2019届高考物理第一轮复习检测题53
- 格式:doc
- 大小:183.00 KB
- 文档页数:9
第四章 章末检测1.一辆静止在水平地面上的汽车里有一个小球从高处自由下落,下落一半高度时汽车突然向右匀加速运动,站在车厢里的人观测到小球的运动轨迹是图中的( )解析 开始时小球相对观察者是做自由落体运动,当车突然加速时,等效成小球相对汽车向左突然加速,刚开始加速时,水平方向的相对速度较小,随着时间的延长,水平方向的相对速度逐渐增大,故观察者看到的小球的运动轨迹应该是C 图。
答案C2.中国女排享誉世界排坛,曾经取得辉煌的成就.如图1所示,在某次比赛中,我国女排名将冯坤将排球从底线A 点的正上方以某一速度水平发出,排球正好擦着球网落在对方底线的B 点上,且AB 平行于边界CD .已知网高为h ,球场的长度为s ,不计空气阻力且排球可看成质点,则排球被发出时,击球点的高度H 和水平初速度v 分别为( ).图1A .H =43hB .H =32hC .v =s 3h 3ghD .v =s 4h 6gh 解析 由平抛知识可知12gt 2=H ,H -h =12g ⎝ ⎛⎭⎪⎫t 22得H =43h ,A 正确、B 错误.由v t =s ,得v =s 4h 6gh ,D 正确、C 错误.答案 AD3.“飞车走壁”杂技表演比较受青少年的喜爱,这项运动由杂技演员驾驶摩托车,简化后的模型如图2所示,表演者沿表演台的侧壁做匀速圆周运动.若表演时杂技演员和摩托车的总质量不变,摩托车与侧壁间沿侧壁倾斜方向的摩擦力恰好为零,轨道平面离地面的高度为H ,侧壁倾斜角度α不变,则下列说法中正确的是( ).图2A .摩托车做圆周运动的H 越高,向心力越大B .摩托车做圆周运动的H 越高,线速度越大C .摩托车做圆周运动的H 越高,向心力做功越多D .摩托车对侧壁的压力随高度H 变大而减小解析 经分析可知摩托车做匀速圆周运动的向心力由重力及侧壁对摩托车弹力的合力提供,由力的合成知其大小不随H 的变化而变化,A 错误;因摩托车和演员整体做匀速圆周运动,所受合外力提供向心力,即F 合=m v 2r ,随H 的增高,r 增大,线速度增大,B 正确;向心力与速度方向一直垂直,不做功,C 错误;由力的合成与分解知识知摩托车对侧壁的压力恒定不变,D 错误. 答案 B4.如图所示,一小钢球从平台上的A 处以速度v 0水平飞出.经t 0时间落在山坡上B 处,此时速度方向恰好沿斜坡向下,接着小钢球从B 处沿直线自由滑下,又经t 0时间到达坡上的C 处.斜坡BC 与水平面夹角为30°,不计摩擦阻力和空气阻力,则小钢球从A 到C 的过程中水平、竖直两方向的分速度v x 、v y 随时间变化的图像是( )解析 小钢球从A 到C 的过程中水平方向的分速度vx ,先是匀速直线运动,后是匀加速直线运动,A 、B 错误;小钢球从A 到C 的过程中竖直方向的分速度vy ,显示加速度为g 的匀加速直线运动,后是加速度为g/4的匀加速直线运动,C 错误、D 正确。
能力课 气体实验定律的综合应用一、选择题1.对于一定质量的理想气体,在温度不变的条件下,当它的体积减小时,下列说法正确的是( )①单位体积内分子的个数增加 ②在单位时间、单位面积上气体分子对器壁碰撞的次数增多 ③在单位时间、单位面积上气体分子对器壁的作用力不变 ④气体的压强增大A .①④B .①②④C .①③④D .①②③④解析:选B 在温度不变的条件下,当它的体积减小时,单位体积内分子的个数增加,气体分子单位时间内与单位面积器壁碰撞的次数越多,气体压强增大,故B 正确,A 、C 、D 错误.2.(多选)如图所示,一定质量的理想气体,沿状态A 、B 、C 变化,下列说法中正确的是( )A .沿A →B →C 变化,气体温度不变 B .A 、B 、C 三状态中,B 状态气体温度最高 C .A 、B 、C 三状态中,B 状态气体温度最低D .从A →B ,气体压强减小,温度升高E .从B →C ,气体密度减小,温度降低解析:选BDE 由理想气体状态方程pVT=常数可知,B 状态的pV 乘积最大,则B 状态的温度最高,A 到B 的过程是升温过程,B 到C 的过程是降温过程,体积增大,密度减小,选项B 、D 、E 正确,选项A 、C 错误.3.如图所示,U 形汽缸固定在水平地面上,用重力不计的活塞封闭着一定质量的气体,已知汽缸不漏气,活塞移动过程中与汽缸内壁无摩擦.初始时,外界大气压强为p 0,活塞紧压小挡板.现缓慢升高汽缸内气体的温度,则选项图中能反映汽缸内气体的压强p 随热力学温度T 变化的图象是( )解析:选B 当缓慢升高汽缸内气体温度时,开始一段时间气体发生等容变化,根据查理定律可知,缸内气体的压强p 与汽缸内气体的热力学温度T 成正比,在p T 图象中,图线是过原点的倾斜的直线;当活塞开始离开小挡板时,缸内气体的压强等于外界的大气压,气体发生等压膨胀,在p T 图象中,图线是平行于T 轴的直线,B 正确.二、非选择题4.(2018届宝鸡一模)如图所示,两端开口的汽缸水平固定,A 、B 是两个厚度不计的活塞,面积分别为S 1=20 cm 2,S 2=10 cm 2,它们之间用一根细杆连接,B 通过水平细绳绕过光滑的定滑轮与质量为M 的重物C 连接,静止时汽缸中的空气压强p =1.3×105Pa ,温度T =540 K ,汽缸两部分的气柱长均为L .已知大气压强p 0=1×105Pa ,取g =10 m/s 2,缸内空气可看作理想气体,不计一切摩擦.求:(1)重物C 的质量M ;(2)逐渐降低汽缸中气体的温度,活塞A 将向右缓慢移动,当活塞A 刚靠近D 处而处于平衡状态时缸内气体的温度.解析:(1)活塞整体受力处于平衡状态,则有pS 1+p 0S 2=p 0S 1+pS 2+Mg代入数据解得M =3 kg.(2)当活塞A 靠近D 处时,活塞整体受力的平衡方程没变,气体压强不变,根据气体的等压变化有S 1+S 2L T =S 2×2LT ′解得T ′=360 K. 答案:(1)3 kg (2)360 K5.(2018届鹰潭一模)如图所示,是一个连通器装置,连通器的右管半径为左管的两倍,左端封闭,封有长为30 cm 的气柱,左右两管水银面高度差为37.5 cm ,左端封闭端下60 cm 处有一细管用开关D 封闭,细管上端与大气联通,若将开关D 打开(空气能进入但水银不会入细管),稳定后会在左管内产生一段新的空气柱.已知外界大气压强p 0=75 cmHg.求:稳定后左端管内的所有气柱的总长度为多少?解析:空气进入后将左端水银柱隔为两段,上段仅30 cm ,初始状态对左端上面空气有p 1=p 0-h 1=75 cmHg -37.5 cmHg =37.5 cmHg末状态左端上面空气柱压强p 2=p 0-h 2=75 cmHg -30 cmHg =45 cmHg 由玻意耳定律p 1L 1S =p 2L 2S 解得L 2=p 1L 1p 2=37.5×3045cm =25 cm 上段水银柱上移,形成的空气柱长为5 cm ,下段水银柱下移,与右端水银柱等高 设下移的距离为x ,由于U 形管右管内径为左管内径的2倍,则右管横截面积为左管的4倍, 由等式7.5-x =x4,解得x =6 cm所以产生的空气柱总长为L =(6+5+25)cm =36 cm. 答案:36 cm6.(2019届河北四市调研)如图,横截面积相等的绝热汽缸A 与导热汽缸B 均固定于地面,由刚性杆连接的绝热活塞与两汽缸间均无摩擦,两汽缸内都装有理想气体,初始时体积均为V 0、温度为T 0且压强相等,缓慢加热A 中气体,停止加热达到稳定后,A 中气体压强变为原来的1.5倍,设环境温度始终保持不变,求汽缸A 中气体的体积V A 和温度T A .解析:设初态压强为p 0,对汽缸A 加热后A 、B 压强相等:p B p 0B 中气体始、末状态温度相等,由玻意耳定律得 p 0V 0p 0V B2V 0=V A +V B 解得V A =43V 0对A 部分气体,由理想气体状态方程得p 0V 0T 0=错误! 解得T A =2T 0.答案:43V 0 2T 07.(2018年全国卷Ⅲ)在两端封闭、粗细均匀的U 形细玻璃管内有一段水银柱,水银柱的两端各封闭有一段空气.当U 形管两端竖直朝上时,左、右两边空气柱的长度分别为l 1=18.0 cm 和l 2=12.0 cm ,左边气体的压强为12.0 cmHg.现将U 形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边.求U 形管平放时两边空气柱的长度.在整个过程中,气体温度不变.解析:设U 形管两端竖直朝上时,左、右两边气体的压强分别为p 1和p 2.U 形管水平放置时,两边气体压强相等,设为p ,此时原左、右两边空气柱长度分别变为l 1′和l 2′.由力的平衡条件有p 1=p 2+ρg (l 1-l 2)①式中ρ为水银密度,g 为重力加速度. 由玻意耳定律有p 1l 1=pl 1′② p 2l 2=pl 2′③ l 1′-l 1=l 2-l 2′④由①②③④式和题给条件得l 1′=22.5 cm l 2′=7.5 cm.答案:22.5 cm 7.5 cm8.(2019届福州质检)如图所示,开口向上竖直放置的内壁光滑绝热汽缸,汽缸下面有加热装置.开始时整个装置处于平衡状态,缸内理想气体Ⅰ、Ⅱ两部分高度均为L 0,温度均为T 0.已知活塞A 导热、B 绝热,A 、B 质量均为m 、横截面积为S ,外界大气压强为p 0保持不变,环境温度保持不变.现对气体Ⅱ缓慢加热,当A 上升h 时停止加热,求:(1)此时气体Ⅱ的温度;(2)若在活塞A 上逐渐添加铁砂,当铁砂质量等于m 时,气体Ⅰ的高度. 解析:(1)气体Ⅱ这一过程为等压变化 初状态:温度T 0、体积V 1=L 0S 末状态:温度T 、体积V 2=(L 0+h )S 根据查理定律可得V 1T 0=V 2T解得T =L 0+hL 0T 0. (2)气体Ⅰ这一过程做等温变化 初状态:压强p 1′=p 0+mg S体积V 1′=L 0S末状态:压强p 2′=p 0+2mgS体积V 2′=L 1′S由玻意耳定律得p 1′L 0S =p 2′L 1′S 解得L 1′=p 0S +mgp 0S +2mgL 0.答案:(1)L 0+h L 0T 0 (2)p 0S +mgp 0S +2mgL 0 |学霸作业|——自选一、选择题1.(多选)(2018届兰州一中月考)如图所示,密闭容器内可视为理想气体的氢气温度与外界空气的温度相同,现对该容器缓慢加热,当容器内的氢气温度高于外界空气的温度时,则( )A .氢分子的平均动能增大B .氢分子的势能增大C .氢气的内能增大D .氢气的内能可能不变E .氢气的压强增大解析:选ACE 温度是分子的平均动能的标志,氢气的温度升高,则分子的平均动能一定增大,故A 正确;氢气视为理想气体,气体分子势能忽略不计,故B 错误;密闭容器内气体的内能由分子动能决定,氢气的分子动能增大,则内能增大,故C 正确,D 错误;根据理想气体的状态方程pV T=C 可知,氢气的体积不变,温度升高则压强增大,故E 正确.2.(多选)对于一定量的稀薄气体,下列说法正确的是( ) A .压强变大时,分子热运动必然变得剧烈 B .