排列组合
- 格式:pdf
- 大小:69.94 KB
- 文档页数:2
排列组合是组合数学中的一个重要概念,用于描述从一组元素中选择若干个元素进行组合的方法。
在实际生活和数学问题中,排列组合的应用广泛,例如在统计学、概率论、计算机算法等领域都有着重要的作用。
本文将介绍排列组合的几种常见方法。
首先,我们来介绍排列的概念。
排列是指从一组元素中按照一定顺序选择若干个元素进行组合的方法。
在排列中,每个元素只能使用一次,并且顺序不同被视为不同的排列。
例如,从元素集合{A,B,C}中选择2个元素进行排列,可能有6种不同的排列方式:AB,AC,BA,BC,CA,CB。
排列的计算公式为P(n, k) = n! / (n-k)!,其中n为元素总数,k为需要选择的元素数。
接下来,我们介绍组合的概念。
组合是指从一组元素中选择若干个元素进行组合的方法,与排列不同的是,组合中元素的顺序不重要。
例如,从元素集合{A,B,C}中选择2个元素进行组合,可能有3种不同的组合方式:AB,AC,BC。
组合的计算公式为C(n, k) = n! / (k! * (n-k)!),其中n为元素总数,k为需要选择的元素数。
在实际问题中,排列组合可以应用于很多方面。
以组合为例,我们可以使用组合的思想来解决选课问题。
例如,一个学校有10门选修课,每个学生需要选择3门选修课,那么可以计算出有多少种不同的选课组合方式,即C(10, 3) = 120种。
在统计学中,排列组合也有着重要的应用。
例如,在一场抽奖活动中,有100个人参与抽奖,每人仅能中奖一次。
假设有10个奖品需要分配给这100个人,可以计算出有多少种不同的中奖组合方式,即P(100, 10) = 3,628,800种。
在计算机算法中,排列组合也经常被用到。
例如,在编写程序时需要对一组数据进行全排列操作,可以使用递归算法实现。
另外,在搜索算法中,也可以使用排列组合的思想进行状态空间的搜索。
综上所述,排列组合是组合数学中的一个重要概念,应用广泛且在实际问题中有着重要的作用。
排列组合常见的九种方法
1. 直接排列法:将元素按照一定次序排列,每种排列方案都是一个不同的结果。
例如,3个元素的排列数为 3! = 3 × 2 × 1 = 6。
2. 递归法:将问题逐步分解成每一步只有相对简单的子问题,从而不断求解。
通过递归,经过一系列不同的子过程,得到最终的结果。
3. 循环法:使用循环来枚举所有的可能的排列组合情况。
通常用于数组、字符串等元素的排列组合问题。
4. 分组排列法:将待排列的元素按照一定属性分组,再对每组内的元素进行排列组合,最终将每组的结果进行组合得到最终的结果。
5. 交换法:通过元素间的交换,对所有可能的排列组合进行枚举。
该方法需要注意元素交换时的顺序。
6. 邻项对换法:将相邻的两项进行对换,直到所有项都被排列组合了一遍。
7. 插入法:将新的元素依次插入已有元素的任意位置,直到所有元素都被排列组合了一遍。
8. 非递增排列法:将待排列的元素按照一定属性进行排序,然后将元素从最大的开始进行排列组合。
9. 非递减排列法:将待排列的元素按照一定属性进行排序,然后将元素从最小的开始进行排列组合。
排列组合的计算方法
排列组合是一种用来计算可能性和组合情况的数学方法。
它通常应用于问题中涉及对象的顺序或选择的情况。
以下是计算排列组合的常用方法:
1. 计算排列
排列是指从给定对象集合中选取一部分元素按照特定顺序进行排列的方式。
计算排列时,可以使用以下公式:
P(n, r) = n! / (n-r)!
其中,n表示对象的总数,r表示要选择的对象数量,"!"表示阶乘运算。
2. 计算组合
组合是指从给定对象集合中选取一部分元素按照任意顺序进行组合的方式。
计算组合时,可以使用以下公式:
C(n, r) = n! / (r! * (n-r)!)
