2020版高考数学一轮复习课后限时集训16导数与函数的综合问题理新人教版
- 格式:docx
- 大小:51.82 KB
- 文档页数:7
课后限时集训(十五) 导数与函数的极值、最值(建议用时:60分钟) A 组 基础达标一、选择题1.(2018·银川三模)已知函数f (x )=cos x +a ln x 在x =π6处取得极值,则a =( )A.14 B.π4C.π12D .-π12C [∵f ′(x )=a x -sin x ,且f ′⎝ ⎛⎭⎪⎫π6=0, ∴a π6-12=0,即a =π12,故选C.] 2.(2019·东莞模拟)若x =1是函数f (x )=ax +ln x 的极值点,则( ) A .f (x )有极大值-1 B .f (x )有极小值-1 C .f (x )有极大值0D .f (x )有极小值0A [∵f (x )=ax +ln x ,x >0, ∴f ′(x )=a +1x,由f ′(1)=0得a =-1, ∴f ′(x )=-1+1x =1-xx.由f ′(x )>0得0<x <1,由f ′(x )<0得x >1, ∴f (x )在(0,1)上递增,在(1,+∞)上递减. ∴f (x )极大值=f (1)=-1,无极小值,故选A.]3.已知函数f (x )=ln x -ax 存在最大值0,则a 的值为( ) A .1 B .2 C .eD.1eD [f ′(x )=1x -a ,x >0.当a ≤0时,f ′(x )=1x-a >0恒成立,函数f (x )单调递增,不存在最大值;当a >0时,令f ′(x )=1x -a =0,解得x =1a .当0<x <1a时,f ′(x )>0,函数f (x )单调递增;当x >1a时,f ′(x )<0,函数f (x )单调递减.∴f (x )ma x =f ⎝ ⎛⎭⎪⎫1a =ln 1a -1=0,解得a =1e ,故选D.] 4.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为( )A .3B .4C .6D .5A [设圆柱的底面半径为R ,母线长为l ,则V =πR 2l =27π,∴l =27R2,要使用料最省,只需使圆柱的侧面积与下底面面积之和S 最小. 由题意,S =πR 2+2πRl =πR 2+2π·27R.∴S ′=2πR -54πR2,令S ′=0,得R =3,则当R =3时,S 最小.故选A.]5.(2018·南宁一模)设函数f (x )=-x 3+3bx ,当x ∈[0,1]时,f (x )的值域为[0,1],则b 的值是( ) A.12 B.22 C.322D.342C [∵f (x )=-x 3+3bx , ∴f ′(x )=-3x 2+3b .①当b ≤0时,x ∈[0,1]时,f (x )≤0,不合题意; ②当b >0时,由f ′(x )=0得x =±b . 由f ′(x )>0得0<x <b , 由f ′(x )<0得x >b .∴f (x )在(0,b )上为增函数,在(b ,+∞)上为减函数. 若b ≥1时,由f (1)=-1+3b =1得b =23<1矛盾,故b <1.此时f (b )=1,即-(b )3+3b b =1,解得b =322,故选C.] 二、填空题6.函数y =-e x+x 在R 上的最大值是________. -1 [由y =-e x+x 得y ′=-e x+1, 由y ′=0得x =0. 又当x <0时,y ′>0, 当x >0时,y ′<0.∴当x =0时,y 取得最大值-1.]7.设a ∈R,若函数y =e x+ax 有大于零的极值点,则实数a 的取值范围是_____. (-∞,-1) [∵y =e x+ax ,∴y ′=e x+a . ∵函数y =e x+ax 有大于零的极值点, 则方程y ′=e x +a =0有大于零的解,∵x >0时,-e x <-1,∴a =-e x<-1.]8.(2019·武汉模拟)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.⎣⎢⎡⎭⎪⎫1,32 [因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.]三、解答题9.(2018·北京高考)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x. (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. [解] (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x, 所以f ′(x )=[ax 2-(2a +1)x +2]e x.f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x=(ax -1)(x -2)e x.若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.10.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2x <,a ln x x(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.[解] (1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:故当x =0时,函数f (x )取得极小值为f (0)=0,函数f (x )的极大值点为x =3.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增.因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增,则f (x )在[1,e]上的最大值为f (e)=a .故当a ≥2时,f (x )在[-1,e]上的最大值为a ; 当a <2时,f (x )在[-1,e]上的最大值为2.B 组 能力提升1.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )A BC DC [由题意可得f ′(-2)=0,且当x <-2时,f ′(x )<0,则y =xf ′(x )>0,故排除B 和D ;当x >-2时,f ′(x )>0,所以当x ∈(-2,0)时,y =xf ′(x )<0,当x >0时,y =xf ′(x )>0,故排除A ,选C.]2.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( ) A .20 B .18 C .3D .0A [原命题等价于对于区间[-3,2]上的任意x ,都有f (x )ma x -f (x )min ≤t , ∵f ′(x )=3x 2-3,∴当x ∈[-3,-1]时,f ′(x )>0, 当x ∈[-1,1]时,f ′(x )<0, 当x ∈[1,2]时,f ′(x )>0.∴f (x )ma x =f (2)=f (-1)=1,f (x )min =f (-3)=-19.∴f (x )ma x -f (x )min =20,∴t ≥20.即t 的最小值为20.故选A.]3.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时,t 的值为________.22[设函数y =f (x )-g (x )=x 2-ln x (x >0), ∴y ′=2x -1x =2x 2-1x(x >0).∴y ′<0得0<x <22, y ′>0得x >22. ∴当x =22时函数取得最小值12+12ln 2. 即当t =22时,|MN |取得最小值.] 4.(2019·山西模拟)已知函数f (x )=ln x +ax 2+bx (其中a ,b 为常数且a ≠0)在x =1处取得极值.(1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,e]上的最大值为1,求a 的值. [解] (1)因为f (x )=ln x +ax 2+bx ,所以f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +b ,因为函数f (x )=ln x +ax 2+bx 在x =1处取得极值, 所以f ′(1)=1+2a +b =0,又a =1,所以b =-3,则f ′(x )=2x 2-3x +1x,令f ′(x )=0,得x 1=12,x 2=1.f ′(x ),f (x )随x 的变化情况如下表:所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,2,(1,+∞);单调递减区间为⎝ ⎛⎭⎪⎫12,1. (2)由(1)知f ′(x )=2ax 2-a +x +1x=ax -x -x(x >0),令f ′(x )=0,得x 1=1,x 2=12a,因为f (x )在x =1处取得极值, 所以x 2=12a≠x 1=1,当12a<0时,f (x )在(0,1)上单调递增, 在(1,e]上单调递减,所以f (x )在区间(0,e]上的最大值为f (1),令f (1)=1,解得a =-2, 当a >0时,x 2=12a>0,若12a <1时,f (x )在⎝ ⎛⎭⎪⎫0,12a ,[1,e]上单调递增,在⎣⎢⎡⎭⎪⎫12a ,1上单调递减,所以最大值可能在x =12a 或x =e 处取得,而f ⎝ ⎛⎭⎪⎫12a =ln 12a +a ⎝ ⎛⎭⎪⎫12a 2-12a (2a +1)=ln 12a -14a -1<0, 所以f (e)=ln e +a e 2-(2a +1)e =1,解得a =1e -2, 若1<12a <e 时,f (x )在区间(0,1),⎣⎢⎡⎦⎥⎤12a ,e 上单调递增,在⎣⎢⎡⎭⎪⎫1,12a 上单调递减,所以最大值可能在x =1或x =e 处取得, 而f (1)=ln 1+a -(2a +1)<0, 所以f (e)=ln e +a e 2-(2a +1)e =1, 解得a =1e -2,与1<x 2=12a<e 矛盾,当x 2=12a ≥e 时,f (x )在区间(0,1)上单调递增,在(1,e]上单调递减,所以最大值可能在x =1处取得,而f (1)=ln 1+a -(2a +1)<0,矛盾, 综上所述,a =1e -2或a =-2.。
课时分层训练(十六) 导数与函数的综合问题A 组 基础达标一、选择题1.方程x 3-6x 2+9x -10=0的实根个数是( )A .3B .2C .1D .0C [设f (x )=x 3-6x 2+9x -10,f ′(x )=3x 2-12x +9=3(x -1)(x -3),由此可知函数的极大值为f (1)=-6<0,极小值为f (3)=-10<0,所以方程x 3-6x 2+9x -10=0的实根个数为1.]2.若存在正数x 使2x(x -a )<1成立,则实数a 的取值范围是( )【导学号:79140088】A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)D [∵2x(x -a )<1,∴a >x -12x .令f (x )=x -12x ,∴f ′(x )=1+2-xln 2>0.∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1, ∴实数a 的取值范围为(-1,+∞).]3.已知y =f (x )为R 上的连续可导函数,且xf ′(x )+f (x )>0,则函数g (x )=xf (x )+1(x >0)的零点个数为( ) A .0 B .1 C .0或1D .无数个 A [因为g (x )=xf (x )+1(x >0),g ′(x )=xf ′(x )+f (x )>0,所以g (x )在(0,+∞)上单调递增,因为g (0)=1,y =f (x )为R 上的连续可导函数,所以g (x )为(0,+∞)上的连续可导函数,g (x )>g (0)=1,所以g (x )在(0,+∞)上无零点.]4.(·郑州市第一次质量预测)已知函数f (x )=x +4x ,g (x )=2x+a ,若任意x 1∈⎣⎢⎡⎦⎥⎤12,1,存在x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是( ) A .a ≤1 B .a ≥1 C .a ≤2D .a ≥2A [由题意知f (x )min ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,1≥g (x )min (x ∈[2,3]),因为f (x )min =5,g (x )min =4+a ,所以5≥4+a ,即a ≤1,故选A.]5.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为( )A .3B .4C .6D .5A [设圆柱的底面半径为R ,母线长为l ,则V =πR 2l =27π,∴l =27R2,要使用料最省,只需使圆柱的侧面积与下底面面积之和S 最小. 由题意,S =πR 2+2πRl =πR 2+2π·27R.∴S ′=2πR -54πR2,令S ′=0,得R =3,则当R =3时,S 最小.故选A.]二、填空题6.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中所有具有M 性质的函数的序号为________. ①f (x )=2-x;②f (x )=3-x;③f (x )=x 3; ④f (x )=x 2+2.①④ [设g (x )=e xf (x ). 对于①,g (x )=e x·2-x(x ∈R ),g ′(x )=e x ·2-x -e x ·2-x ·ln 2=(1-ln 2)·e x ·2-x >0,∴函数g (x )在R 上单调递增,故①中f (x )具有M 性质. 对于②,g (x )=e x·3-x(x ∈R ),g ′(x )=e x ·3-x -e x ·3-x ·ln 3=(1-ln 3)·e x ·3-x <0,∴函数g (x )在R 上单调递减,故②中f (x )不具有M 性质. 对于③,g (x )=e x·x 3(x ∈R ),g ′(x )=e x ·x 3+e x ·3x 2=(x +3)·e x ·x 2,当x <-3时,g ′(x )<0,g (x )单调递减,故③中f (x )不具有M 性质. 对于④,g (x )=e x·(x 2+2)(x ∈R ),g ′(x )=e x ·(x 2+2)+e x ·2x =(x 2+2x +2)·e x=[(x +1)2+1]·e x>0,∴函数g (x )在R 上单调递增,故④中f (x )具有M 性质. 综上,具有M 性质的函数的序号为①④.]7.(·江苏高考)已知函数f (x )=x 3-2x +e x-1ex ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.【导学号:79140089】⎣⎢⎡⎦⎥⎤-1,12 [因为f (-x )=(-x )3-2(-x )+e -x -1e -x=-x 3+2x -e x+1e x =-f (x ),所以f (x )=x 3-2x +e x-1e x 是奇函数.因为f (a -1)+f (2a 2)≤0,所以f (2a 2)≤-f (a -1),即f (2a 2)≤f (1-a ).因为f ′(x )=3x 2-2+e x +e -x ≥3x 2-2+2e x ·e -x =3x 2≥0, 所以f (x )在R 上单调递增, 所以2a 2≤1-a ,即2a 2+a -1≤0, 所以-1≤a ≤12.]8.若函数f (x )=2x +sin x 对任意的m ∈[-2,2],f (mx -3)+f (x )<0恒成立,则x 的取值范围是________.(-3,1) [因为f (x )是R 上的奇函数,f ′(x )=2+cos x >0,则f (x )在定义域内为增函数,所以f (mx -3)+f (x )<0可变形为f (mx -3)<f (-x ), 所以mx -3<-x ,将其看作关于m 的一次函数, 则g (m )=x ·m -3+x ,m ∈[-2,2], 可得若m ∈[-2,2]时,g (m )<0恒成立. 则g (2)<0,g (-2)<0,解得-3<x <1.]三、解答题9.已知函数f (x )=e x+ax -a (a ∈R 且a ≠0).(1)若f (0)=2,求实数a 的值,并求此时f (x )在[-2,1]上的最小值; (2)若函数f (x )不存在零点,求实数a 的取值范围.[解] (1)由f (0)=1-a =2,得a =-1.易知f (x )在[-2,0)上单调递减,在(0,1]上单调递增,所以当x =0时,f (x )在[-2,1]上取得最小值2. (2)f ′(x )=e x+a ,由于e x>0. ①当a >0时,f ′(x )>0,f (x )是增函数, 当x >1时,f (x )=e x +a (x -1)>0.当x <0时,取x =-1a,则f ⎝ ⎛⎭⎪⎫-1a <1+a ⎝ ⎛⎭⎪⎫-1a -1=-a <0.所以函数f (x )存在零点,不满足题意.②当a <0时,f ′(x )=e x+a , 令f ′(x )=0,得x =ln(-a ).在(-∞,ln(-a ))上,f ′(x )<0,f (x )单调递减, 在(ln(-a ),+∞)上,f ′(x )>0,f (x )单调递增, 所以当x =ln(-a )时,f (x )取最小值. 函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是-e 2<a <0. 10.(·合肥一检)已知函数f (x )=2a -x2ex (a ∈R ).