保持压强不变时,分子热运动可能变得剧烈 C .压强变大时,分子间的平均距离必然变小 D .压强变小时,分子间的平均距离可能变小解析:选BD 根据理想气体的状态方程pV T=C 可知,当压强变大时,气体的温度不一定变大,分子热运动也不一定变得剧烈,选项A 错误;当压强不变时,气体的温度可能变大,分子热运动也可能变得剧烈,选项B 正确;当压强变大时,气体的体积不一定变小,分子间的平均距离也不一定变小,选项C 错误;当压强变小时,气体的体积可能变小,分子间的平均距离也可能变小,选项D 正确.V 与温度T 的关系图象,它由状态A 经等温过程到状态B ,再经等容过程到状态C .设A 、B 、C 状态对应的压强分别为p A 、p B 、p C ,则下列关系式中正确的是( )A .p A <pB ,p B <pC B .p A >p B ,p B =p C C .p A >p B ,p B <p CD .p A =p B ,p B >p C解析:选A 由pVT=常量,得A 到B 过程,T 不变,体积减小,则压强增大,所以p A <p B ;B 经等容过程到C ,V 不变,温度升高,则压强增大,即p B <p C ,所以A 正确.二、非选择题4.图甲是一定质量的气体由状态A 经过状态B 变为状态C 的V T 图象.已知气体在状态A 时的压强是1.5×105Pa.(1)说出A →B 过程中压强变化的情形,并根据图象提供的信息,计算图甲中T A 的温度值;(2)请在图乙坐标系中,作出该气体由状态A 经过状态B 变为状态C 的p T 图象,并在图线相应位置上标出字母A 、B 、C .如果需要计算才能确定的有关坐标值,请写出计算过程.解析:(1)从题图甲可以看出,A 与B 连线的延长线过原点,所以A →B 是一个等压变化,即p A =p B根据盖—吕萨克定律可得V A T A =V BT B所以T A =V A V BT B =,0.6)×300 K=200 K.(2)由题图甲可知,由B →C 是等容变化,根据查理定律得p B T B =p C T C所以p C =T C T B p B =400300p B =43p B =43×1.5×105 Pa =2.0×105Pa则可画出由状态A →B →C 的p T 图象如图所示. 答案:(1)等压变化 200 K (2)见解析5.(2018届商丘一中押题卷)如图所示,用绝热光滑活塞把汽缸内的理想气体分A 、B 两部分,初态时已知A 、B 两部分气体的热力学温度分别为330 K 和220 K ,它们的体积之比为2∶1,末态时把A 气体的温度升高70 ℃,把B 气体温度降低20 ℃,活塞可以再次达到平衡.求气体A 初态的压强p 0与末态的压强p 的比值.解析:设活塞原来处于平衡状态时A 、B 的压强相等为p 0,后来仍处于平衡状态压强相等为p .根据理想气体状态方程,对于A 有p 0V A T A =pV A ′T A ′① 对于B 有 p 0V B T B =pV B ′T B ′② 化简得V A ′V B ′=83③ 由题意设V A =2V 0,V B =V 0④ 汽缸的总体积为V =3V 0⑤ 所以可得V A ′=811V =2411V 0⑥将④⑥代入①式得p 0p =910. 答案:9106.(2018年全国卷Ⅱ)如图,一竖直放置的汽缸上端开口,汽缸壁内有卡口a 和b ,a 、b间距为h ,a 距缸底的高度为H ;活塞只能在a 、b 间移动,其下方密封有一定质量的理想气体.已知活塞质量为m ,面积为S ,厚度可忽略;活塞和汽缸壁均绝热,不计它们之间的摩擦.开始时活塞处于静止状态,上、下方气体压强均为p 0,温度均为T 0.现用电热丝缓慢加热汽缸中的气体,直至活塞刚好到达b 处.求此时汽缸内气体的温度以及在此过程中气体对外所做的功.重力加速度大小为g .解析:开始时活塞位于a 处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动,设此时汽缸中气体的温度为T 1,压强为p 1,根据查理定律有p 0T 0=p 1T 1① 根据力的平衡条件有p 1S =p 0S +mg ②联立①②式可得T 1=⎝ ⎛⎭⎪⎫1+mg p 0S T 0③ 此后,汽缸中的气体经历等压过程,直至活塞刚好到达b 处,设此时汽缸中气体的温度为T 2;活塞位于a 处和b 处时气体的体积分别为V 1和V 2.根据盖—吕萨克定律有V 1T 1=V 2T 2④ 式中V 1=SH ⑤ V 2=S (H +h )⑥联立③④⑤⑥式解得T 2=⎝ ⎛⎭⎪⎫1+h H ⎝ ⎛⎭⎪⎫1+mg p 0S T 0⑦ 从开始加热到活塞到达b 处的过程中,汽缸中的气体对外做的功为W =(p 0S +mg )h .答案:⎝ ⎛⎭⎪⎫1+h H ⎝ ⎛⎭⎪⎫1+mg p 0S T 0 (p 0S +mg )h 7.(2016年全国卷Ⅲ)一U 形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管内汞柱及空气柱长度如图所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p 0=75.0 cmHg.环境温度不变.解析:设初始时,右管中空气柱的压强为p 1,长度为l 1;左管中空气柱的压强为p 2=p 0,长度为l 2.活塞被下推h 后,右管中空气柱的压强为p 1′,长度为l 1′;左管中空气柱的压强为p 2′,长度为l 2′.以cmHg 为压强单位.由题给条件得p 1=p 0+(20.0-5.00)cmHg ① l 1′=,2)))cm ②由玻意耳定律得p 1l 1=p 1′l 1′③ 联立①②③式和题给条件得p 1′=144 cmHg ④依题意p 2′=p 1′⑤l 2′=4.00 cm +,2) cm -h ⑥由玻意耳定律得p 2l 2=p 2′l 2′⑦联立④⑤⑥⑦式和题给条件得h =9.42 cm. 答案:144 cmHg 9.42 cm8.(2019届沈阳模拟)如图所示,内壁光滑的圆柱形导热汽缸固定在水平面上,汽缸内被活塞封有一定质量的理想气体,活塞横截面积为S ,质量和厚度都不计,活塞通过弹簧与汽缸底部连接在一起,弹簧处于原长,已知周围环境温度为T 0,大气压强恒为p 0,弹簧的劲度系数k =p 0Sl 0(S 为活塞横截面积),原长为l 0,一段时间后,环境温度降低,在活塞上施加一水平向右的压力,使活塞缓慢向右移动,当压力增大到某一值时保持恒定,此时活塞向右移动了l 0p 0.(1)求此时缸内气体的温度T 1;(2)对汽缸加热,使气体温度缓慢升高,当活塞移动到距汽缸底部l 0时,求此时缸内气体的温度T 2.解析:(1)汽缸内的气体,初态时:压强为p 0,体积为V 0=Sl 0,温度为T 0末态时:压强为p 1p 0,体积为V 1=S (l 0l 0) 由理想气体状态方程得p 0V 0T 0=p 1V 1T 1解得T 1T 0.(2)当活塞移动到距汽缸底部l 0时,体积为V 2Sl 0,设气体压强为p 2 由理想气体状态方程得p 0V 0T 0=p 2V 2T 2此时活塞受力平衡方程为p 0S +F -p 2S +k (l 0-l 0)=0l 0后压力F 保持恒定,活塞受力平衡 p 0S +Fp 0S -k (l 0)=0解得T 2T 0. 答案:T 0 T 09.(2017年全国卷Ⅱ)一热气球体积为V ,内部充有温度为T a 的热空气,气球外冷空气的温度为T b .已知空气在1个大气压,温度T 0时的密度为ρ0,该气球内、外的气压始终都为1个大气压,重力加速度大小为g .(1)求该热气球所受浮力的大小; (2)求该热气球内空气所受的重力;(3)设充气前热气球的质量为m 0,求充气后它还能托起的最大质量.解析:(1)设1个大气压下质量为m 的空气在温度为T 0时的体积为V 0,密度为ρ0=mV 0① 在温度为T 时的体积为V T ,密度为ρ(T )=m V T② 由盖—吕萨克定律得V 0T 0=V TT③ 联立①②③式得ρ(T )=ρ0T 0T④气球所受到的浮力为f =ρ(T b )gV ⑤联立④⑤式得f =Vgρ0T 0T b.⑥(2)气球内热空气所受的重力为G =ρ(T a )Vg ⑦联立④⑦式得G =Vg ρ0T 0T a.⑧ (3)设该气球还能托起的最大质量为m ,由力的平衡条件得mg =f -G -m 0g ⑨ 联立⑥⑧⑨式得m =Vρ0T 0⎝ ⎛⎭⎪⎫1T b -1T a -m 0. 答案:(1)Vgρ0T 0T b (2)Vgρ0T 0T a(3)Vρ0T 0⎝ ⎛⎭⎪⎫1T b -1T a -m 0。
能力课 带电粒子(带电体)在电场中运动的综合问题一、选择题1.如下列图,场强大小为E 、方向竖直向下的匀强电场中有一矩形区域abcd ,水平边ab 长为s ,竖直边ad 长为h ,质量均为m 、带电荷量分别为+q 和-q 的两粒子,由a 、c两点先后沿ab 和cd 方向以速率v 0进入矩形区域(两粒子不同时出现在电场中),不计重力,假设两粒子轨迹恰好相切,如此v 0等于( )A.s22qEmh B.s2qE mh C.s42qE mh D.s4qE mh解析:选B 根据对称性,两粒子轨迹的切点位于矩形区域abcd 的中心,如此在水平方向有12s =v 0t ,在竖直方向有12h =12·qE m ·t 2,解得v 0=s 2qEmh,应当选项B 正确,选项A 、C 、D 错误.2.(2019届河北定州中学月考)如下列图,A 、B 为两块水平放置的金属板,通过闭合的开关S 分别与电源两极相连,两极板中央各有一个小孔a 和b ,在a 孔正上方某处放一带电质点由静止开始下落,假设不计空气阻力,该质点到达b 孔时速度恰为零,然后返回.现要使带电质点能穿过b 孔,如此可行的方法是( )A .保持S 闭合,将A 板适当上移B .保持S 闭合,将B 板适当下移C .先断开S ,再将A 板适当上移D .先断开S ,再将B 板适当下移解析:选B 设质点距离A 板的高度为h ,A 、B 两板原来的距离为d ,电压为U ,质点的电荷量为q .由题知质点到达b 孔时速度恰为零,根据动能定理得mg (h +d )-qU =0.假设保持S 闭合,将A 板适当上移,设质点到达b 时速度为v ,由动能定理得mg (h +d )-qU =12mv 2,v =0,说明质点到达b 孔时速度恰为零,然后返回,不能穿过b 孔,故A 错误;假设保持S闭合,将B 板适当下移距离Δd ,由动能定理得mg (h +d +Δd )-qU =12mv 2,如此v >0,质点能穿过b 孔,故B 正确;假设断开S 时,将A 板适当上移,板间电场强度不变,设A 板上移距离为Δd ,质点进入电场的深度为d ′时速度为零.由动能定理得mg (h -Δd +d ′)-qEd ′=0,又由原来情况有mg (h +d )-qEd =0.比拟两式得,d ′<d ,说明质点在到达b 孔之前,速度减为零,然后返回,故C 错误;假设断开S ,再将B 板适当下移,根据动能定理可知,质点到达b 孔原来的位置速度减为零,然后返回,不能到达b 孔,故D 错误.3.如图甲所示,两极板间加上如图乙所示的交变电压.