其中,n表示对象的总数,r表示要选择的对象数量,"!"表示阶乘运算。
3. 使用计算器或计算软件
当对象的数量较大时,手工计算排列组合可能会非常繁琐。
因此,可以借助计算器或计算软件来快速计算排列组合。
大多数科学计算器或计算软件都提供了排列组合计算的功能。
需要注意的是,在使用排列组合计算时,应根据具体问题的要
求选择合适的方法。
对于一些问题,可能需要使用排列、组合或二者的组合来求解。
此外,还应注意理解排列组合的概念和计算原理,并注意在公式中正确地代入相应的值。
万华:公考传奇缔造者!万华:公考培训黄埔军校!排列组合的讲义一、排列组合定义1、什么是C公式C是指组合,从N个元素取R个,不进行排列(即不排序)。
例如:编号1~3的盒子,我们找出2个来使用,这里就是运用组合而不是排列,因为题目只是要求找出2个盒子的组合。
即C(3,2)=32、什么是P或A公式P是指排列,从N个元素取R个进行排列(即排序)。
例如:1~3,我们取出2个数字出来组成2位数,可以是先取C(3,2)后排P22,就构成了C(3,2)×P(2,2)=A(3,2)3、A和C的关系事实上通过我们上面2个对定义的分析,我们可以看出的是,A比C多了一个排序步骤,即组合是排列的一部分且是第一步骤。
4、计算方式以及技巧要求组合:C(M,N)=M!÷(N!×(M-N)!)条件:N<=M排列:A(M,N)=M!÷(M-N)!条件:N<=M为了在做排列组合的过程中能够对速度有必要的要求,我需要大家能够熟练的掌握1~7的阶乘,当然在运算的过程中,我们要学会从逆向思维角度考虑问题,例如C(M,N)当中N取值过大,那么我们可以看M-N的值是否也很大。
如果不大。
我们可以求C(M,[M-N]),因为C(M,N)=C(M,[M-N])二、排列组合常见的恒等公式1、C(n,0)+C(n,1)+C(n,2)+……+C(n,n)=2^n2、C(m,n)+C(m,n+1)=C(m+1,n+1)针对这2组公式我来举例运用(1)有10块糖,假设每天至少吃1块,问有多少种不同的吃法?解答:C(9,0)+C(9,1)+……+C(9,9)=2^9=512(2),公司将14副字画平均分给甲乙筛选出参加展览的字画,按照要求,甲比乙多选1副,且已知甲按照要求任意挑选的方法与乙任意挑选的方法之和为70,求,甲挑选了多少副参加展览?C(8,n)=70 n=4 即得到甲选出了4副。
万华:公考传奇缔造者!万华:公考培训黄埔军校!三、排列组合的基本理论精要部分(分类和分步)(1)、加法原理(实质上就是一种分类原则):一个物件,它是由若干个小块组成的,我们要知道这个物件有多重,实际上可以分来算,比如,我们知道每一个小块的重量,然后计算总和就等于这个物件的重量了,这就是我们要谈的分类原则。
排列组合公式排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。
排列的全体组成的集合用 P(n,r)表示。
排列的个数用P(n,r)表示。
当r=n时称为全排列。
一般不说可重即无重。
可重排列的相应记号为 P(n,r),P(n,r)。
组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。
组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。
一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。
把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。
显然各子集没有共同元素。
每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。
排列组合20种常用方法
1. 列出所有可能的组合
2. 使用递归排列组合
3. 使用循环排列组合
4. 使用动态规划排列组合
5. 使用回溯法排列组合
6. 使用数学公式计算排列组合
7. 使用位运算排列组合
8. 使用逆序排列组合
9. 使用有序集合排列组合
10. 使用栈数据结构排列组合
11. 使用队列数据结构排列组合
12. 使用重复排列组合
13. 使用有限制条件的排列组合
14. 使用自定义函数进行排列组合计算
15. 使用字符串拆分和拼接进行排列组合
16. 使用二叉树进行排列组合
17. 使用堆进行排列组合
18. 使用图进行排列组合
19. 使用集合进行排列组合计算
20. 使用贪心算法进行排列组合。
第一部分:概念公式1、排列:从n 个不同元素中,任取m 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
2、组合:从n 个不同元素中,任取m 个元素,并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题.注意排列组合的区别与联系:所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题。
3、加法原理:如果完成一项工作有两类相互独立的方式A 和B ,在方式A 中有m 种完成任务的途径,在方式B 中有n 种完成任务的途径,则完成这项工作的总的途径有m+n 种。
4、乘法原理:如果完成一项工作有两个连续的步骤A 和B ,在步骤A 中有m 种不同的方式,在步骤B 中有n 种不同的方式,则完成这项工作的总的方法有m*n 种。
