北师大版九年数学上册第一章单元测试
- 格式:doc
- 大小:627.00 KB
- 文档页数:4
北师大版九年级上册数学第一章检测试题(附答案)一、单选题(共12题;共24分)1.如图,在平行四边形ABCD中,AC平分∠DAB ,AB=2,则平行四边形ABCD的周长为().A. 4B. 6C. 8D. 122.下列四边形中,对角线相等且互相垂直平分的是()A. 平行四边形B. 正方形C. 等腰梯形D. 矩形3.已知,如图,矩形ABCD中,AB=3cm,AD=9cm,将此矩形折叠,使点D与点B重合,折痕为EF,则△ABE 的面积为()A. 6cm2B. 8cm2C. 10cm2D. 12cm24.如图,将矩形纸带ABCD,沿EF折叠后,C,D两点分别落在C′,D ′的位置,经测量得∠EFB=65°,则∠AED′的度数是( )A. 65°B. 55°C. 50°D. 25°5.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是()A. 1.6B. 2.5C. 3D. 3.46.如图,四边形ABCD是矩形,F是AD上一点,E是CB延长线上一点,且四边形AECF是等腰梯形,下列结论中不一定正确的是()A. AE=FCB. AD=BCC. BE=AFD. ∠E=∠CFD7.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A. AB=ACB. AD=BDC. BE⊥ACD. BE平分∠ABC8.已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B. 当AD=BC,AB=DC时,四边形ABCD是平行四边形C. 当AC=BD,AC平分BD时,四边形ABCD是矩形D. 当AC=BD,AC⊥BD时,四边形ABCD是正方形9.已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,它是菱形B. 当AC=BD时,它是正方形C. 当AC⊥BD时,它是菱形D. 当∠ABC=900时,它是矩形10.如图,正方形CEFH的边长为m,点D在射线CH上移动,以CD为边作正方形CDAB,连接AE、AH、HE,在D点移动的过程中,三角形AHE的面积()A. 无法确定B.C.D.11.如图,在△ABC中,AD平分∠BAC ,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF .若BD=6,AF=4,CD=3,则BE的长是().A. 2B. 4C. 6D. 812.在正方形ABCD中,点E为BC边的中点,点与点B关于AE对称,与AE交于点F,连接,,FC。
九年级数学上册第一章特殊的平行四边形单元测试题班级:姓名:成绩:一.选择题(共10小题,每小题3分,共30分)1.下列属于菱形性质的是()A.对角线相等 B.对角线互相垂直C.对角互补 D.四个角都是直角2.如图,AC=AD,BC=BD,则正确的结论是()A.AB 垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.四边形ABCD是菱形3.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40 B.24 C.20 D.154.如图,O为矩形ABCD的对角线AC的中点,过点O作AC的垂线EF分别交AD、BC于点E、F,连结CE.若该矩形的周长为20,则△CDE的周长为()A.10 B.9 C.8 D.55.如图,在▱ABCD中,对角线AC与BD 交于点O,添加下列条件不能判定▱ABCD为矩形的只有()A.AC=BD B.AB=6,BC=8,AC=10 C.AC⊥BD D.∠1=∠26.如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为()A.35°B.40°C.45°D.50°7.如图,在正方形ABCD中,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点E,连接AE,BE得到△ABE,则△ABE与正方形ABCD的面积比为()A.1:2 B.1:3 C.1:4 D.8.已知四边形ABCD中,∠A=∠B=∠C=90°,如添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是()A.∠D=90°B.AB=CD C.AB=BC D.AC=BD9.如图,在平面直角坐标系中,菱形ABCD的边长为6,它的一边AB在x轴上,且AB的中点是坐标原点,点D在y轴正半轴上,则点C的坐标为()A.(3,3)B.(3,3)C.(6,3)D.(6,3)二.填空题(共8小题,每小题3分,共24分)10.矩形(非正方形)四个内角的平分线围成的四边形是形.(填特殊四边形)11.如图,E是菱形ABCD的对角线BD上一点,过点E作EF⊥BC于点F.若EF =4,则点E到边AB的距离为.12.在菱形ABCD中,AC=12cm,若菱形ABCD的面积是96cm2,则AB=.13.如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F 分别为AO、AD的中点,则EF的长是.14.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是.15.如图,菱形ABCD的周长是20,对角线AC、BD相交于点O.若BO=3,则菱形ABCD的面积为.16.已知:如图,在长方形ABCD中,AB=2,AD=3.延长BC到点E,使CE=1,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为时,△ABP和△DCE全等.17.如图,在正方形ABCD和正方形CEFG中,BC=1,CE=3,点D是CG边上一点,H是AF 的中点,那么CH的长是.三.解答题(共7小题,共66分)18.已知:如图所示,菱形ABCD中,DE⊥AB于点E,且E为AB的中点,已知BD=4,求菱形ABCD的周长和面积.19.如图,已知四边形ABCD是平行四边形,AE⊥BC,AF⊥DC,垂足分别是E,F,并且BE =DF.求证;四边形ABCD是菱形.20.如图,在矩形ABCD中,AE⊥BD于点E,∠DAE=2∠BAE,求∠EAC的度数.21.如图,在四边形ABCD中,AD∥BC,∠D=90°,E为边BC上一点,且EC=AD,连结AC.(1)求证:四边形AECD是矩形;(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,22.如图,在边长12的正方形ABCD中,点E是CD的中点,点F在边AD上,且AF=3DF,连接BE,BF,EF,请判断△BEF的形状,并说明理由.23.如图,正方形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.(1)求证:四边形OCED是正方形.(2)若AC =,则点E到边AB 的距离为.24.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFC,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.参考答案一.选择题1.解:A、菱形的对角线互相垂直,但不一定相等,故原命题错误,不符合题意;B、菱形的对角线互相垂直,故原命题正确,符合题意;C、菱形的对角相等,故原命题错误,不符合题意;D、矩形的四个角都是直角,菱形不一定是,故原命题错误,不符合题意,故选:B.2.解:∵AC=AD,BC=BD,∴AB垂直平分CD,故选:A.3.解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO =BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD 的面积=×6×8=24,故选:B.4.解:∵O为矩形ABCD的对角线AC的中点,∴AO=OC,∵过点O作AC的垂线EF分别交AD、BC于点E、F,∴AE=CE,∵矩形的周长为20,∴AD+DC=AB+BC=10,∴△CDE的周长为CD+DE+CE=CD+DE+AE=CD+AD=10,故选:A.5.解:A、正确.对角线相等的平行四边形是矩形.B、正确.∵AB=6,BC=8,AC=10,∴AB2+BC2=62+82=102,∴∠ABC=90°,∴平行四边形ABCD为矩形.C、错误.对角线垂直的平行四边形是菱形,D、正确,∵∠1=∠2,∴AO=BO,∴AC=BD,∴平行四边形ABCD是矩形.故选:C.6.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,∵∠OAD=55°,∴∠OAB=∠DAB﹣∠OAD=35°故选:A.7.解:过E作EF⊥AB于F,由题意得,△BCE是等边三角形,∴∠EBC=60°,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE=30°,∴EF =BE,设正方形的边长为a,则AB=BE=BC=a,∴EF =a,∴S△ABE =AB•EF =•a a =a,S正方形ABCD=a2,∴△ABE与正方形ABCD的面积比为1:4,故选:C.8.解:由∠A=∠B=∠C=90°可判定四边形ABCD为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD为正方形,故选:C.9.解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∴∠A+∠BCD=180°,∵∠FCD+∠BCD=180°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,∴DE=4.故选:C.10.解:∵四边形ABCD是菱形∴AB=AD=CD=6,AB∥CD∵AB的中点是坐标原点,∴AO=BO=3,∴DO ==3∴点C坐标(6,3)故选:D.二.填空题11.解:∵AF,BE是矩形的内角平分线.∴∠ABF=∠BAF﹣90°.故∠1=∠2=90°.同理可证四边形GMON四个内角都是90°,则四边形GMON为矩形.又∵有矩形ABCD且AF、BE、DK、CJ为矩形ABCD四角的平分线,∴有等腰直角△DOC,等腰直角△AMD,等腰直角△BNC,AD=BC.∴OD=OC,△AMD≌△BNC,∴NC=DM,∴NC﹣OC=DM﹣OD,即OM=ON,∴矩形GMON为正方形,故答案为:正方.12.解:∵四边形ABCD为菱形,∴BD平分∠ABC,∵E为BD上的一点,EF=4,∴点E到AB的距离=EF=4,故答案为:4.13.解:如图,∵四边形ABCD是菱形∴AO=CO=6cm,BO=DO,AC⊥BD ∵S菱形ABCD =×AC×BD=96∴BD=16cm∴BO=DO=8cm∴AB ==10cm故答案为:10cm14.解:∵四边形ABCD是矩形,∴AO=OC,DO=BO,AC=BD,∴DO=CO=AO=BO,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=10,∴AO=OB=DO=10,∵E、F分别为AO、AD的中点,∴EF =DO ==5,故答案为:5.15.解:∵四边形ABCD是正方形,∴∠CAE=45°=∠ACB.∵AE=AC,∴∠ACE=(180°﹣45°)÷2=67.5°.∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为22.5°.16.解:∵菱形ABCD的周长是20,∴AB=5,AC⊥BD,AO=CO,BO=DO=3,∴AO ==4∴AC=8,BD=6∴菱形ABCD 的面积=AC×BD=24,故答案为:2417.解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=1,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=1,所以t=0.5,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=1,根据SAS证得△BAP≌△DCE,由题意得:AP=8﹣2t=1,解得t=3.5.所以,当t的值为0.5或3.5秒时.△ABP和△DCE全等.故答案为:0.5秒或3.5秒.18.解:∵四边形ABCD和四边形CEFG都是正方形,∴∠ACD=45°,∠FCG=45°,AC =BC =,CF =CE=3,∴∠ACF=45°+45°=90°,在Rt△ACF中,由勾股定理得:AF ===2,∵H是AF的中点,∴CH =AF =.故答案为:.三.解答题19.解:∵DE⊥AB于E,且E为AB的中点,∴AD=BD,∵四边形ABCD是菱形,∴AD=BA,∴AB=AD=BD,∴△ABD是等边三角形,∴∠DAB=60°;∵BD=4,∴DO=2,AD=4,∴AO ==2,∴AC=4;∴AB ===4,∴菱形ABCD的周长为4×4=16;菱形ABCD 的面积为:BD•AC =×4×4=8.20.证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥DC∴∠AEB=∠AFD=90°.又∵BE=DF,∴△ABE≌△ADF(AAS)∴DA=AB,∴平行四边形ABCD是菱形.21.解:∵四边形ABCD是矩形,∴AC=BD,AO=OC,OD=OB,∠BAD=90°,∴OA=OB,∵∠BAD=90°,∠DAE=2∠BAE,∴∠BAE=30°,∵AE⊥BD,∴∠AEB=90°,∴∠ABO=90°﹣30°=60°,∵OA=OB,∴△OAB是等边三角形,∴∠BAO=60°,∴∠EAC=∠BAO﹣∠BAE=60°﹣30°=30°.22.解:(1)证明:∵AD∥BC,EC=AD,∴四边形AECD是平行四边形.又∵∠D=90°,∴四边形AECD是矩形.(2)∵AC平分∠DAB.∴∠BAC=∠DAC.∵AD∥BC,∴∠DAC=∠ACB.∴∠BAC=∠ACB.∴BA=BC=5.∵EC=2,∴BE=3.∴在Rt△ABE中,AE ===4.23.解:△BEF是直角三角形,理由如下:∵四边形ABCD是正方形,∴∠A=∠C=∠D=90°.∵点E是CD的中点,∴DE=CE =CD=6.∵AF=3DF,∴DF =AD=3.∴AF=3DF=9.在Rt△ABF中,由勾股定理可得BF2=AB2+AF2=144+81=225,在Rt△BCE中,由勾股定理可得BE2=CB2+CE2=144+36=180,在Rt△DEF中,由勾股定理可得EF2=DF2+DE2=9+36=45,∵BE2+EF2=180+45=225,BF2=225,∴BE2+EF2=BF2.∴△BEF是直角三角形.24.(1)证明:∵CE∥BD,DE∥AC,∴四边形OCED是平行四边形,在正方形ABCD中,AC⊥BD,OD=OC,∴∠COD=90°,∴四边形OCED是正方形.(2)解:如图,连接EO并延长,交AB于G,交CD于H,由(1)知:四边形OCED是正方形,∴CD⊥OE,∵四边形ABCD是正方形,∴AB∥CD,∴EG⊥AB,∵AC =,∴AB=BC=1=GH,Rt△DCE中,∵DE=CE,EH⊥CD,∴DH=CH,∴EH =CD=0.5,∴EG=1+0.5=1.5,∴点E到边AB的距离为1.5;故答案为:1.5.25.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.。
北师大版九年级数学上册第一章特殊平行四边形单元测试(4)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1BC.2D.2.正方形面积为36,则对角线的长为()A.6B.C.9D.3.如图,在矩形ABCD中,对角线BD=8cm,∠AOD=120°,则AB的长为()B.2cm C.D.4cmA4.如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为()A.5 cm B.10 cm C.14 cm D.20 cm5.下列命题中,真命题是().A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形6.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A .AC =BD ,AB∠CD ,AB =CDB .AD∠BC ,∠A =∠C C .AO =BO =CO =DO ,AC∠BD D .AO =CO ,BO =DO ,AB =BC7.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是( )A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形8.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .15B .14C .13D .3109.图,在∠ABC 中,AB =AC ,四边形ADEF 为菱形,O 为AE ,DF 的交点,S △ABC =,则S 菱形ADEF =( )A .4B .C .D .10.如图,四边形ABCD 中,90BAD C ∠=∠=︒,AB AD =,AH BC ⊥于H ,若线段AH =ABCD 的面积是( ).A .3B .4C .D .6二、填空题11.如图,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距离AB=BC=16cm ,则∠1=_______°12.如图,已知正方形ABCD 的边长为1,连接AC ,BD ,相交于点O ,CE 平分∠ACD 交BD 于点E ,则DE =_____.13.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为_____________.14.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,CE ∠BD ,垂足为点E ,CE =5,EO =2DE ,则DE 的长为________.15.如图,四边形ABCD 是菱形,24,10,AC BD DH AB ==⊥ 于点H ,则线段BH 的长为_________.16.将五个边长都为2的正方形按如图所示摆放,点A 1、A 2、A 3、A 4分别是四个正方形的中心,则图中四块阴影部分的面积的和为______.17.图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点(不与B ,D 重合),PE∥CD 交BC 于点E ,PF ∥BC 交CD 于点F ,连接AP ,EF .给出下列结论:∠PD EC ;∠四边形PECF 的周长为8;∠∠APD 一定是等腰三角形;∠AP =EF .其中正确结论的序号为________.三、解答题18.如图,矩形ABCD 中,AC 与BD 交于点O BE AC CF BD ⊥⊥,,,垂足分别为.E F ,求证:BE CF =.19.如图,在77⨯的正方形网格中,网格线的交点称为格点,B 在格点上,每一个小正方形的边长为1.(1)以AB 为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.20.如图,菱形ABCD的对角线AC,BD交于点O,AB=5,AC=6,DE∠BC的延长线于点E,求OE的长.21.如图,菱形ABCD的对角线AC,BD交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)求证:四边形AEBO是矩形;(2)若CD=3,求EO的长.22.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,连接PE,PB.(1)在AC上找一点P,使∠BPE的周长最小(作图说明);(2)求出∠BPE周长的最小值.23.如图,矩形ABCD 和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.=;(1)求证:AF HG∠=∠;(2)求证:FAE GHC24.如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN∠BC,设MN 交∠ACB 的平分线于点E,交∠ACB 的外角平分线于点F.(1)求证:OE=OF;(2)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.(3)若AC 边上存在点O,使四边形AECF 是正方形,猜想△ABC 的形状并证明你的结论.25.有一张矩形纸片ABCD,其中AB=10,AD=6,现将矩形纸片折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形纸片的边的交点),再将纸片还原.(1)若点P落在矩形ABCD的边AB上(如图∠).∠当点P与点A重合时,∠DEF=________°,当点E与点A重合时,∠DEF=________°,当点F与点C重合时,AP=________;∠若点P为AB的中点,求AE的长;(2)若点P落在矩形ABCD的外部(如图∠),点F与点C重合,点E在AD上,BA与FP交于点M,当AM=DE时,请求出AE的长;(3)若点E为动点,点F为DC的中点,直接写出AP的最小值.参考答案:1.C【分析】利用菱形的性质以及等边三角形的判定方法得出∠DAB 是等边三角形,进而得出BD 的长,【详解】解:∠菱形ABCD 的边长为2,∠AD =AB =2,又∠∠DAB =60°,∠∠DAB 是等边三角形,∠AD =BD =AB =2,则对角线BD 的长是2.故选C .【点睛】此题主要考查了菱形的性质以及等边三角形的判定,得出∠DAB 是等边三角形是解题关键.2.B【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【详解】设对角线长是x .则有12x 2=36,解得:x故选B .【点睛】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.3.D【分析】根据矩形的性质求出4AO BO cm ==,再根据等边三角形的判定可得AOB 是等边三角形,然后根据等边三角形的性质即可得.【详解】∠120AOD ∠=︒∠18060AOB AOD ∠=︒-∠=︒∠四边形ABCD 是矩形,8BD cm = ∠118,4,422AC BD cm AO AC cm BO BD cm ======∠4AO BO cm ==∠AOB 是等边三角形∠4AB AO cm ==故选:D .【点睛】本题考查了矩形的性质、等边三角形的判定与性质等知识点,熟记矩形的性质是解题关键.4.D【分析】根据菱形的性质和勾股定理求解即可.【详解】解:∠菱形的对角线AC 与BD 相交于点O ,∠AO =OC ,BO =OD ,AC ∠BD ,AB =BC =CD =AD ,∠AC =6cm ,BD =8cm ,∠在Rt∠AOB 中,AO =3cm ,BO =4cm ,∠AOB =90°,由勾股定理得:AB ,∠菱形的周长为4×5=20cm ,故选:D .【点睛】本题考查菱形的性质、勾股定理,熟练掌握菱形的对角线互相垂直且平分是解答的关键.5.C【详解】解:A 、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B 、对角线互相垂直的平行四边形是菱形;故本选项错误;C 、对角线互相平分的四边形是平行四边形;故本选项正确;D 、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C .6.C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A ,不能,只能判定为矩形,不符合题意;B ,不能,只能判定为平行四边形,不符合题意;C ,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.7.D【分析】根据三角形的中位线定理得到EH∠FG,EF=FG,EF=12BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∠E,F,G,H分别是边AD,AB,CB,DC的中点,∠EH=12AC,EH∠AC,FG=12AC,FG∠AC,EF=12BD,∠EH∠FG,EF=FG,∠四边形EFGH是平行四边形,假设AC=BD,∠EH=12AC,EF=12BD,则EF=EH,∠平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选:D.