开始A 板的电势比B 板高,此时两板中间原来静止的电子在电场力作用下开始运动.设电子在运动中不与极板发生碰撞,向A 板运动时为速度的正方向,如此如下图象中能正确反映电子速度变化规律的是(其中C 、D 两项中的图线按正弦函数规律变化)( )解析:选A 电子在交变电场中所受电场力恒定,加速度大小不变,C 、D 两项错误;从0时刻开始,电子向A 板做匀加速直线运动,12T 后电场力反向,电子向A 板做匀减速直线运动,直到t =T 时刻速度变为零.之后重复上述运动,A 项正确,B 项错误.4.(2018届高考原创猜题卷)如下列图,高为h 的固定光滑绝缘斜面,倾角θ=53°,将其置于水平向右的匀强电场中,现将一带正电的物块(可视为质点)从斜面顶端由静止释放,其所受的电场力是重力的43倍,重力加速度为g ,如此物块落地的速度大小为( )A .25ghB .2ghC .22gh D.532gh 解析:选D 对物块受力分析知,物块不沿斜面下滑,离开斜面后沿重力、电场力合力的方向运动,F 合=53mg ,x =53h ,由动能定理得F 合·x =12mv 2,解得v =532gh .5.(多项选择)如下列图,光滑的水平轨道AB 与半径为R 的光滑的半圆形轨道BCD 相切于B 点,AB 水平轨道局部存在水平向右的匀强电场,半圆形轨道在竖直平面内,B 为最低点,D 为最高点.一质量为m 、带正电的小球从距B 点x 的位置在电场力的作用下由静止开始沿AB 向右运动,恰能通过最高点,如此( )A .R 越大,x 越大B .R 越大,小球经过B 点后瞬间对轨道的压力越大C .m 越大,x 越大D .m 与R 同时增大,电场力做功增大解析:选ACD 小球在BCD 局部做圆周运动,在D 点,mg =m v D 2R,小球由B 到D 的过程中有-2mgR =12mv D 2-12mv B 2,解得v B =5gR ,R 越大,小球经过B 点时的速度越大,如此x越大,选项A 正确;在B 点有F N -mg =m v B 2R,解得F N =6mg ,与R 无关,选项B 错误;由Eqx=12mv B 2,知m 、R 越大,小球在B 点的动能越大,如此x 越大,电场力做功越多,选项C 、D 正确.6.(多项选择)(2018届湖北八校联考)如下列图,在竖直平面内xOy 坐标系中分布着与水平方向成45°角的匀强电场,将一质量为m 、带电荷量为q 的小球,以某一初速度从O点竖直向上抛出,它的轨迹恰好满足抛物线方程x =ky 2,且小球通过点P ⎝ ⎛⎭⎪⎫1k ,1k .重力加速度为g ,如此( )A .电场强度的大小为 mg qB .小球初速度的大小为g 2kC .小球通过点P 时的动能为 5mg4kD .小球从O 点运动到P 点的过程中,电势能减少2mg k解析:选BC 小球做类平抛运动,如此电场力与重力的合力沿x 轴正方向,qE =2mg ,电场强度的大小为E =2mgq ,A 错误;F 合=mg =ma ,所以a =g ,由类平抛运动规律有1k=v 0t ,1k =12gt 2,得小球初速度大小为v 0=g 2k ,B 正确;由P 点的坐标分析可知v 0v x =12,所以小球通过点P 时的动能为12mv 2=12m (v 02+v x 2)=5mg 4k ,C 正确;小球从O 到P 过程中电势能减少,且减少的电势能等于电场力做的功,即W =qE ·1k 1cos45°=2mgk,D 错误.二、非选择题7.(2019届吉安模拟)如下列图,一条长为L 的细线上端固定,下端拴一个质量为m ,电荷量为q 的小球,将它置于方向水平向右的匀强电场中,使细线竖直拉直时将小球从A 点由静止释放,当细线离开竖直位置偏角α=60°时,小球速度为0.(1)求小球的带电性质与电场强度E ;(2)假设小球恰好完成竖直圆周运动,求从A 点释放小球时应有的初速度v A 的大小(可含根式).解析:(1)根据电场方向和小球受力分析可知小球带正电.小球由A 点释放到速度等于零,由动能定理有EqL sin α-mgL (1-cos α)=0 解得E =3mg 3q. (2)将小球的重力和电场力的合力作为小球的等效重力G ′,如此G ′=233mg ,方向与竖直方向成30°角偏向右下方.假设小球恰能做完整的圆周运动,在等效最高点:m v 2L =233mg 由A 点到等效最高点,根据动能定理得 -233mgL (1+cos30°)=12mv 2-12mv A 2 联立解得v A =2gL 3+1.答案:(1)正电3mg3q(2)2gL 3+18.(2018届河南南阳一中月考)如图甲所示,两块水平平行放置的导电板,板间距为d ,大量电子(质量为m ,电荷量为e )连续不断地从中点O 沿与极板平行的OO ′方向射入两板之间,当两板不带电时,这些电子通过两板之间的时间为3t 0,当在两板间加如图乙所示的周期为2t 0、幅值恒为U 0的周期性电压时,所有的电子均能从两板间通过(不计电子重力).求这些电子穿过平行板时距OO ′的最大距离和最小距离.解析:以电场力的方向为正方向,画出电子在t =0、t =t 0时刻进入电场后,沿电场力的方向的速度v y 随时间t 变化的v y t 图象,如图甲和乙所示.电场强度E =U 0d电子的加速度a =Ee m =U 0edm 图甲中,v y 1=at 0=U 0et 0dmv y 2=a ×2t 0=2U 0et 0dm由图甲可得电子的最大侧位移y max =v y 12t 0+v y 1t 0+v y 1+v y 22t 0=3U 0et 02md由图乙可得电子的最小侧位移 y min =v y 12t 0+v y 1t 0=3U 0et 022md .答案:3U 0et 02md 3U 0et 022md9.(2019届德州质检)如下列图,在距足够长的光滑绝缘水平直线轨道上方h 高度的P 点,固定电荷量为+Q 的点电荷,一质量为m 、带电荷量为+q 的物块(可视为质点),从轨道上的A 点以初速度v 0沿轨道向右运动,当运动到P 点正下方B 点时速度为v .点电荷产生的电场在A 点的电势为φ(取无穷远处的电势为零),PA 连线与水平轨道的夹角为60°,试求:(1)物块在A 点时受到轨道的支持力大小; (2)点电荷+Q 产生的电场在B 点的电势. 解析:(1)物块在A 点受到点电荷的库仑力F =kr 2由几何关系可知P 、A 间距离r =hsin60°设物块在A 点时受到轨道的支持力大小为F N ,由平衡条件有F N -mg -F sin60°=0解得F N =mg +33k8h2. (2)设点电荷产生的电场在B 点的电势为φB ,由动能定理有q (φ-φB )=12mv 2-12mv 02 解得φB =φ+m v 02-v 22q.答案:(1)mg +33k 8h 2(2)φ+m v 02-v22q10.(2018届湖南五校高三联考)如下列图,长度为d 的绝缘轻杆一端套在光滑水平转轴O 上,另一端固定一质量为m 、电荷量为q 的带负电小球.小球可以在竖直平面内做圆周运动,AC 和BD 分别为圆的竖直和水平直径,等量异种点电荷+Q 、-Q 分别固定在以C 为中点、间距为2d 的水平线上的E 、F 两点.让小球从最高点A 由静止开始运动,经过B 点时小球的速度大小为v ,不考虑q 对+Q 、-Q 所产生电场的影响,重力加速度为g ,求:(1)小球经过C 点时对杆的拉力大小; (2)小球经过D 点时的速度大小.解析:(1)小球从A 点到C 点过程,根据动能定理有mg ·2d =12mv C 2在C 点,由牛顿第二定律有T -mg =m v C 2d得T =5mg根据牛顿第三定律知,球对杆的拉力大小为T ′=T =5mg .(2)设U BA =U ,根据对称性可知U BA =U AD =U小球从A 点到B 点和从A 点到D 点过程中,根据动能定理有mgd +qU =12mv 2mgd -qU =12mv D 2得v D =4gd -v 2.答案:(1)5mg (2) 4gd -v 2|学霸作业|——自选一、选择题1.(2019届吉林调研)真空中,在x 轴上的原点处和x =6a 处分别固定一个点电荷M 、N ,在x =2a 处由静止释放一个正点电荷P ,假设试探电荷P 只受电场力作用沿x 轴方向运动,得到试探电荷P 的速度与其在x 轴上的位置关系如下列图,如此如下说法正确的答案是( )A .点电荷M 、N 一定都是负电荷B .试探电荷P 的电势能一定是先增大后减小C .点电荷M 、N 所带电荷量的绝对值之比为2∶1D .x =4a 处的电场强度一定为零解析:选D 根据题意,试探电荷仅在电场力作用下先加速后减速,其动能先增大后减小,其电势能先减小后增大,选项B 错误;试探电荷在x =4a 处速度最大,加速度为零,合力为零,电势能最小,该处电场强度一定为零,选项D 正确;在x 轴上从原点处到x =6a 处,电场强度从两头指向x =4a 处,点电荷M 、N 一定都是正电荷,选项A 错误;由kQ M 4a2=kQ N2a2可得Q M =4Q N ,选项C 错误. 2.(多项选择)(2018届山西太原一模)如下列图,在水平向右的匀强电场中,t =0时,带负电的物块以速度v 0沿斜面向上滑动,然后滑回到原处.物块与斜面间的动摩擦因数不变,滑块所带电荷量不变,用E k 表示滑块的动能,x 表示位移,E p 表示电势能,取斜面底端为零势能面,规定v 0的方向为正方向,如此如下图线正确的答案是( )解析:选AD 物块先以速度v 0沿斜面向上滑动,然后下滑回到原处的过程中,除摩擦力在上滑和下滑时方向相反外,受的其他力大小和方向均不变,故物块先做匀减速运动(加速度较大),再做反向的匀加速运动(加速度较小),A 正确;对物块沿斜面上升过程由运动学公式有v 2-v 02=-2ax ,由数学知识可知B 错误;沿斜面上升过程由动能定理有,-Fx =E k -E k0(F 为物块所受合外力,大小恒定),图线应为直线,可知C 错误;取斜面底端为零势能面,由于物块带负电,且沿斜面向上电势逐渐降低,故物块的电势能随位移的增大而增大,D 正确.3.(2019届福州四校联考)如下列图,在竖直平面内固定一个半径为R 的绝缘圆环,有两个可视为点电荷的一样的带负电小球A 和B 套在圆环上,其中小球A 可沿圆环无摩擦地滑动,小球B 固定在圆环上,和圆心O 的连线与水平方向的夹角为45°.现将小球A 从位于水平直径的左端位置由静止释放,重力加速度大小为g ,如此如下说法正确的答案是( )A .小球A 从释放到运动至圆环最低点Q 的过程中电势能保持不变B .小球A 运动到圆环的水平直径右端P 点时的速度为0C .小球A 运动到圆环最低点Q 的过程中,速率先增大后减小D .