(1)求函数f (x )的单调区间;(2)若任意x ∈[1,+∞),不等式f (x )>-1恒成立,求实数a 的取值范围. [解] (1)f ′(x )=x 2-2x -2aex,当a ≤-12时,x 2-2x -2a ≥0,故f ′(x )≥0,∴函数f (x )在(-∞,+∞)上单调递增,∴当a ≤-12时,函数f (x )的单调递增区间为(-∞,+∞),无单调递减区间.当a >-12时,令x 2-2x -2a =0⇒x 1=1-2a +1,x 2=1+2a +1,列表由表可知,当a >-2时,函数f (x )的单调递增区间为(-∞,1-2a +1)和(1+2a +1,+∞),单调递减区间为(1-2a +1,1+2a +1).(2)∵f (x )>-1⇔2a -x 2e x >-1⇔2a >x 2-e x,∴由条件2a >x 2-e x,对任意x ≥1成立. 令g (x )=x 2-e x ,h (x )=g ′(x )=2x -e x, ∴h ′(x )=2-e x,当x ∈[1,+∞)时,h ′(x )=2-e x≤2-e <0,∴h (x )=g ′(x )=2x -e x在[1,+∞)上单调递减, ∴h (x )=2x -e x≤2-e <0,即g ′(x )<0, ∴g (x )=x 2-e x在[1,+∞)上单调递减, ∴g (x )=x 2-e x≤g (1)=1-e ,故f (x )>-1在[1,+∞)上恒成立,只需2a >g (x )max =1-e , ∴a >1-e 2,即实数a 的取值范围是⎝ ⎛⎭⎪⎫1-e 2,+∞. B 组 能力提升11.(·山东省实验中学诊断)若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( )A .3f (1)<f (3)B .3f (1)>f (3)C .3f (1)=f (3)D .f (1)=f (3)B [由于f (x )>xf ′(x ),则⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2<0恒成立,因此f (x )x 在R 上是单调递减函数, 所以f (3)3<f (1)1,即3f (1)>f (3).]12.方程f (x )=f ′(x )的实数根x 0叫作函数f (x )的“新驻点”,如果函数g (x )=ln x 的“新驻点”为a ,那么a 满足( ) A .a =1 B .0<a <1 C .2<a <3D .1<a <2D [∵g ′(x )=1x ,∴ln x =1x.设h (x )=ln x -1x,则h (x )在(0,+∞)上为增函数.又∵h (1)=-1<0,h (2)=ln 2-12=ln 2-ln e >0,∴h (x )在(1,2)上有零点,∴1<a <2.]13.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是________.【导学号:79140090】(-∞,-2) [当a =0时,显然f (x )有两个零点,不符合题意. 当a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,解得x 1=0,x 2=2a.当a >0时,2a>0,所以函数f (x )=ax 3-3x 2+1在(-∞,0)和⎝ ⎛⎭⎪⎫2a ,+∞上为增函数,在⎝⎛⎭⎪⎫0,2a 上为减函数,因为f (x )存在唯一零点x 0,且x 0>0,则f (0)<0,即1<0,不成立.当a <0时,2a<0,所以函数f (x )=ax 3-3x 2+1在⎝ ⎛⎭⎪⎫-∞,2a 和(0,+∞)上为减函数,在⎝ ⎛⎭⎪⎫2a,0上为增函数,因为f (x )存在唯一零点x 0,且x 0>0,则f ⎝ ⎛⎭⎪⎫2a >0,即a ·8a 3-3·4a 2+1>0,解得a >2或a <-2,又因为a <0,故a 的取值范围为(-∞,-2).]14.已知函数f (x )=ex -m-x ,其中m 为常数.(1)若对任意x ∈R 有f (x )≥0恒成立,求m 的取值范围; (2)当m >1时,判断f (x )在[0,2m ]上零点的个数,并说明理由. [解] (1)依题意,可知f ′(x )=e x -m-1,令f ′(x )=0,得x =m . 故当x ∈(-∞,m )时,e x -m<1,f ′(x )<0,f (x )单调递减;当x ∈(m ,+∞)时,ex -m>1,f ′(x )>0,f (x )单调递增.故当x =m 时,f (m )为极小值也是最小值. 令f (m )=1-m ≥0,得m ≤1,即对任意x ∈R ,f (x )≥0恒成立时,m 的取值范围是(-∞,1]. (2)f (x )在[0,2m ]上有两个零点,理由如下: 当m >1时,f (m )=1-m <0.∵f (0)=e -m>0,f (0)·f (m )<0,且f (x )在(0,m )上单调递减. ∴f (x )在(0,m )上有一个零点. 又f (2m )=e m-2m ,令g (m )=e m-2m ,则g ′(m )=e m-2,∵当m >1时,g ′(m )=e m-2>0, ∴g (m )在(1,+∞)上单调递增.∴g (m )>g (1)=e -2>0,即f (2m )>0. ∴f (m )·f (2m )<0,∴f (x )在(m,2m )上有一个零点. 故f (x )在[0,2m ]上有两个零点.。
课时跟踪检测(十六) 函数与导数的综合问题1.已知函数f (x )=ln x +1ax -1a(a ∈R 且a ≠0).(1)讨论函数f (x )的单调性;(2)当x ∈⎣⎢⎡⎦⎥⎤1e ,e 时,试判断函数g (x )=(ln x -1)e x+x -m 的零点个数.解:(1)f ′(x )=ax -1ax 2(x >0), 当a <0时,f ′(x )>0恒成立,函数f (x )在(0,+∞)上单调递增; 当a >0时,由f ′(x )=ax -1ax 2>0,得x >1a, 由f ′(x )=ax -1ax 2<0,得0<x <1a, ∴函数f (x )在⎝ ⎛⎭⎪⎫1a,+∞上单调递增,在⎝⎛⎭⎪⎫0,1a 上单调递减.综上所述,当a <0时,函数f (x )在(0,+∞)上单调递增;当a >0时,函数f (x )在⎝ ⎛⎭⎪⎫1a,+∞上单调递增,在⎝⎛⎭⎪⎫0,1a 上单调递减.(2)当x ∈⎣⎢⎡⎦⎥⎤1e ,e 时,函数g (x )=(ln x -1)e x+x -m 的零点个数,等价于方程(ln x -1)e x+x =m 的根的个数.令h (x )=(ln x -1)e x+x ,则h ′(x )=⎝ ⎛⎭⎪⎫1x+ln x -1e x+1.由(1)知当a =1时,f (x )=ln x +1x -1在⎝ ⎛⎭⎪⎫1e ,1上单调递减,在(1,e)上单调递增, ∴当x ∈⎣⎢⎡⎦⎥⎤1e ,e 时,f (x )≥f (1)=0.∴1x +ln x -1≥0在x ∈⎣⎢⎡⎦⎥⎤1e ,e 上恒成立. ∴h ′(x )=⎝ ⎛⎭⎪⎫1x+ln x -1e x+1≥0+1>0,∴h (x )=(ln x -1)e x+x 在x ∈⎣⎢⎡⎦⎥⎤1e ,e 上单调递增,∴h (x )min =h ⎝ ⎛⎭⎪⎫1e =-2e 1e +1e ,h (x )max =h (e)=e. ∴当m <-2e 1e+1e 或 m >e 时,函数g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上没有零点;当-2e 1e+1e ≤m ≤e 时,函数g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有一个零点. 2.已知函数f (x )=x e x. (1)求f (x )的单调区间与极值;(2)是否存在实数a 使得对于任意的x 1,x 2∈(a ,+∞),且x 1<x 2,恒有f x 2-f ax 2-a>f x 1-f ax 1-a成立?若存在,求a 的取值范围,若不存在,请说明理由.解:(1)因为f (x )=x e x, 所以f ′(x )=(x +1)e x . 令f ′(x )=0,得x =-1.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞),f (x )有极小值f (-1)=-1e,无极大值.(2)存在满足题意的实数a .理由如下:令g (x )=f x -f a x -a =x e x -a e ax -a(x >a ),则f x 2-f a x 2-a >f x 1-f a x 1-a等价于g (x )在(a ,+∞)上单调递增.又g ′(x )=x 2-ax -ax +a eax -a2,记h (x )=(x 2-ax -a )e x+a e a,则h ′(x )=[x 2+(2-a )x -2a ]e x =(x +2)·(x -a )e x,故当a ≥-2,且x >a 时,h ′(x )>0,h (x )在(a ,+∞)上单调递增.故h (x )>h (a )=0,从而g ′(x )>0,g (x )在(a ,+∞)上单调递增,满足题意; 另一方面,当a <-2,且a <x <-2时,h ′(x )<0,h (x )在(a ,-2)上单调递减. 故h (x )<h (a )=0,从而g ′(x )<0,g (x )在(a ,-2)上单调递减,不满足题意. 所以a 的取值范围为[-2,+∞).3.已知函数f (x )=e x+ax +b (a ,b ∈R)在x =0处的导数值为0. (1)求实数a 的值;(2)若f (x )有两个零点x 1,x 2,且x 1<x 2,(ⅰ)求实数b 的取值范围; (ⅱ)证明:x 1+x 2<0.解:(1)因为f ′(x )=e x +a ,所以f ′(0)=e 0+a =1+a , 又f ′(0)=0,所以a =-1.(2)(ⅰ)因为f (x )=e x -x +b ,所以f ′(x )=e x-1. 当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减; 当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )在x =0处取得极小值,也是最小值,且f (0)=1+b . 因为f (x )有两个零点x 1,x 2, 所以f (0)=1+b <0,所以b <-1, 即实数b 的取值范围是(-∞,-1). (ⅱ)证明:因为f (x 1)=0,f (x 2)=0, 所以e x 1-x 1+b =0 ①,e x2-x 2+b =0 ②,由②-①得e x 2-e x 1=x 2-x 1,即e x 1 (e x 2-x1-1)=x 2-x 1. 令x 2-x 1=t ,t >0,则e x 1 (e t-1)=t , 所以e x1=te t -1,e x2=t e te t -1.要证x 1+x 2<0,只需证e x 1e x2<1,即证t e t -1·t e te t -1<1,即证t 2e t<(e t -1)2,即证t 2e t -(e t )2+2e t-1<0. 令m (t )=t 2e t-(e t )2+2e t-1, 则m ′(t )=e t (t 2+2t +2-2e t).令n (t )=t 2+2t +2-2e t ,则n ′(t )=2t +2-2e t.设φ(t )=2t +2-2e t,则当t >0时,φ′(t )=2-2e t<0, 所以当t >0时,φ(t )单调递减,因为φ(0)=0,所以当t >0时,φ(t )<0,则n ′(t )<0, 所以当t >0时,n (t )单调递减,又n (0)=0,所以当t >0时,n (t )<0,则m ′(t )<0, 所以当t >0时,m (t )单调递减, 因为m (0)=0,所以当t >0时,m (t )<0. 综上可知,原式得证.4.若对任意实数k ,b 都有函数y =f (x )+kx +b 的图象与直线y =kx +b 相切,则称函数f (x )为“恒切函数”,设函数g (x )=a e x-x -pa ,a ,p ∈R.(1)讨论函数g (x )的单调性;(2)已知函数g (x )为“恒切函数”. ①求实数p 的取值范围;②当p 取最大值时,若函数h (x )=g (x )e x-m 为“恒切函数”,求证:0≤m <316.(参考数据:e 3≈20) 解:(1)g ′(x )=a e x-1,当a ≤0时,g ′(x )<0恒成立,函数g (x )在R 上单调递减;当a >0时,由g ′(x )>0,得x >-ln a ;由g ′(x )<0,得x <-ln a , 所以函数g (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增. 综上,当a ≤0时,函数g (x )在R 上单调递减;当a >0时,函数g (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增.(2)①若函数f (x )为“恒切函数”,则函数y =f (x )+kx +b 的图象与直线y =kx +b 相切,设切点为(x 0,y 0),则f ′(x 0)+k =k 且f (x 0)+kx 0+b =kx 0+b ,即f ′(x 0)=0,f (x 0)=0.因为函数g (x )为“恒切函数”,所以存在x 0,使得g ′(x 0)=0,g (x 0)=0,即⎩⎨⎧a e 0x -x 0-pa =0,a e 0x-1=0,解得a =e-x >0,p =ex (1-x 0).设m (x )=e x(1-x ),则m ′(x )=-x e x,由m ′(x )<0,得x >0;由m ′(x )>0,得x <0,故函数m (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减, 从而m (x )max =m (0)=1,故实数p 的取值范围为(-∞,1].②证明:由①知当p 取最大值时,p =1,a =1, 故h (x )=(e x-x -1)e x-m , 则h ′(x )=(2e x-x -2)e x. 因为函数h (x )为“恒切函数”, 故存在x 0,使得h ′(x 0)=0,h (x 0)=0, 由h ′(x 0)=0,得(2ex -x 0-2)ex =0,即2ex -x 0-2=0.设n (x )=2e x-x -2,则n ′(x )=2e x-1,由n ′(x )>0,得x >-ln 2;由n ′(x )<0,得x <-ln 2,故n (x )在(-∞,-ln 2)上单调递减,在(-ln 2,+∞)上单调递增. 在单调递增区间(-ln 2,+∞)上,n (0)=0,故x 0=0,则由h (x 0)=0,得m =0.在单调递减区间(-∞,-ln 2)上,n (-2)=2e -2>0,n ⎝ ⎛⎭⎪⎫-32=2e -32-12≈2×(20)-12-12=15-12<0,故在区间⎝ ⎛⎭⎪⎫-2,-32上存在唯一的x 0,使得2e 0x -x 0-2=0,即e 0x=x 0+22,此时由h (x 0)=0,得m =(e 0x -x 0-1)ex =⎝⎛⎭⎪⎫x 0+22-x 0-1·x 0+22=-14x 0(x 0+2)=-14(x 0+1)2+14,因为函数r (x )=-14(x +1)2+14在⎝ ⎛⎭⎪⎫-2,-32上单调递增,且r (-2)=0,r ⎝ ⎛⎭⎪⎫-32=316,所以0<m <316.综上,0≤m <316.。
课后限时集训(一) 集 合(建议用时:40分钟) A 组 基础达标一、选择题1.(2018·全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2}D .{0,1,2}C [由题意知,A ={x |x ≥1},则A ∩B ={1,2}.]2.(2019·惠州一调)已知集合U ={-1,0,1},A ={x |x =m 2,m ∈U },则∁U A =( ) A .{0,1} B .{-1,0,1} C .∅D .{-1}D [∵A ={x |x =m 2,m ∈U }={0,1},∴∁U A ={-1},故选D.] 3.设集合A ={x ||x |<1},B ={x |x (x -3)<0},则A ∪B =( ) A .(-1,0) B .(0,1) C .(-1,3) D .(1,3)C [由题意得,A ={x |-1<x <1},B ={x |0<x <3},则A ∪B ={x |-1<x <3}=(-1,3).故选C.]4.已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =2x +1},则A ∩B 中元素的个数为( ) A .3 B .2 C .1D .0B [由⎩⎪⎨⎪⎧x 2+y 2=1,y =2x +1,得5x 2+4x =0,解得⎩⎪⎨⎪⎧x =0,y =1,或⎩⎪⎨⎪⎧x =-45,y =-35,故集合A ∩B 中有2个元素,故选B.]5.已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ) A .A ∩B =∅ B .A ∪B =R C .B ⊆AD .A ⊆BB [集合A ={x |x >2或x <0},所以A ∪B ={x |x >2或x <0}∪{x |-5<x <5}=R ,故选B.]6.已知集合A ={-1,0,1},B ={x |x 2-3x +m =0},若A ∩B ={0},则B 的子集有( ) A .2个 B .4个 C .8个D .16个B [∵A ∩B ={0}, ∴0∈B ,∴m =0,∴B ={x |x 2-3x =0}={0,3}. ∴B 的子集有22=4个.故选B.]7.已知集合A ={x |log 2 x <1},B ={x |0<x <c },若A ∪B =B ,则c 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,2]D .[2,+∞)D [∵A ∪B =B ,∴A ⊆B .又A ={x |log 2 x <1}={x |0<x <2},B ={x |0<x <c },∴c ≥2,即c 的取值范围是[2,+∞).] 二、填空题8.