【点睛】题目主要考查中位线的性质及菱形的判定和性质,理解题意,熟练掌握运用三角形中位线的性质是解题关键.8.B【分析】根据矩形的性质,得△EBO∠∠FDO,再由△AOB与△ABC同底且△AOB的高是△ABC高的12得出结论.【详解】解:∠四边形为矩形,∠OB=OD=OA=OC,在△EBO与△FDO中,∠∠EOB=∠DOF,OB =OD ,∠EBO =∠FDO ,∠∠EBO ∠∠FDO (ASA ),∠阴影部分的面积=S △AEO +S △EBO =S △AOB ,∠∠AOB 与△ABC 同底且△AOB 的高是△ABC 高的12, ∠S △AOB =12S △ABC =14S 矩形ABCD . 故选B【点睛】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质9.C【分析】根据菱形的性质,结合AB =AC ,得出DF 为∠ABC 的中位线,DF∥BC ,12DF BC =,从而得出AE 为∠ABC 的高,得出BC AE ⨯=的面积.【详解】解:∠四边形ADEF 为菱形,∠EF∥AB ,DE∥AC ,AF =EF =DE =AD ,AE ∠DF ,∠CEF B ∠=∠,DEB C ∠=∠,AC AB =,B C ∴∠=∠,CEF B C DEB ===∴∠∠∠∠,∠CF =EF ,DE =DB ,CF AF ∴=,AD DB =,∠DF∥BC ,12DF BC =, 90AOD ∠=︒,90AEB AOD ==︒∴∠∠,AE BC ∴⊥,ABC S =∵12BC AE ⨯=∴即BC AE ⨯=1111=2224ADEF S DF AE BC AE ⨯=⨯⨯=⨯菱形∴C 正确. 故选:C .【点睛】本题主要考查了菱形的性质,中位线的性质,等腰三角形的性质和判断,平行线的性质,菱形的面积,三角形面积的计算,根据菱形的性质和等腰三角形的性质得出DF 为∠ABC 的中位线,是解题的关键.10.D【详解】试题解析:过A 点作CD 的垂线,交CD 的延长线于F 点,如图,则四边形AECF 是矩形90,90DAE BAE DAE DAF ∠+∠=∠+∠=,BAE DAF ∴∠=∠,在∠ABE 和∠DAF 中,{AB ADBAE DAF AEB AFD =∠=∠∠=∠,则(AAS)ABE DAF ≌,,AE AF ∴=又∠四边形AECF 是矩形.∠四边形AECF 为正方形,而四边形ABCD 的面积是6,故选D.11.120【详解】由题意可得AB 与菱形的两邻边组成等边三角形,从而不难求得∠1的度数. 解:由题意可得AB 与菱形的两邻边组成等边三角形,则∠1=120°.故答案为120.此题主要考查菱形的性质和等边三角形的判定.12【分析】由正方形对角线相交于点O ,则DO CO ⊥,12DO BD ==,过点E 作EF CD ⊥于F ,设EO EF DF x ===,则DE =,列出方程x =解出x ,最后得出答案. 【详解】解:如图所示,过点E 作EF CD ⊥于F ,∠正方形ABCD 的边长为1,∠AC =BDDO CO ⊥,∠OA =OC =OB =OD =2, ∠CE 平分∠ACD 交BD 于点E ,∠EO =EF ,∠在正方形ABCD 中,∠ADB =∠CDB =45°,∠EF =DF ,设EO EF DF x ===,则DE =,∠OD =OE +DE =x =∠解得x =∠DE =OD -OE 1=,1.【点睛】本题主要考查了正方形的性质与角平分线的性质,解题的关键是根据角平线的性质作出辅助线.13.(4,4)【详解】解:连接AC 、BD 交于点E ,如图所示:∠四边形ABCD 是菱形,∠AC ∠BD ,AE =CE =12AC ,BE =DE =12BD ,∠点B的坐标为(8,2),点D的坐标为(0,2),∠OD=2,BD=8,∠AE=OD=2,DE=4,∠AC=4,∠点C的坐标为:(4,4)故答案为:(4,4)【点睛】本题考查菱形的性质;坐标与图形性质.14【分析】由矩形的性质得到∠ADC=90°,BD=AC,OD=12BD,OC=12AC,求得OC=OD,设DE=x,OE=2x,得到OD=OC=3x,根据勾股定理即可得到答案.【详解】解:∠四边形ABCD是矩形,∠∠ADC=90°,BD=AC,OD=12BD,OC=12AC,∠OC=OD,∠EO=2DE,∠设DE=x,OE=2x,∠OD=OC=3x,∠CE∠BD,∠∠DEC=∠OEC=90°,在Rt△OCE中,∠OE2+CE2=OC2,∠(2x)2+52=(3x)2,解得:x,∠DE【点睛】本题考查了矩形的性质,勾股定理,熟练掌握矩形的性质是解决问题的关键.15.50 13【详解】试题分析:∠四边形ABCD是菱形,AC=24,BD=10,∠AO=12,OD=5,AC∠BD,=13,∠DH∠AB,∠AO×BD=DH×AB,∠12×10=13×DH,∠DH=12013,5013=.考点:1.菱形的性质;2.勾股定理.16.4【分析】连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF∠∠NAE,进而可得四边形AENF的面积等于∠NAP的面积,同理可得答案.【详解】如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,∠∠PAF+∠FAN=∠FAN+∠NAE=90°,∠∠PAF=∠NAE,∠∠PAF∠∠NAE,∠四边形AENF的面积等于∠NAP的面积,而∠NAP 的面积是正方形的面积的14,而正方形的面积为4, ∠四边形AENF 的面积为1cm 2,四块阴影面积的和为4cm 2.故答案为4.【点睛】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:∠定点-旋转中心;∠旋转方向;∠旋转角度.17.∠∠∠【分析】∠证明PF EC =,PDF ∆是等腰直角三角形,即可说明PD =;∠先证明四边形PECF 为矩形,根据等腰直角三角形和矩形的性质可得其周长为2BC ,则四边形PECF 的周长为8;∠根据P 的任意性可以判断APD ∆不一定是等腰三角形;∠四边形PECF 为矩形,通过正方形的轴对称性,证明AP EF =.【详解】解:∠PE BC ⊥,PF CD ⊥,90PEC PFC ∴∠=∠=︒,又90C ∠=︒,∴四边形PECF 是矩形,EC PF ∴=.四边形ABCD 是正方形,45PDF ∴∠=︒,PDF ∴∆是等腰直角三角形,PD ∴==,故∠正确;∠PE BC ⊥,PF CD ⊥,90BCD ∠=︒,∴四边形PECF 为矩形,∴四边形PECF 的周长222228CE PE CE BE BC =+=+==,故∠正确; ∠点P 是正方形ABCD 的对角线BD 上任意一点,45ADP ∠=︒,∴当45PAD ∠=︒或67.5︒或90︒时,APD ∆是等腰三角形,除此之外,APD ∆不是等腰三角形,故∠错误.∠四边形PECF为矩形,∠=∠,∴=,PFE ECPPC EF正方形为轴对称图形,∴=,AP PC∴=,AP EF故∠正确;故答案为∠∠∠.【点睛】本题考查了正方形的性质,等腰三角形的判定与性质,勾股定理的运用等知识;熟练掌握正方形的性质和等腰三角形的性质是解题的关键.18.证明见解析【分析】要证BE=CF,可运用矩形的性质结合已知条件证BE、CF所在的三角形全等.【详解】证明:∠四边形ABCD为矩形,∠AC=BD,则BO=CO.∠BE∠AC于E,CF∠BD于F,∠∠BEO=∠CFO=90°.又∠∠BOE=∠COF,∠∠BOE∠∠COF.∠BE=CF.19.(1)答案不唯一,见解析;(2)6或8或10(答案不唯一)【分析】(1)根据菱形的定义并结合格点的特征进行作图;(2)利用菱形面积公式求解.【详解】解:(1)根据题意,菱形ABCD即为所求(2)图1中AC =2,BD =6∠图1中菱形面积12662=⨯⨯=.图2中,AC22442,BD =∠图2中菱形面积182=⨯=.图3中,AC BD =∠图3菱形面积1102=⨯=. 【点睛】本题考查菱形的性质,掌握菱形的概念准确作图是关键.20.4【分析】由菱形的性质得出AC BD ⊥,OB OD =,112OA OC AC ===,在Rt AOD ∆中,由勾股定理得:4OD =,得出28BD OD ==,再由直角三角形斜边上的中线性质即可得出结果.【详解】解:∠四边形ABCD 是菱形,∠AD =AB =5,AC ∠BD ,AO =12AC =12×6=3,OB =OD . 在Rt∠AOD 中,由勾股定理得OD =4OD ==,∠BD =2OD =8.∠DE ∠BC ,∠∠DEB =90°.又∠OD =OB ,∠OE =12BD =12×8=4. 【点睛】本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.21.(1)见解析;(2)3【分析】(1)先根据平行四边形的判定证明四边形AEBO 是平行四边形,再利用菱形的对角线互相垂直和矩形的判定证明即可;(2)利用矩形的性质求解即可.(1)证明:∠BE∠AC,AE∠BD,∠四边形AEBO是平行四边形.∠四边形ABCD是菱形,∠AC∠BD,即∠AOB=90°.∠四边形AEBO是矩形.(2)解:∠四边形AEBO是矩形,∠EO=AB,在菱形ABCD中,AB=CD,∠EO=CD=3.【点睛】本题考查菱形的性质、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的性质和矩形的判定与性质是解答的关键.22.(1)见解析(2)12【分析】(1)连接DE,交AC于点P′,连接BP′,当点P在点P′处时,∠BPE的周长最小.理由:证明∠AB P′∠∠AD P′,即可求解;(2)根据(1)可得P′B+P′E=DE.再由AE=3BE,可得AE=6.从而得到AD=AB=8.再由勾股定理,即可求解.(1)解:如图,连接DE,交AC于点P′,连接BP′,当点P在点P′处时,∠BPE的周长最小.理由:在正方形ABCD中,AB=AD,∠BAC=∠DAC,∠AP′=AP′,∠∠ABP′∠∠ADP′,∠BP′=DP′,∠BP+PE= DP′+ P′E≥DE,即当点P位于PP′时,∠BPE的周长PB+EP+BE最小;(2)解:由(1)得:B P ′=DP ′,∠P ′B +P ′E =DE .∠BE =2,AE =3BE ,∠AE =6.∠AD =AB =8.∠DE10.∠PB +PE 的最小值是10.∠∠BPE 周长的最小值为10+BE =10+2=12.【点睛】本题主要考查了正方形的性质,勾股定理,最短距离,全等三角形的判定和性质等,熟练掌握相关知识点是解题的关键.23.(1)详见解析;(2)详见解析.【分析】(1)根据题意可先证明四边形AHCE 为平行四边形,再根据正方形的性质得到∠AH FG =,//AH FG ,故可证明四边形AHGF 是平行四边形,即可求解;(2)根据四边形AHGF 是平行四边形,得180FAH AHG ∠+∠=︒,根据四边形ABCD 是矩形,可得 DAH AHB ∠=∠,再根据平角的性质及等量替换即可证明.【详解】(1)证明:∠四边形ABCD 是矩形,且E 、H 分别为AD 、BC 的中点, ∠AE HC =,//AE HC ,∠四边形AHCE 为平行四边形,∠AH EC =,//AH EC ,又∠四边形ECGF 为正方形,∠EC FG =,//EC FG ,∠AH FG =,//AH FG ,∠四边形AHGF 是平行四边形,∠AH FG =;(2)证明:∠四边形AHGF 是平行四边形,∠180FAH AHG ∠+∠=︒,∠四边形ABCD 是矩形,∠//AD BC ,∠DAH AHB ∠=∠,又∠180AHB AHG GHC ∠+∠+∠=︒,∠FAD GHC ∠=∠;【点睛】此题主要考查正方形的性质与证明,解题的关键是熟知特殊平行四边形的性质定理.24.(1)见解析;(2)当点 O 在边 AC 上运动到 AC 中点时,四边形 AECF 是矩形.见解析;(3)△ABC 是直角三角形,理由见解析.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据AO =CO ,EO =FO 可得四边形AECF 平行四边形,再证明∠ECF =90°利用矩形的判定得出即可;(3)利用正方形的性质得出AC ∠EN ,再利用平行线的性质得出∠BCA =90°,即可得出答案;【详解】证明:(1)∠MN 交∠ACB 的平分线于点 E ,交∠ACB 的外角平分线于点 F , ∠∠2=∠5,∠4=∠6,∠MN ∠BC ,∠∠1=∠5,∠3=∠6,∠∠1=∠2,∠3=∠4,∠EO =CO ,FO =CO ,∠OE =OF ;(2)当点 O 在边 AC 上运动到 AC 中点时,四边形 AECF 是矩形.证明:当 O 为 AC 的中点时,AO =CO ,∠EO =FO ,∠四边形 AECF 是平行四边形,∠CE 是∠ACB 的平分线,CF 是∠ACD 的平分线,∠∠ECF =12(∠ACB +∠ACD )=90°,∠平行四边形 AECF 是矩形.(3)∠ABC 是直角三角形,理由:∠四边形AECF 是正方形,∠AC∠EN,故∠AOM=90°,∠MN∠BC,∠∠BCA=∠AOM,∠∠BCA=90°,∠∠ABC 是直角三角形.【点睛】此题考查了正方形的判断和矩形的判定,需要知道平行线的特征和角平分线的性质才能解答此题.25.(1)∠ 90,45,2;∠11 12(2)1275【分析】(1)∠分别画出三种情况下的图形即可得到解答;∠连接EP,设AE=x,可以得到关于x的方程,从而得到AE的值;(2)连接EM,设AE=y,根据题意可以得到关于y的方程,解方程即可得到问题解答;(3)画出图形后根据题意可以得到解答.(1)∠如图1所示,点P与点A重合,由题意可知,PD∠EF,所以∠DEF=90°,如图2所示,点E与点A重合,由题意可知,ED=EP,PD∠EF,所以∠DEF=45°,如图3所示,点F与点C重合,连结CP,由题意可知,CP=DF=10,BC=6,∠在RT∠CPB中,PB=8,∠AP=AB-PB=2,故答案为90;45;2;∠如图4所示,连接EP,∠点P为AB的中点,∠AP=BP=5,由折叠知DE=EP,设AE=x,则DE=EP=6-x,在Rt∠AEP中,AE2+AP2=EP2,即x2+52=(6-x)2,解得x=1112,即AE=1112.(2)如图5所示,连接EM,设AE=y,由折叠知PE=DE,∠CDE=∠EPM=90°,CD=CP=AB=10,∠AM=DE,∠AM=PE.在Rt∠AEM和Rt∠PME中,,, AM PE EM ME=⎧⎨=⎩∠Rt∠AEM∠Rt∠PME(HL),∠AE=PM=y,∠CM=10-y,BM=AB-AM=AB-DE=10-(6-y)=4+y.在Rt∠BCM中,BM2+BC2=CM2,∠(4+y)2+62=(10-y)2,解得y=127.∠AE=127.(3)如图6所示,连结AF,在Rt ADF中,∠D=90°,AD=6,DF=CF=5,∠AF∠PF=DF=5,∠5AP AF PF≥-=,∠AP5.【点睛】本题考查矩形的的折叠问题和最短距离问题,正确分类并画出图形是解题的关键.。
2021-2022学年北师大版九年级数学上册《第1章直角三角形的边角关系》单元综合达标测试(附答案)一.选择题(共6小题,满分30分)1.如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD=3,CD=2,则tan B的值为()A.B.C.D.2.在△ABC中,BC=2,AC=2,∠A=30°,则AB的长为()A.B.2C.或4D.2或43.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD 的正切值是()A.B.C.D.4.如图,在Rt△ABC中,∠C=90°,AC=4,tan A=,则BC的长度为()A.2B.8C.D.5.如图,在边长为1的正方形网格中,连接格点D、N和E、C,DN和EC相交于点P,tan ∠CPN为()A.1B.2C.D.6.某水库大坝的横断面是梯形,坝内斜坡的坡度,坝外斜坡的坡度i=1:1,则两个坡角的和为()A.90°B.60°C.75°D.105°二.填空题(共10小题,满分50分)7.如图,△ABC的顶点都在正方形网格的格点上,则sin∠ACB的值为.8.如图,点D在钝角△ABC的边BC上连接AD,∠B=45°,∠CAD=∠CDA,CA:CB =5:7,则∠BAD的余弦值为.9.已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于.10.如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)11.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=.12.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD=.13.如图,一架长为10米的梯子AB斜靠在一竖直的墙AO上,这时测得∠ABO=70°,如果梯子的底端B外移到D,则梯子顶端A下移到C,这时又测得∠CDO=50°,那么AC 的长度约为米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)14.2022年在北京将举办第24届冬季奥运会,很多学校都开展了冰雪项目学习.如图,滑雪轨道由AB,BC两部分组成,AB,BC的长度都为200米,一位同学乘滑雪板沿此轨道由A点滑到了C点,若AB与水平面的夹角α为20°,BC与水平面的夹角β为45°,则他下降的高度为米.(参考数据:sin20°≈0.34)15.如图,某中学综合楼入口处有两级台阶,台阶高AD=BE=15cm,深DE=30cm,在台阶处加装一段斜坡作为无障碍通道,设台阶起点为A,斜坡的起点为C,若斜坡CB的坡度i=1:9,则AC的长为cm.16.如图,一幢居民楼OC临近坡AP,山坡AP的坡度为i=1:(tanα=),小亮在距山坡坡脚A处测得楼顶C的仰角为60°,当从A处沿坡面行走6米到达P处时,测得楼顶C的仰角刚好为45°,点O,A,B在同一直线上,则该居民楼的高度为(结果保留根号).三.解答题(共5小题,满分40分)17.已知:Rt△ACB中,∠C=90°,∠A=60°,CD⊥AB于点D,CD=,解这个直角三角形.18.如图,△ABC中,∠A=30°,AC=2,tan B=,求AB的长.19.如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cos A=.(1)求CD的长;(2)求tan∠DBC的值.20.如图,在△ABD中,∠ABD=∠ADB,分别以点B,D为圆心,AB长为半径在BD的右侧作弧,两弧交于点C,分别连接BC,DC,AC,记AC与BD的交点为O.(1)补全图形,求∠AOB的度数并说明理由;(2)若AB=5,cos∠ABD=,求BD的长.21.如图,一艘海轮位于灯塔P的南偏东30°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东45°方向上的B处.(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔150海里的点O处.圆形暗礁区域的半径为60海里,进入这个区域,就有触礁的危险.①请判断海轮到达B处是否有触礁的危险?并说明理由.②如果海伦从B处继续向正北方向航行,是否有触礁的危险?直接写出结论,不用说明理由.(参考数据:≈1.414,≈1.732)参考答案一.选择题(共6小题,满分30分)1.解:∵∠BAC=90°,∴∠BAD+∠CAD=90°,又∠B+∠BAD=90°,∴∠CAD=∠B,∴tan∠B=,tan∠CAD=,∴=,即AD2=BD•CD=3×2=6.∴AD=.故tan∠B==.故选:D.2.解:作CD⊥AB交AB的延长线于点D,当B2C=2时,∵∠A=30°,∠ADC=90°,AC=2,∴CD=,∴AD==3,B2D==1,∴AB2=3﹣1=2,同理可得,AB1=3+1=4,即AB的长为2或4,故选:D.3.解:∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故选:D.4.解:∵在Rt△ABC中,∠C=90°,AC=4,∴tan A===,∴BC=2.故选:A.5.解:连接格点MN、DM,如图所示:则四边形MNCE是平行四边形,△DAM和△MBN都是等腰直角三角形,∴EC∥MN,∠DMA=∠NMB=45°,DM=AD=2,MN=BM=,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=180°﹣∠DMA﹣∠NMB=180°﹣45°﹣45°=90°,∴tan∠CPN=tan∠DNM===2,故选:B.6.解:如图所示,∵ED:AE=1:,∴∠A=30°.∵CF:BF=1:1,∴∠B=45°.∴∠A+∠B=30°+45°=75°.故选:C.二.填空题(共10小题,满分50分)7.解:作如图所示的辅助线,则BD⊥AC,∵BC=,BD=,∴sin∠ACB=,故答案为.8.解:如图作AH⊥BC于H,DE⊥AB于E,设AC=CD=5k,BC=7k,∵∠B=45°,∠AHB=90°,∴AH=BH,设AH=BH=x,在Rt△ACH中,∵AH2+HC2=AC2,∴x2+(7k﹣x)2=(5k)2,解得x=3k或4k(舍弃与钝角三角形矛盾),当x=3k时,∴BH=AH=3k,DH=k,AD=k,DE=BE=k,AE=2k,∴cos∠BAD===,故答案为.9.解:作AD⊥BC交BC(或BC延长线)于点D,①如图1,当AB、AC位于AD异侧时,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=AB sin B=5,BD=AB cos B=5,在Rt△ACD中,∵AC=2,∴CD===,则BC=BD+CD=6,∴S△ABC=•BC•AD=×6×5=15;②如图2,当AB、AC在AD的同侧时,由①知,BD=5,CD=,则BC=BD﹣CD=4,∴S△ABC=•BC•AD=×4×5=10.综上,△ABC的面积是15或10,故答案为15或10.10.解:在Rt△ABC中,tan∠BAC==,在Rt△ADE中,可表示tan∠DAE===1,∵tan∠BAC<tan∠DAE,∴∠BAC<∠DAE,故答案为:<.11.解:∵∠B=90°,sin∠ACB=,∴=,∵AB=2,∴AC=6,∵AC⊥CD,∴∠ACD=90°,∴AD===10,∴cos∠ADC==.故答案为:.12.解:延长AD和BC交于点E.∵在直角△ABE中,tan A==,AB=3,∴BE=4,∴EC=BE﹣BC=4﹣2=2,∵△ABE和△CDE中,∠B=∠EDC=90°,∠E=∠E,∴∠DCE=∠A,∴直角△CDE中,tan∠DCE=tan A==,∴设DE=4x,则DC=3x,在直角△CDE中,EC2=DE2+DC2,∴4=16x2+9x2,解得:x=,则CD=.故答案是:.13.解:由题意可得:∵∠ABO=70°,AB=10m,∴sin70°=,解得:AO=9.4(m),∵∠CDO=50°,DC=10m,∴sin50°=≈0.77,解得:CO=7.7(m),则AC=9.4﹣7.7=1.70(m),答:AC的长度约为1.70米.故答案为:1.70.14.解:过点A作AE⊥BD于点E,过点B作BG⊥CF于点G,在Rt△ABE中,∵sinα=,∴AE=AB×sin20°≈68米,在Rt△BCG中,∵sinβ=,∴BG=BC×sin45°≈142米,∴他下降的高度为:AE+BG=210米,故答案为:21015.解:过B作BF⊥AC,由题可知BF=30cm,AF=30cm.∵tan∠BCA==,∴CF=270cm,∴AC=CF﹣AF=270﹣30=240(cm).故答案为:240.16.解:如图,过点P作PE⊥OB于点E,PF⊥CO于点F,∵山坡AP的坡度为i=1:=tanα==,AP=6米,∴α=30°,∵PE⊥OB,∴PE=AP=3(米),AE=PE=3(米),∵PF⊥OC,∠CPF=45°,∴△PCF是等腰直角三角形,∴CF=PF,设CF=PF=m米,则OC=(m+3)米,OA=(m﹣3)米.在Rt△AOC中,∠OAC=60°,∴∠ACO=30°,∴OC=OA,即m+3=(m﹣3),解得:m=6+6,∴OC=6+6+3=(6+9)米,即该居民楼的高度为(6+9)米,故答案为:(6+9)米.三.解答题(共5小题,满分40分)17.解:∵∠C=90°,∠A=60°.∴∠B=30°.又CD⊥AB于D.∴BC=2CD=2.,∴BD===3.在直角三角形ACD中,∠A=60°,CD=∴AD===1,AC=2AD=2,∴AB=BD+AD=4.18.解:过C点作CD⊥AB于D,如图,在Rt△ACD中,∵sin A=,cos A=,即sin30°=,cos30°=,∴CD=×2=,AD=×2=3,在Rt△BCD中,∵tan B=,∴BD==2,∴AB=AD+BD=3+2=5.19.解:(1)在Rt△ADE中,∠AED=90°,AE=6,cos A=,∴AD==10,∴==8.∵BD平分∠ABC,DE⊥AB,DC⊥BC,∴CD=DE=8;(2)由(1)AD=10,DC=8,∴AC=AD+DC=18,在△ADE与△ABC中,∵∠A=∠A,∠AED=∠ACB,∴△ADE∽△ABC,∴,即=,∴BC=24,∴.20.解:(1)补全的图形,如图所示,可得出∠AOB=90°,理由如下:证明:由题意可知BC=AB,DC=AB,∵在△ABD中,∠ABD=∠ADB,∴AB=AD,∴BC=DC=AD=AB,∴四边形ABCD为菱形,∴AC⊥BD,∴∠AOB=90°;(2)∵四边形ABCD为菱形,∴OB=OD.在Rt△ABO中,∠AOB=90°,AB=5,cos∠ABD=,∴OB=AB•cos∠ABD=3,∴BD=2OB=6.21.解:(1)过点P作PD⊥AB于点D.依题意可知,P A=100海里,∠APD=90°﹣30°=60°,∠BPD=45°.∴∠A=90°﹣60°=30°.∴PD=P A=50(海里),在Rt△PBD中,∠BPD=45°,∴△PBD是等腰直角三角形,∴PB=PD=50(海里)≈70.7(海里).答:B处距离灯塔P约70.7海里.(2)①海轮到达B处没有触礁的危险,理由如下:依题意知:OP=150海里,PB=50海里,∴OB=OP﹣PB=(150﹣50)海里≈79.3海里>60海里,∴海轮到达B处没有触礁的危险.②过点O作OE⊥AB与E,交AB延长线于点E,则∠OEB=90°,∵∠OBE=∠PBD=45°,∴OE=OB sin∠OBE=(150﹣50)×=75﹣50≈56.07<60,∴海轮从B处继续向正北方向航行,有触礁的危险.。