注意:0!=1第二部分:排列组合解决方法一:特殊元素和特殊位置优先策略是解决排列组合问题最常用也是最基本的方法. 例1. 由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.先排末位共有( C (3,1) ) 然后排首位共有( C (4,1) ) 最后排其它位置共有( A(4,3) ) 由分步计数原理得( C(3,1)C(4,1)A(4,3)=288 ) 练习1:六人站成一排,求(1)甲不在排头,乙不在排尾的排列数(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数 分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。
第一类:乙在排头,则直接符合要求,共有A(5,5)=120种站法.第二类:乙不在排头,当然他也不能在排尾,则有A (4,1)可选,此时甲不能在排头则有A (4,1)可选,其余A (4,4)。
则有A (4,1)A(4,1)A(4,4)=384种站法,共共有504种种站法。
方法2:间接法一共有A (6,6)种方法 若A 排头有A(5,5),B 排尾有A(5,5),其中重复了A 排头B 排尾的情况有A (4,4)所以共有A(6,6)-2A(5,5)+A(4,4)=504 方法3:插空法先让除A 其余五个人任意排列 然后让A 插入(不能插第一个位置)共有五个位置可插入 则共有5A(5,5)其中排除B 在尾的状况4A(4,4) 则有5A (5,5)-4A (4,4)=504(2)第一类:甲在排尾,乙在排头,则保证不相邻。
关于排列组合的一些基础知识1. 排列:从n个元素中取出m个(m≦n),并按照一定的顺序排成一列,称为从n个元素中取出m个元素的排列。
2. 组合:从n个元素中取出m个(m≦n),并按照一定的方式进行组合,称为从n个元素中取出m个元素的组合。
3. 排列的公式:A(n,m)=n×(n-1)×(n-2)×...×(n-m+1)。
4. 组合的公式:C(n,m)=n×(n-1)×(n-2)×...×(n-m+1)÷m×(m-1)×(m-2)×...×2×1。
5. 重复排列:在排列时允许相同的元素重复出现,每个元素出现的次数与排列的顺序有关,这种排列称为重复排列。
6. 重复组合:在组合时允许相同的元素重复出现,每个元素出现的次数与组合的方式无关,这种组合称为重复组合。
7. 排列数的性质:若A(n,m)=0,则m<0或m>n;若0≦m≦n,则A(n,m)=A(n,n-m);若n=m则A(n,m)=1。
8. 组合数的性质:若C(n,m)=0,则m<0或m>n;若0≦m≦n,则C(n,m)=C(n,n-m);若n=m则C(n,m)=1。
9. 插空法:在解决有关问题时,将元素分成两部分,一部分暂时不取,然后对剩下的元素进行排列或组合,这种方法称为插空法。
10. 捆绑法:在排列或组合时,先将几个元素捆绑在一起,作为一个元素处理,然后再对其他元素进行排列或组合的方法称为捆绑法。
11. 插板法:在解决有关问题时,将元素分成两部分,一部分暂时不取,然后对剩下的元素进行排列或组合,这种方法称为插板法。
12. 隔板法:在解决有关问题时,将元素分成两部分,中间插入隔板,使得每部分元素的个数等于规定的个数,这种方法称为隔板法。
排列组合解法解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略2、7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.练习、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为_________三.不相邻问题插空策略3、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为______________四.定序问题倍缩空位插入策略4、7人排队,其中甲乙丙3人顺序一定共有多少不同的排法?练习、10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幂策略5、把6名实习生分配到7个车间实习,共有多少种不同的分法练习1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目如果将这两个节目插入原节目单中,那么不同插法的种数为2.某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法 ______六.环排问题线排策略6、8人围桌而坐,共有多少种坐法?一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m个元素作圆形排列共有1A-n n练习、6颗颜色不同的钻石,可穿成几种钻石圈?七.多排问题直排策略7、8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法?' —犷排—" —后排~练习、有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 _____________八.排列组合混合问题先选后排策略8、有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.练习、一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有种九.小集团问题先整体后局部策略9、用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个?