有限元试卷(2005)
- 格式:doc
- 大小:174.00 KB
- 文档页数:4
山东科技大学2012—2013学年第一学期《有限元方法》考试试卷(A卷)班级姓名学号一、选择题(每题1分,共10分)1、弹性力学与材料力学的主要不同之处在于C。
A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。
σ是 C 。
2、在轴对称问题中,径向应力分量rA. 恒为零;B. 与r无关;C. 与θ无关;D. 恒为常数。
3、利用ANSYS进行结构分析时,结果文件为。
A. jobname.rst;B. jobname.rth;C. jobname.rfl;D. jobname.rmg。
4、在ANSYS的单元库中,PLANE42单元属于。
A. 结构梁单元;B. 结构壳单元;C. 结构线单元;D. 结构实体单元。
5、在一个分析中,可能有多个材料特性组,ANSYS通过独特的来识别每个材料特性组。
A. 特性;B. 说明;C. 参考号;D.方法。
6、ANSYS与Pro/E的接口文件类型是。
A..x_t;B. .prt;C. .sat;D. .model。
7、载荷包括所有边界条件以及外部或内部作用效应,下列不属于ANSYS 载荷的是。
A. DOF约束;B. 力;C. 体载荷;D.应力。
8、要求面或者体有规则的形状,即必须满足一定的准则。
A.自由网格;B. 映射网格;C. Sweep分网;D. 其他。
9、独立于有限元网格,即可以改变单元网格而不影响施加的载荷。
A.阶跃载荷;B. 有限元模型载荷;C. 实体模型载荷;D. 斜坡载荷。
10、有限元法首先求出的解是,单元应力和应变可由它求得。
A.节点坐标;B.节点自由度;C. 节点载荷;D. 节点位移。
二、填空题(每空1分,共20分)1、在整个有限元分析的过程中,是分析的基础。
2、平面应力问题与薄板弯曲问题的弹性体几何形状都是,但前者受力特点是,变形发生在板面内;后者受力特点是的力的作用,板将变成有弯有扭的曲面。
3、典型的ANSYS文件包括、、。
4、平面应力问题与平面应变问题都具有个独立的应力分量,个独立的应变分量,但对应的弹性体几何形状前者为,后者为。
江西理工大学研究生考试试卷一、 简答题(共40分,每题10分)1. 论述单元划分应遵循的原则。
2. 说明形函数应满足的条件。
3. 说明四边形等参数单元中“等参数”的含义,即为什么要引入等参数单元。
4. 阐述边界元法的主要优缺点。
二、 计算题(共60分,每题20分)1.一杆件如图3所示,杆件上方固定后,在下方受垂直向下的集中力作用,已知:杆件材料的杨氏模量2721/100.3in lbf E E ⨯==,截面积2125.5in A =,2275.3in A =,长度in L L 1221==,集中力lbf P 100=,用有限元方法求解B 点和C 点位移。
备注:(1)1lbf(磅力,libraforce )=。
(2)杨氏模量、弹性模量、Young 氏弹性模量具有相同含义(10分)2.如图2t=1m ,载荷F=20KN/m ,设泊松比μ=015分)3.图示结点三角形单元的q ,单元厚度为t ,求单元的等效结点荷载。
学院专业学号姓名 y图3一、简答题1.答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2.答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。
b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。
当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。
c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。
3.答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。
意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。
试卷总分:100 得分:96一、单选题 (共 11 道试题,共 22 分)1.下列关于高精度单元描述正确的是()。
A.等参元的位移模式和坐标变换采用不同的形函数B.矩形单元形状规则,因而使用范围较广C.6结点三角形单元、10结点三角形单元、8结点矩形单元和12结点矩形单元的单元刚度矩阵的建立过程是不一样的D.6结点三角形单元较容易模拟物体的边界形状正确答案:2.φ=cxy能解决矩形板()问题。