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值是________. -32 [∵3∈A ,∴m +2=3或2m 2+m =3, 即m =1或m =-32,又当m =1时,m +2=2m 2+m ,不合题意,故m =-32.]9.设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,全集U =R ,则∁U (A ∩B )=________.(-∞,-2)∪[1,+∞) [∵4-x 2≥0, ∴-2≤x ≤2,∴A =[-2,2]. ∵1-x >0,∴x <1,∴B =(-∞,1), 因此A ∩B =[-2,1),于是∁U (A ∩B )=(-∞,-2)∪[1,+∞).]10.(2019·合肥质检)已知集合A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R 12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是________.[1,+∞) [要使A ∩B ≠∅,只需⎩⎪⎨⎪⎧12a ≤2a -1,2a -1≥1,解得a ≥1.]B 组 能力提升1.(2019·日照调研)集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是( ) A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}B [易知A =(-1,2),B =(-∞,1), ∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.]2.(2018·广州一模)设集合A =⎩⎨⎧⎭⎬⎫x x +3x -1<0,B ={x |x ≤-3},则集合{x |x ≥1}=( ) A .A ∩B B .A ∪B C .(∁R A )∪(∁R B )D .(∁R A )∩(∁R B )D [集合A =⎩⎨⎧⎭⎬⎫x x +3x -1<0={x |(x +3)(x -1)<0}={x |-3<x <1},B ={x |x ≤-3},A ∪B ={x |x <1},则集合{x |x ≥1}=(∁R A )∩(∁R B ),选D.]3.集合A ={x |x <0},B ={x |y =lg[x (x +1)]}.若A -B ={x |x ∈A ,且x ∉B },则A -B =________.[-1,0) [由x (x +1)>0,得x <-1或x >0, ∴B =(-∞,-1)∪(0,+∞), ∴A -B =[-1,0).]4.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么k 是A 的一个“单一元”,给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“单一元”的集合共有________个.6 [符合题意的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.]课后限时集训(二) 命题及其关系、充分条件与必要条件(建议用时:40分钟) A 组 基础达标一、选择题1.已知a ,b ∈R,命题“若ab =2,则a 2+b 2≥4”的否命题是( ) A .若ab ≠2,则a 2+b 2≤4 B .若ab =2,则a 2+b 2≤4 C .若ab ≠2,则a 2+b 2<4 D .若ab =2,则a 2+b 2<4C [因为将原命题的条件和结论同时否定之后,可得到原命题的否命题,所以命题“若ab =2,则a 2+b 2≥4”的否命题是“若ab ≠2,则a 2+b 2<4”,故选C.]2.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是( ) A .3 B .2 C .1D .0C [原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数,”显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.] 3.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( ) A .若x +y 是偶数,则x 与y 不都是偶数 B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数 C [“都是”的否定是“不都是”,故选C.]4.(2019·佛山模拟)已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件B [由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.]5.下面四个条件中,使a >b 成立的充分而不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2D .a 3>b 3A [a >b +1⇒a >b ,但反之未必成立,故选A.]6.(2019·山师大附中模拟)设a ,b 是非零向量,则a =2b 是a |a |=b|b |成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件B [由a =2b 可知:a ,b 方向相同,a |a |,b |b |表示a ,b 方向上的单位向量,所以a |a |=b|b |成立;反之不成立.故选B.]7.若x >2m 2-3是-1<x <4的必要不充分条件,则实数m 的取值范围是( ) A .[-3,3]B .(-∞,-3]∪[3,+∞)C .(-∞,-1]∪[1,+∞)D .[-1,1]D [∵x >2m 2-3是-1<x <4的必要不充分条件,∴(-1,4)⊆(2m 2-3,+∞),∴2m 2-3≤-1,解得-1≤m ≤1,故选D.] 二、填空题8.直线x -y -k =0与圆(x -1)2+y 2=2有两个不同交点的充要条件是_______.k ∈(-1,3) [直线x -y -k =0与圆(x -1)2+y 2=2有两个不同交点等价于|1-0-k |2<2,解之得-1<k <3.] 9.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题; ③“若x 2<4,则-2<x <2”的逆否命题.其中真命题的序号是________.②③ [①原命题的否命题为“若a ≤b ,则a 2≤b 2”,错误. ②原命题的逆命题为“若x ,y 互为相反数,则x +y =0”,正确. ③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”,正确.] 10.设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.若p是q 的必要不充分条件,则实数a 的取值范围是________. (1,2] [因为p 是q 的必要不充分条件,即q ⇒p 但pq ,设A ={x |p (x )},B ={x |q (x )},则B A ,又B =(2,3],当a >0时,A =(a,3a );当a <0时,A =(3a ,a ), 所以当a >0时,有⎩⎪⎨⎪⎧a ≤2,3<3a ,解得1<a ≤2;当a <0时,显然A ∩B =∅,不合题意. 综上所述,实数a 的取值范围是(1,2].]B 组 能力提升1.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,“攻破楼兰”是“返回家乡”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件B [“不破楼兰终不还”的逆否命题为:“若返回家乡,则攻破楼兰”,所以“攻破楼兰”是“返回家乡”的必要条件.]2.(2019·广东七校联考)下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1” B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .命题“∃x ∈R,使得x 2+x +1<0”的否定是“∀x ∈R,均有x 2+x +1<0” D .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题D [A 中,命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,故A 不正确;B 中,由x 2-5x -6=0,解得x =-1或x =6,所以“x =-1”是“x 2-5x -6=0”的充分不必要条件,故B 不正确;C 中,“∃x ∈R ,使得x 2+x +1<0”的否定是“∀x ∈R ,均有x 2+x +1≥0”,故C 不正确;D 中,命题“若x =y ,则sin x =sin y ”为真命题,因此其逆否命题为真命题,故D 正确,故选D.]3.已知数列{a n }的前n 项和S n =Aq n+B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件B [若A =-B =0,则S n =0,数列{a n }不是等比数列;若数列{a n }是等比数列,则由a 1=Aq+B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2及a 3a 2=a 2a 1得A =-B ,故选B.]4.(2019·山西五校联考)已知p :(x -m )2>3(x -m )是q :x 2+3x -4<0的必要不充分条件,则实数m 的取值范围为________.(-∞,-7]∪[1,+∞) [p 对应的集合A ={x |x <m 或x >m +3},q 对应的集合B ={x |-4<x <1},由p 是q 的必要不充分条件可知B A ,所以m ≥1或m +3≤-4,即m ≥1或m ≤-7.]课后限时集训(三) 简单的逻辑联结词、全称量词与存在量词(建议用时:60分钟) A 组 基础达标一、选择题1.已知p :∃x 0∈R,3x 0<x 30,那么綈p 为( ) A .∀x ∈R,3x <x 3B .∃x 0∈R,3x 0>x 30 C .∀x ∈R,3x ≥x 3D .∃x 0∈R,3x 0≥x 30C [因为特称命题的否定为全称命题,所以綈p :∀x ∈R,3x ≥x 3,故选C.]2.(2019·广西模拟)在一次跳高比赛前,甲、乙两名运动员各试跳了一次.设命题p 表示“甲的试跳成绩超过2米”,命题q 表示“乙的试跳成绩超过2米”,则命题p ∨q 表示( ) A .甲、乙两人中恰有一人的试跳成绩没有超过2米 B .甲、乙两人中至少有一人的试跳成绩没有超过2米 C .甲、乙两人中两人的试跳成绩都没有超过2米 D .甲、乙两人中至少有一人的试跳成绩超过2米D [∵命题p 表示“甲的试跳成绩超过2米”,命题q 表示“乙的试跳成绩超过2米”,∴命题p ∨q 表示“甲、乙两人中至少有一人的试跳成绩超过2米”,故选D.] 3.(2019·武汉模拟)已知命题p :实数的平方是非负数,则下列结论正确的是( ) A .命题綈p 是真命题 B .命题p 是特称命题 C .命题p 是全称命题D .命题p 既不是全称命题也不是特称命题 C [该命题是全称命题且是真命题.故选C.]4.命题p :∀x ∈R,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)D [因为命题p :∀x ∈R,ax 2+ax +1≥0,所以命题綈p :∃x 0∈R,ax 20+ax 0+1<0,则a <0或⎩⎪⎨⎪⎧a >0,Δ=a 2-4a >0,解得a <0或a >4.]5.(2019·太原模拟)已知命题p :∃x 0∈R,x 20-x 0+1≥0;命题q :若a <b ,则1a >1b,则下列为真命题的是( ) A .p ∧q B .p ∧綈q C .綈p ∧qD .綈p ∧綈qB [对于命题p ,当x 0=0时,1≥0成立,所以命题p 为真命题,命题綈p 为假命题;对于命题q ,当a =-1,b =1时,1a <1b,所以命题q 为假命题,命题綈q 为真命题,所以p ∧綈q为真命题,故选B.] 6.给出下列四个命题: ①∃x 0∈R,ln(x 20+1)<0; ②∀x >2,x 2>2x;③∀α,β∈R,sin(α-β)=sin α-sin β;④若q 是綈p 成立的必要不充分条件,则綈q 是p 成立的充分不必要条件. 其中真命题的个数为( ) A .1 B .2 C .3D .4A [由于∀x ∈R ,y =ln(x 2+1)≥ln 1=0,故①错;令x =4,则x 2=2x=16,故②错;③应为∀α,β∈R ,sin(α-β)=sin αcos β-cos αsin β,故③错;④若q 是綈p 成立的必要不充分条件,则p 是綈q 成立的必要不充分条件,则綈q 是p 成立的充分不必要条件,故④正确.其中真命题的个数为1.故选A.]7.已知p :∃x 0∈R,mx 20+1≤0;q :∀x ∈R,x 2+mx +1>0.若“p ∨q ”为假命题,则实数m 的取值范围是( ) A .[2,+∞) B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2]A [依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0; 当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此由p ,q 均为假命题,得 ⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.]二、填空题8.若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.1 [∵函数y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上是增函数,∴y max =tan π4=1.依题意,m ≥y max ,即m ≥1. ∴m 的最小值为1.]9.已知命题“∀x ∈R,x 2-5x +152a >0”的否定为假命题,则实数a 的取值范围是________.⎝ ⎛⎭⎪⎫56,+∞ [由“∀x ∈R,x 2-5x +152a >0”的否定为假命题,可知原命题必为真命题,即不等式x 2-5x +152a >0对任意实数x 恒成立.设f (x )=x 2-5x +152a ,则其图象恒在x 轴的上方,故Δ=25-4×152a <0,解得a >56,即实数a 的取值范围为⎝ ⎛⎭⎪⎫56,+∞.] 10.已知命题p :x 2+2x -3>0;命题q :13-x >1,若“(綈q )∧p ”为真,则x 的取值范围是________.(-∞,-3)∪(1,2]∪[3,+∞) [因为“(綈q )∧p ”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q 为假命题时,有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3, 所以x 的取值范围是(-∞,-3)∪(1,2]∪[3,+∞).]B 组 能力提升1.设命题p :若定义域为R 的函数f (x )不是偶函数,则∀x ∈R,f (-x )≠f (x ).命题q :f (x )=x |x |在(-∞,0)上是减函数,在(0,+∞)上是增函数.则下列判断错误的是( ) A .p 为假命题 B .綈q 为真命题 C .p ∨q 为真命题D .p ∧q 为假命题C [函数f (x )不是偶函数,仍然可∃x ∈R,使得f (-x )=f (x ),p 为假命题;f (x )=x |x |=⎩⎪⎨⎪⎧x 2x,-x 2x <在R 上是增函数,q 为假命题.所以p ∨q 为假命题,故选C.]2.不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1.其中的真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2D .p 1,p 3C [作出不等式组表示的可行域,如图(阴影部分).由⎩⎪⎨⎪⎧x +y =1,x -2y =4,得交点A (2,-1).目标函数的斜率k =-12>-1,观察直线x +y =1与直线x +2y =0的倾斜程度,可知u =x +2y 过点A 时取得最小值0y =-x2+u 2,u2表示纵截距.结合题意知p 1,p 2正确.] 3.(2019·黄冈模拟)下列四个命题: ①若x >0,则x >sin x 恒成立;②命题“若x -sin x =0,则x =0”的逆否命题为“若x ≠0,则x -sin x ≠0”; ③“命题p ∧q 为真”是“命题p ∨q 为真”的充分不必要条件; ④命题“∀x ∈R,x -ln x >0”的否定是“∃x 0∈R,x 0-ln x 0<0”. 其中正确命题的个数是( ) A .1 B .2 C .3D .4C [对于①,令y =x -sin x ,则y ′=1-cos x ≥0,则函数y =x -sin x 在R 上递增,即当x >0时,x -sin x >0-0=0,则当x >0时,x >sin x 恒成立,故①正确;对于②,命题“若x -sin x =0,则x =0”的逆否命题为“若x ≠0,则x -sin x ≠0”,故②正确;对于③,命题p ∨q 为真即p ,q 中至少有一个为真,p ∧q 为真即p ,q 都为真,可知“p ∧q 为真”是“p ∨q 为真”的充分不必要条件,故③正确;对于④,命题“∀x ∈R,x -ln x >0”的否定是“∃x 0∈R,x 0-ln x 0≤0”,故④错误. 综上,正确命题的个数为3,故选C.]4.已知函数f (x )=x 2-x +1x -1(x ≥2),g (x )=a x(a >1,x ≥2).