练习、1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为____________2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有种十.元素相同问题隔板策略10、有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?练习题:1. 10个相同的球装5个盒中,每盒至少一有多少装法?2. x + y + z +攻=100求这个方程组的自然数解的组数?十一.正难则反总体淘汰策略11、从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?练习、我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?十二.平均分组问题除法策略12、6本不同的书平均分成3堆,每堆2本共有多少分法?练习题:1、将13个球队分成3组,一组5个队,其它两组4个队,有多少分法?2、10名学生分成3组,其中一组4人,另两组3人但正副班长不能分在同一组,有多少种不同的分组方法3、某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为十三.合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目, 有多少选派方法练习:1、从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ___2、3成人2小孩乘船游玩,1号船最多乘3人,2号船最多乘2人,3号船只能乘1人,他们任选2只船或3 只船,但小孩不能单独乘一只船,这3人共有多少乘船方法.十四.构造模型策略14、马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏, 也不能关掉两端的2盏,求满足条件的关灯方法有多少种?一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决练习、某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?十五.实际操作穷举策略15、设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果练习 1、同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种?2、给图中区域涂色,要求相邻区域不同色,现有4种可选颜色,则不同的着色方法有种十六.分解与合成策略16、30030能被多少个不同的偶数整除练习:正方体的8个顶点可连成多少对异面直线分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案,每个比较复杂的问题都要用到这种解题策略十七.化归策略17、25人排成5X5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?练习、某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?____ ____ _____ ____ .B十八.数字排序问题查字典策略18、由0, 1, 2, 3, 4, 5六个数字可以组成多少个没有重复的比324105大的 A 数?练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是—十九.树图策略19、3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同的传球方式有________对于条件比较复杂的排列组合问题,不易用公式进行运算,树图会收到意想不到的结果练习:分别编有1, 2, 3, 4, 5号码的人与椅,其中i号人不坐i号椅(i 1,2,3,4,5 )的不同坐法有多少种?二十.复杂分类问题表格策略20、有红、黄、兰色的球各5只,分别标有A、B、C、D、E五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法排列组合解法解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
排列组合公式欧阳学文排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。
排列的全体组成的集合用 P(n,r)表示。
排列的个数用P(n,r)表示。
当r=n时称为全排列。
一般不说可重即无重。
可重排列的相应记号为 P(n,r),P(n,r)。
组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。
组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。
一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。
把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。
显然各子集没有共同元素。
每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为19的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。