北师大版九年级上册数学第一章测试题及答案(考试时间:120分钟满分:120分)第Ⅰ卷(选择题共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.正方形具有而矩形不一定具有的性质是(A)A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补2.下列命题中,错误的是(C)A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等3.如图,在平面直角坐标系中,正方形OACB的顶点O,C的坐标分别是(0,0),(2,0),则顶点B的坐标是(C)A.(1,1) B.(-1,-1) C.(1,-1) D.(-1,1)第3题图第4题图4.如图所示,在矩形ABCD中,O是BC的中点,∠AOD=90°,若矩形的周长是30 cm,则AB的长为(A)A.5 cm B.10 cm C.15 cm D.7.5 cm5.若菱形的周长为8 cm,高为1 cm,则菱形两个邻角的度数比为(C)A.3∶1 B.4∶1 C.5∶1 D.6∶16.如图,矩形ABCD的对角线AC与BD交于点O.过点O作BD的垂线分别交AD,BC于E,F两点.若AC=23,∠AEO=120°,则FC的长度为(A) A.1 B.2 C. 2 D.3第6题图第7题图第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,每小题3分,共18分)7.如图,延长正方形ABCD的BC边至点E,使CE=AC,AE交CD于F,则∠E=__22.5°__.8.矩形的两邻边长分别为3 cm和6 cm,则顺次连接各边中点,所得四边形的形状一定是菱形,其面积是9 cm2.9.★如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E 处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是__4__.第9题图第10题图10.如图所示,矩形中有两个相邻的正方形,面积分别是3和9,那么阴影部分的面积11.如图所示,直线a经过正方形ABCD的顶点A,分别过顶点D,B作DE⊥a于点E,BF⊥a于点F,若DE=4,BF=3,则EF=__7__,CD=__5__.第11题图第12题图12.★(徐州中考)如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ并延长,与边BC交于点P,则线段AP三、(本大题共5小题,每小题6分,共30分)13.(广州中考)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD 的度数.解:∵四边形ABCD是矩形,∴AO=BO.∵AB=AO,∴AO=BO=AB.∴△ABO是等边三角形,∴∠ABO=∠BOA=∠OAB=60°,即∠ABD=60°.14.如图,已知矩形ABCD中,AC与BD相交于点O,BE⊥AC于E,CF⊥BD于F.求证:BE=CF.证明:∵四边形ABCD为矩形,∴AC=BD,则BO=CO.∵BE⊥AC于E,CF⊥BD于F,∴∠BEO=∠CFO=90°.又∠BOE=∠COF,∴△BEO≌△CFO.∴BE=CF.15.如图,正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.求证:△BCE≌△DCF.证明:∵四边形ABCD 为正方形, ∴BC =DC ,∠BCD =90°, ∴∠BCE =∠DCF =90°.在△BCE 与△DCF 中,⎩⎨⎧BC =DC ,∠BCE =∠DCF ,CE =CF ,∴△BCE ≌△DCF. 16.如图,在四边形ABCD 中,∠ABC =∠ADC =90°,E 是AC 的中点,EF 平分∠BED ,求证:EF ⊥BD .证明:∵∠ABC =∠ADC =90°,∴△ABC 和△ADC 都是直角三角形, 且有公共斜边AC.又∵E 是公共斜边AC 的中点, ∴BE =DE =12AC.又∵EF 平分∠BED ,∴EF ⊥BD.17.(广安中考)如图,四边形ABCD 是菱形,CE ⊥AB 交AB 的延长线于点E ,CF ⊥AD 交AD 的延长线于点F ,求证:DF =BE .证明:∵四边形ABCD 是菱形, ∴CD =BC ,∠ABC =∠ADC ,∴∠CBE =∠CDF.∵CF ⊥AD ,CE ⊥AB , ∴∠CFD =∠CEB =90°, 在△CEB 和△CFD 中,⎩⎨⎧∠CEB =∠CFD ,∠CBE =∠CDF ,CB =CD ,∴△CEB ≌△CFD(AAS),∴DF =BE.四、(本大题共3小题,每小题8分,共24分)18.(荆州中考)如图,在矩形ABCD 中,连接对角线AC ,BD ,将△ABC 沿BC 方向平移,使点B 移到点C ,得到△DCE .(1)求证:△ACD ≌△EDC ;(2)请探究△BDE 的形状,并说明理由.(1)证明:∵△DCE 是由△ABC 平移而得到的,∴△DCE ≌△ABC. ∵△ACD ≌△CAB ,∴△ACD ≌△EDC ; (2)解:△BDE 是等腰三角形.理由如下: ∵AC =DE ,AC =DB ,∴DE =DB ,∴△BDE 是等腰三角形.19.如图,四边形ABCD 是正方形,BE ⊥BF ,BE =BF ,EF 与BC 相交于点G . (1)求证:AE =CF ;(2)若∠ABE =55°,求∠EGC 的度数.(1)证明:∵四边形ABCD 是正方形, ∴∠ABC =90°,AB =BC. ∵BE ⊥BF ,∴∠FBE =90°.∵∠ABE +∠EBC =90°,∠CBF +∠EBC =90°,∴∠ABE =∠CBF.在△AEB 和△CFB 中,⎩⎨⎧AB =CB ,∠ABE =∠CBF ,BE =BF ,∴△AEB ≌△CFB(SAS),∴AE =CF.(2)解:∠EGC =80°.20.(贺州中考)如图,在四边形ABCD 中,AB =AD ,BD 平分∠ABC ,AC ⊥BD ,垂足为点O .(1)求证:四边形ABCD 是菱形;(2)若CD =3,BD =25,求四边形ABCD 的面积.(1)证明:∵AB =AD ,∴∠ABD =∠ADB. 又∵BD 平分∠ABC ,∴∠ABD =∠CBD , ∴∠ADB =∠CBD.又∵AC ⊥BD ,AB =AD ,∴BO =DO(等腰三角形“三线合一”).在△AOD 和△COB 中,⎩⎪⎨⎪⎧∠AOD =∠COB ,OB =OD ,∠ADO =∠CBO.∴△AOD ≌△COB(ASA),∴AO =CO.又∵AC ⊥BD ,∴四边形ABCD 是菱形.(2)解:∵四边形ABCD 是菱形,∴OD =12BD = 5.在Rt △CDO 中,OC =CD 2-OD 2=32-(5)2=2,∴AC =4. ∴S 菱形ABCD =12AC·BD =12× 4× 25=4 5.五、(本大题共2小题,每小题9分,共18分)21.如图,在▱ABCD 中,点E ,F 在直线AC 上(点E 在F 左侧),BE ∥DF . (1)求证:四边形BEDF 是平行四边形;(2)若AB ⊥AC ,AB =4,BC =213,当四边形BEDF 为矩形时,求线段AE 的长.(1)证明:连接BD ,交AC 于点O ,∵四边形ABCD 是平行四边形,∴OB =OD. 由BE ∥DF 得∠BEO =∠DFO.又∵∠EOB =∠FOD ,∴△BEO ≌△DFO. ∴BE =DF.又∵BE ∥DF , ∴四边形BEDF 是平行四边形.(2)解:∵AB ⊥AC ,AB =4,BC =213, ∴AC =6,∴AO =3, ∴在Rt △BAO 中,BO =5. 又∵四边形BEDF 是矩形, ∴OE =OB =5,∴点E 在OA 的延长线上,且AE =2.22.(杭州中考)如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连接AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.解:(1)关系:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴点A,C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2;(2)作AM⊥BG于M,依题意知:∠AGM=60°,∠GAM=30°.设GM=x,则AM=BM=3x.在Rt△ABM中,∵AM2+BM2=AB2,∴(3x)2+(3x)2=1,∴x=6 6,∴BG=x+3x=66+3×66=6+326.六、(本大题共12分)23.(威海中考)如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.(1)证明:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°.∵∠BCD=90°,∴∠ACD=135°,∴∠ABF=∠ACD.∵CB=CD,CB=BF,∴BF=CD.在△ABF和△ACD中,AB=AC,∠ABF=∠ACD,BF=CD,∴△ABF≌△ACD,∴AD=AF.(2)证明:由(1)知AF=AD,△ABF≌△ACD,∴∠FAB=∠DAC.∵∠BAC=90°,∴∠EAB=∠BAC=90°.∴∠EAF=∠BAD.∵AB=AC,AC=AE,∴AB=AE.在△AEF和△ABD中,AE=AB,∠EAF=∠BAD,AF=AD,∴△AEF≌△ABD.∴BD=EF.(3)解:四边形ABNE是正方形.理由:∵CD=CB,∠BCD=90°,∴∠CBD=45°.∵∠ABC=45°,∴∠ABD=90°,∴∠ABN=90°.由(2)知∠EAB=90°,△AEF≌△ABD,∴∠AEF=∠ABD=90°.∴四边形ABNE是矩形.又∵AE=AB,∴矩形ABNE是正方形.。
2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合达标测试题(附答案)一.选择题(共9小题,满分36分)1.下列说法中,不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行另外一组对边相等的四边形是平行四边形C.对角线互相平分且垂直的四边形是菱形D.有一组邻边相等的矩形是正方形2.已知四边形ABCD中,AC⊥BD,再补充一个条件使得四边形ABCD为菱形,这个条件可以是()A.AC=BD B.AB=BCC.AC与BD互相平分D.∠ABC=90°3.如图,平面直角坐标系中,菱形ABCD的顶点A(3,0),B(﹣2,0),顶点D在y轴正半轴上,则点C的坐标为()A.(﹣3,4)B.(﹣4,5)C.(﹣5,5)D.(﹣5,4)4.如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH是()A.矩形B.菱形C.正方形D.平行四边形5.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连接EF,则线段EF的最小值为()A.24B.3.6C.4.8D.56.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作CE⊥BD,垂足为E.已知∠BCE=4∠DCE,则∠COE的度数为()A.36°B.45°C.60°D.67.5°7.在正方形ABCD的外侧,作等边三角形ADE,则∠CBE的度数为()A.80°B.75°C.70°D.65°8.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30B.34C.36D.409.如图,矩形ABCD和矩形BDEF,点A在EF边上,设矩形ABCD和矩形BDEF的面积分别为S1、S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2 C.S1<S2D.3S1=2S2二.填空题(共8小题,满分32分)10.如图,菱形ABCD中,若BD=24,AC=10,则AB的长等于.菱形ABCD的面积等于.11.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=度.12.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.13.如图所示,在矩形ABCD中,DE平分∠ADC,且∠EDO等于15°,∠DOE=°.14.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.15.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.16.如图是阳光广告公司为某种商品设计的商标图案,图中阴影部分为红色.若每个小长方形的面积都是1,则红色的面积是.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.三.解答题(共7小题,满分52分)18.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.19.如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.20.如图,过△ABC的顶点A分别作∠ACB及其外角的平分线的垂线,垂直分布为E、F,连接EF交AB于点M,交AC于点N,求证:(1)四边形AECF是矩形;(2)MN=BC.21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB 于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.如图,平行四边形ABCD中,AD=9cm,CD=3cm,∠B=45°,点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6)(1)求BC边上高AE的长度;(2)连接AN、CM,当t为何值时,四边形AMCN为菱形;(3)作MP⊥BC于P,NQ⊥AD于Q,当t为何值时,四边形MPNQ为正方形.23.如图①,在正方形ABCD中,E为CD上一动点,连接AE交对角线BD于点F,过点F 作FG⊥AE交BC于点G.(1)求证:AF=FG;(2)如图②,连接EG,当BG=3,DE=2时,求EG的长.24.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且P A =PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案一.选择题(共9小题,满分36分)1.解:A、正确.两组对边分别平行的四边形是平行四边形;B、错误.比如等腰梯形,满足条件,不是平行四边形;C、正确.对角线互相平分且垂直的四边形是菱形;D、正确.有一组邻边相等的矩形是正方形;故选:B.2.解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形.故选:C.3.解:∵菱形ABCD的顶点A(3,0),B(﹣2,0),∴CD=AD=AB=5,OA=3,∴OD===4∵AB∥CD,∴点C的坐标为(﹣5,4)故选:D.4.解:∵在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,∴EF∥AD,HG∥AD,∴EF∥HG,同理:HE∥GF,∴四边形EFGH是平行四边形,∵E、F、G、H分别是AB、BD、CD、AC的中点,∴GH=AD,GF=BC,∵AD=BC,∴GH=GF,∴平行四边形EFGH是菱形;故选:B.5.解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=8,BC=6,∴AB=10,∴PC的最小值为:=4.8.∴线段EF长的最小值为4.8.故选:C.6.解:∵四边形ABCD为矩形,∴∠BCD=90°,OC=OB,∵∠BCE=4∠DCE,∴5∠DCE=90°,∴∠DCE=18°,∴∠BCE=72°,∵CE⊥BD,∴∠EBC=90°﹣∠BCE=18°,∵OB=OC,∴∠OCB=18°,∴∠COE=36°,故选:A.7.解:∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,AB=AD,∵△ADE是等边三角形,∴∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=15°,∴∠CBE=90°﹣15°=75°,故选:B.8.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,∴EH=FE=GF=GH==,∴四边形EFGH的面积是:×=34,故选:B.9.解:∵矩形ABCD的面积S1=2S△ABD,S△ABD=S矩形BDEF,∴S1=S2.故选:A.二.填空题(共8小题,满分32分)10.解:∵菱形ABCD中,BD=24,AC=10,∴BO=12,AO=5,AC⊥BD,∴AB==13,∴菱形ABCD的面积==120故答案为:13,12011.解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.12.解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD==10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故答案为:4.8.13.解:∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,AO=CO,BO=DO,AC=BD,∴OA=OD,∵DE平分∠ADC∴∠CDE=∠ADE=45°,∴△ADE是等腰直角三角形,∴AD=AE,又∵∠EDO=15°,∴∠ADO=60°;∴△OAD是等边三角形,∴∠AOD=∠OAD=60°,∴AD=AO=DO,∴AO=AE,∴∠AOE=∠AEO,∵∠OAE=90°﹣∠OAD=30°,∴∠AOE=∠AEO=(180°﹣30°)=75°,∴∠DOE=60°+75°=135°,故答案为:135.14.解:连接ED,如图,∵点B关于OC的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形OBCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(0,﹣1),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().15.解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=cm2.故答案为:.16.解:设每个小长方形长为a,宽为b,则ab=1.用大长方形的面积减去三个空白部分的三角形面积,就等于阴影部分的面积.4a×4b﹣a×4b﹣3a×3b﹣×3a×3b=5ab=5.故填5.17.解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.三.解答题(共7小题,满分52分)18.(1)证明:∵∠ABC=90°,BD为AC的中线,∴BD=AC,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CF A=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.19.(1)解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,在△DCP和△BCP中,,∴△CDP≌△CBP(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)证明:∵PE=PB,∴∠PBC=∠PEB,∵△CDP≌△CBP,∴∠PDC=∠PBC,∴∠PDC=∠PEB;(3)解:如图所示:∠PDE=40°;理由如下:在四边形DPEC中,∵∠DPE=360°﹣(∠PDC+∠PEC+∠DCB)=360°﹣(∠PEB+∠PEC+∠DCB)=360°﹣(180°+80°)=100°,∴∠PDE=∠PED=40°.20.证明:(1)∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠BCE=∠ACB,∠ACF=∠ACD,∵∠ACB+∠ACD=180°,∴∠ACE+∠ACF=90°,即∠ECF=90°,又∵AE⊥CE,AF⊥CF,∴∠AEC=∠AFC=90°,∴四边形AECF是矩形;(2)∵四边形AECF是矩形,∴EN=FN,AN=CN=AC,∴CN=EF=EN,∴∠NEC=∠ACE=∠BCE,∴EN∥BC,∴==,∴MN=BC.21.(1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE;(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.4.22.解:(1)∵四边形ABCD是平行四边形,∴AB=CD=3cm.在直角△ABE中,∵∠AEB=90°,∠B=45°,∴AE=AB•sin∠B=3×=3(cm);(2)∵点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6),∴AM=CN=t,∵AM∥CN,∴四边形AMCN为平行四边形,∴当AN=AM时,四边形AMCN为菱形.∵BE=AE=3,EN=6﹣t,∴AN2=32+(6﹣t)2,∴32+(6﹣t)2=t2,解得t=.故当t为时,四边形AMCN为菱形;(3)∵MP⊥BC于P,NQ⊥AD于Q,QM∥NP,∴四边形MPNQ为矩形,∴当QM=QN时,四边形MPNQ为正方形.∵AM=CN=t,BE=3,∴AQ=EN=BC﹣BE﹣CN=9﹣3﹣t=6﹣t,∴QM=AM﹣AQ=|t﹣(6﹣t)|=|2t﹣6|(注:分点Q在点M的左右两种情况),∵QN=AE=3,∴|2t﹣6|=3,解得t=4.5或t=1.5.故当t为4.5或1.5秒时,四边形MPNQ为正方形.23.(1)证明:如图①,连接CF,在正方形ABCD中,AB=BC,∠ABF=∠CBF=45°,在△ABF和△CBF中,,∴△ABF≌△CBF(SAS),∴AF=CF,∠BAF=∠BCF,∵FG⊥AE,∴在四边形ABGF中,∠BAF+∠BGF=360°﹣90°﹣90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF,∴∠CGF=∠BCF,∴AF=FG;(2)如图②,把△ADE顺时针旋转90°得到△ABH,则AH=AE,BH=DE,∠BAH=∠DAE,∵AF=FG,FG⊥AE,∴△AFG是等腰直角三角形,∴∠EAG=45°,∴∠HAG=∠BAG+∠DAE=90°﹣45°=45°,∴∠EAG=∠HAG,在△AHG和△AEG中,,∴△AHG≌△AEG(SAS),∴HG=EG,∵HG=BH+BG=DE+BG=2+3=5,∴EG=5.24.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,。