(1)若∃x 0∈[2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为________.(2)若∀x 1∈[2,+∞),∃x 2∈[2,+∞),使得f (x 1)=g (x 2),则实数a 的取值范围为________.(1)[3,+∞) (2)(1,3] [(1)∵f (x )=x -2+x -+1x -1=(x -1)+1x -1+1,∵x ≥2,∴x -1≥1, ∴f (x )≥2x -1x -1+1=3. 当且仅当x -1=1x -1,即x -1=1,x =2时等号成立. ∴m ∈[3,+∞).(2)∵g (x )=a x(a >1,x ≥2), ∴g (x )min =g (2)=a 2.∵∀x 1∈[2,+∞),∃x 2∈[2,+∞)使得f (x 1)=g (x 2), ∴g (x )min ≤f (x )min , ∴a 2≤3,即a ∈(1,3].]课后限时集训(四) 函数及其表示(建议用时:40分钟) A 组 基础达标一、选择题1.下面各组函数中为相同函数的是( ) A .f (x )=x -2,g (x )=x -1B .f (x )=x -1,g (t )=t -1C .f (x )=x 2-1,g (x )=x +1·x -1D .f (x )=x ,g (x )=x 2xB [∵x -2=|x -1|,∴A 中f (x )≠g (x );B 正确;C 、D 选项中两函数的定义域不同,故选B.] 2.函数f (x )=3x -1log 2x +1的定义域为( )A.⎝ ⎛⎦⎥⎤18,14B.⎝ ⎛⎦⎥⎤0.14C.⎣⎢⎡⎭⎪⎫14,+∞ D.⎝ ⎛⎭⎪⎫14,+∞ D [由题意得log 2(2x )+1>0,解得x >14.所以函数f (x )的定义域为⎝ ⎛⎭⎪⎫14,+∞.故选D.] 3.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >1,2+36x ,x ≤1,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=( )A .3B .4C .-3D .38C [由题意知f ⎝ ⎛⎭⎪⎫12=2+3612=8,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (8)=log 128=-3.故选C.]4.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( ) A .2 B .0 C .1D .-1A [令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2,② 联立①②得f (1)=2.]5.已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1] B.⎝⎛⎭⎪⎫-1,12C.⎣⎢⎡⎭⎪⎫-1,12D.⎝ ⎛⎭⎪⎫0,12 C [要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,所以⎩⎪⎨⎪⎧a <12,a ≥-1,所以-1≤a <12.故选C.]6.(2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)D [当x ≤0时,函数f (x )=2-x是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象可知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,所以x <0,故选D.]7.(2019·济南模拟)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为()A .-32B .-34C .-32或-34D.32或-34B [当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B.]二、填空题8.已知f (2x)=x +3.若f (a )=5,则a =________. 4 [令t =2x ,则t >0,且x =log 2 t , ∴f (t )=3+log 2 t , 即f (x )=3+log 2 x ,x >0. 则有log 2 a +3=5,解之得a =4.]9.若函数f (x )在闭区间[-1,2]上的图象如图所示,则此函数的解析式为________.f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0-12x ,0≤x ≤2 [由题图可知,当-1≤x <0时,f (x )=x +1;当0≤x ≤2时,f (x )=-12x ,所以f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤2.]10.已知函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≥0,log 2x 2+,x <0,若f (a )=3,则实数a =________.-5 [由题意知⎩⎪⎨⎪⎧a ≥0,2-a =3或⎩⎪⎨⎪⎧a <0,log 2a 2+=3,解得a =- 5.]B 组 能力提升1.已知函数y =f (2x -1)的定义域是[0,1],则函数fx +log 2x +的定义域是( )A .[1,2]B .(-1,1] C.⎣⎢⎡⎦⎥⎤-12,0 D .(-1,0)D [因为函数y =f (2x -1)的定义域是[0,1],所以-1≤2x -1≤1,要使函数f x +log 2x +有意义,则需⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0,故选D.]2.(2018·厦门二模)设函数f (x )=⎩⎪⎨⎪⎧x -a 2-1,x ≤1,ln x ,x >1,若f (x )≥f (1)恒成立,则实数a 的取值范围是( )A .[1,2]B .[0,2]C .[1,+∞)D .[2,+∞)A [由题意可知,函数f (x )的最小值为f (1),所以⎩⎪⎨⎪⎧a ≥1-a 2-1≤ln 1,解得1≤a ≤2,选A.]3.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________. -x x +2[当-1≤x ≤0时,有0≤x +1≤1,所以f (1+x )=(1+x )[1-(1+x )]=-x (1+x ),又f (x +1)=2f (x ),所以f (x )=12f (1+x )=-xx +2.]4.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是________(填序号).①③ [对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足题意;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足题意;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x=-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.]课后限时集训(五) 函数的单调性与最值(建议用时:60分钟) A 组 基础达标一、选择题1.下列函数中,在(0,+∞)上单调递减的是( ) A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)A [f (x )=1x在(0,+∞)上是单调递减函数,故选A.]2.(2019·三门峡模拟)设函数f (x )=⎩⎪⎨⎪⎧2x,x <2,x 2,x ≥2,若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)B [易知f (x )=⎩⎪⎨⎪⎧2x,x <2,x 2,x ≥2是定义域R 上的增函数.∵f (a +1)≥f (2a -1),∴a +1≥2a -1,解得a ≤2. 故实数a 的取值范围是(-∞,2],故选B.]3.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是( ) A .(-∞,40]B .(40,64)C .(-∞,40]∪[64,+∞)D .[64,+∞)C [由题意可知k 8≤5或k8≥8,即k ≤40或k ≥64,故选C.] 4.定义在R 上的函数f (x )的图象关于直线x =2对称且f (x )在(-∞,2)上是增函数,则( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (3)D .f (0)=f (3)A [∵f (x )关于直线x =2对称且f (x )在(-∞,2)上是增函数,∴f (x )在(2,+∞)上是减函数, 又f (-1)=f (5),且f (3)>f (5), ∴f (3)>f (-1),选A.]5.定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为( ) A .[-1,2) B .[0,2) C .[0,1)D .[-1,1)C [由函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,得函数f (x )在[-2,2]上单调递增. 由f (a 2-a )>f (2a -2)得⎩⎪⎨⎪⎧ a 2-a >2a -2,-2≤a 2-a ≤2,-2≤2a -2≤2,解得⎩⎪⎨⎪⎧-1≤a ≤2,0≤a ≤2,a <1或a >2.∴0≤a <1,故选C.] 二、填空题6.函数f (x )=log 2(x 2-1)的单调递减区间为________.(-∞,-1) [由x 2-1>0得x >1或x <-1,即函数f (x )的定义域为(-∞,-1)∪(1,+∞).令t =x 2-1,因为y =log 2t 在t ∈(0,+∞)上为增函数,t =x 2-1在x ∈(-∞,-1)上是减函数,所以函数f (x )=log 2(x 2-1)的单调递减区间为(-∞,-1).]7.(2019·甘肃调研)已知函数f (x )=ln x +2x ,若f (x 2-4)<2,则实数x 的取值范围是________.(-5,-2)∪(2,5) [因为函数f (x )=ln x +2x在定义域上单调递增,且f (1)=ln 1+2=2,所以由f (x 2-4)<2得,f (x 2-4)<f (1),所以0<x 2-4<1,解得-5<x <-2或2<x < 5.]8.(2019·广州模拟)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.(-∞,1]∪[4,+∞)[作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.]三、解答题9.已知函数f (x )=ax +1a(1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值. [解] f (x )=ax +1a(1-x )=⎝ ⎛⎭⎪⎫a -1a x +1a,当a -1a<0,即0<a <1时,g (a )=f (1)=a ;当a -1a≥0,即a ≥1时,g (a )=f (0)=1a .故g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a,a ≥1.所以g (a )的最大值为1. 10.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. [解] (1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=x 1-x 2x 1+x 2+.因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a x 2-x 1x 1-a x 2-a.因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].B 组 能力提升1.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,x +,x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)D [∵当x =0时,两个表达式对应的函数值都为0,∴函数的图象是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.]2.定义新运算:当a ≥b 时,a b =a ;当a <b 时,a b =b 2,则函数f (x )=x )x -x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12C [由题意可知f (x )=⎩⎪⎨⎪⎧x -2,-2≤x ≤1,x 3-2,1<x ≤2.∵f (x )=x -2在[-2,1]上单调递增, ∴f (x )max =f (1)=-1;又f (x )=x 3-2在(1,2]上单调递增, ∴f (x )max =f (2)=23-2=6. ∴当x ∈[-2,2]时,f (x )max =6.]3.函数y =2x +k x -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________.(-∞,-4) [由于y =log 3(x -2)在(3,+∞)上为增函数,故函数y =2x +kx -2=x -+4+k x -2=2+4+kx -2在(3,+∞)上也是增函数,则有4+k <0,得k <-4.]4.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. [解] (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1, 当x >1时,f (x )<0,∴f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),∴函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在(0,+∞)上是单调递减函数, ∴f (x )在[2,9]上的最小值为f (9).由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),得f ⎝ ⎛⎭⎪⎫93=f (9)-f (3), 而f (3)=-1,∴f (9)=-2.∴f (x )在[2,9]上的最小值为-2.课后限时集训(六) 函数的奇偶性与周期性(建议用时:40分钟) A 组 基础达标一、选择题1.下列函数中,既是偶函数又在(0,+∞)上单调递增的是( ) A .y =e xB .y =sin xC .y =cos xD .y =ln x 2D [y =e x 不是偶函数,所以A 不正确;y =sin x 是奇函数,所以B 不正确;y =cos x 是偶函数,在(0,+∞)上不是单调递增函数,所以C 不正确;y =ln x 2是偶函数,在(0,+∞)上是单调递增函数,所以D 正确.故选D.]2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x+m ,则f (-2)=( ) A .-3 B .-54C.54D .3A [因为f (x )为R 上的奇函数,所以f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.]3.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( ) A .4 B .3 C .2D .1B [由已知得f (-1)=-f (1),g (-1)=g (1),则有⎩⎪⎨⎪⎧-f +g =2,f+g=4,解得g (1)=3.]4.(2019·江西六校联考)设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3x +,x ≥0,g x,x <0,则g [f (-8)]=( )A .-1B .-2C .1D .2A [∵函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3x +,x ≥0,g x,x <0,∴f (-8)=-f (8)=-log 3 9=-2,∴g [f (-8)]=g (-2)=f (-2)=-f (2)=-log 3 3=-1.故选A.]5.定义在R 上的奇函数f (x )满足f (2+x )=f (2-x ),且f (1)=1,则f (2 019)=( ) A .0 B .1 C .-1D .-2B [由题意得f (x +4)=f (2-(x +2))=f (-x )=-f (x ),∴f (x +8)=-f (x +4)=f (x ),∴函数f (x )以8为周期,∴f (2 019)=f (3)=f (1)=1,故选B.]6.(2019·皖南八校联考)偶函数f (x )在(-∞,0]上是增函数,且f (1)=-1,则满足f (2x-3)>-1的实数x 的取值范围是( ) A .(1,2) B .(-1,0) C .(0,1)D .(-1,1)A [因为偶函数f (x )在(-∞,0]上是增函数, 所以函数f (x )在(0,+∞)上是减函数. 由f (1)=-1且满足f (2x-3)>-1=f (1), 等价于f (|2x-3|)>f (1),|2x-3|<1,可得-1<2x-3<1,2<2x<4,1<x <2, 所以实数x 的取值范围是(1,2),故选A.]7.(2019·广州模拟)定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x )=f (x +4),且当x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=( )A .1 B.45 C .