小球A 到达圆环最低点Q 时的速度大小为gR解析:选C 小球A 从释放到运动至圆环最低点Q 的过程中,受到电场力、重力、圆环的支持力三个力的作用,其中圆环的支持力始终与运动方向垂直,即圆环的支持力不做功,分析可知,重力与电场力合力的方向与小球运动方向的夹角先小于90°后大于90°,即合力对小球A 先做正功后做负功,根据动能定理,小球的动能先增大后减小,速率先增大后减小,选项C 正确;小球A 、B 之间的电场力为斥力,电场力与小球运动方向之间的夹角先小于90°后大于90°,可知小球A 从释放至运动到Q 点过程中,小球A 的电势能先减小后增大,选项A 错误;小球A 在释放点与在Q 点的电势能相等,小球A 从释放运动到Q 点的过程中,有mgR =12mv Q 2,v Q =2gR ,选项D 错误;假设小球A 到达P 点时速度为零,分析可知,小球A 在P 点与在释放点重力势能一样,小球A 在P 点的电势能比在释放点时大,由能量守恒可知假设错误,小球A 不能到达P 点,选项B 错误.4.(2018届湖南五校高三联考)在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以大小为v 的初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如下列图,由此可知( )A .小球带正电B .电场力大小为2mgC .小球从A 点到B 点与从B 点到C 点的运动时间相等D .小球从A 点到B 点与从B 点到C 点的速度变化量不相等解析:选D 根据小球从B 点进入电场的轨迹可以看出,小球所受的电场力竖直向上,即小球带负电,选项A 错误;因为到达C 点时速度水平,所以小球在C 点时的速度等于在A 点时的速度,因为AB =2BC ,设B 、C 间竖直距离为h ,如此A 、B 间竖直距离为2h ,小球由A 点到C 点根据动能定理有mg ×3h -Eqh =0,即Eq =3mg ,选项B 错误;小球从A 点到B 点的过程中,在竖直方向上的加速度大小为g ,方向竖直向下,所用时间为t 1=4hg=2h g,从B 点到C 点的过程中,在竖直方向上的加速度大小为a 2=Eq -mgm=2g ,方向竖直向上,故所用时间t 2=2h2g=hg,故t 1=2t 2,选项C 错误;小球从A 点到B 点与从B 点到C 点的过程中速度变化量大小都等于Δv =2ghg,但方向相反,选项D 正确. 5.(多项选择)(2018届四川宜宾二诊)如图甲所示,真空中水平放置两块长度为2d 的平行金属板P 、Q ,两板间距为d ,两板间加上如图乙所示最大值为U 0的周期性变化的电压.在两板左侧紧靠P 板处有一粒子源A ,自t =0时刻开始连续释放初速度大小为v 0,方向平行于金属板的一样带电粒子.t =0时刻释放的粒子恰好从Q 板右侧边缘离开电场.电场变化周期T =2dv 0,粒子质量为m ,不计粒子重力与相互间的作用力.如此( )A .在t =0时刻进入的粒子离开电场时速度大小仍为v 0B .粒子的电荷量为mv 022U 0C .在t =18T 时刻进入的粒子离开电场时电势能减少了18mv 02D .在t =14T 时刻进入的粒子刚好从P 板右侧边缘离开电场解析:选AD 粒子进入电场后,水平方向做匀速运动,如此t =0时刻进入电场的粒子在电场中运动的时间t =2dv 0,此时间正好是交变电场的一个周期;粒子在竖直方向先做加速运动后做减速运动,经过一个周期,粒子的竖直速度为零,故粒子离开电场时的速度大小等于水平速度v 0,选项A 正确;竖直方向,粒子在T 2时间内的位移为d 2,如此12d =12·U 0q dm ⎝ ⎛⎭⎪⎫d v 02,解得q =mv 02U 0,选项B 错误,t =T8时刻进入电场的粒子,离开电场时在竖直方向的位移为d=2×12a ⎝ ⎛⎭⎪⎫3T 82-2×12a ⎝ ⎛⎭⎪⎫T 82=18aT 2=12d ,故电场力做功W =U 0q d ×12d =12U 0q =12mv 02,选项C 错误;t =T 4时刻进入的粒子,在竖直方向先向下加速运动T 4,然后向下减速运动T 4,再向上加速T 4,向上减速T4,由对称可知,此时竖直方向的位移为零,故粒子从P 板右侧边缘离开电场,选项D 正确.6.(多项选择)如下列图,一绝缘光滑半圆环轨道放在竖直向下的匀强电场中,场强为E .在与环心等高处放有一质量为m 、带电荷量为+q 的小球,由静止开始沿轨道运动,如下说法正确的答案是( )A .小球经过环的最低点时速度最大B .小球在运动过程中机械能守恒C .小球经过环的最低点时对轨道的压力为mg +qED .小球经过环的最低点时对轨道的压力为3(mg +qE )解析:选AD 根据动能定理知,在小球运动到最低点的过程中,电场力和重力一直做正功,到达最低点时速度最大,故A 正确;小球在运动的过程中除了重力做功,还有电场力做功,机械能不守恒,故B 错误;小球经过环的最低点时,根据动能定理得mgR +qER =12mv 2,根据牛顿第二定律得F N -qE -mg =m v 2R,解得F N =3(mg +qE ),如此小球对轨道的压力为3(mg+qE ),故C 错误,D 正确.二、非选择题7.如下列图,长为l 的轻质细线固定在O 点,细线的下端系住质量为m 、电荷量为+q 的小球,小球的最低点距离水平面的高度为h ,在小球最低点与水平面之间高为h 的空间内分布着场强为E 的水平向右的匀强电场.固定点O 的正下方l2处有一障碍物P ,现将小球从细线处于水平状态由静止释放,不计空气阻力.(1)细线在刚要接触障碍物P 时,小球的速度是多大?(2)细线在刚要接触障碍物P 和细线刚接触到障碍物P 时,细线的拉力发生多大变化? (3)假设细线在刚要接触障碍物P 时断开,小球运动到水平面时的动能为多大? 解析:(1)由机械能守恒定律得mgl =12mv 2,v =2gl .(2)细线在刚要接触障碍物P 时,设细线的拉力为T 1,由牛顿第二定律得T 1-mg =m v 2l细线在刚接触到障碍物P 时,设细线的拉力为T 2,由牛顿第二定律得T 2-mg =m v 2l2可解得T 2-T 1=2mg ,即增大2mg .(3)细线断开后小球在竖直方向做自由落体运动,运动时间t =2hg小球在水平方向做匀加速运动,运动的距离 x =vt +12·qEmt 2小球运动到水平面的过程由动能定理得mgh +qEx =E k -12mv 2解得E k =mgh +mgl +q 2E 2hmg+2qE hl .答案:(1)2gl (2)增大2mg(3)mgh +mgl +q 2E 2hmg+2qE hl8.如下列图,在竖直边界限O 1O 2左侧空间存在一竖直向下的匀强电场,电场强度E =100 N/C ,电场区域内有一固定的粗糙绝缘斜面AB ,其倾角为30°,A 点距水平地面的高度为h =4 m .BC 段为一粗糙绝缘平面,其长度为L = 3 m .斜面AB 与水平面BC 由一段极短的光滑小圆弧连接(图中未标出),竖直边界限O 1O 2右侧区域固定一半径为R =0.5 m 的半圆形光滑绝缘轨道,CD 为半圆形光滑绝缘轨道的直径,C 、D 两点紧贴竖直边界限O 1O 2,位于电场区域的外部(忽略电场对O 1O 2右侧空间的影响).现将一个质量为m =1 kg 、电荷量为q =0.1 C 的带正电的小球(可视为质点)在A 点由静止释放,且该小球与斜面AB 和水平面BC 间的动摩擦因数均为μ=35.求:(g 取10 m/s 2)(1)小球到达C 点时的速度大小; (2)小球到达D 点时所受轨道的压力大小; (3)小球落地点距离C 点的水平距离.解析:(1)以小球为研究对象,由A 点至C 点的运动过程中,根据动能定理可得(mg +Eq )h -μ(mg +Eq )cos30°h sin30°-μ(mg +Eq )L =12mv C 2-0解得v C =210 m/s.(2)以小球为研究对象,在由C 点至D 点的运动过程中,根据机械能守恒定律可得 12mv C 2=12mv D 2+mg ·2R 在最高点以小球为研究对象,可得F N +mg =m v D 2R解得F N =30 N ,v D =2 5 m/s.(3)设小球做类平抛运动的加速度大小为a ,根据牛顿第二定律可得mg +qE =ma ,解得a =20 m/s 2假设小球落在BC 段,如此应用类平抛运动的规律列式可得x =v D t,2R =12at 2解得x = 2 m< 3 m ,假设正确. 即小球落地点距离C 点的水平距离为 2 m. 答案:(1)210 m/s (2)30 N (3) 2 m9.(2019届山东烟台模拟)如下列图,竖直固定的光滑绝缘的直圆筒底部放置一场源电荷A ,其电荷量Q =+4×10-3C ,场源电荷A 形成的电场中各点的电势表达式为φ=k Q r,其中k 为静电力常量,r 为空间某点到A 的距离.有一个质量为m =0.1 kg 的带正电小球B ,B 球与A 球间的距离为a =0.4 m ,此时小球B 处于平衡状态,且小球B 在场源A 形成的电场中具有的电势能表达式为E p =kr,其中r 为q 与Q 之间的距离.有一质量也为m 的不带电绝缘小球C 从距离B 的上方H =0.8 m 处自由下落,落在小球B 上立刻与小球B 粘在一起向下运动,它们到达最低点后又向上运动,它们向上运动到达最高点P (取g =10 m/s 2,k =9×109N·m 2/C 2),求:(1)小球C 与小球B 碰撞后的速度为多少? (2)小球B 的带电荷量q 为多少? (3)P 点与小球A 之间的距离为多大?(4)当小球B 和C 一起向下运动与场源A 距离多远时,其速度最大?速度的最大值为多少?解析:(1)小球C 自由下落H 距离的速度v 0=2gH =4 m/s小球C 与小球B 发生碰撞, 由动量守恒定律得mv 0=2mv 1 代入数据得v 1=2 m/s.(2)小球B 在碰撞前处于平衡状态,对B 球进展受力分析知mg =ka 2代入数据得q =49×10-8C.(3)C 和B 向下运动到最低点后又向上运动到P 点,运动过程中系统能量守恒, 设P 与A 之间的距离为x ,由能量守恒得12×2mv 12+k a =2mg (x -a )+k x代入数据得x =⎝⎛⎭⎪⎫2+25 m(或x =0.683 m).(4)当C 和B 向下运动的速度最大时,设与A 之间的距离为y , 对C 和B 整体进展受力分析有2mg =ky 2代入数据有y =25m(或y =0.283 m) 由能量守恒得12×2mv 12+k a =12×2mv m 2-2mg (a -y )+k y代入数据得v m = 16-8 2 m/s(或v m =2.16 m/s). 答案:(1)2 m/s (2)49×10-8C (3)2+25 m (4)25m16-8 2 m/s10.(2017年全国卷Ⅱ)如图,两水平面(虚线)之间的距离为H ,其间的区域存在方向水平向右的匀强电场.自该区域上方的A 点将质量为m 、电荷量分别为q 和-q (q >0)的带电小球M ,N 先后以一样的初速度沿平行于电场的方向射出.小球在重力作用下进入电场区域,并从该区域的下边界离开.N 离开电场时的速度方向竖直向下;M 在电场中做直线运动,刚离开电场时的动能为N 刚离开电场时动能的1.5倍.不计空气阻力,重力加速度大小为g .求:(1)M 与N 在电场中沿水平方向的位移之比; (2)A 点距电场上边界的高度; (3)该电场的电场强度大小.解析:(1)设小球M ,N 在A 点水平射出时的初速度大小为v 0,如此它们进入电场时的水平速度仍然为v 0.M ,N 在电场中运动的时间t 相等,电场力作用下产生的加速度沿水平方向,大小均为a ,在电场中沿水平方向的位移分别为s 1和s 2.由题给条件和运动学公式得v 0-at =0① s 1=v 0t +12at 2② s 2=v 0t -12at 2③联立①②③式得s 1s 2=3.④(2)设A 点距电场上边界的高度为h ,小球下落h 时在竖直方向的分速度为v y ,由运动学公式得v y 2=2gh ⑤H =v y t +12gt 2⑥M 进入电场后做直线运动,由几何关系知v 0v y =s 1H⑦联立①②⑤⑥⑦式可得h =13H .⑧(3)设电场强度的大小为E ,小球M 进入电场后做直线运动,如此v 0v y =qEmg⑨ 设M ,N 离开电场时的动能分别为E k1,E k2,由动能定理得E k1=12m (v 02+v y 2)+mgH +qEs 1⑩ E k2=12m (v 02+v y 2)+mgH -qEs 2⑪由条件E k1=1.5E k2⑫ 联立④⑤⑦⑧⑨⑩⑪⑫式得E =mg 2q. 答案:(1)3 (2)13H (3)mg2q。