各种排列组合奇怪的数的公式和推导(伪)前言啊复习初赛看到排列组合那块,找个推导都难!真是的!一、排列(在乎顺序)全排列:P(n,n)=n!n个人都排队。
第一个位置可以选n个,第二位置可以选n-1个,以此类推得: P(n,n)=n*(n-1)*…*3*2*1= n!部分排列:P(n,m)=n!-(n-m)!n个人,选m个出来排队,第一个位置可以选n个,…,最后一个可以选n-m+1个,以此类推得:P(n,m)=n*(n-1)*.*(n-m+1)=n!-(n-m)!。
二、组合(不在乎顺序)n个人,选m个人出来。
因为不在乎顺序,所以按排列算的话,每个组合被选到之后还要排列,是被算了m!遍的。
即C(n,m)*m!=P(n,m)故而得:C(n,m)=n!-(m!*(n-m)!)有两条性质:1、C(n,m)=C(n,n-m)。
就是说从n个里面选m个跟从n个里面选n-m 个出来不选它是一样的。
2、C(n,m)=C(n-1,m)+C(n-1,m-1)。
递推式.从n个里面选m个出来的方案=从n-1个里面选m个的方案(即不选第n 个) + 从n-1个里面选m-1个的方案(即选第n个)三、圆排列圆排:Q(n,n)=(n-1)!n个人坐成一圈有多少种坐法。
想想坐成一圈后,分别以每个位置为头断开,可以排成一个序列,就是将n个人全排列中的一种。
这样可以得到n个序列,但是在圆排中是视为同一种坐法的。
所以:Q(n,n)*n=P(n,n),即Q(n,n)=P(n,n)-n=n!-n=(n-1)!部分圆排:Q(n,m)=P(n,m)-m=n!-(m*(n-m)!)推导类似四、重复排列(有限个):n!-(a1!*a2!*…*ak!)k种不一样的球,每种球的个数分别是a1,a2.ak,设n=a1+a2+…+ak,求这n个球的全排列数。
把每种球重复的除掉就好了。
假如第一种球有a1个,那么看成都是不一样的话就有a1!种排列方法,然而它们都是一样的,就是说重复了a1!次。
排列组合排列组合是组合学最基本的概念。
所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。
组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。
排列组合与古典概率论关系密切。
定义及公式!-阶乘排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。
用符号 C(n,m) 表示。
C(n,m)==A(n,m)/m!;C(n,m)=C(n,n-m)。
(n>=m)其他排列与组合公式从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。
符号C-Combination 组合数A-Arrangement 排列数(在旧教材为P-Permutation)N-元素的总个数M-参与选择的元素个数常见的一道题目一些公式:排列组合常见公式组合恒等式基本计数原理⑴加法原理和分类计数法⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
以下是一些常见的排列组合教材:
1. 《数学广角——排列组合》:这是北师大版小学数学教材中的一个单元,通过实例和活动,引导学生探究排列和组合的规律,学习如何计算组合数和排列数。
2. 《组合数学》:这本书是数学系本科生的专业教材,介绍了组合数学的基本原理和算法,包括排列、组合、概率论、图论等方面的内容。
3. 《排列组合与概率统计》:这本书是面向大学生的数学教材,介绍了排列、组合、概率和统计方面的知识,包括随机事件、随机变量、期望、方差等方面的内容。
4. 《离散数学》:这是一本介绍离散数学的教材,包括了集合论、图论、逻辑、组合数学等方面的内容,其中也包括了排列组合的知识。
5. 《组合数学与最优化》:这本书不仅介绍了组合数学的基本原理和算法,还介绍了如何应用这些知识解决实际问题,包括整数规划、动态规划等方面的内容。
以上是一些常见的排列组合教材,不同版本和不同出版社的教材可能会有不同的内容和组织方式。
在学习时可以根据自己的需要和兴趣选择适合自己的教材。
排列组合公式/排列组合计算公式公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数R参与选择的元素个数!-阶乘,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A.60个B.48个C.36个D.24个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种解: 抽出的3台电视机中甲型1台乙型2台的取法有C 14·C 25种;甲型2台乙型1台的取法有C 24·C 15种 根据加法原理可得总的取法有 C 24·C 25+C 24·C 15=40+30=70(种 ) 可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式? 解: 甲公司从8项工程中选出3项工程的方式 C 38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C 15种; 丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C 24种; 丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种.