-1D .-45C [由于x ∈R,且f (-x )=-f (x ),所以函数为奇函数,由于f (x )=f (x +4),所以函数的周期为4,log 216<log 220<log 232,即4<log 220<5,0<log 220-4<1, ∴0<log 254<1,∴f (log 220)=f (log 220-4)=f ⎝ ⎛⎭⎪⎫log 254 =-f ⎝ ⎛⎭⎪⎫-log 254=-f ⎝ ⎛⎭⎪⎫log 245=-⎝⎛⎭⎪⎫2log 245+15=-⎝ ⎛⎭⎪⎫45+15=-1,故选C.]二、填空题8.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f x,当2≤x ≤3时,f (x )=x ,则f ⎝ ⎛⎭⎪⎫-112=________. 52 [∵f (x +2)=-1f x,∴f (x +4)=f (x ),∴f ⎝ ⎛⎭⎪⎫-112=f ⎝ ⎛⎭⎪⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝ ⎛⎭⎪⎫52=52,∴f ⎝ ⎛⎭⎪⎫-112=52.] 9.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.⎝ ⎛⎭⎪⎫12,32 [∵f (2|a -1|)>f (-2)=f (2), 又由已知可得f (x )在(0,+∞)上单调递减,∴2|a -1|<2=212, ∴|a -1|<12,∴12<a <32.]10.定义在实数集R 上的函数f (x )满足f (x )+f (x +2)=0,且f (4-x )=f (x ).现有以下三个命题:①8是函数f (x )的一个周期;②f (x )的图象关于直线x =2对称;③f (x )是偶函数. 其中正确命题的序号是________.①②③ [∵f (x )+f (x +2)=0,∴f (x +2)=-f (x ),∴f (x )的周期为4,故①正确;又f (4-x )=f (x ),所以f (2+x )=f (2-x ),即f (x )的图象关于直线x =2对称,故②正确;由f (x )=f (4-x )得f (-x )=f (4+x )=f (x ),故③正确.]B 组 能力提升1.已知f (x )=a sin x +b 3x +4,若f (lg 3)=3,则f ⎝ ⎛⎭⎪⎫lg 13=( )A.13 B .-13C .5D .8C [因为f (x )+f (-x )=8,f ⎝ ⎛⎭⎪⎫lg 13=f (-lg 3),所以f ⎝ ⎛⎭⎪⎫lg 13=8-f (lg 3)=5,故选C.] 2.(2019·衡水调研)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,x 2-2x ,x <0.若f (-a )+f (a )≤2f (1),则a 的取值范围是( ) A .[-1,0) B .[0,1] C .[-1,1]D .[-2,2]C [由函数图象可知f (x )是偶函数,故f (-a )=f (a ),原不等式等价于f (a )≤f (1),即f (|a |)≤f (1),而函数在[0,+∞)上单调递增,故|a |≤1,解得-1≤a ≤1.]3.(2018·洛阳一模)若函数f (x )同时满足下列两个条件,则称该函数为“优美函数”: (1)∀x ∈R,都有f (-x )+f (x )=0; (2)∀x 1,x 2∈R,且x 1≠x 2,都有f x 1-f x 2x 1-x 2<0.①f (x )=sin x ;②f (x )=-2x 3;③f (x )=1-x ;④f (x )=ln(x 2+1+x ). 以上四个函数中,“优美函数”的个数是( ) A .0 B .1 C .2D .3B [由条件(1),得f (x )是奇函数,由条件(2),得f (x )是R 上的单调减函数.对于①,f (x )=sin x 在R 上不单调,故不是“优美函数”;对于②,f (x )=-2x 3既是奇函数,又在R 上单调递减,故是“优美函数”;对于③,f (x )=1-x 不是奇函数,故不是“优美函数”;对于④,易知f (x )在R 上单调递增,故不是“优美函数”.故选B.]4.(2019·沧州模拟)已知函数y =f (x )是R 上的偶函数,对于任意x ∈R,都有f (x +6)=f (x )+f (3)成立,当x 1,x 2∈[0,3],且x 1≠x 2时,都有f x 1-f x 2x 1-x 2>0.给出下列命题:①f (3)=0;②直线x =-6是函数y =f (x )的图象的一条对称轴; ③函数y =f (x )在[-9,-6]上为增函数; ④函数y =f (x )在[-9,9]上有四个零点. 其中所有正确命题的序号为________. ①②④ [∵f (x +6)=f (x )+f (3),令x =-3得,f (-3)=0,又f (x )为偶函数,∴f (3)=0,即①正确;由f (3)=0得f (x +6)=f (x ),又f (-x )=f (x ),所以f (6-x )=f (6+x ),故f (x )关于直线x =6对称,又f (x )的周期为6,故②正确;当x 1,x 2∈[0,3],且x 1≠x 2时,都有f x 1-f x 2x 1-x 2>0,所以函数y =f (x )在[0,3]上为增函数.因为f (x )是R 上的偶函数,所以函数y =f (x )在[-3,0]上为减函数,而f (x )的周期为6,所以函数y =f (x )在[-9,-6]上为减函数.故③错误;f (3)=0,f (x )的周期为6,所以f (-9)=f (-3)=f (3)=f (9)=0,所以函数y =f (x )在[-9,9]上有四个零点.故④正确.]课后限时集训(七) 二次函数与幂函数(建议用时:60分钟) A 组 基础达标一、选择题1.(2019·西安质检)函数y =3x 2的图象大致是( )A BC DC [∵y =x 23,∴该函数是偶函数,且在第一象限内是上凸的,故选C.]2.设α∈⎩⎨⎧⎭⎬⎫-1,-12,13,12,1,2,3,则使幂函数y =x α为奇函数且在(0,+∞)上单调递增的α值的个数为( ) A .3 B .4 C .5D .6A [因为幂函数y =x α在(0,+∞)上单调递增,所以α>0.又幂函数y =x α为奇函数,可知α≠2.当α=12时,其定义域关于原点不对称,应排除.当α=13,1,3时,其定义域关于原点对称,且满足f (-x )=-f (x ).故α=13,1,3时,满足条件.故满足条件的α的值的个数为3.故选A.]3.已知幂函数f (x )=x α的图象过点⎝ ⎛⎭⎪⎫3,13,则函数g (x )=(2x -1)f (x )在区间⎣⎢⎡⎦⎥⎤12,2上的最小值是( ) A .-1 B .0 C .-2D.32B [由已知得3α=13,解得α=-1,∴f (x )=x -1,∴g (x )=2x -1x =2-1x 在区间⎣⎢⎡⎦⎥⎤12,2上单调递增,则g (x )min =g ⎝ ⎛⎭⎪⎫12=0.]4.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是( ) A .[0,+∞) B .(-∞,0]C .[0,4]D .(-∞,0]∪[4,+∞)C [由f (2+x )=f (2-x )可知,函数f (x )图象的对称轴为x =2+x +2-x2=2,又函数f (x )在[0,2]上单调递增,则抛物线开口向下,且f (x )在[2,4]上是减函数, 所以由f (a )≥f (0)可得0≤a ≤4.]5.若f (x )=ax 2+ax -1在R 上满足f (x )<0恒成立,则a 的取值范围是( ) A .a ≤0 B .a <-4 C .-4<a <0D .-4<a ≤0D [①当a =0时,得到-1<0,显然不等式的解集为R ;②当a <0时,二次函数y =ax 2+ax -1开口向下,由不等式的解集为R ,得二次函数的图象与x 轴没有交点,即Δ=a 2+4a <0,即a (a +4)<0,解得-4<a <0;③当a >0时,二次函数y =ax 2+ax -1开口向上,函数值y 不恒小于0,故解集为R 不可能.] 二、填空题6.已知点⎝ ⎛⎭⎪⎫12,2在幂函数y =f (x )的图象上,点⎝ ⎛⎭⎪⎫-2,14在幂函数y =g (x )的图象上,则f (2)+g (-1)=________.32 [设f (x )=x m ,g (x )=x n ,则由2=⎝ ⎛⎭⎪⎫12m得m =-1,由14=(-2)n,得n =-2, 所以f (2)+g (-1)=2-1+(-1)-2=32.]7.已知二次函数y =x 2+2kx +3-2k ,则其图象的顶点位置最高时对应的解析式为________.y =x 2-2x +5 [y =x 2+2kx +3-2k =(x +k )2-k 2-2k +3,所以图象的顶点坐标为(-k ,-k 2-2k +3).因为-k 2-2k +3=-(k +1)2+4,所以当k =-1时,顶点位置最高.此时抛物线的解析式为y =x 2-2x +5.]8.已知函数y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎢⎡⎦⎥⎤-2,-12时,n ≤f (x )≤m恒成立,则m -n 的最小值为________.1 [当x <0时,-x >0,f (x )=f (-x )=(x +1)2. ∵x ∈⎣⎢⎡⎦⎥⎤-2,-12,∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1,∴m -n 的最小值是1.] 三、解答题9.若函数y =x 2-2x +3在区间[0,m ]上有最大值3,最小值2,求实数m 的取值范围.[解] 作出函数y =x 2-2x +3的图象如图.由图象可知,要使函数在[0,m ]上取得最小值2,则1∈[0,m ],从而m ≥1, 当x =0时,y =3;当x =2时,y =3, 所以要使函数取得最大值3,则m ≤2, 故所求m 的取值范围为[1,2].10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.[解] (1)设f (x )=ax 2+bx +1(a ≠0), 由f (x +1)-f (x )=2x ,得2ax +a +b =2x . 所以,2a =2且a +b =0,解得a =1,b =-1,因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立, 即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54,因为g (x )在[-1,1]上的最小值为g (1)=-1, 所以m <-1.故实数m 的取值范围为(-∞,-1).B 组 能力提升1.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是()ABC DD [由A ,C ,D 知,f (0)=c <0.∵abc >0,∴ab <0,∴对称轴x =-b2a >0,知A ,C 错误,D 符合要求.由B 知f (0)=c >0,∴ab >0,∴x =-b2a<0,B 错误.故选D.] 2.(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关B [法一:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关. 故选B.法二:由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关. 故选B.]3.已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x +a >0,则实数a 的取值范围是________.(1,5] [Δ=4(a -2)2-4a =4a 2-20a +16=4(a -1)(a -4).(1)若Δ<0,即1<a <4时,x 2-2(a -2)x +a >0在R 上恒成立,符合题意; (2)若Δ=0,即a =1或a =4时,方程x 2-2(a -2)x +a >0的解为x ≠a -2, 显然当a =1时,不符合题意,当a =4时,符合题意;(3)当Δ>0,即a <1或a >4时,因为x 2-2(a -2)x +a >0在(-∞,1)∪(5,+∞)上恒成立,所以⎩⎪⎨⎪⎧1-a -+a ≥0,25-a -+a ≥0,1<a -2<5,解得3<a ≤5,又a <1或a >4,所以4<a ≤5. 综上,a 的取值范围是(1,5].]4.已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象,如图所示.(1)请补全函数f (x )的图象并根据图象写出函数f (x )(x ∈R)的增区间; (2)写出函数f (x )(x ∈R)的解析式;(3)若函数g (x )=f (x )-2ax +2(x ∈[1,2]),求函数g (x )的最小值. [解] (1)f (x )在区间(-1,0),(1,+∞)上单调递增.(2)设x >0,则-x <0,函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x , 所以f (x )=f (-x )=(-x )2+2×(-x )=x 2-2x (x >0),所以f (x )=⎩⎪⎨⎪⎧x 2-2xx >,x 2+2x x(3)g (x )=x 2-2x -2ax +2,对称轴方程为x =a +1, 当a +1≤1,即a ≤0时,g (1)=1-2a 为最小值;当1<a +1≤2,即0<a ≤1时,g (a +1)=-a 2-2a +1为最小值; 当a +1>2,即a >1时,g (2)=2-4a 为最小值.综上,g (x )min =⎩⎪⎨⎪⎧1-2a a ,-a 2-2a +<a,2-4a a >课后限时集训(八) 指数与指数函数(建议用时:60分钟) A 组 基础达标一、选择题 1.设a >0,将a 2a ·3a 2表示成分数指数幂的形式,其结果是( )A .a 12 B .a 56 C .a 76 D .a 32C [a2a ·3a 2=a2a ·a23=a 2a53=a2a56=a 2-56=a 76.故选C.] 2.已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >aA [由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c .因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .]3.函数y =xa x|x |(0<a <1)的图象的大致形状是( )A B。
高考大题专项一冲破1利用导数求极值、最值、参数范围1.已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.2.(2018福建龙岩4月质检,21改编)已知函数f(x)=(x-2)e x-a(x+2)2.求函数g(x)=f(x)+3e x的极值点.3.(2018山东师大附中一模,21)已知函数f(x)=(x-a)e x(a∈R).(1)当a=2时,求函数f(x)在x=0处的切线方程;(2)求f(x)在区间[1,2]上的最小值.4.(2018陕西咸阳一模,21改编)已知f(x)=e x-a ln x(a∈R).当a=-1时,假设不等式f(x)>e+m(x-1)对任意x∈(1,+∞)恒成立,求实数m的取值范围.5.设函数f(x)=x2+ax+b,g(x)=e x(cx+d).假设曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.6.(2018河北江西南昌一模,21)已知函数f(x)=ln(ax)+bx在点(1,f(1))处的切线是y=0.(1)求函数f(x)的极值;(2)当mx 2e x ≥f(x)+1-eex(m<0)恒成立时,求实数m的取值范围(e为自然对数的底数).冲破2利用导数证明问题及讨论零点个数1.(2018全国3,文21)已知函数f(x)=ax 2+x-1 e x.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.2.(2018河北保定一模,21改编)已知函数f(x)=ln x-ax(a∈R).若f(x)有两个极值点x1,x2,证明:f(x1+x22)<f(x1)+f(x2)2.3.已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,求a的取值范围.4.(2018安徽芜湖期末,21改编)已知函数f(x)=x3-a ln x(a∈R).假设函数y=f(x)在区间(1,e]上存在两个不同零点,求实数a的取值范围.5.(2018河南郑州一模,21)已知函数f(x)=ln x+1ax −1a,a∈R且a≠0.(1)讨论函数f(x)的单调性;(2)当x∈[1e,e]时,试判定函数g(x)=(ln x-1)e x+x-m的零点个数.6.(2018河北衡水中学押题三,21)已知函数f(x)=e x-x2+a,x∈R,曲线y=f(x)的图象在点(0,f(0))处的切线方程为y=bx.(1)求函数y=f(x)的解析式;(2)当x∈R时,求证:f(x)≥-x2+x;(3)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.高考大题专项一函数与导数的综合冲破1利用导数求极值、最值、参数范围1.解(1)由题意知f'(x)=(x-k+1)e x.令f'(x)=0,得x=k-1.当x∈(-∞,k-1)时,f'(x)<0,当x∈(k-1,+∞)时,f'(x)>0.