2019届全国高三一轮精品卷(三十三)理综物理试卷本试卷共16页,38题(含选考题)。
全卷满分300分。
考试用时150分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、选择题(第1~5题单选,第6~8题多选)1. 下列说法正确的是A. 笛卡儿指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向B. 用比值法定义的物理概念在物理学中占有相当大的比例,例如场强E=F/q,电容C=Q/U ,加速度a=F/m都是采用比值法定义的C. 卡文迪许测出了引力常量的数值,卢瑟福测定了中子的质量D. 法拉第通过大量的实验数据得出了法拉第电磁感应定律【答案】A【解析】笛卡儿指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向,故A正确;用比值法定义的物理概念在物理学中占有相当大的比例,例如场强E=F/q,电容C=Q/U,都是采用比值法定义的,加速度a=F/m不是比值法定义,是加速度的决定式,故B错误;卡文迪许测出了引力常量的数值,查德威克测定了中子的质量,故C错误;法拉第通过大量的实验研究发现了电磁感应现象,后来的科学家利用他大量的实验数据用科学计算得到了法拉第电磁感应定律,故D错误;故选A。
气体压强的计算分类专项训练1—活塞气缸类1.如图汽缸质量均为M ,横截面积为S ,活塞质量为m ,汽缸、活塞均静止(活塞与气缸之间无摩擦且气缸不漏气)。
外界大气压为p 0,重力加速度为g ,则封闭气体A 的压强()①②③④A.①压强最大,④的压强最小B.③压强最大,②的压强最小C.④压强最大,①④的压强最小D.②压强最大,③的压强最小2.(多选)如图甲所示,一汽缸竖直放置,汽缸内有一质量不可忽略的活塞.将一定质量的理想气体封闭在汽缸内,活塞与汽缸壁无摩擦,气体处于平衡状态.现保持温度不变,把汽缸向右倾斜90°如图乙所示,达到平衡后,与原来相比()A .气体的压强增大B .气体的压强减小C .气体的体积变大D .气体的体积变小3.如图所示,活塞的质量为m ,缸套的质量为M ,通过弹簧静止吊在天花板上,汽缸内封住一定质量的气体,缸套和活塞间无摩擦,活塞面积为S ,大气压强为p 0,重力加速度为g ,则封闭气体的压强为()A .p =p 0+Mg SB .p =p 0+M +mg S C .p =p 0-Mg S D .p =mg S4.如图所示,一导热性能良好的汽缸内用活塞封住一定质量的气体(不计活塞与缸壁的摩擦),温度降低时,下列说法正确的是()A .气体压强减小B .汽缸高度H 减小C .活塞高度h 减小D .气体体积增大5.一端封闭的圆筒内用活塞封闭着一定质量的理想气体,它分别处在如所示的三种状态时的温度关系是()A .T A >TB >TC B .T A <T B <T CC .T A =T B >T CD .T B >T A >T C 6.如图所示,两个水平相对放置的固定汽缸有管道相通,轻质活塞a 、b 用钢性轻杆固连,可在汽缸内无摩擦地移动,两活塞面积分别为S a 和S b ,且S a <S b .缸内及管中封有一定质量的理想气体,整个系统处于平衡状态,大气压强不变.现使缸内气体的温度缓慢降低一点,则系统再次达到平衡状态时()A .活塞向左移动了一点B .活塞向右移动了一点C .活塞的位置没有改变D .条件不足,活塞的位置变化无法确定7.(2019·重庆市调研)如图,一竖直圆筒形汽缸高为H ,上端封闭,下端开口,由活塞封闭一定质量的理想气体,轻弹簧的上端与活塞连接,下端固定于水平地面,活塞与汽缸壁无摩擦且气密性良好,整个装置处于静止状态时,活塞距汽缸上底高为34H .已知活塞横截面积为S ,汽缸自重为G ,汽缸壁及活塞厚度可不计,大气的压强始终为p 0.(1)求密闭气体的压强;(2)若对汽缸施一竖直向上的拉力使其缓慢上升,至汽缸下端口刚好与活塞平齐时(密闭气体无泄漏且气体温度始终不变),求拉力的大小F .8.如图,汽缸放置在水平平台上,活塞质量为20kg ,横截面积为50cm 2,厚度为1cm 2,汽缸全长为21cm ,大气压强为1×105Pa ,当温度为7℃时,活塞封闭的气柱长6cm ,若将汽缸倒过来放置时,活塞下方的空气能通过平台上的缺口与大气相通.(g 取10m/s 2,不计活塞与汽缸之间的摩擦,计算结果保留三位有效数字)(1)将汽缸倒过来放置,求此时气柱的长度;(2)汽缸倒过来放置后,若逐渐升高温度,发现活塞刚好接触平台,求此时气体的温度.9.扣在水平桌面上的热杯盖有时会发生被顶起的现象.如图所示,横截面积为S 的热杯盖扣在水平桌面上,开始时内部封闭气体的温度为300K ,压强为大气压强p 0.当封闭气体温度上升至303K 时,杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部气体压强立刻减为p 0,温度仍为303K .再经过一段时间,内部气体温度恢复到300K .求:(1)当温度上升到303K 且尚未放气时,封闭气体的压强;(2)当温度恢复到300K 时,竖直向上提起杯盖所需的最小力.10.如图所示,汽缸内封闭有一定质量的理想气体,水平轻杆一端固定在墙壁上,另一端与活塞相连.已知大气压强为1.0×105Pa ,汽缸的质量为50kg ,活塞质量不计,其横截面积为0.01m 2,汽缸与地面间的最大静摩擦力为汽缸重力的0.4倍,活塞与汽缸之间的摩擦可忽略.开始时被封闭气体压强为1.0×105Pa 、温度为27℃,取重力加速度g =10m/s 2,试求:(1)缓慢升高气体温度,汽缸恰好开始向左运动时气体的压强p 和温度t ;(2)为保证汽缸静止不动,汽缸内气体的温度应控制在什么范围内.11.如图所示,圆柱形汽缸A 中用质量为2m 的活塞封闭了一定质量的理想气体,气体温度为27℃,汽缸中的活塞通过滑轮系统悬挂一质量为m 的重物,稳定时活塞与汽缸底部的距离为h ,现在重物m 上加挂一个质量为m 3的小物体,已知大气压强为p 0,活塞横截面积为S ,m =p 0S g,不计一切摩擦,求当气体温度升高到37℃且系统重新稳定后,重物m 下降的高度.12.如图所示,绝热性能良好的汽缸固定放置,其内壁光滑,开口向右,汽缸中封闭一定质量的理想气体,活塞(绝热)通过水平轻绳跨过滑轮与重物相连,已知活塞的面积为S=10cm2,重物的质量m=2kg,重力加速度g =10m/s2,大气压强p0=1.0×105Pa,滑轮摩擦不计.稳定时,活塞与汽缸底部间的距离为L1=12cm,汽缸内温度T1=300K.(1)通过电热丝对汽缸内气体加热,气体温度缓慢上升到T2=400K时停止加热,求加热过程中活塞移动的距离d;(2)停止加热后,在重物的下方加挂一个2kg的重物,活塞又向右移动4cm后重新达到平衡,求此时汽缸内气体的温度T3.13.如图甲所示,水平放置的汽缸内壁光滑,活塞的厚度不计,在A、B两处设有限制装置,使活塞只能在A、B之间运动,A左侧汽缸的容积为V0,A、B之间容积为0.1V0,开始时活塞在A处,缸内气体压强为0.9p0(p0为大气压强),温度为297K,现通过对气体缓慢加热使活塞恰好移动到B.求:(1)活塞移动到B时,缸内气体温度T B;(2)在图乙中画出整个过程的p-V图线.14.如图所示,绝热的汽缸内封有一定质量的气体,缸体质量M=200kg,厚度不计的活塞质量m=10kg,活塞横截面积S=100cm2.活塞与汽缸壁无摩擦且不漏气.此时,缸内气体的温度为27℃,活塞位于汽缸正中间,整个装置都静止.已知大气压恒为p0=1.0×105Pa,重力加速度为g=10m/s2.求:(1)缸内气体的压强p1;(2)缸内气体的温度升高到多少℃时,活塞恰好会静止在汽缸缸口AB处.15.如图所示,封闭汽缸竖直放置,内有质量为m的活塞用轻弹簧与底部相连,将缸内同一种理想气体分成体积相等的A、B两部分,活塞与汽缸内壁紧密接触且无摩擦,活塞的横截面积为S;A、B两部分的气体压强大小相等,两部分气柱的高均为h,弹簧的劲度系数为k,汽缸和活塞的导热性能良好,重力加速度大小为g.求(外界环境温度不变):(1)弹簧的原长;(2)将汽缸倒置,最后稳定时弹簧刚好处于原长,则未倒置时缸内气体压强为多大.16.如图所示,一汽缸竖直固定在水平地面上,活塞质量m=4kg,活塞横截面积S=2×10-3m2,活塞上面的汽缸内封闭了一定质量的理想气体,下面有气孔O与外界相通,大气压强p0=1.0×105Pa.活塞下面与劲度系数k=2×103N/m的轻弹簧相连,当汽缸内气体温度为T1=400K时弹簧为自然长度,此时缸内气柱长度L1=20cm,g取10m/s2,活塞不漏气且与缸壁无摩擦.(1)当弹簧为自然长度时,缸内气体压强p1是多少?(2)当缸内气柱长度L2=24cm时,缸内气体温度T2为多少K?17.一横截面积为S的汽缸水平放置,固定不动,汽缸壁是导热的.两个活塞A和B将汽缸分隔为1、2两气室,达到平衡时1、2两气室体积之比为5∶4,如图所示,在室温不变的条件下,缓慢推动活塞A,使之向右移动一段距离d,不计活塞与汽缸壁之间的摩擦,则活塞B向右移动的距离为多少?18.如图所示,一圆柱形汽缸直立在水平地面上,内有质量不计的可上下移动的薄活塞,在距缸底高为2H 的缸口处有固定的卡环,使活塞不会从汽缸中顶出,汽缸壁和活塞都是绝热的,活塞与汽缸壁之间没有摩擦.活塞下方距缸底高为H 处还有一固定的导热性能良好的薄隔板,将容器内的同种理想气体分为A 、B 两部分,开始时A 、B 中气体的温度均为27℃,压强均等于外界大气压强p 0,活塞距汽缸底的高度为1.3H ,现通过B 中的电热丝缓慢加热,规定0℃为273K ,试求:(1)当B 中气体的压强为3p 0时,活塞距隔板的高度是多少?(2)当A 中气体的压强为1.5p 0时,B 中气体的温度是多少?19.如图所示,在一圆形竖直管道内封闭有理想气体,用一固定绝热活塞K 和质量为m 的可自由移动的绝热活塞A 将管内气体分割成体积相等的两部分.温度都为T 0=300K ,上部气体压强为p 0=1.0×105Pa ,活塞A 有mgS=2×104Pa(S 为活塞A 的横截面积).