根据乘法原理可得承包方式的种数有C 3 8×C 15×C 24×C 22= ×1=1680(种). (四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题. 例6 在(x- )10的展开式中,x 6的系数是( ) A.-27C 610 B.27C 410 C.-9C 610 D.9C 410 解 设(x- )10的展开式中第γ+1项含x 6, 因T γ+1=C γ10x 10-γ(- )γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C 410(- )4=9C 410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0. (五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0D.2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种D.24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。
200802-B【责任编辑韩四清】新的要求和希望,而学校的主要任务是为社会培养合格人才,学校德育工作为了适应新的要求,必须探索、选择新的教育途径,充实、积累新的成功的教育经验;随着社会的日益开放,特别是互联网的发展,学生单纯幼稚、脆弱的心灵缺乏必要的防范,往往会受周围环境的左右,受不良信息的影响,失去应有的心理平衡,影响学生个性品质的健康发展。
学校必须针对新的教育对象,研究新的教育思路,保证高效全面地完成德育工作任务。
所以学校的德育工作必须变过去的以经验为基准的教育为以学生心理特征为基准的教育。
在具体教育过程中,不失时机地把握当前“多元化”、“多色彩”瞬息万变的时代特征,并结合学生的年龄特点、个性差异运用情感教育规律,变单纯的灌输式为丰富多彩的师生情感交流式;变死板的教训式,为生动互勉的讨论式。
这样,学生容易接受,有利于提高鉴别能力、免疫能力。
二、把集体教育和自我教育相结合,发挥组织教育作用长期以来,学校德育工作中比较多地强调集体教育。
应该肯定集体教育仍是当前学生工作中的主旋律之一。
但是由于青少年学生兴趣爱好、个性特长、生活习惯、成长经历不同,所处的周边环境及个人的文化素养、价值观、心理差异等,在教育中很难把全体学生组织在同一个活动中来满足所有学生的思想需求。
这就要求我们在德育工作中研究、把握学生的个体因素,把学生的自我教育与集体教育有机地结合起来,或者说,在集体教育过程中渗透、穿插、强化自我教育因素。
心理学研究表明,独立、自主是现代青少年身心发展的特点之一。
而一个人独立、自主心理品质的形成,与他是否具有较强的自我教育能力有着很重要的关系。
自我教育是集体教育中的个体因素,亦是影响、牵制集体教育的最为活跃的教育“分子”。
因此,我们在组织开展各类教育活动过程中应树立“从集体着眼,由个体入手”的教育观,积极主动地、有意识地重视培养影响青少年学生自我教育能力的非智力因素,如:情感意志、动机、兴趣、性格等,把对青少年自我教育能力的培养,看作是人才培养的必要条件。
因为一个人不可能一辈子在别人的管理下生活,最终要走上社会,去迎接生活的挑战、实践的考验,而在瞬息万变的社会里,只有具备了自我教育的能力才能使自己适应形势发展的需要,使自己的个性品质、思想素质、道德修养日臻完善。
因此严格地说,学生思想教育工作的最终目标是实现自我教育。
诚然,要实现自我教育,除了要依靠集体教育的力量外,最有效的途径是要充分发挥组织教育作用。
就青少年学生而言,组织教育是其个性特长最容易得以施展的教育形式,学校的组织教育往往以其多姿多彩、充满感召力、凝聚力、说服力的活动形式吸引激励青少年学生积极投入,并在活动中潜移默化地接受各种教育,从而达到在组织中让学生学会自己管理自己、自己教育自己、自己升华自己、自己完善自己的目的。
三、把学校教育与社会教育相结合,发挥综合教育作用从辩证发展的眼光及学生德育工作的现状来看,学生德育工作应该是由学生个体因素、学校内部管理和社会外部环境三个部分组成,只有使其三者间形成一个“组合体”,并且使学校教育与社会实践成为一体化的教育过程,才能实现学校德育工作的优化目标。
特别是当前进入了网络时代,学校德育工作已不再是单一的学校教育任务。
过去那种“封闭式”的回避社会矛盾,绕开学生思想实际的思想教育形式,已无法应对当今外来思潮的冲击,因为每一个学生都是生活在一个具体的社会环境里,他们的思想及行为必然要受到周围社会环境的影响并不时打上时代烙印。
只有让学生去接触社会、了解社会、探讨社会、服务社会、在社会实践中真正认识社会、适应社会、把握社会,才能有效地完成学校思想教育任务。
而这一任务的完成,又离不开社会外部环境的作用。
因此可以说,做好学校德育工作也是全社会的共同任务。
这就给我们提出了这样一个问题:学生德育工作如何发挥综合教育作用?就学校而言,必须立足于教育的基础,充分调动、发挥、利用、依靠各方面的积极因素、有利条件、潜在的力量,不断更新观念,改善教育环境,创设教育条件,变革教育机制,健全教育政策,促进教育投资,进而实现教育的综合效应。
而衡量综合教育的效果,则要以与时俱进的标准去审视青少年学生的思想道德素质、文化知识素质、心理素质、身体素质、人文素质等是否得到全面提高。
浅谈用等可能性巧解排列组合问题孙如义(沧县中学,河北沧州061000)关键词:等可能性;排列组合;概率;试验;事件中图分类号:G633.3文献标识码:B文章编号:1009-010X(2008)02-0062-02排列组合在高中数学中占有一定的地位。