北师大版九年级数学上册第一章特殊平行四边形单元测试题第一章特殊平行四边形第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.如图菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的周长是()A.20B.24C.40D.482.如图2,菱形ABCD的周长为20,对角线AC,BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.5图23如图3,在平行四边形ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是矩形,这个条件可以是()A.OM=ACB.MB=MOC.BD⊥ACD.∠AMB=∠CND4.如图在菱形ABCD中,E,F分别是AC,AB的中点,如果EF=3,那么菱形ABCD的周长为()B.18C.12D.95.如图4,O是矩形ABCD的对角线AC的中点,M是CD边的中点.若OB=5,OM=3,则矩形ABCD的面积为()A.48B.50C.60D.80图46.如图5,在△ABC中,D是BC上一点,AB=AD,E,F分别是AC,BD的中点,EF=2,则AC的长是()A.3B.4C.5D.6图57.直角三角形斜边上的高与中线的长分别为5cm和6cm,则它的面积为()A.30cm2B.60cm2C.45cm2D.15cm28.如图6是由8个全等的小矩形组成的大正方形,线段AB的两个端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接P A,PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2C.4D.5图6 图79.如图,在△OAB中,顶点O(0,0),A(-3,4),B(3,4).将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(-3,10)C.(10,-3)D.(3,-10)10.如图,在正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG 翻折得到△AFG,延长GF交DC于点E,则DE的长是()A.1B.1.5C.2D.2.5第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共18分)11.如图9,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是.图9 图1012.如图10,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B 的对应点E落在CD上,且DE=EF,则AB的长为.13.如图11,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC 于点N,△CND的周长是10,则AC的长为.图11 图1214.如图12,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.15.如图13,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.图13 图1416.如图14是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:把A0纸对折后变为A1纸;把A1纸对折后变为A2纸;把A2纸对折后变为A3纸;把A3纸对折后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么一张A4纸可以裁张A8纸.三、解答题(共72分)17.(6分)如图15,在正方形ABCD中,对角线BD所在的直线上有两点E,F,且满足BE=DF,连接AE,AF,CE,CF.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.图1518.(6分)如图16,E是正方形ABCD外一点,F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE,CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.图1619.(8分)如图17,在△ABC中,∠BAC=90°,AD是斜边上的中线,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:BD=AF;(2)判断四边形ADCF的形状,并证明你的结论.图1720.(8分)如图18,将矩形ABCD沿对角线AC翻折,点B落在点F 处,FC交AD于点E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.图1821.(10分)已知:如图9,在平行四边形ABCD中,对角线AC与BD相交于点E,G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.22.(10分)如图20,在△ABC和△BCD 中,∠BAC=∠BCD=90°,AB=AC,BC=CD,延长CA至点E,使AE=AC,延长CB至点F,使BF=BC,连接AD,AF,DF,EF,延长DB交EF于点N.(1)求证:AD=AF;(2)试判断四边形ABNE的形状,并说明理由.图2023.(12分)如图21,在正方形ABCD中,E是边CD上一点(点E不与点C,D重合),连接BE.【感知】如图①,过点A作AF⊥BE交BC于点F,易证△ABF≌△BCE.(不需要证明) 【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=GF;(2)连接CM.若CM=1,则GF的长为.【应用】如图③,取BE的中点M,连接CM.过点C作CG⊥BE交AD于点G,连接EG,MG.若CM=3,则四边形GMCE的面积为.图2124.(12分)背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五.它被记载于我国古代著名数学著作《周髀算经》中.在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图22①,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图②,将图①中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图③,将图②中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图④,将图③中的矩形纸片沿AH折叠,得到△AD'H,再沿AD'折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图②中证明四边形AEFD是正方形;(2)请在图④中判断NF与ND'的数量关系,并加以证明;(3)请在图④中证明△AEN是(3,4,5)型三角形.图22。
第一章单元综合测试一、单选题1.已知四边形ABCD 是平行四边形,AC ,BD 相交于点O ,下列结论错误的是( ) A .OA OC =,OB OD =B .当AB CD =时,四边形ABCD 是菱形C .当90ABC ∠=︒时,四边形ABCD 是矩形D .当AC BD =且AC BD ⊥时,四边形ABCD 是正方形2.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,8AC =,6BD =,点E 是CD 上一点,连接OE ,若OE CE =,则OE 的长是( )A .2B .52C .3D .4 3.如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 单位中点,过点E 作EF BD ⊥于F ,EG AC ⊥与G ,则四边形EFOG 的面积为( )A .14SB .18SC .112S D .116S 4.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点.若菱形ABCD 的周长为32,则OE 的长为( )A .3B .4C .5D .65.如图,正方形ABCD 的面积为1,M 是AB 的中点,则图中阴影部分的面积是( )A .310B .13C .25D .496.如图,正方形ABCD 的边长8AB =,E 为平面内一动点,且4AE =,F 为CD 上一点,2CF =,连接EF ,ED ,则2EF ED +的最小值为( )A .B .C .12D .10二、填空题7.如图,在菱形ABCD 中,50B ∠=︒,点E 在CD 上,若AE AC =,则BAE ∠=________.8.如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC ,ED 分别交于点M ,N .已知4AB =,6BC =,则MN 的长为________.9.如图,在矩形ABCD 中,9AB =,AD =,点P 是边BC 上的动点(点P 不与点B ,点C 重合),过点P 作直线PQ BD ∥,交CD 边于Q 点,再把PQC △沿着动直线PQ 对折,点C 的对应点是R 点,则CQP ∠=________.10.如图,正方形ABCD 中,点E 为对角线AC 上一点,且AE AB =,则BEA ∠的度数是________度.三、作图题11.在正方形ABCD 中,E 是CD 边上的点,过点E 作EF BD ⊥于F .(1)尺规作图:在图中求作点E ,使得EF EC =;(保留作图痕迹,不写作法) (2)在(1)的条件下,连接FC ,求BCF ∠的度数.四、综合题12.如图,ABCD 的对角线AC ,BD 相交于点O ,过点O 作EF AC ⊥,分别交AB ,DC 于点E 、F ,连接AF 、CE .(1)若32OE =,求EF 的长;(2)判断四边形AECF 的形状,并说明理由.13.如图,在ABC △中,AB AC =,点D 、E 分别是线段BC 、AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:A BDE F E △≌△;(2)求证:四边形ADCF 为矩形.14.如图,四边形ABCD 的对角线AC ,BD 交于点O ,过点D 作DE BC ⊥于E ,延长CB 到点F ,使BF CE =,连接AF ,OF .(1)求证:四边形AFED 是矩形;(2)若7AD =,2BE =,45ABF ∠=︒,试求OF 的长.15.如图,点E 是正方形ABCD 外一点,点F 是线段AE 上一点,且EBF △是等腰直角三角形,其中90EBF ∠=︒,连接CE 、CF(1)求证:ABF CBE △≌△;(2)判断CE 与EF 的位置关系,并说明理由.16.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:HEA CGF ∠∠=;(2)当AH DG =时,求证:菱形EFGH 为正方形.第一章单元综合测试答案解析一、 1.【答案】B【解析】∵四边形ABCD 是平行四边形,OA OC =∴,OB OD =,故A 正确,∵四边形ABCD 是平行四边形,AB CD =,不能推出四边形ABCD 是菱形,故B 错误,∵四边形ABCD 是平行四边形,90ABC ∠=︒, ∴四边形ABCD 是矩形,故C 正确,∵四边形ABCD 是平行四边形,AC BD =,AC BD ⊥, ∵四边形ABCD 是正方形.故D 正确.故答案为:B . 2.【答案】B【解析】∵四边形ABCD 是菱形,8AC =,6BD =,142CO AC ==∴,132OD BD ==,AC BD ⊥,5DC =∴,90EOC DOE ∠+∠=︒,90DCO ODC ∠+∠=︒,OE CE =∵,EOC ECO ∠=∠∴,DOE ODC ∠=∠∴,DE OE =∴,1522OE CD ==∴故答案为:B . 3.【答案】B【解析】∵四边形ABCD 是菱形,OA OC =∴,OB OD =,AC BD ⊥,12S AC BD =⨯, EF BD ⊥∵于F ,EG AC ⊥于G ,∴四边形EFOG 是矩形,EF OC ∥,EG OB ∥,∵点E 是线段BC 的中点,EF ∴、EG 都是OBC △的中位线,1124EF OC AC ==∴,1124EG OB BD ==,∴矩形EFOG 的面积11111=44828EF EG AC BD AC BD S ⎛⎫=⨯=⨯=⨯⨯ ⎪⎝⎭;答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
北师大版九年级数学上册第一章测试题及答案一、选择题(每题3分,共30分)1.菱形、矩形、正方形都具有的性质是()A.四条边相等,四个角相等B.对角线相等C.对角线互相垂直D.对角线互相平分2.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于() A.20 B.15 C.10 D.53.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,那么阴影部分的面积是矩形ABCD面积的()A.15B.14C.13D.3104.如图,菱形ABCD的周长为24 cm,对角线AC,BD相交于点O,点E是AD 的中点,连接OE,则线段OE的长等于()A.3 cm B.4 cm C.2.5 cm D.2 cm5.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为()A.3 B.2 2 C. 6 D.3 36.顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形7.如图,把一张长方形纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°8.如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E,F分别为BC,CD的中点,则∠EAF等于()A.75°B.45°C.60°D.30°9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()A.AF=AEB.△ABE≌△AGFC.EF=2 5D.AF=EF10.如图,在正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①BE=DF;②∠DAF=15°;③AC 垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE.其中正确结论有() A.2个B.3个C.4个D.5个二、填空题(每题3分,共24分)11.如图是一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为________时,两条对角线长度相等.12.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF 的周长为________.13.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是________.14.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为________.15.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→……的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 019 s时,点P的坐标为________.16.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y-4)2的值为________.17.如图,在矩形ABCD中,AB=3,BC=2,点E为AD的中点,点F为BC 边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG +FH=________.18.如图,在Rt△ABC中,∠ACB=90°,以斜边AB为边向外作正方形ABDE,且正方形的对角线交于点O,连接OC.已知AC=5,OC=62,则另一直角边BC的长为________.三、解答题(19,20题每题9分,21题10分,22,23题每题12分,24题14分,共66分)19.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于点E,DF⊥BC交BC的延长线于点F.求证:DE=DF.20.如图,点O是菱形ABCD对角线的交点,过点C作CE∥OD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形OCED是矩形.(2)若AB=4,∠ABC=60°,求矩形OCED的面积.21.如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE.(2)若BE=10,CE=6,连接OE,求△ODE的面积.22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE.(2)若CD=2,∠ADB=30°,求BE的长.23.如图,在菱形ABCD中,AB=4,∠BAD=120°,以点A为顶点的一个60°的∠EAF绕点A旋转,∠EAF的两边分别交BC,CD于点E,F,且E,F 不与B,C,D重合,连接EF.(1)求证:BE=CF.(2)在∠EAF绕点A旋转的过程中,四边形AECF的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.24.在正方形ABCD的外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,EF,FD之间的数量关系,并给出证明.答案一、1.D2.B3.B4.A解析:∵菱形ABCD的周长为24 cm,∴AB=24÷4=6 (cm),OB=OD.又∵E为AD边的中点,∴OE是△ABD的中位线.∴OE=12AB=12×6=3 (cm).故选A.5.D6.D7.D8.C9.D解析:如图,由折叠的性质得∠1=∠2.∵AD∥BC,∴∠3=∠1.∴∠2=∠3.∴AE=AF.故选项A正确.由折叠的性质得CD=AG,∠D=∠G=90°.∵AB=CD,∴AB=AG.又∵AE=AF,∠B=90°,∴Rt△ABE≌Rt△AGF(HL).故选项B正确.设DF=x,则GF=x,AF=8-x.又∵AG=AB=4,∴在Rt△AGF中,根据勾股定理得(8-x)2=42+x2.解得x=3.∴AF=8-x=5.则AE=AF=5,∴BE=AE2-AB2=52-42=3.过点F作FM⊥BC于点M,则FM=4,EM=5-3=2.在Rt△EFM中,根据勾股定理得EF=EM2+FM2=22+42=20=25,则选项C正确.∵AF=5,EF=25,∴AF≠EF.故选项D错误.10.C 解析:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°. ∵△AEF 是等边三角形, ∴AE =EF =AF ,∠EAF =60°. ∴∠BAE +∠DAF =30°. 在Rt △ABE 和Rt △ADF 中,∴Rt △ABE ≌Rt △ADF (HL). ∴BE =DF (故①正确), ∠BAE =∠DAF .∴∠DAF +∠DAF =30°,即∠DAF =15°(故②正确). ∵BC =CD ,∴BC -BE =CD -DF ,即CE =CF , 又∵AE =AF ,∴AC 垂直平分EF (故③正确).设EC =x ,由勾股定理,得EF =AE =2x ,∴EG =CG =22x . ∴AG =62x . ∴AC =6x +2x2.∴AB =BC =3x +x 2.∴BE =3x +x 2-x =3x -x2.∴BE +DF =3x -x ≠2x (故④错误).易知S △CEF =x 22,S △ABE =3x -x 2·3x +x22=x 24,∴2S △ABE =x 22=S △CEF (故⑤正确).综上所述,正确的有4个.二、11.90° 12.16 13.2.514.213 解析:设正方形的边长为a ,∵S △ABE =18,∴S 正方形ABCD =2S △ABE =36, ∴a 2=36.∵a >0,∴a =6. 在Rt △BCE 中,∵BC =6,CE =4,∠C =90°, ∴BE =BC 2+CE 2=62+42=213. 15.⎝ ⎛⎭⎪⎫14,334 16.16 解析:∵四边形ABCD 是矩形,AB =x ,AD =y ,∴CD =AB =x ,BC =AD =y ,∠BCD =90°.又∵BD ⊥DE ,点F 是BE 的中点,DF =4,∴BF =DF =EF =4,∴CF =4-BC =4-y.在Rt △DCF 中,DC 2+CF 2=DF 2,即x 2+(4-y )2=42=16.∴x 2+(y -4)2=16. 17.3105 解析:如图,连接EF ,∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =2,∠A =∠D =90°. ∵点E 为AD 的中点,∴AE =DE =1,∴BE =AE 2+AB 2=12+32=10,CE =DE 2+DC 2=12+32=10, ∴CE =BE .∵S △BCE =S △BEF +S △CEF ,∴12BC ·AB =12BE ·FG +12CE ·FH ,∴BC ·AB =BE (FG +FH ),即2×3=10(FG +FH ),解得FG +FH =3105.18.7 解析:如图,过点O 作OM ⊥CA ,交CA 的延长线于点M ,过点O作ON ⊥BC 于点N ,易证△OMA ≌△ONB ,CN =OM ,∴OM =ON ,MA =N B.