因此f(x)的单调递减区间是(-∞,k-1),单调递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,f(x)在[0,1]上单调递增,因此f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,f(x)在[0,k-1]上单调递减,在[k-1,1]上单调递增,因此f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1,即k≥2时,f(x)在[0,1]上单调递减,因此f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.综上,当k≤1时,f(x)在[0,1]上的最小值为f(0)=-k;当1<k<2时,f(x)在[0,1]上的最小值为f(k-1)=-e k-1;当k≥2时,f(x)在[0,1]上的最小值为f(1)=(1-k)e.2.解由g(x)=(x+1)e x-a(x+2)2,得g'(x)=(x+2)e x-2a(x+2)=(x+2)(e x-2a),(ⅰ)当a≤0时,在(-∞,-2)上,g'(x)<0,在(-2,+∞)上,g'(x)>0.(ⅱ)当a>0时,令g'(x)=0,解得x=-2或x=ln(2a).①若a=12e2,ln(2a)=-2,g'(x)≥0恒成立;②若a>12e2,ln(2a)>-2,在(-2,ln(2a))上,g'(x)<0;在(-∞,-2)与(ln(2a),+∞)上,g'(x)>0.③若a<12e2,ln(2a)<-2,在(ln(2a),-2)上,g'(x)<0;在(-∞,ln(2a))与(-2,+∞)上,g'(x)>0.综上,当a≤0时,g(x)极小值点为-2,无极大值点;当0<a<12时,g(x)极小值点为-2,极大值点为ln(2a);当a=12e2时,g(x)无极值点;当a>12e2时,g(x)极小值点为ln(2a),极大值点为-2.3.解(1)设切线的斜率为k.因为a=2,因此f(x)=(x-2)e x,f'(x)=e x(x-1).因此f(0)=-2,k=f'(0)=e0(0-1)=-1.因此所求的切线方程为y=-x-2,即x+y+2=0.(2)由题意得f'(x)=e x(x-a+1),令f'(x)=0,可得x=a-1.①若a-1≤1,则a≤2,当x∈[1,2]时,f'(x)≥0,则f(x)在[1,2]上单调递增.因此f(x)min=f(1)=(1-a)e.②若a-1≥2,则a≥3,当x∈[1,2]时,f'(x)≤0,则f(x)在[1,2]上单调递减.因此f(x)min=f(2)=(2-a)e2.③若1<a-1<2,则2<a<3,因此f'(x),f(x)随xf (x ) 单调递减极小值 单调递增因此f (x )的单调递减区间为[1,a-1],单调递增区间为[a-1,2].因此f (x )在[1,2]上的最小值为f (a-1)=-e a-1.综上所述:当a ≤2时,f (x )min =f (1)=(1-a )e;当a ≥3时,f (x )min =f (2)=(2-a )e 2;当2<a<3时,f (x )min =f (a-1)=-e a-1.4.解 由f (x )=e x -a ln x ,原不等式即为e x +ln x-e -m (x-1)>0,记F (x )=e x +ln x-e -m (x-1),F (1)=0,依题意有F (x )>0对任意x ∈[1,+∞)恒成立,求导得F'(x )=e x +1x -m ,F'(1)=e x +1-m ,F ″(x )=e x -1x 2, 当x>1时,F ″(x )>0,则F'(x )在(1,+∞)上单调递增,有F'(x )>F'(1)=e x +1-m ,若m ≤e +1,则F'(x )>0,则F (x )在(1,+∞)上单调递增,且F (x )>F (1)=0,适合题意;若m>e +1,则F'(1)<0, 又F'(ln m )=1lnm >0, 故存在x 1∈(1,ln m ),使F'(x )=0,当1<x<x 1时,F'(x )<0,得F (x )在(1,x 1)上单调递减,F (x )<F (1)=0,舍去,综上,实数m 的取值范围是m ≤e +1.5.解 (1)由已知得f (0)=2,g (0)=2,f'(0)=4,g'(0)=4.而f'(x )=2x+a ,g'(x )=e x (cx+d+c ),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知,f (x )=x 2+4x+2,g (x )=2e x (x+1).设函数F (x )=kg (x )-f (x )=2k e x (x+1)-x 2-4x-2,则F'(x )=2k e x (x+2)-2x-4=2(x+2)(k e x -1).由题设可得F (0)≥0,即k ≥1.令F'(x )=0得x 1=-ln k ,x 2=-2.①若1≤k<e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F'(x )<0;当x ∈(x 1,+∞)时,F'(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=2x 1+2-x 12-4x 1-2=-x 1(x 1+2)≥0.故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.②若k=e 2,则F'(x )=2e 2(x+2)(e x -e -2).从而当x>-2时,F'(x )>0,即F (x )在(-2,+∞)单调递增.而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.③若k>e 2,则F (-2)=-2k e -2+2=-2e -2(k-e 2)<0.从而当x ≥-2时,f (x )≤kg (x )不可能恒成立.综上,k 的取值范围是[1,e 2].6.解 (1)∵f (x )=ln(ax )+bx ,∴f'(x )=a ax +b=1x +b ,∵点(1,f (1))处的切线是y=0,∴f'(1)=1+b=0,且f (1)=ln a+b=0,∴a=e,b=-1,即f (x )=ln x-x+1(x>0),∴f'(x )=1-1=1-x ,∴f (x )在(0,1)上递增,在(1,+∞)上递减.因此f (x )的极大值为f (1)=ln e -1=0,无极小值.(2)由(1)f (x )=ln x-x+1,当mx 2e x ≥f (x )+1-e e x (m<0)恒成立时, 即mx 2e x ≥ln x-x+1+1-e e x (m<0)在x ∈(0,+∞)恒成立,同除以x 得mx e x ≥lnx+1x -2+1e . 设g (x )=mx e x ,h (x )=lnx+1x +1e -2,则g'(x )=m (1-x )e x ,h'(x )=-lnx x 2, 又∵m<0,因此当0<x<1时,g'(x )<0,h'(x )>0;当x>1时,g'(x )>0,h'(x )<0. ∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,g (x )min =g (1)=m e ,h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,h (x )max =h (1)=1e -1.∴g (x ),h (x )均在x=1处取得最值,因此要使g (x )≥h (x )恒成立,只需g (x )min ≥h (x )max ,即m e ≥1e -1,解得m ≥1-e,又m<0,∴实数m 的取值范围是[1-e,0). 冲破2 利用导数证明问题及讨论零点个数1.(1)解 f'(x )=-ax 2+(2a -1)x+2e x ,f'(0)=2.因此曲线y=f (x )在点(0,-1)处的切线方程是2x-y-1=0.(2)证明 当a ≥1时,f (x )+e ≥(x 2+x-1+e x+1)e -x .令g (x )=x 2+x-1+e x+1,则g'(x )=2x+1+e x+1.当x<-1时,g'(x )<0,g (x )单调递减;当x>-1时,g'(x )>0,g (x )单调递增;因此g (x )≥g (-1)=0. 因此f (x )+e ≥0.2.证明 f'(x )=1x −a (x+1)-ax (x+1)2=x 2+(2-a )x+1x (x+1)2(x>0),令p (x )=x 2+(2-a )x+1,由f (x )在(0,+∞)有两个极值点x 1,x 2,那么方程p (x )=0在(0,+∞)有两个实根x 1,x 2,∴{Δ=(2-a )2-4>0,x 1+x 2=a -2>0,x 1x 2=1>0,得a>4,∴f (x 1)+f (x 2)=ln x 1-ax 1x 1+1+ln x 2-ax 2x 2+1=ln x 1x 2-ax 1(x 2+1)+ax 2(x 1+1)(x 1+1)(x 2+1)=-a ,f (x 1+x 22)=f (a -22)=ln a -22−a ·a -22a -22+1=ln a -22-(a-2), ∴f (x 1+x 22)−f (x 1)+f (x 2)2=ln a -22-a-2+a 2=ln a -22−a 2+2.设h (a )=ln a -22−a 2+2(a>4),则h'(a )=2a -2·12−12=4-a 2(a -2)<0, ∴h (a )在(4,+∞)上为减函数,又h (4)=0,∴h (a )<0,∴f (x 1+x 22)<f (x 1)+f (x 2)2.3.解法1 函数f (x )的概念域为R ,当a=0时,f (x )=-3x 2+1,有两个零点±√33,原函数草图∴a=0不合题意;当a>0时,当x →-∞时,f (x )→-∞,f (0)=1,f (x )存在小于0的零点x 0,不合题意;当a<0时,f'(x )=3ax 2-6x ,由f'(x )=3ax 2-6x=0,得x 1=0,x 2=2a <0,∴在区间(-∞,2a )内f'(x )<0;在区间(2a ,0)内f'(x )>0;在区间(0,+∞)内f'(x )<0. ∴f (x )在区间(-∞,2a )为减函数,在区间(2a ,0)为增函数,在区间(0,+∞)为减函数.∴若f (x )存在唯一的零点x 0,且x 0>0⇔f (x )min =f (2a )>0⇔8a 2−12a 2+1>0⇔4a 2<1⇔a 2>4.∵a<0,∴a<-2.解法2 曲线y=ax 3与曲线y=3x 2-1仅在y 轴右边有一个公共点,当a ≥0时,由图象知不符合题意;当a<0时,设曲线y=ax 3与曲线y=3x 2-1相切于点(x 0,y 0),则{ax 03=3x 02-1,3ax 02=6x 0,得a=-2,由图象知a<-2时符合题意. 解法3 分离成a=-(1x )3+3(1x )=-t 3+3t ,令y=a ,g (t )=-t 3+3t , g'(t )=-3t 2+3=3(1-t 2),当t ∈(-1,1)时,g'(t )>0,当t>1或t<-1时,g'(x )<0.因此g (t )在(-∞,-1)递减,在区间(-1,1)递增,在(1,+∞)递减,因此当t=-1时,g (t )min =-2,由g (t )=-t 3+3t 的图象可知,t=1时,g (t )max =2.x →+∞时,g (t )→+∞,当a<-2时,直线y=a 与g (t )=-t 3+3t 的图象只有一个交点,交点在第四象限,因此知足题意.4.解 由f (x )=0,得a=x 3lnx 在区间(1,e]上有两个不同实数解,即函数y=a 的图象与函数g (x )=x 3lnx 的图象有两个不同的交点.因为g'(x )=x 2(3lnx -1)(lnx )2, 令g'(x )=0得x=√e 3,因此当x ∈(1,√e 3)时,g'(x )<0,函数在(1,√e 3)上单调递减,当x ∈(√e 3,e]时,g'(x )>0,函数在(√e 3,e]上单调递增;则g (x )min =g (√e 3)=3e,而g (e 127)=e 327ln e 127=27e19>27,且g (e)=e 3<27,要使函数y=a 的图象与函数g (x )=x 3lnx 的图象有两个不同的交点, ∴a 的取值范围为(3e,e 3]. 5.解 (1)f'(x )=ax -1ax 2(x>0),当a<0时,f'(x )>0恒成立,函数f (x )在(0,+∞)上单调递增;当a>0时,由f'(x )>0,得x>1a ,由f'(x )<0,得0<x<1a ,函数单调递增区间为(1a ,+∞),单调递减区间为(0,1a). 综上所述,当a<0时,函数f (x )的单调递增区间为(0,+∞),当a>0时,函数f (x )的单调递增区间为(1a ,+∞),单调递减区间为(0,1a ).(2)∵x ∈[1e ,e]时,函数g (x )=(ln x-1)e x +x-m 的零点,即方程(ln x-1)e x +x=m 的根.令h (x )=(ln x-1)e x +x ,h'(x )=(1x +lnx -1)e x +1, 由(1)知当a=1时,f (x )=ln x+1x -1在[1e ,1)递减,在[1,e]上递增,∴f (x )≥f (1)=0,∴1x +ln x-1≥0在x ∈[1e ,e]上恒成立,∴h'(x )=(1x +lnx -1)e x +1≥0+1>0,∴h (x )=(ln x-1)e x +x 在x ∈[1e ,e]上单调递增, ∴h (x )min =h (1e )=-2e 1e +1e ,h (x )max =e .∴当m<-2e 1e +1e 或m>e 时,没有零点,当-2e 1e +1e ≤m ≤e 时有一个零点.6.(1)解 依照题意,得f'(x )=e x -2x ,则f'(0)=1=b.由切线方程可得切点坐标为(0,0),将其代入y=f (x ),得a=-1,故f (x )=e x -x 2-1.(2)证明 令g (x )=f (x )+x 2-x=e x -x-1.由g'(x )=e x -1=0,得x=0,当x ∈(-∞,0)时,g'(x )<0,y=g (x )单调递减;当x ∈(0,+∞)时,g'(x )>0,y=g (x )单调递增.因此g (x )min =g (0)=0,因此f (x )≥-x 2+x.(3)解 f (x )>kx 对任意的x ∈(0,+∞)恒成立等价于f (x )x >k 对任意的x ∈(0,+∞)恒成立.令φ(x )=f (x )x,x>0,得 φ'(x )=xf '(x )-f (x )x 2=x (e x -2x )-(e x -x 2-1)x 2=(x -1)(e x -x -1)x 2. 由(2)可知,当x ∈(0,+∞)时,e x -x-1>0恒成立,令φ'(x )>0,得x>1;令φ'(x )<0,得0<x<1.因此y=φ(x )的单调增区间为(1,+∞),单调减区间为(0,1), 故φ(x )min =φ(1)=e -2,因此k<φ(x )min =e -2.因此实数k 的取值范围为(-∞,e -2).。
课后限时集训(十三) 导数的概念及运算(建议用时:60分钟)A 组 基础达标一、选择题1.函数y =ln(2x 2+1)的导数是( )A.错误!B.错误!C.错误!D.错误! B [y ′=错误!·4x =错误!,故选B.] 2.f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于( )A.错误!B.错误! C 。
错误! D.错误!D [因为f ′(x )=3ax 2+6x ,所以f ′(-1)=3a -6=4,解得a =103.故选D.] 3.(2018·广州一模)已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为( )A .ln 2B .1C .1-ln 2D .1+ln 2D [由y =x ln x 知y ′=ln x +1,设切点为(x 0,x 0ln x 0),则切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0),因为切线y =kx -2过定点(0,-2),所以-2-x 0ln x 0=(ln x 0+1)(0-x 0),解得x 0=2,故k =1+ln 2,选D 。
]4.设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1) D [由题意知,f ′(x )=3x 2+2ax ,所以曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率为f ′(x 0)=3x 错误!+2ax 0,又切线方程为x +y =0,所以x 0≠0,且错误!,解得a =±2,x 0=-错误!。
所以当错误!时,点P 的坐标为(1,-1);当错误!时,点P 的坐标为(-1,1),故选D.]5.已知曲线y =错误!,则曲线的切线斜率取得最大值时的切线方程为( )A .x +4y -2=0B .x -4y +2=0C .4x +2y -1=0D .4x -2y -1=0A [y ′=错误!=错误!,因为e x >0,所以e x +错误!≥2错误!=2(当且仅当e x=错误!,即x =0时取等号),则e x +错误!+2≥4,故y ′=错误!≤-错误!(当x =0时取等号).当x =0时,曲线的切线斜率取得最大值,此时切点的坐标为错误!,切线的方程为y-错误!=-错误!(x-0),即x+4y-2=0。