现保持下部分气体温度不变,只对上部分气体缓慢加热,当活塞A 移动到最低点B 时(不计摩擦).求:(1)下部分气体的压强;(2)上部分气体的温度.20.如图所示,A 汽缸横截面积为0.05m 2,A 、B 两个汽缸中装有体积均为0.01m 3,压强均为1atm(标准大气压)、温度均为27℃的理想气体,中间用细管连接,细管中有一绝热活塞M ,细管容积不计.现给左侧的活塞N 施加一个推力F ,使其缓慢向右移动,同时给B 中气体加热,使A 汽缸中的气体保持不变,且活塞M 保持在原位置不动,不计活塞与器壁间的摩擦,周围大气压强为1atm =105Pa ,当推力F =53×103N 时,求:(1)活塞N 向右移动的距离是多少;(2)B 汽缸中的气体升温到多少.21.用固定的活塞把容器分成A 、B 两部分,其容积之比V A ∶V B =2∶1,如图所示.起初A 中空气温度为127℃,压强为1.8×105Pa ,B 中空气温度为27℃,压强为1.2×105Pa.拔去销钉,使活塞可以无摩擦地移动(不漏气),由于容器缓慢导热,最后都变成室温27℃,活塞也停止移动,求最后A 中气体的压强(T =t +273K).22.如图所示,绝热汽缸A 与导热汽缸B 均固定于地面上,由刚性杆连接的绝热活塞与两汽缸间均无摩擦.两汽缸内装有处于平衡态的理想气体,开始时体积均为V 0、温度均为T 0.缓慢加热A 中气体,停止加热达到稳定后,A 中气体压强变为原来的1.2倍.设环境温度始终保持不变,求汽缸A 中气体的体积V A 和温度T A .23.如图所示,一开口向上的汽缸固定在水平地面上,质量均为m 、横截面积均为S 且厚度不计的活塞A 、B 将缸内气体分成Ⅰ、Ⅱ两部分.在活塞A 的上方放置一质量为2m 的物块,整个装置处于平衡状态,此时Ⅰ、Ⅱ两部分气体的长度均为l 0.已知大气压强与活塞质量的关系为p 0=3mg S,活塞移动过程中无气体泄漏且温度始终保持不变,不计一切摩擦,汽缸足够高.现将活塞A上面的物块取走,试求重新达到平衡状态后,A 活塞上升的高度.24.(2019·全国Ⅱ卷·33)如图,一容器由横截面积分别为2S 和S 的两个汽缸连通而成,容器平放在地面上,汽缸内壁光滑.整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气.平衡时,氮气的压强和体积分别为p 0和V 0,氢气的体积为2V 0,空气的压强为p .现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求:①抽气前氢气的压强;②抽气后氢气的压强和体积.25.[2018I 物理—选修3-3]如图,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K 。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
关键能力·题型突破考点一机械能守恒条件的判断1.在如图所示的物理过程示意图中,甲图为一端固定有小球的轻杆,从右偏上30°角释放后绕光滑支点摆动;乙图为末端固定有小球的轻质直角架,释放后绕直角顶点的固定轴O无摩擦转动;丙图为置于光滑水平面上的A、B两小车,B静止,A获得一向右的初速度后向右运动,某时刻连接两车的细绳绷紧,然后带动B车运动;丁图为置于光滑水平面上的带有竖直支架的小车,把用细绳悬挂的小球从图示位置释放,小球开始摆动。
则关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是( )A.甲图中小球机械能守恒B.乙图中小球A的机械能守恒C.丙图中两车组成的系统机械能守恒D.丁图中小球的机械能守恒【解析】选A。
甲图过程中轻杆对小球不做功,小球的机械能守恒;乙图过程中A、B两球通过杆相互影响(例如开始时A球带动B球转动),轻杆对A的弹力不沿杆的方向,会对小球做功,所以每个小球的机械能不守恒,但把两个小球作为一个系统时机械能守恒;丙图中绳子绷紧的过程虽然只有弹力作为内力做功,但弹力突变有内能转化,机械能不守恒;丁图过程中细绳也会拉动小车运动,取地面为参考系,小球的轨迹不是圆弧,细绳会对小球做功,小球的机械能不守恒,把小球和小车当作一个系统,机械能才守恒。
2.(2020·大兴区模拟)根据生活经验可知,处于自然状态的水都是往低处流的,当水不再流动时,水面应该处于同一高度。
在著名的牛顿“水桶实验”中发现:将一桶水绕竖直固定中心转轴OO′以恒定的角速度转动,稳定时水面呈凹状,水桶截面如图所示。
这一现象可解释为,以桶为参考系,其中的水除受重力外,还受到一个与转轴垂直的“力”,其方向背离转轴,大小与到轴的垂直距离成正比。
水面上的一个小水滴在该“力”作用下也具有一个对应的“势能”,在重力和该“力”的共同作用下,水面上相同质量的小水滴最终将具有相同的总势能。
第1讲 运动的描述一、质点和参考系 1.质点(1)用来代替物体的有质量的点叫做质点.(2)研究一个物体的运动时,如果物体的形状和大小对所研究问题的影响可以忽略,就可以看做质点.(3)质点是一种理想化模型,实际并不存在. 2.参考系(1)参考系可以是运动的物体,也可以是静止的物体,但被选为参考系的物体,我们都假定它是静止的.(2)比较两物体的运动情况时,必须选同一参考系.(3)选取不同的物体作为参考系,对同一物体运动的描述可能不同.通常以地球为参考系. 自测1 (多选)关于质点和参考系的理解,下列说法正确的是( ) A.研究乒乓球男子单打冠军马龙的发球动作可以将马龙看成质点B.研究女子50米步枪三次比赛中杜丽射出的子弹轨迹可以将子弹看成质点C.“一江春水向东流”是以地面为参考系D.“太阳东升西落”是以地球为参考系 答案 BCD 二、位移和速度 1.位移和路程2.速度与速率(1)平均速度:在变速运动中,物体发生的位移与发生这段位移所用时间的比值,即v =ΔxΔt,是矢量,其方向就是对应位移的方向.(2)瞬时速度:运动物体在某一时刻或经过某一位置的速度,是矢量,其方向是物体的运动方向或运动轨迹的切线方向. (3)速率:瞬时速度的大小,是标量.(4)平均速率:物体运动实际路程与发生这段路程所用时间的比值,不一定等于平均速度的大小.自测2 在伦敦奥运会上,牙买加选手博尔特在男子100 m 决赛(直跑道)和男子200 m 决赛(弯曲跑道)中分别以9.63 s 和19.32 s 的成绩获得两枚金牌,成为奥运会历史上连续两届获得100米和200米冠军的第一人.关于他在这两次决赛中的运动情况,下列说法正确的是( )A.200 m 决赛的位移是100 m 决赛的两倍B.200 m 决赛的平均速度约为10.35 m/sC.100 m 决赛的平均速度约为10.38 m/sD.100 m 决赛的最大速度约为20.76 m/s 答案 C解析 200 m 比赛跑道是弯曲的,位移小于200 m ,100 m 比赛跑道是直线,A 错;200 m 19.32 s≈10.35 m/s 是平均速率,B 错;100 m9.63 s ≈10.38 m/s 是平均速度,C 对;最大速度由已知条件无法求出,D 错. 三、加速度1.物理意义:描述物体速度变化快慢和方向的物理量,是状态量.2.定义式:a =Δv Δt =v -v 0Δt.3.决定因素:a 不是由v 、Δt 、Δv 来决定,而是由F m来决定.4.方向:与Δv 的方向一致,由合外力的方向决定,而与v 0、v 的方向无关. 自测3 教材P29第2题改编(多选)下列说法中可能发生的运动是( ) A.物体运动的加速度等于0,而速度却不等于0B.两物体相比,一个物体的速度变化量比较大,而加速度却比较小C.物体具有向东的加速度,而速度的方向却向西D.物体做直线运动,后一阶段的加速度比前一阶段小,但速度却比前一阶段大 答案 ABCD命题点一质点、参考系和位移1.三个概念的进一步理解(1)质点不同于几何“点”,它无大小但有质量,能否看成质点是由研究问题的性质决定,而不是依据物体自身大小和形状来判断.(2)参考系是为了研究物体的运动而假定为不动的物体.(3)位移是由初位置指向末位置的有向线段,线段的长度表示位移大小.2.三点注意(1)对于质点要从建立理想化模型的角度来理解.(2)在研究两个物体间的相对运动时,选择其中一个物体为参考系,可以使分析和计算更简单.(3)位移的矢量性是研究问题时应切记的性质.例1 在“金星凌日”的精彩天象中,观察到太阳表面上有颗小黑点缓慢走过,持续时间达六个半小时,那便是金星,如图1所示.下面说法正确的是( )图1A.地球在金星与太阳之间B.观测“金星凌日”时可将太阳看成质点C.以太阳为参考系,金星绕太阳一周位移不为零D.以太阳为参考系,可以认为金星是运动的答案 D解析金星通过太阳和地球之间时,我们才看到金星没有被太阳照亮的一面呈黑色,选项A 错误;因为太阳的大小对所研究问题起着至关重要的作用,所以观测“金星凌日”不能将太阳看成质点,选项B错误;金星绕太阳一周,起点与终点重合,位移为零,选项C错误;金星相对于太阳的空间位置发生了变化,所以以太阳为参考系,金星是运动的,选项D正确. 变式1 (2018·陕西铜川模拟)下列关于运动学概念的论述,正确的是( )A.运动员跑完800 m比赛,指的是路程为800 mB.运动员铅球成绩为4.50 m,指的是铅球的位移大小为4.50 mC.足球比赛挑边时,上抛的硬币落回地面猜测正反面,硬币可以看做质点D.阅兵预演空中梯队通过天安门上空时,以编队中某一飞机为参考系,地面上的观众是静止的答案 A命题点二平均速度和瞬时速度1.区别与联系(1)区别:平均速度是过程量,表示物体在某段位移或某段时间内的平均运动快慢程度;瞬时速度是状态量,表示物体在某一位置或某一时刻的运动快慢程度.(2)联系:瞬时速度是运动时间Δt→0时的平均速度.2.方法和技巧(1)判断是否为瞬时速度,关键是看该速度是否对应“位置”或“时刻”.(2)求平均速度要找准“位移”和发生这段位移所需的“时间”.例2 (多选)如图2所示,某赛车手在一次野外训练中,先用地图计算出出发地A和目的地B的直线距离为9 km,实际从A运动到B用时5 min,赛车上的里程表指示的里程数增加了15 km.当他经过某路标C时,车内速度计指示的示数为150 km/h,那么可以确定的是( )图2A.整个过程中赛车的平均速度为180 km/hB.整个过程中赛车的平均速度为108 km/hC.赛车经过路标C时的瞬时速度为150 km/hD.赛车经过路标C时速度方向为由A指向B答案BC解析从A到B位移为9 km,用时112h,由平均速度定义式可得整个过程的平均速度为108 km/h,故A错,B对;速度计显示的是瞬时速度大小,故C对;经过C时速度的方向沿C点切线指向运动方向,故D错.变式2 (多选)骑自行车的人沿斜坡直线向下行驶,在第1 s 、第2 s 、第3 s 、第4 s 内通过的位移分别是1 m 、2 m 、3 m 、4 m ,有关其运动的描述,下列说法中正确的是( ) A.整个过程中的平均速度是2.5 m/s B.在第3、4两秒内的平均速度是3.5 m/s C.第3 s 末的瞬时速度为3 m/s D.