又∵∠ACB =90°,∠OMA =∠ONB =90°,OM =ON , ∴四边形OMCN 是正方形. ∴△OCM 为等腰直角三角形. ∵OC =62,∴CM =OM =6.∴MA=CM-AC=6-5=1.∴BC=CN+NB=OM+MA=6+1=7. 故答案为7.三、19.证明:连接DB.∵四边形ABCD是菱形,∴BD平分∠ABC.又∵DE⊥AB,DF⊥BC,∴DE=DF.20.(1)证明:∵CE∥OD,DE∥AC,∴四边形OCED是平行四边形.又∵四边形ABCD是菱形,∴AC⊥BD,即∠COD=90°,∴四边形OCED是矩形.(2)解:∵在菱形ABCD中,AB=4,∴AB=BC=CD=4.又∵∠ABC=60°,∴△ABC是等边三角形,∴AC=4,∴OC=12AC=2,∴OD=42-22=23,∴矩形OCED的面积是23×2=4 3.21.(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD.又∵BE∥AC,E在DC的延长线上.∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE.(2)解:如图,过点O作OF⊥CD于点F.∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE=90°.在Rt△BCE中,根据勾股定理可得BC=8.∵BE=BD,∴CD=CE=6,∴DE=12.∵OD=OC,∴CF=DF,又OB=OD,∴OF为△BCD的中位线,∴OF=12BC=4,∴S△ODE=12DE·OF=12×12×4=24.22.(1)证明:∵在矩形ABCD中,AD∥BC,∠A=∠C=90°,∴∠ADB=∠DBC.根据折叠的性质得∠ADB=∠FDB,∠F=∠A=90°,∴∠DBC=∠FDB,∠C=∠F.∴BE=DE.在△DCE和△BFE中,∴△DCE≌△BFE.(2)解:在Rt△BCD中,∵CD=2,∠DBC=∠ADB=30°,∴BD=4.∴BC=2 3.在Rt△ECD中,易得∠EDC=30°.∴DE=2EC.∴(2EC)2-EC2=CD2.又∵CD=2,∴CE=23 3.∴BE=BC-EC=43 3.23.(1)证明:如图,连接AC.∵四边形ABCD为菱形,∠BAD=120°,∴AB=BC=CD=DA,∴∠BAC=∠DAC=60°,∴△ABC 和△ADC都是等边三角形,∴∠ABE=∠ACF=60°,∠1+∠2=60°.∵∠3+∠2=∠EAF=60°,∴∠1=∠3.∵∠ABC=60°,AB=BC,∴△ABC 为等边三角形.∴AB =AC .∴△ABE ≌△ACF .∴BE =CF .(2)解:四边形AECF 的面积不变.由(1)知△ABE ≌△ACF ,则S △ABE =S △ACF ,故S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC .如图,过点A 作AM ⊥BC 于点M ,则BM =MC =2,∴AM =AB 2-BM 2=42-22=2 3.∴S △ABC =12BC ·AM =12×4×23=4 3.故S 四边形AECF =4 3.24.解:(1)如图①.(2)如图②,连接AE ,∵点E 是点B 关于直线AP 的对称点,∴∠P AE =∠P AB =20°,AE =AB.∵四边形ABCD 是正方形,∴AE =AB =AD ,∠BAD =90°.∴∠AED =∠ADE ,∠EAD =∠DAB +∠BAP +∠P AE =130°.∴∠ADF =180°-130°2=25°. (3)EF 2+FD 2=2AB 2.证明如下:如图③,连接AE ,BF ,BD ,由轴对称和正方形的性质可得,EF =BF ,AE =AB =AD ,易得∠ABF =∠AEF =∠ADF .∵∠BAD =90°, ∴∠ABF +∠FBD +∠ADB =90°.∴∠ADF +∠ADB +∠F BD =90°.∴∠BFD =90°.在Rt △BFD 中,由勾股定理得BF 2+FD 2=BD 2.在Rt △ABD 中,由勾股定理得BD 2=AB 2+AD 2=2AB 2,∴EF 2+FD 2=2AB 2.。
第一章检测题(一)一、选择题1、下列说法中,不正确的是( ).(A )有三个角是直角的四边形是矩形;(B )对角线相等的四边形是矩形(C )对角线互相垂直的矩形是正方形;(D )对角线互相垂直的平行四边形是菱形2、用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是( ).(A )①②③ (B )①④⑤ (C )①②⑤ (D )②⑤⑥ 3、观察下列四个平面图形,其中中心对称图形有( )(A )2个 (B )1个 (C )4个 (D )3个 图1 4、顺次连接等腰梯形四边中点所得四边形是( ) A .菱形 B .正方形 C .矩形 D .等腰梯形5、如图1,下列条件之一能使平行四边形ABCD 是菱形的为( ) ①AC BD ⊥ ②90BAD ∠= ③AB BC = ④AC BD =(A )①③ (B )②③ (C )③④ (D )①②③ 6、菱形的周长为20,两邻角的比为2∶1,则一组对边的距离为( ) A 、32B 、332C 、3 3D 、532图3 图47、如图3,矩形ABCD 沿AE 折叠,使点D 落在BC 边上的F 点处,如果∠BAF=60°,那么∠DAE 等于( ).(A )15° (B )30° (C )45° (D )60°8、如图4,在菱形ABCD 中,∠ADC=120°,则BD :AC 等于( ). (A )3:2 (B )3:3 (C )1:2 (D )3:19、如图5,四边形ABCD 是正方形,延长BC 至点E ,使CE=CA ,连结AE 交CD•于点F ,•则∠AFC 的度数是( ).(A )150° (B )125° (C )135° (D )112.5° 10、正方形具有而菱形不具有的性质是( )A 、四个角都是直角B 、两组对边分别相等C 、内角和为0360 D 、对角线平分对角图5 11、矩形的边长为10 cm 和15 cm ,其中一内角平分线分长边为两部分,这两部分的长为( ) (A )6 cm 和9 cm (B )5 cm 和10 cm (C )4 cm 和11 cm (D )7 cm 和8 cm12、菱形周长为20 cm ,它的一条对角线长6 cm ,则菱形的面积为…………………( ) (A )6 (B )12 (C )18 (D )24 二、填空题:13、已知矩形的对角线长为4cm ,一条边长为23cm ,则面积为________.14、菱形的两条对角线分别是6cm ,8cm ,则菱形的边长为_____,面积为______.15、如图7,在□ABCD 中,则对角线AC 、BD 相交于O ,图中全等的三角形共有____对.图7 图8 图916、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,则矩形的两条对角线夹角为 .17、如图8,矩形ABCD 中,O 是两对角线的交点AE ⊥BD ,垂足为E .若OD =2 OE , AE =3,则DE 的长为______.18、如图9,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6,□ABCD 的周长为40,则S □ABCD 为______.三、解答题(要有必要的文字说明,规范的步骤)19、如图6,在矩形ABCD 中,E 是BC 上一点且AE=AD ,又AE DF ⊥于点F , 证明:EC=EF.A BCDA DFECDBAO20、如图所示,在矩形ABCD 中,对角线AC ,BD 交于点O ,过顶点C 作CE ∥BD ,交A•孤延长线于点E ,求证:AC=CE .21、如图1-16,在ABCD 中,点E 是CD 的中点,AE 的延长线与BC 的延长线相交于点F . (1)求证:△ADE ≌△FCE ;(2)连结AC 、DF ,则四边形ACFD 是下列选项中的( ). A .梯形 B .菱形 C .正方形 D .平行四边形 ⑶证明你在(2)中的结论22、(本小题满分10分)如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形.(1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.23、如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交B于Q.(1)求证: OP=OQ ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.。
第一章:特殊的平行四边形单元测试卷(典型题汇总)一、选择题(本大题共6小题,共24分)1.下列关于▱ABCD的叙述中,正确的是( )A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形2.如图1,在△ABC中,D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF ∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形123.如图2,在菱形ABCD中,对角线AC,BD相交于点O,作OE⊥AB,垂足为E,若∠ADC =130°,则∠AOE的度数为( )A.75° B.65° C.55° D.50°4.如图3,P是矩形ABCD的边AD上的一个动点,矩形的两条边AB,BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是( )A.125B.65C.245 D.不确定345.如图4,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )A.2.5 B.5 C.322 D.26.如图5,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4,0),P为边AB上一点,∠CPB=60°,沿CP折叠正方形OABC,折叠后,点B落在平面内的点B′处,则点B′的坐标为( )图5A.(2,2 3) B.(32,2-3)C.(2,4-2 3) D.(32,4-2 3)二、填空题(本大题共6小题,共30分)7.已知菱形的边长为6,一个内角为60°,则菱形的较短对角线的长是________.8.如图6所示,在矩形纸片ABCD中,AB=2 cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点B′重合,则AC=________ cm.679.如图7所示,若菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为________.10.如图8,在正方形ABCD的外侧作等边三角形ADE,则∠BED的度数是________.8911.如图9所示,在四边形ABCD中,对角线AC⊥BD,垂足为O,E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.图1012.如图10,在矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为________.三、解答题(共46分)13.(10分)如图11,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形ABCD的边长为4,AE=2,求菱形BEDF的面积.图1114.(10分)如图12,已知平行四边形ABCD的对角线AC,BD相交于点O,AC=20 cm,BD=12 cm,两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,点E到点C,点F到点A时停止运动.(1)求证:当点E,F在运动过程中不与点O重合时,以点B,E,D,F为顶点的四边形为平行四边形;(2)当点E,F的运动时间t为何值时,四边形BEDF为矩形?图1215.(12分)如图13,△ABC是以BC为底的等腰三角形,AD是边BC上的高,E,F分别是AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.图1316.(14分)如图14,四边形ABCD是正方形,E是直线CD上的点,将△ADE沿AE对折得到△AFE,直线EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)当DE是线段CD的一半时,请你在备用图中利用尺规作图画出符合题意的图形(保留作图痕迹,不写作法);(3)在(2)的条件下,求∠EAG的度数.图141.C 2.D 3.B 4.A5.B .6.C7.6 .8.49.(2+2,2)10.45°.11.12 12.75813.解:(1)证明:连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC.∵AE=CF,∴OA-AE=OC-CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形.(2)∵正方形ABCD的边长为4,∴BD=AC=4 2.∵AE=CF=2,∴EF=AC-2 2=2 2,∴S菱形BEDF=12BD·EF=12×4 2×2 2=8.14.解:(1)证明:连接DE,EB,BF,FD.∵两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,∴AE=CF.∵平行四边形ABCD的对角线AC,BD相交于点O,∴OD=OB,OA=OC(平行四边形的对角线互相平分),∴OA-AE=OC-CF或AE-OA=CF-OC,即OE=OF,∴四边形BEDF为平行四边形(对角线互相平分的四边形是平行四边形),即以点B,E,D,F为顶点的四边形是平行四边形.(2)当点E在OA上,点F在OC上,EF=BD=12 cm时,四边形BEDF为矩形.∵运动时间为t,∴AE=CF=2t,∴EF=20-4t=12,∴t=2;当点E在OC上,点F在OA上时,EF=BD=12 cm,EF=4t-20=12,∴t=8.因此,当点E,F的运动时间t为2 s或8 s时,四边形BEDF为矩形.15.解:(1)证明:∵AD⊥BC,E,F分别是AB,AC的中点,∴在Rt△ABD中,DE=12AB=AE,在Rt△ACD中,DF=12AC=AF.又∵AB=AC,∴AE=AF=DE=DF,∴四边形AEDF是菱形.(2)如图,∵菱形AEDF的周长为12,∴AE=3.设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49.①由四边形AEDF是菱形得AD⊥EF,∴在Rt△AOE中,AO2+EO2=AE2,∴(12y)2+(12x)2=32,即x2+y2=36.②把②代入①,可得2xy=13,∴xy=132,∴菱形AEDF的面积S=12xy=134.16.解:(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠B=∠D=90°.∵将△ADE沿AE对折得到△AFE,∴AF=AD=AB,∠AFE=∠D=90°.在Rt△ABG和Rt△AFG中,AB=AF,AG=AG,)∴Rt△ABG≌Rt△AFG(HL).(2)如图所示:(3)∵△AFE≌△ADE,△ABG≌△AFG,∴∠EAF=∠EAD,∠GAF=∠GAB.∵在正方形ABCD中,∠BAD=90°,∴∠EAG=∠EAF+∠GAF=12×90°=45°.第一章:特殊的平行四边形单元测试卷(典型题汇总)(100分钟,120分)一、选择题1.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠D C.AB∥CD,AD∥BC D.AB=CD,AD=BC 2.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A.6cm B.9cm C.3cm D.12cm3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55° C.60° D.65°4.给出以下三个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③对角线互相垂直的矩形是正方形;④菱形对角线的平方和等于边长平方的4倍.其中真命题的是()A.③B.①② C.②③D.③④5.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3B.4 C.5 D.76.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6 cm和9 cm B.5 cm和10 cm C.4 cm和11 cm D.7 cm和8 cm7.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为何?()A.8 B.9 C.11 D.129.如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.2B.3 C.D.1+10.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.3 C.D.二、填空题11.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是矩形、正方形.12.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是3cm2.【解答】解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).13.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.14.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于 3.5 .【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴∠AOD=90°,∵AB+BC+CD+DA=28,∴AD=7,∵H为AD边中点,∴OH=AD=3.5;15.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为5.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,三、解答题(15题12分,16题12分,17题16分)16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,求△AEF的周长。
第1章特殊的平行四边形一.选择题(共8小题,满分32分)1.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC 沿BC翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2C.D.32.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD3.如图,Rt△ABC中,DC是斜边AB上的中线,EF过点C且平行于AB.若∠BCF=35°,则∠ACD的度数是()A.35°B.45°C.55°D.65°4.如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A.B.C.D.5.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2B.2.2C.2.4D.2.56.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的条件是()A.AO=CD B.AO=CO=BO=DOC.AO=CO,BO=DO,AC⊥BD D.AO=BO=CO=DO,AC⊥BD7.顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边中点得到的图形是()A.等腰梯形B.正方形C.菱形D.矩形8.如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF⊥BC,垂足为F,则DF的长为()A.2+2B.5﹣C.3﹣D.+1二.填空题(共10小题,满分30分)9.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,…依次作下去,图中所作的第三个四边形的周长为;所作的第n个四边形的周长为.10.如图,菱形ABCD的对角线相交于点O,请你添加一个条件:,使得该菱形为正方形.11.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是.12.如图是一个矩形桌子,一小球从P撞击到Q,反射到R,又从R反射到S,从S反射回原处P,入射角与反射角相等(例如∠PQA=∠RQB等),已知AB=8,BC=15,DP=3.则小球所走的路径的长为.13.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于.14.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB 的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD其中正确结论的为(请将所有正确的序号都填上).15.如图,在菱形ABCD中,对角线AC、BD相交于点O.AC=8cm,BD=6cm,点P为AC上一动点,点P以1cm/s的速度从点A出发沿AC向点C运动.设运动时间为ts,当t=s时,△PAB为等腰三角形.16.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为;③EB ⊥ED ;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是 .17.如图,在3×4的矩形方格图中,不包含阴影部分的矩形个数是 个.18.如图,在四边形ABCD 中,AC =BD =6,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则EG 2+FH 2= .三.解答题(共7小题,满分88分)19.在等腰△ABC 中,AB =AC =8,∠BAC =100°,AD 是∠BAC 的平分线,交BC 于D ,点E 是AB 的中点,连接DE .(1)求∠BAD 的度数;(2)求∠B 的度数;(3)求线段DE 的长.20.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.21.如图,△ABC中,∠BAC=90°,点D是BC的中点,AE∥DC,EC∥AD,连接DE交AC于点O,(1)求证:四边形ADCE是菱形;(2)若AB=AO,求tan∠OCE的值.22.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACD的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23.已知▱ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.24.如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED.求证:四边形ABCD 是正方形.25.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.参考答案与试题解析一.选择题(共8小题,满分32分)1.解:连接PP′交BC于O,∵若四边形QPCP′为菱形,∴PP′⊥QC,∴∠POQ=90°,∵∠ACB=90°,∴PO∥AC,∴=,∵设点Q运动的时间为t秒,∴AP=t,QB=t,∴QC=6﹣t,∴CO=3﹣,∵AC=CB=6,∠ACB=90°,∴AB=6,∴=,解得:t=2,故选:B.2.