课时作业16 导数的综合应用1.(2019·天津调研)已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c 等于( A )A .-2或2B .-9或3C .-1或1D .-3或1解析:∵y ′=3x 2-3,∴当y ′=0时,x =±1. 则当x 变化时,y ′,y 的变化情况如下表:或c -2=0,∴c =-2或c =2.2.已知函数f (x )=m ⎝⎛⎭⎪⎫x -1x -2ln x (m ∈R ),g (x )=-mx ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的取值范围是( B )A .⎝ ⎛⎦⎥⎤-∞,2e B .⎝ ⎛⎭⎪⎫-∞,2e C .(-∞,0]D .(-∞,0)解析:由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2ln x 在[1,e]上有解,即m 2<ln x x 在[1,e]上有解,令h (x )=ln xx ,则h ′(x )=1-ln xx 2,当1≤x ≤e 时,h ′(x )≥0, ∴在[1,e]上,h (x )max =h (e)=1e , ∴m 2<1e ,∴m <2e ,∴m 的取值范围是⎝ ⎛⎭⎪⎫-∞,2e ,故选B .3.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为(A) A.(0,+∞) B.(-∞,0)∪(3,+∞)C.(-∞,0)∪(0,+∞) D.(3,+∞)解析:设g(x)=e x f(x)-e x(x∈R),则g′(x)=e x f(x)+e x f′(x)-e x=e x[f(x)+f′(x)-1],因为f(x)+f′(x)>1,所以f(x)+f′(x)-1>0,所以g′(x)>0,所以g(x)=e x f(x)-e x在定义域上单调递增,因为e x f(x)>e x+3,所以g(x)>3.又因为g(0)=e0f(0)-e0=4-1=3,所以g(x)>g(0),所以x>0.4.(2019·福建六校模拟)已知函数f(x)=(x-a)3-3x+a(a>0)在[-1,b]上的值域为[-2-2a,0],则b的取值范围是(A) A.[0,3] B.[0,2]C.[2,3] D.(-1,3]解析:由f(x)=(x-a)3-3x+a,得f′(x)=3(x-a)2-3,令f′(x)=0,得x1=a-1,x2=a+1.当x∈(-∞,a-1)∪(a+1,+∞)时,f′(x)>0,当x∈(a-1,a+1)时,f′(x)<0,则f(x)在(-∞,a-1),(a+1,+∞)上为增函数,在(a-1,a+1)上为减函数.又f(a+1)=-2-2a,∴要使f(x)=(x-a)3-3x+a(a>0)在[-1,b]上的值域为[-2-2a,0],则f(-1+a)=2-2a≤0,若2-2a=0,即a=1,此时f(-1)=-4,f(0)=0,-2-2a=-4,f(3)=0,f(2)=-4.∴b ∈[0,3];若2-2a <0,即a >1,此时f (-1)=(-1-a )3+3+a =-a 3-3a 2-2a +2,而f (-1)-(-2a -2)=-a 3-3a 2-2a +2+2a +2=-a 3-3a 2+4=(1-a )·(a +2)2<0,∴不合题意,∴b 的取值范围是[0,3].故选A .5.(2019·广东韶关六校联考)对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g (x )=2x 3-3x 2+12,则g ⎝ ⎛⎭⎪⎫1100+g ⎝ ⎛⎭⎪⎫2100+…+g ⎝ ⎛⎭⎪⎫99100=( D ) A .100 B .50 C .992D .0解析:∵g (x )=2x 3-3x 2+12,∴g ′(x )=6x 2-6x ,g ″(x )=12x -6, 由g ″(x )=0,得x =12,又g ⎝ ⎛⎭⎪⎫12=2×⎝ ⎛⎭⎪⎫123-3×⎝ ⎛⎭⎪⎫122+12=0, ∴函数g (x )的图象关于点⎝⎛⎭⎪⎫12,0对称,∴g (x )+g (1-x )=0,∴g ⎝ ⎛⎭⎪⎫1100+g ⎝ ⎛⎭⎪⎫2100+…+g ⎝ ⎛⎭⎪⎫99100=49×0+g ⎝ ⎛⎭⎪⎫50100=g ⎝ ⎛⎭⎪⎫12=0,故选D .6.从边长为10 cm ×16 cm 的矩形纸板的四角截去四个相同的小正方形,做成一个无盖的盒子,则盒子容积的最大值为144__cm 3.解析:设盒子容积为y cm 3,盒子的高为x cm ,x ∈(0,5).则y =(10-2x )(16-2x )x =4x 3-52x 2+160x , ∴y ′=12x 2-104x +160.令y ′=0,得x =2或x =203(舍去), ∴y max =6×12×2=144(cm 3).7.直线x =t 分别与函数f (x )=e x +1的图象及g (x )=2x -1的图象相交于点A 和点B ,则|AB |的最小值为4-2ln2__.解析:由题意得,|AB |=|e t +1-(2t -1)|=|e t -2t +2|, 令h (t )=e t -2t +2,则h ′(t )=e t -2,所以h (t )在(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增,所以h (t )min =h (ln2)=4-2ln2>0, 即|AB |的最小值是4-2ln2.8.(2019·佛山质检)定义在R 上的奇函数y =f (x )满足f (3)=0,且不等式f (x )>-xf ′(x )在(0,+∞)上恒成立,则函数g (x )=xf (x )+lg|x +1|的零点个数为3__.解析:定义在R 上的奇函数f (x )满足: f (0)=0=f (3)=f (-3),f (-x )=-f (x ), 当x >0时,f (x )>-xf ′(x ), 即f (x )+xf ′(x )>0, ∴[xf (x )]′>0,即h (x )=xf (x )在x >0时是增函数, 又h (-x )=-xf (-x )=xf (x ), ∴h (x )=xf (x )是偶函数,∴当x <0时,h (x )是减函数,结合函数的定义域为R , 且f (0)=f (3)=f (-3)=0,可得函数y 1=xf (x )与y 2=-lg|x +1|的大致图象如图.由图象可知,函数g(x)=xf(x)+lg|x+1|的零点的个数为3.9.(2019·惠州调研)已知函数f(x)=2e x-(x-a)2+3,a∈R.(1)若函数f(x)的图象在x=0处的切线与x轴平行,求a的值;(2)若x≥0,f(x)≥0恒成立,求a的取值范围.解:(1)f′(x)=2(e x-x+a),∵函数f(x)的图象在x=0处的切线与x轴平行,即在x=0处的切线的斜率为0,∴f′(0)=2(a+1)=0,∴a=-1.(2)由(1)知f′(x)=2(e x-x+a),令h(x)=2(e x-x+a)(x≥0),则h′(x)=2(e x-1)≥0,∴h(x)在[0,+∞)上单调递增,且h(0)=2(a+1).①当a≥-1时,f′(x)≥0在[0,+∞)上恒成立,即函数f(x)在[0,+∞)上单调递增,∴f(x)min=f(0)=5-a2≥0,解得-5≤a≤5,又a≥-1,∴-1≤a≤ 5.②当a<-1时,则存在x0>0,使h(x0)=0且当x∈[0,x0)时,h(x)<0,即f′(x)<0,则f(x)单调递减,当x∈(x0,+∞)时,h(x)>0,则f′(x)>0,即f(x)单调递增,∴f(x)min=f(x0)=2e x0-(x0-a)2+3≥0,又h(x0)=2(e x0-x0+a)=0,∴2e x0-(e x0)2+3≥0,解得0<x0≤ln3.由e x 0=x 0-a ⇒a =x 0-e x 0, 令M (x )=x -e x,0<x ≤ln3, 则M ′(x )=1-e x <0, ∴M (x )在(0,ln3]上单调递减,则M (x )≥M (ln3)=ln3-3,M (x )<M (0)=-1, ∴ln3-3≤a <-1. 综上,ln3-3≤a ≤ 5.故a 的取值范围是[ln3-3,5].10.(2019·山西康杰中学等四校联考)已知函数f (x )=x -ln x . (1)求f (x )的单调区间和极值;(2)证明:当x ≥1时,(x e x +1)f (x )e +1≥e x -1;(3)若f (x )≥(1-m )x +m 对任意x ∈(0,+∞)恒成立,求实数m 的值.解:(1)f (x )=x -ln x ,f ′(x )=1-1x ,x ∈(0,+∞),f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,有极小值f (1)=1,无极大值.(2)证明:原不等式可化为f (x )e +1≥e x -1x e x +1,记g (x )=e x -1x e x +1,则g ′(x )=e x -1(1-e x )(x e x +1)2,当x ≥1时,g ′(x )<0,所以g (x )在[1,+∞)上单调递减,有g (x )≤g (1)=1e +1,又由(1)知,f (x )e +1≥f (1)e +1=1e +1,得证.(3)f (x )≥(1-m )x +m , 即ln x -m (x -1)≤0, 记h (x )=ln x -m (x -1),则h (x )≤0对任意x ∈(0,+∞)恒成立, 求导得h ′(x )=1x -m (x >0), 若m ≤0,则h ′(x )>0, 得h (x )在(0,+∞)上单调递增, 又h (1)=0,故当x >1时,h (x )>0,不合题意;若m >0,则易得h (x )在⎝ ⎛⎭⎪⎫0,1m 上单调递增,在⎝ ⎛⎭⎪⎫1m ,+∞上单调递减,则h (x )max =h ⎝ ⎛⎭⎪⎫1m =-ln m -1+m .依题意有-ln m -1+m ≤0,故f (m )≤1, 由(1)知f (m )≥1,则m 只能等于1.11.(2019·厦门调研)已知f (x )=12x 2+b x +c (b ,c 是常数)和g (x )=14x +1x 是定义在M ={x |1≤x ≤4}上的函数,对于任意的x ∈M ,存在x 0∈M 使得f (x )≥f (x 0),g (x )≥g (x 0),且f (x 0)=g (x 0),则f (x )在M 上的最大值为( B )A .72B .5C .6D .8解析:因为当x ∈[1,4]时,g (x )=14x +1x ≥214=1(当且仅当x =2时等号成立),所以f (2)=2+b2+c =g (2)=1, 所以c =-1-b2, 所以f (x )=12x 2+b x -1-b2,所以f ′(x )=x -b x 2=x 3-bx 2.因为f (x )在x =2处有最小值,且x ∈[1,4], 所以f ′(2)=0,即b =8,所以c =-5, 经检验,b =8,c =-5符合题意. 所以f (x )=12x 2+8x -5,f ′(x )=x 3-8x 2,所以f (x )在[1,2)上单调递减,在(2,4]上单调递增,而f (1)=12+8-5=72,f (4)=8+2-5=5,所以函数f (x )在M 上的最大值为5,故选B .12.已知f (x )=|x |e x (x ∈R ),若关于x 的方程f 2(x )-mf (x )+m -1=0恰好有4个不相等的实数根,则实数m 的取值范围为( C )A .⎝ ⎛⎭⎪⎫1e ,2∪(2,e)B .⎝ ⎛⎭⎪⎫1e ,1C .⎝⎛⎭⎪⎫1,1e +1 D .⎝ ⎛⎭⎪⎫1e ,e 解析:依题意,由f 2(x )-mf (x )+m -1=0, 得f (x )=1或f (x )=m -1.当x <0时,f (x )=-x e -x ,f ′(x )=(x -1)e -x <0, 此时f (x )是减函数.当x >0时,f (x )=x e -x ,f ′(x )=-(x -1)e -x , 若0<x <1,则f ′(x )>0,f (x )是增函数; 若x >1,则f ′(x )<0,f (x )是减函数.因此,要使关于x 的方程f 2(x )-mf (x )+m -1=0恰好有4个不相等的实数根,只要求直线y =1,直线y =m -1与函数y =f (x )的图象共有四个不同的交点.函数f (x )的图象如图.注意到直线y =1与函数y =f (x )的图象有唯一公共点,因此要求直线y =m -1与函数y =f (x )的图象共有三个不同的交点,结合图象可知,0<m -1<1e ,即1<m <1+1e ,则实数m 的取值范围为⎝ ⎛⎭⎪⎫1,1+1e .13.(2019·武汉调研)已知函数f (x )=x ln x .(1)若函数g (x )=f (x )+ax 在区间[e 2,+∞)上为增函数,求实数a 的取值范围;(2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.解:(1)由题意得g ′(x )=f ′(x )+a =ln x +a +1. ∵函数g (x )在区间[e 2,+∞)上为增函数, ∴当x ∈[e 2,+∞)时,g ′(x )≥0, 即ln x +a +1≥0在[e 2,+∞)上恒成立. ∴a ≥-1-ln x .令h (x )=-ln x -1,∴a ≥h (x )max , 当x ∈[e 2,+∞)时,ln x ∈[2,+∞), ∴h (x )∈(-∞,-3],∴a ≥-3, 即实数a 的取值范围是[-3,+∞). (2)∵2f (x )≥-x 2+mx -3, 即mx ≤2x ln x +x 2+3,又x >0,∴m ≤2x ln x +x 2+3x 在x ∈(0,+∞)上恒成立. 记t (x )=2x ln x +x 2+3x =2ln x +x +3x . ∴m ≤t (x )min .∵t ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2, 令t ′(x )=0,得x =1或x =-3(舍去).当x ∈(0,1)时,t ′(x )<0,函数t (x )在(0,1)上单调递减;当x ∈(1,+∞)时,t ′(x )>0,函数t (x )在(1,+∞)上单调递增. ∴t (x )min =t (1)=4.∴m ≤t (x )min =4,即m 的最大值为4.14.(2019·福建四地六校联考)已知函数f (x )=(x -1)e x -12ax 2. (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求实数a 的取值范围. 解:(1)f (x )的定义域为(-∞,+∞), f ′(x )=e x +(x -1)e x -ax =x (e x -a ). (ⅰ)若a ≤0,则当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (ⅱ)若a >0,由f ′(x )=0得x =0或x =ln A . ①若a =1,则f ′(x )=x (e x -1)≥0, 所以f (x )在(-∞,+∞)上单调递增. ②若0<a <1,则ln a <0,故当x ∈(-∞,ln a )∪(0,+∞)时,f ′(x )>0; 当x ∈(ln a,0)时,f ′(x )<0,所以f (x )在(-∞,ln a ),(0,+∞)上单调递增,在(ln a,0)上单调递减.③若a >1,则ln a >0,故当x ∈(-∞,0)∪(ln a ,+∞)时,f ′(x )>0;当x ∈(0,ln a )时,f ′(x )<0,所以f (x )在(-∞,0),(ln a ,+∞)上单调递增,在(0,ln a )上单调递减.综上所述,当a ≤0时,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增;当0<a <1时,f (x )在(-∞,ln a ),(0,+∞)上单调递增,在(ln a,0)上单调递减;当a =1时,f (x )在(-∞,+∞)上单调递增;当a >1时,f (x )在(-∞,0),(ln a ,+∞)上单调递增,在(0,ln a )上单调递减.(2)(ⅰ)若a ≤0,则由(1)知,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.又f (0)=-1,x 趋近负无穷时,f (x )值趋近正无穷.x 趋近正无穷时,f (x )值趋近正无穷.所以f (x )有两个零点.(ⅱ)若a =1,则由(1)知f (x )在(-∞,+∞)上单调递增,所以f (x )至多有一个零点.(ⅲ)若0<a <1,则由(1)知,f (x )在(-∞,ln a ),(0,+∞)上单调递增,在(ln a,0)上单调递减,设b =ln a ,当x =b 时,f (x )有极大值f (b )=a (b -1)-12ab 2=-12a (b 2-2b +2)<0,故f (x )不存在两个零点.(ⅳ)若a >1,则由(1)知,f (x )在(-∞,0),(ln a ,+∞)上单调递增,在(0,ln a )上单调递减,当x =0时,f (x )有极大值f (0)=-1<0,故f (x )不存在两个零点.综上,a 的取值范围为a ≤0.。
2020版高考数学一轮复习课时作业15 导数与函数的极值、最值理(含解析)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2020版高考数学一轮复习课时作业15 导数与函数的极值、最值理(含解析)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2020版高考数学一轮复习课时作业15 导数与函数的极值、最值理(含解析)新人教版的全部内容。