该运动一定是匀加速直线运动 答案 AB变式3 (2018·贵州遵义模拟)一质点沿直线Ox 方向做变速运动,它离开O 点的距离x 随时间t 变化的关系为x =(5+2t 3) m ,它的速度随时间t 变化的关系为v =6t 2(m/s),该质点在t =2 s 时的速度和t =2 s 到t =3 s 间的平均速度的大小分别为( ) A.12 m/s 39 m/s B.24 m/s 38 m/s C.12 m/s 19.5 m/s D.24 m/s 13 m/s答案 B解析 由v =6t 2(m/s)得,当t =2 s 时,v =24 m/s ;根据质点离开O 点的距离随时间变化的关系为x =(5+2t 3) m 得:当t =2 s 时,x 2=21 m ,t =3 s 时,x 3=59 m ;则质点在t =2 s 到t =3 s 时间内的位移Δx =x 3-x 2=38 m ,v =Δx Δt =381 m/s =38 m/s ,故选B.拓展点 用平均速度法求解瞬时速度——极限思想的应用 1.用极限法求瞬时速度和瞬时加速度(1)公式v =ΔxΔt 中,当Δt →0时v 是瞬时速度.(2)公式a =ΔvΔt 中,当Δt →0时a 是瞬时加速度.2.注意(1)用v =ΔxΔt 求瞬时速度时,求出的是粗略值,Δt (Δx )越小,求出的结果越接近真实值.(2)对于匀变速直线运动,一段时间内的平均速度可以精确地表示物体在这一段时间中间时刻的瞬时速度.例3 为了测定气垫导轨上滑块的加速度,滑块上安装了宽度为d =3.0 cm 的遮光板,如图3所示,滑块在牵引力作用下先后匀加速通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为Δt 1=0.30 s ,通过第二个光电门的时间为Δt 2=0.10 s ,遮光板从开始遮住第一个光电门到开始遮住第二个光电门的时间为Δt =3.0 s ,则滑块的加速度约为( )图3A.0.067 m/s 2B.0.67 m/s 2C.6.7 m/s 2D.不能计算出 答案 A解析 遮光板通过第一个光电门时的速度v 1=d Δt 1=0.030.30 m/s =0.10 m/s ,遮光板通过第二个光电门时的速度v 2=d Δt 2=0.030.10 m/s =0.30 m/s ,故滑块的加速度a =v 2-v 1Δt≈0.067 m/s 2,选项A 正确.变式4 (2018·甘肃天水质检)如图4所示,气垫导轨上滑块经过光电门时,其上的遮光条将光遮住,电子计时器可自动记录遮光时间Δt .测得遮光条的宽度为Δx ,用ΔxΔt近似代表滑块通过光电门时的瞬时速度.为使ΔxΔt更接近瞬时速度,正确的措施是( )图4A.换用宽度更窄的遮光条B.提高测量遮光条宽度的精确度C.使滑块的释放点更靠近光电门D.增大气垫导轨与水平面的夹角 答案 A命题点三 速度、速度变化量和加速度的关系1.三个概念的比较2.判断直线运动中的“加速”或“减速”方法物体做加速运动还是减速运动,关键是看物体的加速度与速度的方向关系.(1)a 和v 同向加速直线运动―→⎩⎪⎨⎪⎧a 不变,v 随时间均匀增加a 增大,v 增加得越来越快a 减小,v 增加得越来越慢(2)a 和v 反向(减速直线运动)―→⎩⎪⎨⎪⎧a 不变,v 随时间均匀减小或反向增加a 增大,v 减小或反向增加得越来越快a 减小,v 减小或反向增加得越来越慢例4 (多选)一物体做匀变速直线运动,某时刻速度大小为4 m/s ,1 s 后速度的大小变为10 m/s ,在这1 s 内该物体的可能运动情况为( ) A.加速度的大小为6 m/s 2,方向与初速度的方向相同 B.加速度的大小为6 m/s 2,方向与初速度的方向相反 C.加速度的大小为14 m/s 2,方向与初速度的方向相同 D.加速度的大小为14 m/s 2,方向与初速度的方向相反 答案 AD解析 若初、末速度方向相同时,a =v -v 0t =10-41m/s 2=6 m/s 2,方向与初速度的方向相同,A 正确,B 错误;若初、末速度方向相反时,a =v -v 0t =-10-41m/s 2=-14 m/s 2,方向与初速度的方向相反,C 错误,D 正确.变式5 近几年,国内房价飙升,在国家宏观政策调控下,房价上涨出现减缓趋势.王强同学将房价的“上涨”类比成运动学中的“加速”,将房价的“下跌”类比成运动学中的“减速”,据此,你认为“房价上涨出现减缓趋势”可以类比成运动学中的( ) A.速度增加,加速度减小 B.速度增加,加速度增大C.速度减小,加速度增大D.速度减小,加速度减小 答案 A解析 “房价上涨”可以类比成运动学中的“速度增加”,“减缓趋势”则可以类比成运动学中的“加速度减小”.变式 6 (多选)(2018·湖北荆州调研)沿直线做匀变速运动的一列火车和一辆汽车的速度分别为v 1和v 2,v 1、v 2在各个时刻的大小如表所示,从表中数据可以看出( )A.火车的速度变化较慢B.汽车的加速度较小C.火车的位移在减小D.汽车的位移在增加 答案 AD解析 从表格中可得火车的加速度a 火=Δv 火Δt 火=-0.51 m/s 2=-0.5 m/s 2,汽车的加速度a 汽=Δv 汽Δt 汽=1.21m/s 2=1.2 m/s 2,故火车的加速度较小,火车的速度变化较慢,A 正确,B 错误;由于汽车和火车的速度一直为正值,速度方向不变,则位移都增加,C 错误,D 正确.。
专题1.5 运动的描述与匀变速直线运动的研究测试【总分为:100分 时间:90分钟】一、选择题(此题共14小题,每一小题5分,共70分。
在每一小题给出的四个选项中第1~8题只有一项符合题目要求,第9~14题有多项符合题目要求,全选对的得5分,选对但不全的得3分,有选错的得0分)1.(2019·山东青岛一中模拟)24届山东省运动会于2018年9月由青岛市承办,运动会包括射箭、体操、田径、击剑等39个比赛项目。
如下关于运动项目的描述正确的答案是( ) A .研究马拉松运动员跑步的过程,评判比赛成绩时,可将运动员视为质点B .在双人同步跳水运动中,以其中一名运动员为参考系,另一名运动员是向下运动的C .在评判击剑运动员的比赛成绩时,运动员可视为质点D .研究体操运动员的体操动作时,可将其视为质点 【答案】A【解析】C 、D 两项中都要关注运动员的动作细节,故这两个项目中的运动员不能看作质点,故C 、D 项错误;A 项中评判成绩不用关注跑步动作细节,故该项中的运动员可看作质点,故A 项正确;B 项中在双人同步跳水运动中,两人动作完全一致,故以其中一名运动员为参考系,另一名运动员是相对静止的,故B 项错误。
2.(2019·某某耀华中学模拟)甲、乙、丙三辆汽车以一样的速度同时经过某一路标,从此时开始,甲一直做匀速直线运动,乙先加速后减速,丙先减速后加速,它们经过下一路标时速度又一样,如此( ) A .甲车先通过下一路标 B .乙车先通过下一路标C .丙车先通过下一路标D .无法判断哪辆车先通过下一路标 【答案】B【解析】三辆车通过下一路标的位移一样,甲以速度v 0做匀速运动,其平均速度为v 0;乙先加速、后又减速至v 0,它的平均速度一定大于v 0;丙先减速、后又加速至v 0,它的平均速度一定小于v 0。
由t =xv可知t丙>t 甲>t 乙,即乙车先通过下一路标,丙车最后通过下一路标。
场强是从力的角度反映电场本身性质的物理量,在高考试题中占有很重要地位,涉及点电荷电场强度的叠加及大小计算的试题,一般难度不大,多以选择题的形式出现,个别省市的高考题中偶尔出现过简单的计算题。
场的叠加是一种解决问题的方法,相当于等效替代,该点的实际场强等于几个电荷单独存在时产生的电场强度的矢量和,同一直线上的场强的叠加,可简化为代数运算;不在同一直线上的两个场强的叠加,用平行四边形定则求合场强.分析电场叠加问题的一般步骤是: (1)确定分析计算的空间位置;(2)分析该处有几个分电场,先计算出各个分电场在该点的电场强度的大小和方向: (3)依次利用平行四边形定则求出矢量和。
题型1 点电荷电场强度的叠加及大小的计算空间中的电场通常会是多个场源产生的电场的叠加,电场强度可以应用平行四边形定则进行矢量计算,这是高考常考的考点。
虽然电场强度的定义式为E =Fq ,但公式E =kQ r2反映了某点场强与场源电荷的特性及该点到场源电荷的距离的关系,体现了电场的来源与本质,高考常围绕此公式出题。
【典例1】(2018山东省烟台市高一下期末)如图所示,四个点电荷所带电荷量的绝对值均为Q ,分别固定在正方形的四个顶点上,正方形边长为a ,则正方形两条对角线交点处的电场强度A . 大小为,方向竖直向上B . 大小为,方向竖直向上C . 大小为,方向竖直向下D . 大小为,方向竖直向下【答案】C【解析】一个点电荷在中心O产生的场强为,对角线处的两异种点电荷在O处的总场强为,故两等大的场强垂直,合场强为,方向由合成的过程可知沿竖直向下,故选C。
【跟踪训练】1. 如图在正六边形的a、c两个顶点上各放一带正电的点电荷,电荷量的大小都是q1;在b、d两个顶点上,各放一带负电的点电荷,电荷量的大小都是q2,q1>q2.已知六边形中心O点处的场强可用图中的四条有向线段中的一条来表示,它是哪一条( )A.E1B.E2C.E3D.E4【答案】B2. 如图所示,电量为+q和-q的点电荷分别位于正方体的顶点,正方体范围内电场强度为零的点有( )A .体中心、各面中心和各边中点B .体中心和各边中点C .各面中心和各边中点D .体中心和各面中心 【答案】D【解析】 根据点电荷场强公式E =kQr2及正方体的对称性可知,正方体的体中心及各面的中心处场强为零,故D 正确。