解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC.故选:C.3.解:∵EF∥AB,∴∠BCF=∠B,∵∠BCF=35°,∴∠B=35°,∵DC是斜边AB上的中线,∴AD=BD=CD,∴∠B=∠BCD,∠ACD=∠CAD,∵∠ADC =∠B +∠BCD ,∴∠ADC =70°,∴∠ACD =(180°﹣70°)=55°,故选:C .4.解:方法一:设AP =x ,PB =3﹣x .∵∠EAP =∠EAP ,∠AEP =∠ABC ;∴△AEP ∽△ABC ,故=①; 同理可得△BFP ∽△DAB ,故=②.①+②得=, ∴PE +PF =. 方法二:(面积法)如图,作BM ⊥AC 于M ,则BM ==,∵S △AOB =S △AOP +S △POB ,∴•AO •BM =•AO •PE +•OB •PF ,∵OA =OB ,∴PE +PF =BM =.故选:B .5.解:∵在△ABC 中,AB =3,AC =4,BC =5,∴AB 2+AC 2=BC 2,即∠BAC =90°.又∵PE ⊥AB 于E ,PF ⊥AC 于F ,∴四边形AEPF 是矩形,∴EF =AP .因为AP 的最小值即为直角三角形ABC 斜边上的高,即2.4,∴EF 的最小值为2.4,故选:C.6.解:A、不能判定为特殊的四边形;B、只能判定为矩形;C、只能判定为菱形;D、能判定为正方形;故选:D.7.解:∵等腰梯形的两条对角线相等,∴顺次连接等腰梯形四边中点得到的四边形是菱形,∵菱形的对角线互相垂直,∴再顺次连接所得四边形四边的中点得到的图形是矩形.故选:D.8.解:方法一:如图,延长DA、BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°﹣90°=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∴AG=AB•tan∠ABC=2×tan60°=2,∴DG=AD+AG=2+2,∵∠G=90°﹣60°=30°,DF⊥BC,∴DF=DG=×(2+2)=1+,故选D.方法二:如图,过点E作EG⊥DF于点G,作EH⊥BC于点H,则∠BHE=∠DGE=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∵四边形ABED是正方形,∴BE=DE=2,∠ABE=∠BED=90°,∴∠EBH=180°﹣∠ABC﹣∠ABE=180°﹣60°﹣90°=30°,∴EH=BE•sin∠EBH=2•sin30°=2×=1,BH=BE•cos∠EBH=2cos30°=,∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°,∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG,在△BEH和△DEG中,,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1,故选:D.二.填空题(共10小题,满分30分)9.解:根据三角形中位线定理得,第一个四边形的边长为=,周长为2,第二个四边形的周长为=4,第三个四边形的周长是:4()3=,第n个四边形的周长为4()n,故答案为,4()n.10.解:根据对角线相等的菱形是正方形,可添加:AC=BD;根据有一个角是直角的菱形是正方形,可添加的:AB⊥BC;故添加的条件为:AC=BD或AB⊥BC.11.解:连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴AC•BC=AB•PC,∴PC=.∴线段EF长的最小值为;故答案是:.12.解:∵入射角与反射角相等,∴∠BQR=∠AQP,∠APQ=∠SPD,∠CSR=∠DSP,∠CRS=∠BRQ,∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,∴∠DPS+∠DSP=90°,∠AQP+∠APQ=90°,∴∠DSP=∠AQP=∠CSR=∠BQR,∴∠RSP=∠RQP,同理∠SRQ=∠SPQ,∴四边形SPQR是平行四边形,∴SR=PQ,PS=QR,在△DSP和△BQR中∴△DSP≌△BQR,∴BR=DP=3,BQ=DS,∵四边形ABCD是矩形,∴AB=CD=8,BC=AD=15,∴AQ=8﹣DS,AP=15﹣3=12,∵∠SPD=∠APQ,∴△SDP∽△QAP,∴=∴=,DS=,在Rt△DSP中,由勾股定理得:PS=QR==,同理PQ=RS=,∴QP+PS+SR+QR=2×+2×=34,故答案为:34.13.解:如图,∵∠C=90°,点D为AB的中点,∴AB=2CD=10,∴CD=5,∴BC=CD=5,在Rt△ABC中,AC===5.故答案为:5.14.解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故答案为:①③④.15.解:∵四边形ABCD是菱形,AC=8cm,BD=6cm,∴AC⊥BD,AO=OC=4cm,BO=OD=3cm,由勾股定理得:BC=AB=AD=CD=5cm,分为三种情况:①如图1,当PA=AB=5cm时,t=5÷1=5;②如图2,当P和C重合时,PB=AB=5cm,t=8÷1=8;③如图3,作AB的垂直平分线交AC于P,此时PB=PA,连接PB,在Rt△BOP中,由勾股定理得:BP2=BO2+OP2,AP2=32+(4﹣AP)2,AP=;t=÷1=,故答案为:5或8或.16.解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,∵在△APD和△AEB中,,∴△APD≌△AEB(SAS);故此选项成立;③∵△APD≌△AEB,∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB ⊥ED ;故此选项成立;②过B 作BF ⊥AE ,交AE 的延长线于F ,∵AE =AP ,∠EAP =90°,∴∠AEP =∠APE =45°,又∵③中EB ⊥ED ,BF ⊥AF ,∴∠FEB =∠FBE =45°,又∵BE ===,∴BF =EF =, 故此选项不正确;④如图,连接BD ,在Rt △AEP 中,∵AE =AP =1,∴EP =, 又∵PB =, ∴BE =,∵△APD ≌△AEB ,∴PD =BE =,∴S △ABP +S △ADP =S △ABD ﹣S △BDP =S正方形ABCD ﹣×DP ×BE =×(4+)﹣××=+.故此选项不正确.⑤∵EF =BF =,AE =1, ∴在Rt △ABF 中,AB 2=(AE +EF )2+BF 2=4+,∴S 正方形ABCD =AB 2=4+, 故此选项正确.故答案为:①③⑤.17.解:第一行有1个矩形,第二行有1个矩形,第三行有6个,第一列有3个,第二列有1个,第四列有3个,那么共有1+1+6+3+1+3=15个,图中还有11个正方形,因为正方形也是矩形的一种,因此共有26个矩形.故答案为26.18.解:如右图,连接EF,FG,GH,EH,∵E、H分别是AB、DA的中点,∴EH是△ABD的中位线,∴EH=BD=3,同理可得EF,FG,GH分别是△ABC,△BCD,△ACD的中位线,∴EF=GH=AC=3,FG=BD=3,∴EH=EF=GH=FG=3,∴四边形EFGH为菱形,∴EG⊥HF,且垂足为O,∴EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=9,等式两边同时乘以4得:4OE2+4OH2=9×4=36,∴(2OE)2+(2OH)2=36,即EG2+FH2=36.故答案为:36.三.解答题(共7小题,满分88分)19.解:(1)∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵∠BAC=100°,∴∠BAD=50°;(2)∵AB=AC,∴∠B=∠C,∴∠;(3)∵AB=AC,AD平分∠BAC,∴AD是等腰△ABC底边BC上的高,即∠ADB=90°在直角三角形ABD中,点E是AB的中点,∴DE为斜边AB边上的中线,∴DE=.20.(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又∵BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,如图,过点A作AH⊥BC于H,∴BH=BE=1,根据勾股定理得,AH=∴菱形AECF的面积为2.21.(1)证明:∵AE∥DC,EC∥AD,∴四边形ADCE是平行四边形,∵∠BAC=90°,点D是BC的中点,∴AD=BD=CD,∴平行四边形ADCE是菱形;(2)解:∵四边形ADCE是菱形,∴∠EOC=90°,AO=CO,∠ACE=∠ACD,∴tan∠ACB==,∴tan∠OCE=.22.(1)证明:∵MN交∠ACB的平分线于点E,交∠ACD的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.23.解:∵四边形ABCD是平行四边形,∴AO=OC=AC,BO=OD=BD,∵△AOB是等边三角形,∴AO=BO.∴AC=BD.∴平行四边形ABCD是矩形,在Rt△ABC中,∵AB=4cm,AC=2AO=8cm,∴BC==4cm,=AB×BC=4cm×4cm=16cm2.∴S平行四边形ABCD24.证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角,∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,∵∠BAE=∠BCE,∠AED=∠CED,∴∠CBE=∠ABE,∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠BAD=90°,AB=CD,∴∠CBE=∠ABE=45°,∴△ABD与△BCD是等腰直角三角形,∴AB=AD=BC=CD,∴四边形ABCD是正方形.25.解:(1)∵四边形ABCD为矩形,四边形HEFG为菱形,∴∠D=∠A=90°,HG=HE,又AH=DG=2,∴Rt△AHE≌Rt△DGH(HL),∴∠DHG=∠HEA,∵∠AHE+∠HEA=90°,∴∠AHE+∠DHG=90°,∴∠EHG=90°,∴四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此;(3)设DG=x,则由第(2)小题得,S=7﹣x,在△AHE中,AE≤AB=7,△FCG∴HE2≤53,∴x2+16≤53,∴x≤,∴S的最小值为,此时DG=,△FCG∴当DG=时,△FCG的面积最小为().。
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)一、选择题1.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为()2cm.A.48B.24C.12D.202.菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相垂直C.对角相等D.对边平行3.要检验一个四边形画框是否为矩形,可行的测量方法是()A.测量四边形画框的两个角是否为90︒B.测量四边形画框的对角线是否相等且互相平分C.测量四边形画框的一组对边是否平行且相等D.测量四边形画框的四边是否相等4.如图,在矩形ABCD中,已知AE BD⊥于E,∠BDC=60°,BE=1,则AB的长为()A.3B.2C.3D35.下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形D.对角线相等且互相垂直的平行四边形6.如图,将图1的正方形剪成四块,恰能拼成图2的矩形,则ba=()A 51-B 53+C 51+D 217.如图,在菱形ABCD 中 50ABC ∠=︒ ,对角线AC ,BD 交于点O ,E 为CD 的中点,连接OE ,则 AOE ∠ 的度数是( )A .110°B .112°C .115°D .120°8.如图,在四边形ABCD 中,AB =1,BC =4,CD =6,∠A =90°,∠B =∠C =120°,则AD 的长度为( )A .3B .3C .3D .3+39.如图,点E 、F 在矩形ABCD 的对角线BD 所在的直线上,BE =DF ,则四边形AECF 是( )A .平行四边形B .矩形C .菱形D .正方形10.如图,在边长为2的正方形ABCD 中,点E ,F 分别是边BC ,CD 上的动点,且BE CF =,连接BF ,DE ,则BF DE +的最小值为( )A 3B 5C .3D .512.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,∠A =120°,则A .13.如图,在矩形ABCD 中,E 是BC 边上一点90AED ∠=︒,∠EAD=30°,F 是AD 边的中点2cm EF =则BE = cm .14.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则∠BEQ 周长的最小值为 .三、解答题15.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE//BD ,BE//AC .(1)求证:四边形AEBO 是菱形;(2)若2AB =,OB=3,求AD 的长及四边形AEBO 的面积.16.如图,平行四边形ABCD 中,AC=6,BD=8,点P 从点A 出发以每秒1cm 的速度沿射线AC 移动,点Q 从点C 出发以每秒1cm 的速度沿射线CA 移动.(1)经过几秒,以P ,Q ,B ,D 为顶点的四边形为矩形?(2)若BC∠AC 垂足为C ,求(1)中矩形边BQ 的长.17. 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且∠EAF =45°,分别连接EF 、BD ,BD 与AF 、AE 分别相交于点M 、N.(1)求证:EF =BE +DF .为了证明“EF =BE +DF ”,小明延长CB 至点G ,使BG =DF ,连接AG ,请画出辅助线并按小明的思路写出证明过程. (2)若正方形ABCD 的边长为6,BE =2,求DF 的长.18.已知:如图,在 Rt ABC 中 90ACB ∠=︒ , CD 是 ABC 的角平分线,DE ⊥BC ,DF ⊥AC ,垂足分別为E 、F.求证:四边形 CEDF 是正方形.四、综合题19.如图,在ABC 中,AB=AC=2,∠BAC=45°,AEF 是由ABC 绕点A 按逆时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证:BE CF =;(2)当四边形ABDF 为菱形时,求CD 的长.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE∠AC ,且12DE AC =,连接CE(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.21.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1,连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断∠“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿∠AFB和∠CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q 的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.答案解析部分1.【答案】B【解析】【解答】解:∵菱形周长为20cm∴一条边的边长a=5cm又∵一条对角线长为8cm根据勾股定理可得另一条对角线长的一半22543 b-=∴另一条对角线长为6cm∴2186242m=⨯⨯=菱形的面积故答案为:B.【分析】本题考查菱形的性质、菱形的面积公式以及勾股定理,首先根据菱形的四边相等可知边长为5,又因为菱形的对角线垂直,所以结合一条已知的对角线求出另一条对角线的长度为6,两条对角线长度已知即可求出菱形的面积.2.【答案】B【解析】【解答】矩形的对角线相等,菱形的对角线不一定相等,故A不符合题意;矩形的对角线互相不垂直,菱形的对角线互相垂直,故B符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对角都相等,故C不符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对边都平行,故D不符合题意;故答案为:B.【分析】菱形和矩形具有平行四边形的一切性质,菱形特有:四条边都相等,对角线互相垂直且平分一组对角,矩形特有:四个角都是直角,对角线相等,据此逐一判断即可.3.【答案】B【解析】【解答】解:A、测量四边形画框的两个角是否为90°,不能判定为矩形,故选项A不符合题意;B、测量四边形画框的对角线是否相等且互相平分,能判定为矩形,故选项B符合题意;C、测量四边形画框的一组对边是否平行且相等,能判定为平行四边形,不能判定是否为矩形,故选项C 不符合题意;D、测量四边形画框的四边是否相等,能判断四边形是菱形,故选项D不符合题意.【分析】一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形;四边相等的四边形是菱形,据此一 一判断得出答案.4.【答案】B【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.5.【答案】D【解析】【解答】解:A 、对角线相等的平行四边形是矩形,故此选项不符合题意;B 、对角线互相平分且垂直的四边形是菱形,故此选项不符合题意;C 、对角线相等且互相垂直的平行四边形是正方形,故C 选项不符合题意,D 选项符合题意.故答案为:D.【分析】利用对角线互相平分,垂直且相等的四边形是正方形;对角线相等且互相垂直的平行四边形 是正方形,一一判断可得答案.6.【答案】C【解析】【解答】解:依题意得()2()a b b b a b +=++整理得:22222a b ab b ab ++=+则220a b ab -+= 方程两边同时除以2a 2()10b b a a --=152b a +∴=(负值已经舍去)【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),解方程即可求出ba的值.7.【答案】C【解析】【解答】解:∵四边形ABCD是菱形∴AC∠BD,∠CDO= 12∠ADC=12∠ABC=25°∴∠DOC=90°∵点E是CD的中点∴OE=DE= 12CD∴∠DOE=∠CDO=25°∴∠AOE=∠AOD+∠DOE=90°+25°=115°故答案为:C.【分析】根据菱形的性质得出AC∠BD,∠CDO=25°,然后根据直角三角形斜边中线的性质求出OE=DE,则由等腰三角形的性质求出∠DOE=25°,最后根据角的和差关系求∠AOE的度数即可. 8.【答案】A【解析】【解答】解:延长DC、AB,DC、AB的延长线相交于点E∵∠ABC=∠BCD=120°∴∠EBC=∠ECB=60°∴∠BCE是等边三角形∵BC=4,∴EC=BE=BC=4∵AB=1,CD=6∴AE=1+4=5,DE=CD+CE=4+6=10∵∠A=90°∴22221057553DE AE-=-=故答案为:53.【分析】延长DC、AB,DC、AB的延长线相交于点E,结合已知易得∠BCE是等边三角形,由等边三角形的性质可得EC=BE=BC,由线段的构成可求出AE、DE的值,然后在直角三角形ADE中,用勾股定理可求得AD的值.9.【答案】A∴AO=CO BO=DO又BE=DF∴ BO+BE=DO+DF即EO=FO∴ 四边形AECF 是平行四边(对角线互相平分的四边形是平行四边形)故选:A【分析】根据矩形性质得到平行四边形的判定条件。
北师大版九年级数学上册第一单元测试题含答案北师大版九年级数学上册第一章测试题及答案一、选择题(每题3分,共30分)1.菱形、矩形、正方形都具有的性质是()A.四条边相等,四个角相等B.对角线相等C.对角线互相垂直D.对角线互相平分2.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20B.15C.10D.53.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,那么阴影部分的面积是矩形ABCD面积的() A.1/5B.1/4C.1/3D.1/104.如图,菱形ABCD的周长为24 cm,对角线AC,BD相交于点O,点E是AD的中点,连接OE,则线段OE的长等于()A.3 cmB.4 cmC.2.5 cmD.2 cm5.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为()A.3B.2√2C.6D.3√26.顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形7.如图,把一张长方形纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°8.如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E,F分别为BC,CD的中点,则∠EAF等于() A.75°B.45°C.60°D.30°9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是() A.AF=AEB.△ABE≌△AGFC.EF=25D.AF=EF10.如图,在正方形ABCD中,点E,F分别在BC,CD 上,△AEF是等边三角形,连接XXX于点G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE。