A.左右均布拉压B.上下均布拉压C.纯剪切D.纯弯曲正确答案:3.下列关于等参元的叙述不正确的是()。
A.精度较高B.能较好的模拟边界条件C.输入的信息量较少D.输入的信息量较多正确答案:4.薄板的边界不包括()。
A.简支边界B.固定边界C.自由边界和荷载边界D.非固定边界正确答案:5.下列属于平面应力问题的是()。
A.平板坝的平板支墩B.挡土墙C.重力水坝D.受内水压力作用的圆管正确答案:6.在应力函数上任意增减一个(),对应力分量无影响。
B.二次项C.三次项D.常数项正确答案:7.下列不属于提高单元精度的方法是()。
A.增加单元结点数目B.在单元内增设结点C.减少单元结点数目D.设等参元正确答案:8.空间问题的基本平衡微分方程有()个。
A.2B.3C.4D.5正确答案:9.φ=by2能解决矩形板()问题。
A.左右均布拉压B.上下均布拉压C.纯剪切D.纯弯曲正确答案:10.下列属于不规则单元的有()。
A.正四面体单元B.正三棱体单元C.任意四面体单元D.正六面体单元正确答案:11.空间问题的基本未知位移分量有()个。
A.2B.3C.4D.5二、多选题 (共 16 道试题,共 32 分)1.薄板小挠度弯曲理论的基本假定是()。
A.直法线假定B.法向位移假定C.中面位移假定D.板内无挤压假定2.弹性力学平面问题按应力求解具体可分为()两种。
A.逆解法B.顺解法C.半逆解法D.半顺解法3.弹性力学的边界条件有()。
一、如图所示的1D 杆结构,试用取微单元体的方法建立起全部基本方程和边界条件,并求出它的所有解答。
注意它的弹性模量为E 、横截面积A解:如图1.1所示的1D 杆结构,其基本变量为 位移 x u 应变 x ε 应力 x σ取微单元体Adx ,其应力状态如图1.2,由泰勒展开式知()⋅⋅⋅⋅⋅+∂∂+⋅∂∂+=+22221dx x dx x dx x x x x σσσσ略去2阶以上的商阶微量知()dx xdx x xx ⋅∂∂+=+σσσ 由力的平衡知0=∑i x :0=-⎪⎭⎫ ⎝⎛∂∂+A A dx x x x x σσσ即力的平衡方程为:⋅⋅⋅⋅=0dxd xσ① 位移由图1.3知(泰勒展开,略去商阶微量)()dx xu u dx x u xx ⋅∂∂+=+ dxu dxdxdx u dx x uu ABABB A xx x x x ∂=-+-∂∂+=-=∴)(''ε应变 即几何方程为:⋅⋅⋅⋅=dxdu xx ε② 根据虎克定律知⋅⋅⋅⋅⋅⋅⋅=⋅=dxdu E E xx x εσ③ 由①、②、③知该1D 杆的基本方程为⎪⎪⎪⎩⎪⎪⎪⎨⎧====dx du E E dx du dx d x x xx xxεσεσ0 在节点1时位移:00==x x u 在节点2时应力:APlx x==σ即其边界条件为00==x x u on u SAPlx x==σ on P S 由①式知⋅⋅⋅⋅⋅=0c x σ ④ ④代入③解得:dxdu Ec x=0 ⋅⋅⋅⋅⋅⋅⋅+=10c x Ec u x ⑤ 0c 、1c 为待定系数结合边界条件知⎪⎪⎩⎪⎪⎨⎧==+A P c c x Ec 010解知得APc =0,01=c ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧==⋅==EA P E x EA P u A P x xx x σεσ二、设平面问题中的应力问题y a x a a x 321++=σy a x a a y 654++=σ y a x a a xy 987++=τ其中i a (1、2、………9)为常数,令所有体积力为零,对下面特殊情况说明平衡是否满足?为什么?或者i a 之间有什么关系才满足平衡。
汽车车门有限元分析彭鸿奇瑞汽车有限公司汽车工程研究院CAE部轿车车门有限元分析CAR_Door Finite Element Analysis彭鸿(奇瑞汽车有限公司汽车工程研究院CAE部)摘要:汽车的开启件是汽车的重要部件,其性能的好坏直接影响汽车的整体性能。
本文主要针对汽车车门进行有限元分析,采用MSC.Nastran求解器进行计算,考查其车门的约束模态和部分刚度性能,从而评价车门性能的好坏。
