的使用,包括光纤光栅传感器、光纤光谱仪等。
3. 学习如何通过光纤传感器测量物理量,如压力、温度、光谱等。
4. 培养实验操作技能和数据分析能力。
#### 实验原理光纤传感器是利用光纤作为传感元件,通过光纤传输光信号来实现对物理量的测量。
光纤传感器具有体积小、重量轻、抗电磁干扰、防腐性好、灵敏度高等优点,广泛应用于工业、医疗、军事等领域。
#### 实验仪器1. 光纤光栅传感器2. 光纤光谱仪3. 光功率计4. 光纤连接器5. 温度控制器6. 数据采集系统#### 实验步骤1. 光纤光栅传感器测量压力实验(1)将光纤光栅传感器固定在实验台上。
(2)调整传感器,使其处于待测压力位置。
(3)打开数据采集系统,设置采集参数。
(4)施加压力,观察传感器输出信号的变化。
(5)记录数据,分析压力与输出信号之间的关系。
2. 光纤光谱仪测量光谱实验(1)将待测物质置于光纤光谱仪的样品池中。
(2)打开光谱仪,设置光谱范围和分辨率。
(3)采集光谱数据,分析物质的光谱特性。
(4)记录数据,绘制光谱曲线。
3. 光纤光栅温度传感器测量温度实验(1)将光纤光栅温度传感器固定在实验台上。
(2)调整传感器,使其处于待测温度位置。
(3)打开数据采集系统,设置采集参数。
(4)控制温度变化,观察传感器输出信号的变化。
(5)记录数据,分析温度与输出信号之间的关系。
#### 实验结果与分析1. 光纤光栅传感器测量压力实验实验结果表明,随着压力的增加,光纤光栅传感器的输出信号也随之增加,两者呈线性关系。
这表明光纤光栅传感器可以有效地测量压力。
2. 光纤光谱仪测量光谱实验实验结果表明,待测物质的光谱特性与其化学成分和结构有关。
通过分析光谱曲线,可以了解物质的组成和性质。
3. 光纤光栅温度传感器测量温度实验实验结果表明,随着温度的升高,光纤光栅传感器的输出信号也随之增加,两者呈线性关系。
光纤位移/压力传感特性的研究摘要:本实验主要研究LED 光源的I-P 特性,光纤纤端光场的径向分布,光纤纤端光场的轴向分布,反射式光纤位移传感,以及微弯式光纤位移传感的特性。
关键词:光纤 I-P 特性 光场分布 位移传感引言:近年来,光纤传输由于其宽频带,低消耗,重量轻,抗干扰能力强,保真度高等优点而被广泛应用于医学,装饰,汽车,船舶等诸多领域。
本实验采用控制变量的方法,定量研究光纤纤端光场的径向、轴向分布,以及反射式、微弯式光纤的位移传感特性,从而让学生更好地掌握光纤的传输特性和应用方式。
实验原理 • 原理 1、 透射调制对于多模光纤,光纤端出射光场的场强分布由下式决定(,)23/222(/)1tan 002•exp 23/222(/)1tan 00I r z Z a a c r Z a a c πζσθζσθΦ=⎡⎤+⎢⎥⎣⎦⎡⎤⎢⎥-⎢⎥⎢⎥⎡⎤+⎢⎥⎢⎥⎣⎦⎣⎦式中,0I 为由光源耦合进入发送光纤中的光强,(,)r z Φ为纤端光场中位置(,)r Z 处的光通量密度,σ为一表征光纤折射率分布的相关参数,对于阶跃光纤,1σ=,0a 为光纤芯半径,ζ为与光源种类、光源跟光纤耦合情况有关的调制参数,c θ为光纤的最大出射角。
如果将同种光纤置于发送光纤纤端出射光场中作为探测接收器时,所接收到的光强可表示为20(,)(,)exp 22()()Ir I r z r z ds ds z z s s πωω⎡⎤⎢⎥=Φ=⎰⎰⎰⎰⎢⎥⎣⎦式中3/2(/)()1tan 00z z a a c ωσζθ⎡⎤=+⎢⎥⎣⎦式中,S 为接受光面,即纤芯面。
在光纤端出射光场的远场区,为简便计,可将接收光纤端面中心点处的光强作为整个纤芯面上的平均光强,在这种近似下,得到在接受光纤终端所探测到的光强公式为20(,)exp 22()()SIr I r z z z πωω⎡⎤⎢⎥=-⎢⎥⎣⎦透射调制时,通常入射光纤面不动,而接收光纤可以作纵(横)向位移。