九年级上册数学北师大版单元测试卷(1-6章)第一章综合能力检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形2.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF 的面积为25,DE=2,则AE的长为() A.5 B.√23 C.7 D.√29第2题图第3题图第4题图3.矩形ABCD在平面直角坐标系中的位置如图所示,其各顶点的坐标分别为A(0,0),B(2,0),C(2,1),D(0,1),固定点B 并将此矩形按顺时针方向旋转,若旋转后点C的对应点的坐标为(3,0),则旋转后点D的对应点的坐标为()A.(3,2)B.(2,3)C.(3,3)D.(2,2)4.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,BD=6,则AB的长是()A.2B.3C.4D.65.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.平行四边形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E,F,连接PB,PD.若AE=2,PF=8,则图中阴影部分的面积为() A.10 B.12 C.16 D.18第6题图第7题图7.如图,在给定的一张平行四边形ABCD纸片上作一个菱形,甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN,分别交AD,AC,BC于点M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠BAD,∠ABC的平分线AE,BF,分别交BC,AD于点E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误B.甲、乙均正确C.乙正确,甲错误D.甲、乙均错误8.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O ,连接BO ,若∠DAC=28°,则∠OBC 的度数为( )A.28°B.52°C.62°D.72°第8题图 第9题图 第10题图 9.如图,点E 在正方形ABCD 的对角线AC 上,且EC=2AE ,Rt △FEG 的两直角边EF ,EG 分别交BC ,DC 于点M ,N.若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( ) A.23a2B.14a2C.59a 2D.49a 210.如图,在正方形ABCD 中,点P 是AB 上一动点(点P 不与A ,B 重合),对角线AC ,BD 相交于点O ,过点P 分别作AC ,BD 的垂线,分别交AC ,BD 于点E ,F ,交AD ,BC 于点M ,N.给出下列结论:①△APE ≌△AME ;②PM+PN=BD ;③PE 2+PF 2=PO 2.其中正确的有( )A.0个B.1个C.2个D.3个二、填空题(本大题共6小题,每题3分,共18分)11.已知菱形的周长为20 cm ,两邻角的比为2∶1,则较短的对角线长为 cm .12.如图,在正方形ABCD 中,AC 为对角线,点E 在AB 边上,EF ⊥AC 于点F ,连接EC ,若AF=3,△EFC 的周长为12,则EC 的长为 .第12题图 第13题图 第14题图13.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角的度数为 .14.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE=5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为 .15.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE=13AB.将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q.对于下列结论:①EF=2BE ;②PF=2PE ;③FQ=4EQ ;④△PBF 是等边三角形.其中正确结论的序号是 .第15题图第16题图16.如图,菱形ABCD的面积为120 cm2,正方形AECF的面积为50 cm2,则菱形的边长为cm.三、解答题(本大题共6小题,共72分)17.(10分)如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形的边长为4,AE=√2,求菱形BEDF的面积.18.(10分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论.19.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE∶∠BCE=2∶3.求证:四边形ABCD是正方形.20.(12分)如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A'处.然后将矩形展平,沿EF折叠,使顶点A落在DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2所示.(1)求证:EG=CH;(2)已知AF=√2,求AD和AB的长.21.(14分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D为AB的中点时,四边形BECD是什么特殊四边形?请说明你的理由;(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.22.(14分)某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为;②BC,CD,CF之间的数量关系为.(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2√2,CD=1BC,请求出GE的长.4图1 图2 图3数学·九年级上册·BS第二章综合能力检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.下列方程一定是关于x的一元二次方程的是()=0 B.ax2+bx+c=0A.x2+1x2C.(x-1)(x+2)=1D.3x2-2xy-5y2=02.把一元二次方程2x=x2-3化为一般形式,若二次项系数为1,则一次项系数及常数项分别为()A.2,3B.-2,3C.2,-3D.-2,-33.根据关于x的一元二次方程x2+px+q=0,可列表如下:x0 0.5 1 1.1 1.2 1.3x2+px+q-15 -8.75 -2 -0.59 0.84 2.29则方程x2+px+q=0的一个根的范围是() A.1.2<x<1.3 B.1.1<x<1.2C.0.5<x<1D.0<x<0.54.若2x+1与2x-1互为倒数,则实数x为()A.±12B.±1 C.±√22D.±√25.下列方程中,没有实数根的是()A.x2-2x-5=0B.x2-2x=-5C.x2-2x=0D.x2-2x-3=06.下面是某同学在一次试验中解答的填空题,其中答对的是()A.若x2=4,则x=2B.方程x(2x-1)=2x-1的解为x=1C.若关于x的方程x2+2x+k=0有一根为2,则k=8D.若分式x 2-3x+2x-1的值为0,则x=27.某市某楼盘准备以每平方米12 000元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格进行连续两次下调后,决定以每平方米9 720元的均价开盘销售,则平均每次下调的百分率是()A.8%B.9%C.10%D.11%8.某三角形的两边的长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长为()A.9B.11C.13D.11或139.有两个一元二次方程,M:ax2+bx+c=0;N:cx2+bx+a=0,其中a+c≠0.下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么15是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=110.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a-b+c=0,那么我们称这个方程为“美好”方程.若一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是() A.方程有两个相等的实数根 B.方程有一根等于0C.方程两根之和等于0D.方程两根之积等于0二、填空题(本大题共6小题,每题3分,共18分)11.已知x=a 是方程x 2-3x-5=0的根,则代数式4-2a 2+6a 的值为 . 12.已知实数m ,n 满足m-n 2=1,则代数式2m 2-2n 2+4m-1的最小值是 .13.如果关于x 的一元二次方程(k-2)x 2+2kx+k+3=0有两个不相等的实数根,那么k 的取值范围是 . 14.准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,如图所示,四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为 米.15.将4个数a ,b ,c ,d 排成2行2列,两边各加一条竖直线记成|a c b d |,定义|a c b d |=ad-bc.若|x +11−x x -1x +1|=6,则x= .16.对于实数p ,q ,我们用符号min {p ,q }表示p ,q 两数中较小的数,如min {1,2}=1,min {-√2,-√3}=-√3.若min {(x-1)2,x 2}=1,则x= .三、解答题(本大题共6小题,共72分)17.(10分)解下列方程: (1)2x 2+3x-4=0;(2)(x+1)(x-1)+2(x+3)=20.18.(11分)已知关于x 的一元二次方程x 2-2x-k-2=0有两个不相等的实数根. (1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程.19.(11分)水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天可售出150千克,通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出30千克,为保证每天至少售出360千克,张阿姨决定降价销售.(1)若将这种水果每千克的售价降低x元,则每天的销售量是千克(用含x的代数式表示);(2)销售这种水果要想每天盈利450元,张阿姨需将每千克的售价降低多少元?)=0的20.(12分)在等腰三角形ABC中,三边长分别为a,b,c,其中ɑ=4,若b,c是关于x的方程x2-(2k+1)x+4(k-12两个实数根,求△ABC的周长.21.(14分)某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元,也不得低于7元,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)之间的函数关系式;(2)若该经营部希望日均获利1 350元,请你根据以上信息,就该桶装水的销售单价或销售量提出一个用一元二次方程解决的问题,并写出解答过程.22.(14分)如图,在△ABC 中,∠B=90°,AB=5 cm ,BC=7 cm ,点P 从点A 开始沿AB 边向点B 以1 cm/s 的速度匀速移动,点Q 从点B 开始沿BC 边向点C 以2 cm/s 的速度匀速移动. (1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于4 cm 2?(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于2√10 cm ? (3)在(1)中,△PBQ 的面积能否等于7 cm 2?说明理由.数学·九年级上册·BS第三章 综合能力检测卷时间:60分钟满分:100分一、选择题(本大题共8小题,每题3分,共24分)1.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A.16B.13C.12D.232.小红、小明在玩“剪刀、石头、布”游戏,小红给自己一个规定:一直不出“石头”.小红、小明获胜的概率分别是P 1,P 2,则下列结论正确的是 ( )A.P 1=P 2B.P 1>P 2C.P 1<P 2D.P 1≤P 23.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一个球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1 000次,其中有200次摸到白球,因此小亮估计口袋中的红球有( )A.60个B.50个C.40个 D .30个4.掷一枚质地均匀的正方体骰子,向上一面的点数大于2且小于5的概率为P1,抛两枚质地均匀的硬币,正面均朝上的概率为P2,则下列正确的是()A.P1 <P2B.P1 >P2C.P1 =P2D.不能确定5.如图,用①,②,③表示三张背面完全相同的纸牌,正面分别写有3个不同的条件,小明将这三张纸片背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张.抽得的条件能判断四边形ABCD为平行四边形的概率是()A.12 B.13C.23D.346.由两个可以自由转动的转盘,每个转盘被等分成如图所示的几个扇形.游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,那么下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为167.甲、乙两人玩猜数字游戏,游戏规则:有四个数字0,1,2,3,先由甲任意选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m,n满足|m-n|≤1,则称甲、乙两人“心有灵犀”.则甲、乙两人“心有灵犀”的概率为()A.14 B.38C.12D.588.我们把十位上的数字比个位、百位上的数字都要小的三位数定义为“凹数”.如“859”就是一个“凹数”.如果十位上的数字为2,那么从1,3,4,5中任选两个数字,能与2组成“凹数”的概率是()A.14B.310C.12D.34二、填空题(本大题共6小题,每题3分,共18分)9.一次测验中有2道题是选择题,每题均有4个选项且只有1个选项是正确的,若从这2道题中每题都随机选择其中一个选项作为答案,则这2道选择题答案全对的概率为.10.某班学生分组做抛掷同一型号的一枚图钉的试验,大量重复试验的结果统计如下表:(钉尖朝上频率精确到0.001)累计试验次数100 200 300 400 500钉尖朝上的次数55 109 161 211 265钉尖朝上的频率0.550 0.545 0.537 0.528 0.530根据表格中的信息,估计掷一枚这样的图钉落地后钉尖朝上的概率为.(结果精确到0.01)11.某鱼塘里养了200条鲤鱼、若干条草鱼和150条罗非鱼,该鱼塘主人通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5附近.若该鱼塘主人随机在鱼塘捕捞一条鱼,则估计捞到鲤鱼的概率为.12.在如图所示的电路中,随机闭合开关S1,S2,S3中的两个,能让灯泡L1发光的概率是.13.从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是.14.如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其余部分铺白色石子.小鹏在规定地点随机向图案内投掷小球,每个小球都能落在图案内,经过多次试验,发现落在一、三、五环(阴影)内的概率分别是0.04,0.2,0.36.如果最大圆的半径是1 m,那么铺黑色石子区域的总面积为m2.(π≈3.14,结果精确到0.01)三、解答题(本大题共6小题,共58分)15.(8分)某购物广场设计了一种促销活动:在一个不透明的盒子里放有4个相同的小球,球上分别标有“0元” “10元” “20元”和“30元”.顾客每消费满200元,就可以在盒子里摸出两个球,可根据两个球所标金额的和返还同样金额的购物券.某顾客恰好消费了200元,请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.16.(9分)如图1是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图2是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,游戏规则:将这枚骰子掷出后,看骰子底面上的数字是几,图2中点A处的一枚棋子开始沿着顺时针方向连续跳动几个顶点,第二次跳动从第一次跳动的终点处开始,按第一次的方法跳动.图1图2(1)随机掷一次骰子,则棋子跳动到点C处的概率是;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.17.(9分)从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下列表中部分数据:试验次数4080120160200240280320360400出现方块的次数1118404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.2430.2530.250(1)将数据表补充完整;(2)从表中可以估计出现方块的概率是.(3)从这副扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢.你认为这个游戏对双方是公平的吗?若不是,有利于谁?请你用概率知识(列表或画树状图)分析说明.18.(10分)2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A《三国演义》、B《红楼梦》、C《西游记》、D《水浒传》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了如图所示的两幅不完整的统计图:(1)本次一共调查了名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用画树状图或列表的方法求恰好选中A《三国演义》和B《红楼梦》的概率.19.(10分)在不透明的袋子中有四张标着数字1,2,3,4的卡片(除数字外,其他均相同),小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:第一次1234第二次1(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)①(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)回答下列问题:(1)根据小明画出的树状图分析,他的游戏规则是随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为小明和小华谁获胜的可能性大?为什么?20.(12分)某校九年级共有6个班,需从中选出两个班参加一项重大活动,九(1)班是先进班集体必须参加,再从另外5个班中选出一个班.九(4)班同学建议用如下方法选班:从装有编号为1,2,3的三个白球的A袋中摸出一个球,再从装有编号也为1,2,3的三个红球的B袋中摸出一个球(两袋中球的大小、形状与质地完全一样),摸出的两个球编号之和是几就由几班参加.(1)请用列表或画树状图的方法,求选到九(4)班的概率;(2)这一建议公平吗?请说明理由.数学·九年级上册·BS第四章综合能力检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.已知x y =52,则x -yy的值为 ( )A.32B.2C.-32D.-22.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ,直线DF 分别交l 1,l 2,l 3于点D ,E ,F ,AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF 的值为( )A.12B.2C.25D .35第2题图 第3题图 第4题图3.如图,为估算某河的宽度(河两岸平行),在河对岸选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上,若测得BE=20 m ,CE=10 m ,CD=20 m ,则河的宽度AB 等于 ( ) A.60 m B.40 m C.30 m D.20 m4.如图,以点O 为位似中心,将△ABC 放大得到△DEF.若AD=OA ,则△ABC 与△DEF 的面积之比为 ( ) A.1∶2 B.1∶4 C.1∶5 D .1∶65.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,连接AC ,则下列结论错误的是 ( )A .EA BE =EG EF B .EG GH =AG GD C .AB AE =BCCFD .FH EH =CFAD6.△ABC 如图所示,则下列四个选项中的三角形与△ABC 相似的是(网格均由边长为1的小正方形组成)( )A B C D7.如图,在△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是 ( )A B C D8.如果五边形ABCDE∽五边形PQGMN,且周长之比为3∶2,那么五边形ABCDE和五边形PQGMN的面积之比是() A.2∶3 B.3∶2 C.6∶4 D.9∶4第8题图第9题图第10题图CD,连接AE,AF,EF.给出下列结9.如图所示,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正确的个数为()A.1B.2C.3D.410.如图所示,在△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1B.2C.12√2-6D.6√2-6二、填空题(本大题共8小题,每题4分,共32分)11.若一个三角形的三边之比为3∶5∶7,与它相似的三角形的最长边的长为21,则最短边的长为.12.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE=.第12题图第13题图第14题图13.如图,已知有两堵墙AB,CD,AB墙高2米,两墙之间的距离BC为 8米,小明将一架木梯放在距B点3米的E 处靠向墙AB时,木梯有很多露出墙外.将木梯绕点E旋转90°靠向墙CD时,木梯刚好达到墙的顶端,则墙CD 的高为米.14.如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC为边的正方形BCED的面积,S2表示长为AG、宽为AC的矩形ACFG的面积,其中AG=AB.则S1与S2的大小关系为.15.在△ABC中,∠B=25°,AD是BC边上的高,且AD2=BD·DC,则∠BCA的度数为.16.如图,已知AB∥EF∥CD,若AB=6 cm,CD=9 cm,则EF=.第16题图第17题图第18题图17.如图,在矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=.18.如图,正三角形ABC的边长为2,以BC边上的高AB1为边作正三角形AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以正三角形AB1C1边B1C1上的高AB2为边作正三角形AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2……以此类推,则S n=.(用含n的式子表示,n为正整数)三、解答题(本大题共5小题,共58分)19.(10分)如图,在四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,连接CE,DE,AC与DE相交于点F.(1)求证:△ADF∽△CEF;的值.(2)若AD=4,AB=6,求ACAF20.(10分)如图,在6×6的正方形网格中,每个小正方形的边长都为1.(顶点都在网格线交点处的三角形叫做格点三角形)(1)在图1中,请判断△ABC与△DEF是否相似,并说明理由;(2)在图2中,以O为位似中心,再画一个格点三角形,使它与△ABC的相似比为2∶1;(3)在图3中,请画出所有与△ABC相似,且有一条公共边和一个公共角的格点三角形.图1图2图321.(12分)如图,在△ABC中,BA=BC=20 cm,AC=30 cm,点P从点A出发,沿着AB边以4 cm/s的速度向点B运动;同时点Q从点C出发,沿CA边以3 cm/s的速度向点A运动,当点P到达点B时停止运动,Q点随之停止运动.设运动的时间为x s.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,请说明理由.22.(12分)雯雯和笑笑想利用皮尺和所学的几何知识测量学校操场上旗杆的高度,他们的测量方案如下:当雯雯站在旗杆正前方地面上的点D处时,笑笑在地面上找到一点G,使得点G、雯雯的头顶C及旗杆的顶部A三点在同一直线上,并测得DG=2.8 m;然后雯雯向前移动1.5 m到达点F处,笑笑同样在地面上找到一点H,使得点H、雯雯的头顶E及旗杆的顶部A三点在同一直线上,并测得GH=1.7 m.已知图中的所有点均在同一平面内,且点B,D,F,G,H均在同一直线上,AB⊥BH,CD⊥BH,EF⊥BH,雯雯的身高CD=EF=1.6 m.请你根据以上测量数据,求该校旗杆的高度AB.23.(14分)如图1所示,在等边三角形ABC中,线段AD为其内角平分线,过点D的直线B1C1⊥AC于点C1,交AB的延长线于点B1.(1)请你探究:ACAB =CDDB,AC1AB1=DC1DB1是否都成立?(2)请你继续探究:若△ABC为任意三角形,线段AD为其内角平分线,ACAB =CDDB一定成立吗?并证明你的判断.(3)如图2所示,在Rt△ABC中,∠ACB=90°,AC=8,AB=403,E为AB上一点且AE=5,CE交内角平分线AD于点F.试求DFFA的值.图1图2数学·九年级上册·BS第五章综合能力检测卷时间:60分钟满分:100分一、选择题(本大题共10小题,每题3分,共30分)1.下列几何体中,主视图是矩形的是()2.一个立体图形的三视图如图所示,则该立体图形是()A.圆锥B.圆柱C.长方体D.球3.下列图中是太阳光下形成的影子的是()4.如图,位似图形由三角板与其在灯光照射下的中心投影组成,已知灯到三角板的距离与灯到墙的距离的比为2∶5,且三角板的一边长为8 cm,则投影三角形的对应边长为()A.20 cmB.10 cmC.8 cmD.3.2cm5.如图是一根空心方管,在研究物体的三种视图时,小明画出的该空心方管的主视图与俯视图分别是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)第5题图第6题图6.如图1为五角大楼的示意图,图2是它的俯视图,小红站在地面上观察这个大楼,若想看到大楼的两个侧面,则小红应站的区域是()A.A区域B.B区域C.C区域D.三区域都可以7.如图是某几何体的三种视图,则该几何体可以是()8.如图是由6个大小相同的小立方块组成的几何体,将小立方块①移走以后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图改变C.俯视图改变,左视图改变D.主视图改变,左视图不变第8题图第9题图第10题图9.如图,该直三棱柱的底面是一个直角三角形,且AD=2 cm,DE=4 cm,EF=3 cm,则下列说法正确的是()A.直三棱柱的体积为12 cm3B.直三棱柱的表面积为24 cm2C.直三棱柱的主视图的面积为11 cm2D.直三棱柱的左视图的面积为8 cm210.已知某几何体的三种视图如图所示,其中左视图是一个等边三角形,则该几何体的体积等于() (参考公式:棱锥的体积V=1Sh,其中S为棱锥的底面积,h为底面对应的高)3A.12√3B.16√3C.20√3D.32√3二、填空题(本大题共6小题,每题3分,共18分)11.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会.(填“逐渐变大”“逐渐变小”)第11题图第12题图第13题图12.一张桌子上摆放了若干个碟子,从三个方向看,三种视图如图所示,则这张桌子上共有碟子个.13.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为米.14.如图是一个由若干个相同的小立方块搭成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是.15.如图是一个正六棱柱的主视图和左视图,则图中的a的值为.16.圆桌面(桌面中间有一个直径为0.4 m的圆洞)正上方的灯泡(看作一个点)发出的光线照射到平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2 m,桌面离地面1 m,若灯泡离地面3 m,则地面圆环形阴影的面积是m2.三、解答题(本大题共 5小题,共52分)17.(8分)如图所示为一直三棱柱的主视图和左视图.。