它内容独特,自成体系。
不少学生对于简单的问题尚能依样葫芦,遇到复杂的问题往往就束手无策,解题时带有很大的盲目性。
排列组合是中学数学教学的的一个难点。
排列组合的后一章是概率,是近几年高考的重点。
通常我们只是用排列组合的知识去解决概率问题,很少尝试着反过来考虑。
实际上我们可以用概率的某些方法解决排列组合问题,这样不仅会使我们加深对概率知识的理解,而且思路往往通俗简洁,容易接受。
下面试举几例来予以说明。
一、排队问题例1.甲、乙、丙、丁、戊五个人,并排站成一排,如果乙必须站在甲的右边,甲、乙可以不相邻,那么不同的排法有多少种?此题学生错误率通常较高。
其原因是分类标准不明确,容易重复。
正确解答是按甲在第一至第四个位置上分为四类,从而得出算式:A44+C13A33+C12A33+A33=60或A44+(A44-A33)+(A44-62教育实践与研究EducationalPracticeandResearch教育实践与研究EducationalPracticeandResearch200802-B2A33)+A33=60,故不同的排法有60种。
若用等可能性的思想解题就便于理解和把握了。
设事件A为“乙站在甲的右边”,由于“甲站在乙的右边”与“乙站在甲的右边”的可能性相同,由对称性知P(A)=P(A)=12,而5个人站成一排的随机试验所包含的等可能的基本事件总数n=A55,所以不同的排法m=n・P(A)=A55・12=60,即乙站在甲右边的不同排法有60种。
二、组数问题例2.由0、1、2、3、4五个数字可以组成多少个没有重复数字的四位数?此题特殊元素“0”的存在,增加了解题的难度。
利用等可能性的思想可使问题得以简化。
设事件A为“抽出四个数字排列成没有重复数字的四位数”。
五个数字组成没有重复数字的四位数的随机试验所含的等可能的基本事件总数n=A45。
0、1、2、3、4各个数字排在首位的可能性相等,由于0不能在首位,故P(A)=45,于是可以组成没有重复数字的四位数的个数为m=n・P(A)=A45×45=96。
三、环排问题例3.n个朋友随机地围圆桌而坐,求甲乙两人坐在一起有多少种坐法?本题利用常规的方法解决,往往会使学生思路不清,思维混乱。
利用等可能性的思想能使问题豁然开朗。
n个人围圆桌而坐,总共有An-1n-1种排列方法。
它们是等可能的。
设事件A为“甲乙两人坐在一起”,不妨让甲先坐好,显然乙总共有(n-1)个位置可坐,这(n-1)个位置都是等可能的,而甲乙坐在一起,只有两种可能,因此P(A)=2n-1。
所以n个朋友随机地围圆桌而坐,甲乙两人坐在一起有m=An-1n-1・2n-1=2・An-1n-1种坐法。
四、定序问题例4.七名学生站成一排,其中甲、乙、丙三人的顺序固定的排法有多少种?7名同学站成一排,甲、乙、丙三人的不同顺序共有A33=6种,且每一种顺序的发生是等可能的。
因此,不妨设事件A为“7名同学站成一排,甲、乙、丙恰按某一固定顺序排列”,则P(A)=16。
七名同学站成一排的随机试验所含的等可能的基本事件总数n=A77。
故七名学生站成一排,其中甲、乙、丙三人的顺序固定的排法种数m=n・P(A)=A77×16=840。
五、挑选成员的组合问题例5.一个小组共有10名学生,其中4名是女生,6名是男生,要从小组内选出3名代表,其中至少有1名女生,求一共有多少种选法?设事件A为“从小组内选出3名代表,其中至少有1名女生”,则其对立事件为“从小组内选出3名代表,全是男生”。
10名同学中选出3名代表的随机试验所含的等可能基本事件总数n=C310,事件A所包含的基本事件数为C36,因此,P(A)=C36C310=16,从而P(A)=1-P(A)=56,故从小组内选出3名代表,其中至少有1名女生的选法种数m=n・P(A)=C310×56=100。
即有100种选法。
通过上述几例,我们看到应用等可能性思想解某些排列组合问题问题思路简洁,易于理解,便于接受。
但值得注意的是,应用这一思想解题是有条件限制的,它要求问题必须满足等可能性这一基本特征,如果对非等可能事件贸然应用上述方法则会导致错误。
教学实践证明,在学生掌握了排列组合与概率这两部分内容之后,适当介绍一下解排列组合的概率方法,可谓一箭双雕,使学生不但加深了对概率的理解,进一步掌握排列组合的计算技巧,而且沟通了这两部分内容的联系,使知识真正融为一体,起到事半功倍的效果。
运用多媒体技术服务物理课堂教学王付云(成安县化店中学,河北邯郸056700)关键词:多媒体技术;物理;课堂教学中图分类号:G633.7文献标识码:B文章编号:1009-010X(2008)02-0063-02随着现代科学技术在社会各个领域的应用,多媒体技术也运用于教育教学之中。
适时地运用多媒体技术,不但能创设教学情境,揭示物理现象和物理规律,而且能多角度调动广大学生对物理学习的积极性,激发他们求知欲望,达到良好的教学效果。
一、多媒体手段能激发学生的学习兴趣“兴趣是最好的老师”,是达到理想彼岸的良好开端。
心理学家告诉我们“兴趣是人们对事物的选择性态度,是积极认识某种事物或参加某种活动的心理倾向,是学生积极获取知识形成技能的重要动力。
”课堂教学中,恰当地运用多媒体手段,能营造和谐、快乐的学习氛围,激发学生的学习兴趣。
例如在学习“光的折射”一课时,折射光线怎样偏折学生不明白。
利用多媒体教学手段,将光的折射现象制成动画,当光线从空气射入水中折射光线如何偏折,当光线从水中射入空气【责任编辑姜华】63。