课时作业15 导数与函数的极值、最值一、选择题1.当函数y=x·2x取极小值时,x=( B )A.错误!B.-错误!C.-ln2 D.ln2解析:y′=2x+x·2x ln2=0,∴x=-1ln2.2.函数f(x)=x3-3x2+2在区间[-1,1]上的最大值是( C )A.-2 B.0C.2 D.4解析:f′(x)=3x2-6x,令f′(x)=0,得x=0或2.∴f(x)在[-1,0)上是增函数,f(x)在(0,1]上是减函数.∴f(x)max=f(x)极大值=f(0)=2.3.若函数f(x)=ax3+bx2+cx+d有极值,则导函数f′(x)的图象不可能是( D )解析:若函数f(x)=ax3+bx2+cx+d有极值,则此函数在某点两侧的单调性相反,也就是说导函数f′(x)在此点两侧的导函数值的符号相反,所以导函数的图象要穿过x轴,观察四个选项中的图象只有D项是不符合要求的,即f′(x)的图象不可能是D.4.(2019·贵州黔东南州联考)已知函数f(x)=ln x-ax,若函数f(x)在[1,e]上的最小值为错误!,则a的值为( A )A.- e B.-错误!C.-错误!D.e错误!解析:由题意,f′(x)=错误!+错误!,若a≥0,则f′(x)>0,函数单调递增,所以f(1)=-a=32,矛盾;若-e<a〈-1,函数f(x)在[1,-a]上递减,在[-a,e]上递增,所以f(-a)=错误!,解得a=-错误!;若-1≤a<0,函数f(x)是递增函数,所以f(1)=-a=错误!,矛盾;若a≤-e,函数f(x)单调递减,所以f(e)=错误!,解得a=-错误!,矛盾.综上,a=-错误!,故选A.5.(2019·河北邢台质检)若函数f(x)=错误!x2+(a-1)x-a ln x存在唯一的极值,且此极值不小于1,则a的取值范围为( B )A。
第二课时导数与函数的极值、最值A组基础巩固一、选择题1.(2021·成都市高三摸底测试)已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)在区间(a,b)内的极小值点的个数为(A)A.1B.2C.3 D.4[解析]如图,在区间(a,b)内,f′(c)=0,且在x=c附近的左侧f′(x)〈0,右侧f′(x)〉0,所以在区间(a,b)内只有1个极小值点,故选A.2.下列四个函数,在x=0处取得极值的函数有(C)A.y=x3B.y=x5+1C.y=|x|D.y=2x[解析]对于A、B,y=x3和y=x5+1在x=0处无极值.对于D,y=2x,y′=0无解,C符合.故选C。
3.设函数f(x)=错误!+ln x,则(D)A.x=错误!为f(x)的极大值点B.x=错误!为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点[解析]f(x)=错误!+ln x(x〉0),f′(x)=-错误!+错误!=错误!,令f′(x)=0,得x=2.当x〉2时,f′(x)〉0,这时f(x)为增函数;当0〈x〈2时,f′(x)〈0,这时f(x)为减函数,据此知x=2为f(x)的极小值点.故选D。
4.(2021·杭州学军中学模拟)函数f(x)=x e-x,x∈[0,4]的最小值为(A)A.0B.错误!C.错误!D.错误![解析]f′(x)=错误!当x∈[0,1)时,f′(x)〉0,f(x)单调递增,当x∈(1,4]时,f′(x)〈0,f(x)单调递减,因为f(0)=0,f(4)=错误!〉0,所以当x=0时,f (x)有最小值,且最小值为0。
5.已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是(A)A.-37B.-29C.-5 D.-13[解析]f′(x)=6x2-12x,由f′(x)=0得x=0或x=2.当x∈(-2,0)时,f′(x)〉0,f(x)单调递增;当x∈(0,2)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(0)=m=3,从而f(-2)=-37,f(2)=-5,所以f(x)min=f(-2)=-37。
课后限时集训(十六) 导数与函数的综合问题(建议用时:60分钟) A 组 基础达标一、选择题1.若关于x 的不等式x 3-3x 2-9x +2≥m 对任意x ∈[-2,2]恒成立,则m 的取值范围是( ) A .(-∞,7] B .(-∞,-20] C .(-∞,0]D .[-12,7]B [令f (x )=x 3-3x 2-9x +2,则f ′(x )=3x 2-6x -9,令f ′(x )=0,得x =-1或3(舍去). 因为f (-1)=7,f (-2)=0,f (2)=-20. 所以f (x )的最小值为f (2)=-20,故m ≤-20.] 2.设函数f (x )=13x -ln x (x >0),则f (x )( )A .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)上均有零点B .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)上均无零点 C .在区间⎝ ⎛⎭⎪⎫1e ,1上有零点,在区间(1,e)上无零点 D .在区间⎝ ⎛⎭⎪⎫1e ,1上无零点,在区间(1,e)上有零点 D [因为f ′(x )=13-1x ,所以当x ∈(0,3)时,f ′(x )<0,f (x )单调递减,而0<1e <1<e <3,又f ⎝ ⎛⎭⎪⎫1e =13e +1>0,f (1)=13>0,f (e)=e 3-1<0,所以f (x )在区间⎝ ⎛⎭⎪⎫1e ,1上无零点,在区间(1,e)上有零点.]3.已知函数f (x )=x e x,g (x )=-(x +1)2+a ,若∃x 1,x 2∈R,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-1e ,+∞B .[-1,+∞)C .[-e ,+∞)D.⎣⎢⎡⎭⎪⎫-1e ,+∞D [f ′(x )=e x+x e x=(1+x )e x,当x >-1时,f ′(x )>0,函数单调递增;当x <-1时,f ′(x )<0,函数单调递减.所以当x =-1时,f (x )取得最小值,f (-1)=-1e .函数g (x )的最大值为a .若∃x 1,x 2∈R,使得f (x 2)≤g (x 1)成立,则有g (x )的最大值大于或等于f (x )的最小值,即a ≥-1e.故选D.]4.若不等式2x ln x ≥-x 2+ax -3对x ∈(0,+∞)恒成立,则实数a 的取值范围是( ) A .(-∞,0)B .(-∞,4]C .(0,+∞)D .[4,+∞)B [由题意知a ≤2ln x +x +3x对x ∈(0,+∞)恒成立,令g (x )=2ln x +x +3x ,则g ′(x )=2x +1-3x 2=x 2+2x -3x2, 由g ′(x )=0得x =1或x =-3(舍), 且x ∈(0,1)时,g ′(x )<0,x ∈(1,+∞)时,g ′(x )>0.因此g (x )min =g (1)=4. 所以a ≤4,故选B.]5.(2018·衡阳一模)已知函数f (x )=a ln x +x 2,a ∈R,若f (x )在[1,e 2]上有且只有一个零点,则实数a 的取值范围是( ) A.⎝⎛⎭⎪⎫-∞,-e 42B.⎝⎛⎦⎥⎤-∞,-e 42∪{-2e 2}C.⎝⎛⎭⎪⎫-∞,-e 42∪{-2e} D.⎝⎛⎭⎪⎫-e 4,-e 42C [当x =1时,f (x )=1≠0,从而分离参数可将问题转化为直线y =a 与函数g (x )=-x 2ln x 的图象在(1,e 2]上有且只有一个交点,令g ′(x )=x-2ln xln 2x=0,得x =e ,易得g (x )在(1,e)上单调递增,在(e ,e 2]上单调递减,由于g (e)=-2e ,g (e 2)=-e42,当x →1时,g (x )→-∞,所以直线y =-2e ,或位于y =-e42下方的直线满足题意,即a =-2e 或a<-e42,故选C.]二、填空题6.(2019·郑州调研)已知函数f (x )=ax 3-3x +1对x ∈(0,1]总有f (x )≥0成立,则实数a 的取值范围是________.[4,+∞) [当x ∈(0,1]时,不等式ax 3-3x +1≥0可化为a ≥3x -1x 3,设g (x )=3x -1x3,x ∈(0,1],则g ′(x )=3x 3-x -x 2x 6=-6⎝ ⎛⎭⎪⎫x -12x4. 易知当x =12时,g (x )ma x =4,∴实数a 的取值范围是[4,+∞).]7.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是________.(-∞,-2) [当a =0时,f (x )=-3x 2+1有两个零点,不合题意,故a ≠0,f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0,x 2=2a.若a >0,由三次函数图象知f (x )有负数零点,不合题意,故a <0.由三次函数图象及f (0)=1>0知,f ⎝ ⎛⎭⎪⎫2a >0,即a ×⎝ ⎛⎭⎪⎫2a 3-3×⎝ ⎛⎭⎪⎫2a2+1>0,化简得a 2-4>0,又a <0,所以a <-2.]8.已知x ∈(0,2),若关于x 的不等式x e x <1k +2x -x2恒成立,则实数k 的取值范围为________. [0,e -1) [由题意,知k +2x -x 2>0.即k >x 2-2x 对任意x ∈(0,2)恒成立,从而k ≥0, 因此由原不等式,得k <e xx+x 2-2x 恒成立.令f (x )=e x x+x 2-2x ,则f ′(x )=(x -1)⎝ ⎛⎭⎪⎫e xx 2+2.令f ′(x )=0,得x =1,当x ∈(1,2)时,f ′(x )>0,函数f (x )在(1,2)上单调递增,当x ∈(0,1)时,f ′(x )<0,函数f (x )在(0,1)上单调递减,所以k <f (x )min =f (1)=e -1,故实数k 的取值范围为[0,e -1).] 三、解答题9.已知f (x )=ln x -x +a +1.(1)若存在x ∈(0,+∞),使得f (x )≥0成立,求实数a 的取值范围; (2)求证:当x >1时,在(1)的条件下,12x 2+ax -a >x ln x +12成立.[解] f (x )=ln x -x +a +1(x >0).(1)原题即为存在x ∈(0,+∞),使得ln x -x +a +1≥0, 所以a ≥-ln x +x -1,令g (x )=-ln x +x -1, 则g ′(x )=-1x +1=x -1x.令g ′(x )=0,解得x =1.因为当0<x <1时,g ′(x )<0,所以g (x )为减函数, 当x >1时,g ′(x )>0,所以g (x )为增函数, 所以g (x )min =g (1)=0.所以a ≥g (1)=0. 所以a 的取值范围为[0,+∞).(2)证明:原不等式可化为12x 2+ax -x ln x -a -12>0(x >1,a ≥0).令G (x )=12x 2+ax -x ln x -a -12,则G (1)=0.由(1)可知x -ln x -1>0,则G ′(x )=x +a -ln x -1≥x -ln x -1>0, 所以G (x )在(1,+∞)上单调递增,所以当x >1时,G (x )>G (1)=0. 所以当x >1时,12x 2+ax -x ln x -a -12>0成立,即当x >1时,12x 2+ax -a >x ln x +12成立.10.已知函数f (x )=ax -2+ln x ,其中a ∈R.(1)给出a 的一个取值,使得曲线y =f (x )存在斜率为0的切线,并说明理由; (2)若f (x )存在极小值和极大值,证明:f (x )的极小值大于极大值. [解] (1)∵f (x )=ax -2+ln x ,∴函数f (x )的定义域为D ={x |x >0且x ≠2}, ∴f ′(x )=-a x -2+1x. 当a =1时,曲线y =f (x )存在斜率为0的切线.证明如下: 曲线y =f (x )存在斜率为0的切线⇔方程f ′(x )=0存在D 上的解. 令-1x -2+1x=0,整理得x 2-5x +4=0,解得x =1或x =4.所以当a =1时,曲线y =f (x )存在斜率为0的切线. (2)证明:由(1)得f ′(x )=-a x -2+1x.①当a ≤0时,f ′(x )>0恒成立,函数f (x )在(0,2)和(2,+∞)上单调递增,无极值,不合题意. ②当a >0时,令f ′(x )=0,整理得x 2-(a +4)x +4=0. 由Δ=[-(a +4)]2-16>0,所以上述方程必有两个不相等的实数解x 1,x 2,不妨设x 1<x 2.由⎩⎪⎨⎪⎧x 1+x 2=a +4>4,x 1x 2=4,得0<x 1<2<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:12f (x 2)-f (x 1)=⎝⎛⎭⎪⎫a x 2-2+ln x 2-⎝ ⎛⎭⎪⎫a x 1-2+ln x 1=⎝⎛⎭⎪⎫a x 2-2-a x 1-2+(ln x 2-ln x 1).因为0<x 1<2<x 2,且a >0, 所以a x 2-2-ax 1-2>0,ln x 2-ln x 1>0, 所以f (x 2)>f (x 1).所以f (x )的极小值大于极大值.B 组 能力提升1.已知f (x )=x 3-3x ,过A (1,m )(m ≠-2)可作曲线y =f (x )的三条切线,则m 的取值范围是( ) A .(-1,1) B .(-2,3) C .(-1,2)D .(-3,-2)D [设切点(x 0,x 30-3x 0)(x 0≠1), 则f ′(x 0)=3x 20-3=k 切,由题意得x 30-3x 0-m x 0-1=3x 20-3,得m =-2x 30+3x 20-3,设g (x )=-2x 3+3x 2-3,则g ′(x )=-6x 2+6x =-6x (x -1), 显然g (x )在x =0与x =1处取得极值, 又g (0)=-3,g (1)=-2+3-3=-2, ∴当-3<m <-2时,可作三条切线.故选D.]2.(2018·太原二模)已知函数f (x )=x 3+ax 2+bx 有两个极值点x 1、x 2,且x 1<x 2,若x 1+2x 0=3x 2,函数g (x )=f (x )-f (x 0),则g (x )( ) A .恰有一个零点 B .恰有两个零点 C .恰有三个零点D .至多两个零点B [∵f (x )=x 3+ax 2+bx ,∴f ′(x )=3x 2+2ax +b ,由函数f (x )有两个极值点x 1、x 2,则x 1、x 2是方程3x 2+2ax +b =0的两个根,则x 1+x 2=-23a ,x 1x 2=b3,∴a =-x 1+x 22,①由x 1+2x 0=3x 2,则x 0=3x 2-x 12=x 2+x 2-x 12>x 2,由函数图象可知:令f (x 1)=f (x )的另一个解为m ,则x 3+ax 2+bx -f (x 1)=(x -x 1)2(x -m ),则⎩⎪⎨⎪⎧2x 1+m =-a ,2x 1m +x 21=b ,则m =-a -2x 1,②将①代入②整理得:m =x 1+x 22-2x 1=3x 2-x 12=x 0,∴f (x )=f (m )=f (x 0),∴g (x )只有两个零点,即x 0和x 1,故选B.]3.已知函数f (x )=3ln x -12x 2+2x -3ln 3-32,则方程f (x )=0的解的个数是________.1 [因为f (x )=3ln x -12x 2+2x -3ln 3-32(x >0),所以f ′(x )=3x -x +2=-x 2+2x +3x=-x +x +x,当x ∈(0,3)时,f ′(x )>0,f (x )单调递增, 当x ∈(3,+∞)时,f ′(x )<0,f (x )单调递减, 当x →0时,f (x )→-∞,当x →+∞时,f (x )→-∞,所以f (x )ma x =f (3)=3ln 3-92+6-3ln 3-32=0,所以方程f (x )=0只有一个解.]4.(2018·郑州一模)已知函数f (x )=ax +ln x +1. (1)讨论函数f (x )零点的个数;(2)对任意的x >0,f (x )≤x e 2x恒成立,求实数a 的取值范围. [解] (1)函数f (x )的定义域为(0,+∞), 由f (x )=ax +ln x +1=0,得a =-ln x +1x.令g (x )=-ln x +1x (x >0),则g ′(x )=ln x x2.因为当0<x <1时,g ′(x )<0,当x >1时,g ′(x )>0, 所以函数g (x )在(0,1)上单调递减,在(1,+∞)上单调递增. 所以g (x )min =g (1)=-1.因为g ⎝ ⎛⎭⎪⎫1e =0,当0<x <1e 时,g (x )>0,当x >1e 时,g (x )<0,所以当a <-1时,函数f (x )没有零点; 当a =-1或a ≥0时,函数f (x )有1个零点; 当-1<a <0时,函数f (x )有2个零点.(2)因为f (x )=ax +ln x +1,所以对任意的x >0,f (x )≤x e 2x 恒成立,等价于a ≤e 2x-ln x +1x在(0,+∞)上恒成立. 令m (x )=e 2x -ln x +1x(x >0),则m ′(x )=2x 2e 2x+ln x x2. 再令n (x )=2x 2e 2x +ln x ,则n ′(x )=4(x 2+x )e 2x+1x>0,所以n (x )=2x 2e 2x+ln x 在(0,+∞)上单调递增. 因为n ⎝ ⎛⎭⎪⎫14=e 8-2ln 2<0,n (1)>0,所以n (x )=2x 2e 2x+ln x 有唯一零点x 0,且14<x 0<1,所以当0<x <x 0时,m ′(x )<0,当x >x 0时,m ′(x )>0, 所以函数m (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增. 因为2x 20e2x 0+ln x 0=0,即e2x 0=-ln x 02x 20,所以2x 0=ln(-ln x 0)-ln(2x 0)-ln x 0, 即ln(2x 0)+2x 0=ln(-ln x 0)+(-ln x 0).设s (x )=ln x +x ,则s ′(x )=1x+1>0,所以函数s (x )=ln x +x 在(0,+∞)上单调递增,又s (2x 0)=s (-ln x 0),所以2x 0=-ln x 0,于是有e2x 0=1x 0.所以m (x )≥m (x 0)=e2x 0-ln x 0+1x 0=2,则有a ≤2.所以a 的取值范围为(-∞,2].。