北师大版九年级上册数学第一章测试题(附答案)北师大版九年级上册数学第一章测试题(附答案)一、单选题(共12题;共24分)1.已知四边形ABCD中,对角线AC,BD相交于点O。
下列结论一定成立的是()A.对角线相等B.四边形是矩形C.四边形是平行四边形D.对角线互相平分2.矩形、菱形、正方形都一定具有的性质是()A.邻边相等B.四个角都是直角C.对角线相等D.对角线互相平分3.如图,CD于E,F,PD.点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,连接PB,若AE=2,PF=8,则图中阴影部分的面积为()A.10B.12C.16D.184.如图,将两根相同的矩形木条沿虚线剪开得到四根完全一样的木条,然后重新围城一个矩形画,则围城的矩形画框的内框的面积为()A.48B.64C.72D.965.如图,在矩形ABCD中,E为BC边的中点,∠AEC的平分线交AD边于点F,若AB=3,AD=8,则FD的长度为()A.1B.2C.3D.46.在四张边长都是10厘米的正方形纸板上,分别剪下一个长5厘米,宽3厘米的长方形,剩下图形周长最长的是()A.一个等腰直角三角形B.一个等腰非直角三角形C.一个矩形D.一个等边三角形7.在直角坐标系中,A,B,C,D四个点的坐标依次为(-1,y),(x,y),(-1,5),(-5,z),若这四个点构成的四边形是菱形,则满足条件的z的值有()A.1个B.3个C.4个D.5个8.下列命题正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.两组对角线分别相等的四边形是平行四边形9.四边形ABCD的对角线AC=BD,AC⊥BD,分别过A、B、C、D作对角线的平行线,所成的四边形EFMN是()A.正方形B.菱形C.矩形D.任意四边形10.若正方形的周长为40,则其对角线长为()A.20B.25C.30D.35答案:1.A2.C3.B4.C5.B6.C7.B8.B9.B 10.DA。
第一章检测题(本试卷满分120分考试时间120分钟)一、选择题(共10小题,每小题3分,计30分)1、下列各组图形中,是全等三角形的一组是()A.底边长都为15cm的两个等腰三角形B.腰长都为15cm的两个等腰三角形C.两个含45°角的直角三角形D.边长为12cm的两个等边三角形2、等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为()A.7B.3C.7或3D.53、一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4、用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中()A.有两个角是直角B.有两个角是钝角C.有两个角是锐角D.一个角是钝角,一个角是直角5、如图1-1,D是线段AB.BC垂直平分线的交点,若∠ABC=150°,则∠ADC的度数是()A.60°B.70°C.75°D.80°6、如图1-2,在一次强台风中一棵大树在离地面5m处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( )A.10mB.15mC.25mD.30mCBA D 图1-1 图1-27、下列命题①对顶角相等②如果三角形中有一个角是钝角,那么另外两个角是锐角③若两直线平行,则内错角相等④三边都相等的三角形是等边三角形。
其中逆命题正确的有( )A.①③B.②④C.①②D.③④8、如图1-3(1)在△ABC 中,D 、E 分别是AB,AC 的中点,将△ADE 沿线段DE 向下折叠,得到图形1-3(2),下列关于图(2)的四个结论中,一定不成立的是( )A.∠B+∠C=180°B.点A 落在BC 上C.△DBA 是等腰三角形D.DE ∥BC9、如图1-4,在Rt △ABC 中,∠C=90°,直线BD 交AC 于点D ,把直角三角形沿着直线BD 翻折,使点C 落在斜边AB 上,如果△ABD 是等腰三角形,那么∠A 等于( )A.60°B.45°C.30°D.22.5°30°A B C E D A B C D E 图1-3 (1) (2)10、如图1-5,在△ABC 中,BC=AC,∠ACB=90°,AD 平分∠BAC ,BE ⊥AD 的延长线交AC 的延长线于F ,垂足为E 。
北师大版九年级上册数学第一章单元测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题)A. 四个角相等的四边形是矩形B. 对角线相等的平行四边形是矩形C. 对角线垂直的四边形是菱形D. 对角线垂直的平行四边形是菱形2.在四边形ABCD 中,对角线AC 和BD 交于点O ,下列条件中不能判定四边形是平行四边形的是( )A. OA =OC ,OB =ODB. AD ∥BC ,AB ∥DCC. AB =DC ,AD =BCD. AB ∥DC ,AD =BC3.若顺次连接四边形ABCD 四边中点而得的图形是矩形,则四边形ABCD 一定是( )A. 矩形B. 菱形C. 对角线相等的四边形D. 对角线互相垂直的四边形4.如图,在菱形ABCD 中,AB =6,∠ABD =30°,则菱形ABCD 的面积是( )A. 18B. 18√3C. 36D. 36√35.如图,已知在Rt △ABC 中,∠ABC=90°,点D 是BC 边的中点,分别以B 、C 为圆心,大于线段BC 长度一半的长为半径圆弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED ⊥BC ;②∠A=∠EBA ;③EB 平分∠AED ;④ED=AB 中,一定正确的是()A .①②③B .①②④C .①③④D .②③④6.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C′上.若AB=6,BC=9,则BF 的长为( )12.5 D. 5第II卷(非选择题)二、解答题(题型注释)E,F是对角线AC上的两点,且AE=CF.(1)图中有哪几对全等三角形,请一一列举;(2)求证:ED∥BF.8.如图,在正方形ABCD中,点G为BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点.求证:△ADF≌△BAE.9.如图,在四边形ABCD中,∠BAD=∠BCD=90°,点M,N分别是对角线BD,AC的中点.求证:直线MN是线段AC的垂直平分线.10.如图,在矩形ABCD中,对角线AC与BD交于点O,且△ADO为等边三角形,过点A 作AE⊥BD于点E.(1)求∠ABD的度数;(2)若BD=10,求AE的长.11.如图,点D,E分别是不等边△ABC(即AB,BC,AC互不相等)的边AB,AC的中点.点O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由)12.如图所示,在矩形ABCD中,O是AC与BD的交点,过点O的直线EF与AB,CD的延长线分别交于点E,F.(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么条件时,四边形AECF是菱形?并证明你的结论.13.如图,已知△ABC,点A在BC边的上方,把△ABC绕点B逆时针方向旋转60°得△DBE,绕点C顺时针方向旋转60°得△FEC,连接AD,AF.(1)△ABD,△ACF,△BCE是什么特殊三角形?请说明理由;(2)当△ABC满足什么条件时,四边形ADEF是正方形?请说明理由;(3)当△ABC满足什么条件时,以点A,D,E,F为顶点的四边形不存在?请说明理由.14.如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,2√2,√10.△ADP沿点A旋转至△ABP′,连接PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.15.如图,矩形ABCD中,对角线AC,BD相交于O点,点P是线段AD上一动点(不与点D 重合),PO的延长线交BC于Q点.(1)求证:四边形PBQD为平行四边形.(2)若AB=3cm,AD=4cm,P从点A出发.以1cm/s的速度向点D匀速运动.设点P的运动时间为ts,问:四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.三、填空题AC、BD相交于点0,∠AOB=600,AB=5,则AD的长是( ).(A)5(B)5(C)5 (D)1017.如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=1(BC-AD),⑤四边2形EFGH是菱形.其中正确的个数是 ( )A.1 B.2 C.3 D.418.已知一个菱形的两条对角线长分别为6cm和8cm,则这个菱形的面积为____________cm2.19.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.20.如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF等于_______°.21.(3分)如图,在Rt△ABC中,AB=BC,∠B=90°,AC=10.四边形BDEF是△ABC的内接正方形(点D、E、F在三角形的边上).则此正方形的面积是.22.(3分)如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.23.如图是一个利用四边形的不稳定性制作的菱形晾衣架.已知其中每个菱形的边长为20cm,若过点A的对角线长为20 cm,则每个菱形的面积为____________cm2.参考答案1.C【解析】1.试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D.对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选C.2.D【解析】2.根据平行四边形的判定定理求解即可求得答案,注意排除法在解选择题中的应用.A.∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.故能判定这个四边形是平行四边形;B.∵AD∥BC,AB∥DC,∴四边形ABCD是平行四边形.故能判定这个四边形是平行四边形;C.∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.故能判定这个四边形是平行四边形;D.∵AB∥DC,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.故不能判定这个四边形是平行四边形.故选D.3.D【解析】3.由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH ∥ FG ∥ BD,EF ∥ AC ∥ HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,即对角线互相垂直,故选D.4.B【解析】4.试题分析:过点A作AE⊥BC于E,如图,∵在菱形ABCD中,AB=6,∠ABD=30°,∴∠BAE=30°,∵AE⊥BC,∴AE=3√3,∴菱形ABCD的面积是6×3√3=18√3,故选B.5.B.【解析】5.试题根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.∵∠ABC=90°,∴PD∥AB.∴E为AC的中点,∴EC=EA,∵EB=EC.∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.∴正确的有①②④.故选B.6.A【解析】6.试题解析:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9-BF)2,解得,BF=4,故选A.7.(1)见解析;(2)证明见解析.【解析】7.(1)根据菱形的对称性,写出AC左右两边对应的三角形即可;(2)根据菱形的对边平行且相等可得AB=CD,AB∥CD,再根据两直线平行,内错角相等可得∠BAC=∠DCA,然后求出AF=CE,利用“边角边”证明△ABF和△CDE全等,根据全等三角形对应角相等可得∠BFA=∠DEC,然后利用内错角相等两直线平行即可证明.(1)图中有三对全等三角形:①△ABC≌△CDA,②△ABF≌△CDE,③△ADE≌△CBF;(2)∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAC=∠DC A.∵AE=CF,∴AE+EF=CF+EF,∴AF=CE.在△ABF和△CDE中,{AB=CD∠BAC=∠DCAAF=CE,1 2∴△ABF ≌△CDE (S A S),∴∠BF A =∠DEC ,∴ED ∥BF .8.证明见解析.【解析】8.根据正方形的四条边都相等可得AB=AD ,根据同角的余角相等求出∠1=∠4,然后利用“角角边”证明△ABE 和△DAF 全等,根据全等三角形对应边相等证明即可. 如图,∵四边形ABCD 是正方形,∴DA =AB ,∠1+∠2=90°,又∵BE ⊥AG ,DF ⊥AG ,∴∠1+∠3=90°,∠2+∠4=90°,∴∠2=∠3,∠1=∠4,又∵DA =AB ,∴△ADF ≌△BAE .(A S A ) .9.证明见解析.【解析】9.连接AM ,CM ,根据直角三角形斜边上的中线等于斜边的一半可得AM=12BD ,CM=12BD ,那么AM=CM ,再根据等腰三角形三线合一的性质即可证明MN ⊥AC .如图,连接AM ,CM ,∵∠BAD =∠BCD =90°,点M 是BD 的中点,∴AM =12BD ,CM =12BD ,∴AM =CM ,又∵点N 是AC 的中点,∴直线MN 是线段AC 的垂直平分线.10.(1)∠ABD =30°;(2)AE =5√32.【解析】10.(1)根据矩形性质得出∠DAB=90°,求出∠ADB=60°,代入∠ABD=180°-∠DAB-∠ADB 求出即可;(2)求出AD ,根据等腰三角形性质得出DE=EO ,求出DE ,根据勾股定理求出即可.(1)∵四边形ABCD 是矩形,∴∠DAB =90°,∵△ADO 为等边三角形,∴∠ADB =60°,∴∠ABD =180°-∠DAB -∠ADB =30°;(2)∵BD =10,∠BAD =90°,∠ABD =30°,∴AD =12BD =5,∵△ADO 为等边三角形,∴AD =AO =DO =5,∵AE ⊥DO ,∴DE =EO =12DO =2.5,在Rt △AED 中,由勾股定理得AE =√AD 2−DE 2=√52−2.52=5√32. 11.(1)根据三角形的中位线定理可证得DE ∥GF ,DE =GF ,即可证得结论;(2)解法一:点O 的位置满足两个要求:AO =BC ,且点O 不在射线CD 、射线BE 上. 解法二:点O 在以A 为圆心,BC 为半径的一个圆上,但不包括射线CD 、射线BE 与⊙A 的交点.解法三:过点A 作BC 的平行线l ,点O 在以A 为圆心,BC 为半径的一个圆上,但不包括l 与⊙A 的两个交点.【解析】11.试题(1)根据三角形的中位线定理可证得DE ∥GF ,DE =GF ,即可证得结论; (2)根据三角形的中位线定理结合菱形的判定方法分析即可.(1)∵D 、E 分别是边AB 、AC 的中点.∴DE ∥BC ,DE =BC .同理,GF ∥BC ,GF =BC . ∴DE ∥GF ,DE =GF .∴四边形DEFG 是平行四边形;(2)解法一:点O 的位置满足两个要求:AO =BC ,且点O 不在射线CD 、射线BE 上. 解法二:点O 在以A 为圆心,BC 为半径的一个圆上,但不包括射线CD 、射线BE 与⊙A 的交点.解法三:过点A 作BC 的平行线l ,点O 在以A 为圆心,BC 为半径的一个圆上,但不包括l 与⊙A 的两个交点.12.(1)证明:∵四边形ABCD 是矩形,AC 和BD 交于点O∴AB ∥CD; OB=OD∴∠OEB=∠OFD∵∠BOE=∠DOF∴△BOE ≌△DOF(2)解:当EF 与AC 垂直的时候四边形AECF 是菱形。
北师大版九年数学上册第一章单元测试
一、选择题
1、已知:如图,在△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,则∠A 的度数是( )
(A ) 30° (B ) 36° (C ) 45° (D ) 54°
2、如图,等边△ABC 中,BD=CE ,AD 与BE 相交于点P ,则∠APE 的度数是 ( )
A.45°
B.55°
C.60°
D.75°
3、如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF .②∠FAB =∠EAB ,③EF =BC ,④∠EAB =∠FAC ,其中正确结论的个数是 ( )
A.1个
B.2个
C.3个
D.4个
4、如图,以点A 和点B 为两个顶点作位置不同的等腰直角三角形,一共可以作出( )
A.2个
B.4个
C.6个
D.8个
5、如图,△ABC 中,AB=BD=AC ,AD=CD ,则∠ADB 的度数是 ( )
A.36°
B.45°
C.60°
D.72°
6、如图,△ABC 中,AB=AC ,∠A=36°,CD 、BE 是△ABC 的角平分线,CD 、BE 相交于点O ,则图中等腰三角形有 ( )
A.6个
B.7个
C.8个
D.9个
7、已知等腰三角形的一个角为75°,则其顶角为 ( )
A.36°
B.45°
C.60°
D.72°
8、等腰直角三角形的斜边长为a ,则其斜边上的高为 ( ) A.a 23
B.a 2
C.2a
D.a 42
9、下列两个三角形中,一定全等的是 ( )
(A )有一个角是40°,腰相等的两个等腰三角形 (B )两个等边三角形
(C )有一个角是100°,底相等的两个等腰三角形
(D )有一条边相等,有一个内角相等的两个等腰三角形
二、填空题
1.在△ABC 中,∠A -∠C = 25°,∠B -∠A = 10°,则∠B = ;
2.如果三角形有两边的长分别为5a ,3a ,则第三边x 必须满足的条件是 ;
3.等腰三角形一边等于5,另一边等于8,则周长是 ;
4.在△ABC 中,已知AB =AC ,AD 是中线,∠B =70°,BC =15cm ,则∠BAC = ,
∠DAC = ,BD = cm ;
5.在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,AB =3,AC =4,则AD = ;
6.在等腰△ABC 中,AB =AC ,BC =5cm ,作AB 的垂直平分线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则△ABC 的腰长为 .
7、如图,已知AC=DB ,要使△ABC ≌△DCB ,只需增加的一个条件是 或 .
8、已知,如图,O 是△ABC 的∠ABC 、∠ACB 的角平分线的交点,OD ∥AB 交BC 于D ,OE ∥AC 交BC 于E ,若BC = 10 cm ,则△ODE 的周长 .
9、如图,在Rt △ABC 中,∠B=90°,∠A=40°,AC 的垂直平分线MN 与AB 相交于D 点,则∠BCD 的度数是 .
10、如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 的长为 .
11、如图,在四边形ABCD 中,对角线AC 与BD 相交于点E ,若AC 平分DAB ,且AB=AC ,AC=AD ,有如下四个结论:①AC ⊥BD ;②BC=DE ;③∠DBC=21
∠DAB ;④△ABC 是正
三角形。
请写出正确结论的序号 (把你认为正确结论的序号都填上)。
三、证明题
1、 已知D 是Rt △ABC 斜边AC 的中点, DE ⊥AC 交BC 于E , 且∠EAB ∶∠BAC =
2∶5,求∠ACB的度数.
2、已知:如图,AB=AC,CE⊥AB于E,BD⊥AC于D,求证:BD=CE.
3、已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE =CD.求证:BD=DE.
4、已知:如图,在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连结AD、BE交于点P,作BQ⊥AD,垂足为Q.求证:BP=2PQ.
5、如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°,求AD、CD的长.。