关键词:车门有限元约束模态刚度MSC.NastranAbstract:The closures are the important part of automobile because of they take directly effect on the vehicle performance. This paper describes on how to analyze car door main structure parameter. The MSC.Nastran solver is adapted to calculate the constraint mode and stiffness of car door. At last, it is evaluated to the door performances.Key words:door,finite element,constraint mode,stiffness,MSC.Nastran1 概述汽车的开启件常见的包括四门(前后侧门)和两盖(发动机罩盖和行李箱盖),其结构性能的好坏,直接影响汽车的总体性能和舒适性。
因此本篇主要对汽车车门进行有限元分析。
分析内容主要包括约束模态分析和静刚度分析。
约束模态是考察门本体在铰链和门闩处同时施加适当约束条件下的振型及相应频率值;静刚度是指模拟真实试验条件下的工况对门本体模型施加约束条件和载荷条件,从而考察各种工况下门本体的最大变形量是否超过经验参考值或试验值。
有限元试题及答案一判断题(20分)(×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置(√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元(×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型(√)4. 四边形的平面单元尽可能作成接近正方形形状的单元(×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×)6. 用有限元法不可以对运动的物体的结构进行静力分析(√)7. 一般应力变化大的地方单元尺寸要划的小才好(×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度(√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小(√)10一维变带宽存储通常比二维等带宽存储更节省存储量。
二、填空(20分)1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。
2.平面应力问题与平面应变问题都具有三个独立的应力分量:σx,σy,τxy ,三个独立的应变分量:εx,εy,γxy,但对应的弹性体几何形状前者为薄板,后者为长柱体。
3.位移模式需反映刚体位移,反映常变形,满足单元边界上位移连续。
4.单元刚度矩阵的特点有:对称性,奇异性,还可按节点分块。
5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为二维问题处理。
6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。
等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。
7.有限单元法首先求出的解是节点位移,单元应力可由它求得,其计算公式为。
(用符号表示即可)8.一个空间块体单元的节点有 3 个节点位移: u,v,w9.变形体基本变量有位移应变应力基本方程平衡方程物理方程几何方程10.实现有限元分析标准化和规范化的载体就是单元三选择题(14分)1 等参变换是指单元坐标变换和函数插值采用__B___的结点和______的插值函数。
习题2.1 解释如下的概念:应力、应变,几何方程、物理方程、虚位移原理。
解 ○1应力是某截面上的应力在该处的集度。
○2 应变是指单元体在某一个方向上有一个ΔU 的伸长量,其相对变化量就是应变。
X U Xx ∆∆=ε表示在x 轴的方向上的正应变,其包括正应变和剪应变。
○3几何方程是表示弹性体内节点的应变分量与位移分量之间的关系,其完整表示如下:Txz yz xy z y x x w z u zv y w y u x v z w y vx u x w z u z v y w y u x v z w y v x u ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂∂∂∂∂=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂∂∂∂∂=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=γγγεεεε○4物理方程:表示应力和应变关系的方程某一点应力分量与应变分量之间的关系如下:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=666564636261565554535251464545434241363534333231262524232221161514131211αααααααααααααααααααααααααααααααααααατττσσσσxz yz xy z y x ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡xz yz xy zz yy xx γγγεεε○5虚位移原理:在弹性有一虚位移情况下,由于作用在每个质点上的力系,在相应的虚位移上虚功总和为零,即为:若弹性体在已知的面力和体力的作用下处于平衡状态,那么使弹性体产生虚位移,所有作用在弹性体上的体力在虚位移上所做的工就等于弹性体所具有的虚位能。
2.2说明弹性体力学中的几个基本假设。
○1 连续性假设:就是假定整个物体的体积都被组成该物体的介质所填满,不存在任何间隙。
课程名称有限元单元法学院机械工程学院专业机械制造及其自动化学生姓名周祥态学号 110010021 教师陈爱军理论部分习题及解答:1.已知平面应变下三节点三角形单元的节点坐标()0,0i 、()1,6j 和()4,3m ,单元的节点位移分量1==i i v u 、0====m m j j v u v u ,材料的弹性模量E ,泊松比为ν。
试求单元的应变和应力分量?解:单元面积:1100112111612221134i i j j mmx y A x y x y === 23j m m j ai x y x y =-= 0j a = 0m a =3i j m b y y =-=- 4j m i b y y =-= 1m i j b y y =-=-3i m j c x x =-=- 3j i m c x x =-=- 6m j i c x x =-=1(133)211(43)211(6)21i j m N x y N x y N x y ⎧=--⎪⎪⎪∴=-⎨⎪⎪=-+⎪⎩[]304010103030621333461B --⎡⎤⎢⎥∴=--⎢⎥⎢⎥----⎣⎦∴单元应变{}[]{}113040103011030306302121333461600e eB εδ⎡⎤⎢⎥⎢⎥---⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦平面应变下:[]101(1)10(1)(12)112002(1)E D μμμμμμμμμ⎡⎤⎢⎥-⎢⎥⎢⎥-=⎢⎥+--⎢⎥⎢⎥-⎢⎥-⎣⎦{}[]{}311(1)3121(1)(12)17(1)(12)1231ee E E D μμσεμμμμμμμ⎧⎫-⎪⎪-⎪⎪⎧⎫⎪⎪---⎪⎪∴===⎨⎬⎨⎬+--+-⎪⎪⎪⎪-⎩⎭⎪⎪-⎪⎪-⎩⎭2.图示为一个三个节点的杆单元,O 为坐标原点,其位移模式取为2321x C x C C U ⋅+⋅+=。
有限元(道)试题
一.填空题(10分)
1.有限单元法分析问题的三个主要内容是_________;
2.弹性力学平面问题包括____和____两类;
3.板弯曲有限元的弹性矩阵为
f
D
⎡⎤
⎣⎦
=
4.平面问题三角常应变有限元中形函数
i
N之和为____;
5.平面问题的几何方程为________;
6.平面应力问题的物理方程为________;
7.平面应力问题等效节点荷载一般形式为:______。
二.有限单元法的六个步骤为何?(10分)
三.写出薄板弯曲问题的三种边界条件。
(10分)
四.已知平面应力问题形函数矩阵000[
]0
i j
k i
j
k
N N N N N N
N =,
试画出其图形。
(10分)
i
j
m i
j
m i
j
m
N i
N j
N m
五.已知单元结点力{}e F ,单元结点位移{}e q ,单元应变矩阵{}ε,几何矩阵[]B ,弹性矩阵[D],推出单元刚度矩阵[K]e 的一般表达形式。
(12分)
六.试求如图所示荷载的等效结点荷载。
已知:
2
3
3
3211x x l
l
N =-
+
,2
3
2
22
x x l
l
N x =-
+
,2
3
2
3
323x x l
l
N =
-
,2
3
2
4
x x l
l
N =-
+。
(12分)
七.已知弯曲杆单元形函数矩阵[N]=[N 1 N 2 N 3 N 4],
2
3
3
3211x x l
l
N =-
+
,2
3
2
22
x x l
l
N x =-
+
,2
3
2
3
323x x l
l
N =
-
,2
3
2
4
x x l
l
N =-
+。
试画出形函数图形,并写出形函数边界条件。
(12分)
八.已知结构单元划分有两种形式,分别进行单刚集装为总刚, 并比较每种情况带宽大小。
(12分)
九.写出矩形单元的位移函数,试说明其道理,并讨论收敛性。
(12分)。