板块三限时规范特训时间:45分钟100分一、选择题(本题共11小题,每小题6分,共66分.其中1~6为单选,7~11为多选)1.[2017·东城区模拟]下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射实验规律的是()答案 A解析随着温度的升高,辐射强度增加,辐射强度的极大值向着波长较短的方向移动,A正确.2.下列说法中正确的是()A.物质波属于机械波B.只有像电子、质子、中子这样的微观粒子才具有波动性C.德布罗意认为任何一个运动的物体,小到电子、质子、中子,大到行星、太阳都有一种波与之相对应,这种波叫物质波D.宏观物体运动时,看不到它的衍射和干涉现象,所以宏观物体运动时不具有波动性答案 C解析物质波是由实物粒子的运动形成,而机械波是由组成物体的质点做周期性运动形成,故A错误;不论是微观粒子,还是宏观物体,只要它们运动,就有与之对应的物质波,故B、D均错误,C 正确.3.在光电效应实验中,用单色光照射某种金属表面,有光电子逸出,则光电子的最大初动能取决于入射光的()A.频率B.强度C.照射时间D.光子数目答案 A解析由爱因斯坦光电效应方程E k=hν-W0可知E k只与频率ν有关,故选项B、C、D错误,选项A正确.4.入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,那么()A.从光照至金属表面到发射出光电子之间的时间间隔将明显增加B.逸出的光电子的最大初动能减小C.单位时间内从金属表面逸出的光电子数目将减少D.有可能不发生光电效应答案 C解析根据光电效应的实验规律知,从光照至金属表面到发射出光电子的时间间隔极短,这与光的强度无关,故选项A错误.实验规律还指出,逸出的光电子的最大初动能与入射光的频率有关,饱和光电流与入射光的强度成正比,由此可知,B、D错误,C正确.5.在光电效应实验中,先后用两束光照射同一个光电管,若实验所得光电流I与光电管两端所加电压U间的关系曲线如图所示,则下列说法中正确的是()A.a光频率大于b光频率B.a光波长大于b光波长C.a光强度高于b光强度D.a光照射光电管时产生光电子的最大初动能较大答案 C解析对同一光电管,不论对哪种光,极限频率和金属的逸出功相同,由题图可知,对a、b两种光,反向截止电压相同,说明光的频率、波长相同,A、B两项错误;a光照射时的饱和电流比b光照射时的饱和电流大,说明a光强度高于b光强度,C项正确;金属的逸出功及照射光的频率相同,根据爱因斯坦光电效应方程可知,光照射光电管时产生光电子的最大初动能相同,故D项错误.6.[2017·河北衡水模拟]研究光电效应的实验装置如图所示,闭合开关,滑片P处于滑动变阻器中央位置,当一束单色光照到此装置的碱金属表面K时,电流表有示数.下列说法正确的是()A.若仅增大该单色光入射的强度,则光电子的最大初动能增大,电流表示数也增大B.无论增大入射光的频率还是增加入射光的强度,碱金属的逸出功都不变C.保持频率不变,当光强减弱时,发射光电子的时间将明显增加D.若滑动变阻器滑片左移,则电压表示数减小,电流表示数减小答案 B解析若仅增大该单色光入射的强度,由于每个光子的能量不变,因此光电子的最大初动能不变,但单位时间内射出的光电子数增多,因此光电流增大,故A错误;逸出功由金属材料自身决定,与是否有光照无关,故B正确;发生光电效应不需要时间积累,只要入射光的频率大于极限频率即可,故C错误;若滑动变阻器滑片左移,则电压表的示数减小,因电压是反向电压,所以电压减小时,光电子更容易到达A极形成电流,电流表示数增大,故D错误.7.下列叙述中正确的是()A.一切物体都在辐射电磁波B.一般物体辐射电磁波的情况只与温度有关C.黑体辐射电磁波的强度按波长的分布只与黑体温度有关D.黑体能够完全吸收入射的各种波长的电磁波答案ACD解析根据热辐射的定义,A正确;根据热辐射和黑体辐射的特点知一般物体辐射电磁波的情况除与温度有关外,还与材料种类和表面状况有关,而黑体辐射电磁波的强度按波长的分布只与黑体的温度有关,B错误,C正确;由黑体的定义知D正确.8.关于光电效应的规律,下面说法中正确的是()A.当某种色光照射金属表面时,能产生光电效应,则入射光的频率越高,产生的光电子的最大初动能越大B.当某种色光照射金属表面时,能产生光电效应,则入射光的强度越大,产生的光电子数越多C.同一频率的光照射不同金属,如果都能产生光电效应,则逸出功大的金属产生的光电子的最大初动能也越大D.对于某金属,入射光波长必须小于某一极限波长,才能产生光电效应答案ABD解析由爱因斯坦的光电效应方程E k=hν-W0知,逸出功W0一定时,入射光频率ν越大,则产生的光电子的最大初动能越大,A 正确;当某种色光照射金属表面能产生光电效应时,入射光的强度越大,相同时间照射到金属表面的光子数越多,产生的光电子数越多,B正确;由光电效应方程可知,入射光频率ν一定时,逸出功W0越大,则光电子的最大初动能E k越小,C错误;对于某金属,入射光的频率必须大于该金属的极限频率,即入射光的波长必须小于某一极限波长,才能产生光电效应,D正确.9.在单缝衍射实验中,中央亮纹的光强占从单缝射入的整个光强的95%以上.假设现在只让一个光子通过单缝,那么该光子() A.一定落在中央亮纹处B.一定落在亮纹处C.可能落在暗纹处D.落在中央亮纹处的可能性最大答案CD解析一个光子通过单缝落在何处,是不可确定的,但是落在中央亮纹处的概率最大,可达95%以上,当然也可能落在其他亮纹处,还可能落在暗纹处,只是落在暗纹处的概率很小,C 、D 正确.10.[2017·山东潍坊二模]如图所示,真空中金属板M 上方存在一垂直纸面向里的矩形有界磁场,边界ON 到M 板的距离为d .用频率为ν的紫外线照射M 板(接地),只要磁感应强度不大于B 0,就有电子越过边界ON .已知电子的电荷量为e ,质量为m ,普朗克常量为h .以下说法正确的是( )A .若增大紫外线的照射强度,单位时间从M 板逸出的电子增多B .若减小紫外线的照射强度,电子从M 板逸出的最大初动能减小C .从M 板逸出电子的最大初动能为e 2B 20d 22mD .该金属的逸出功为hν-e 2B 20d 28m答案 AD解析 增大照射光强度,即单位时间光子数增多,照射M 板,单位时间内逸出的光电子数增加,A 正确;根据光电效应方程E k =hν-W 0,可知光电子的最大初动能与照射光的强度无关,B 错误;由题意可知,磁感应强度为B 0时,沿水平方向射出的电子运动轨迹会与NO 相切,即r =d 2,结合q v B 0=m v 2r 和E k =12m v 2,联立可得E k =e 2B 20d 28m,逸出功W 0=hν-e 2B 20d 28m,C 错误,D 正确.11.[2017·汕头模拟]如图所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线,由图可知()A.该金属的极限频率为4.27×1014 HzB.该金属的极限频率为5.5×1014 HzC.该图线的斜率表示普朗克常量D.该金属的逸出功为0.5 eV答案AC解析由光电效应方程可知:E k=hν-W0,斜率表示普朗克常量,C选项正确.当E k=0时,入射光的频率就是该金属的极限频率,νc=4.27×1014Hz,A选项正确,B选项错误.该金属的逸出功W0=hνc≈1.77 eV,D选项错误.二、非选择题(本题共3小题,共34分)12.(10分)在如图所示的装置中,K为一个金属板,A为一个金属电极,都密封在真空玻璃管中,单色光可通过玻璃壳照在K上,E 为可调直流电源.实验发现,当用某种频率的单色光照射K时,K会发出电子(光电效应),这时,即使A、K间的电压等于零,回路中也有电流,当A的电势低于K时,电流仍不为零.A的电势比K低得越多,电流越小,当A比K的电势低到某一值U c(遏止电压)时,电流消失.当改变照射光的频率ν时,遏止电压U c也将随之改变.如果某次实验根据测出的一系列数据作出的U c-ν图象如图所示,若知道电子的电荷量e,则根据图象可求出该金属的截止频率为________,该金属的逸出功W0为________,普朗克常量h为________.答案 νc eU 0 eU 0νc解析 由图可知,数据对应的点几乎落在一条直线上,直线与ν轴的交点νc 即为该金属的截止频率.因此当照射光的频率为νc 时,遏止电压U c =0,说明在此频率下,金属板刚好发生光电效应.设光电子的最大初动能为E k ,根据光电效应方程有hν=W 0+E k ,当A 比K 的电势低到某一值U c 时,电流消失,光电子的最大初动能全部用来克服电场力做功,由动能定理有eU c =E k ,联立以上两式可得:U c =hνe -W 0e .由上式可知,U c -ν图象斜率k =h e ,在U c 轴上的截距为-W 0e .而由图可得,截距为-U 0.故有h e =U 0νc,-U 0=-W 0e ,解得h =eU 0νc,W 0=eU 0. 13.[2016·江苏高考](6分)几种金属的逸出功W 0见下表:光电效应.已知该可见光的波长的范围为4.0×10-7~7.6×10-6 m ,普朗克常量h =6.63×10-34 J·s.答案 钠、钾、铷能发生光电效应解析 光子的能量E =hc λ,当λ=4.0×10-7 m 时,E =4.97×10-19 J.根据E >W 0判断,钠、钾、铷能发生光电效应.14.(18分)电子和光一样具有波动性和粒子性,它表现出波动的性质,就像X 射线穿过晶体时会产生衍射一样,这一类物质粒子的波动叫德布罗意波.质量为m 的电子以速度v 运动时,这种德布罗意波的波长可表示为λ=h p .已知电子质量m =9.1×10-31 kg ,电子电荷量e =1.6×10-19 C ,普朗克常量h =6.63×10-34 J·s.(1)计算具有100 eV 动能的电子的动量p 和波长λ;(2)若一个静止的电子经2500 V 电压加速,求能量和这个电子动能相同的光子的波长,并求该光子的波长和这个电子的波长之比.答案 (1)5.4×10-24 kg·m/s 1.2×10-10 m(2)5.0×10-10 m 20∶1解析 (1)电子的动量:p =2mE k =2meU=2×9.1×10-31×100×1.6×10-19 kg·m/s≈5.4×10-24 kg·m/s德布罗意波波长λ=h p =6.63×10-345.4×10-24m ≈1.2×10-10 m. (2)电子的能量E =eU ′=2500 eV =4.0×10-16 J根据E =hc λ,得光子波长λ′=hc E =6.63×10-34×3.0×1084.0×10-16m ≈5.0×10-10 m 电子的动量p ′=2meU ′=2×9.1×10-31×2500×1.6×10-19 kg·m/s ≈2.7×10-23 kg·m/s电子波长λ″=h p ′=6.63×10-342.7×10-23m ≈2.5×10-11 m 则λ′λ″=5.0×10-10 m 2.5×10-11 m =201,即λ′∶λ″=20∶1.。
基础课 2 匀变速直线运动的规律跟踪检测一、选择题1.(多选)质点由静止开始做匀加速直线运动,经过时间t ,通过与出发点相距x 1的P 点,再经过时间t ,到达与出发点相距x 2的Q 点,则该质点通过P 点的瞬时速度为( )A.2x 1tB.x 22t C.x 2-x 1tD.x 2-2x 1t解析:选ABD 设加速度为a ,由O 到P :x 1=12at 2,a =2x 1t 2,v P =at =2x 1t ,A 对;由O到Q :t 总=t +t =2t ,由平均速度推论知,质点过P 的速度v P =x 2t 总=x 22t,B 对;由P 到Q :x PQ =x 2-x 1,x PO =x 1,x PQ -x PO =at 2,得a =x 2-2x 1t 2,v P =at =x 2-2x 1t,D 对. 2.(2019届河北唐山模拟)一旅客在站台8号车厢的候车线处候车,若动车的一节车厢长25米,动车进站时可以看作匀减速直线运动,他发现6号车厢经过他用了4 s ,动车停下时旅客刚好在8号车厢门口,如图所示.则该动车的加速度大小约为( )A .2 m/s 2B .1 m/s 2C .0.5 m/s 2D .0.2 m/s 2解析:选C 设6号车厢刚到达旅客处时,动车的速度为v 0,加速度为a ,则有l =v 0t +12at 2,从6号车厢刚到达旅客处到动车停下来,有0-v 02=2a ·2l ,解得a ≈-0.5 m/s 2或a ≈-18 m/s 2(舍去),则加速度大小约为0.5 m/s 2.3.汽车以20 m/s 的速度在平直公路上行驶,急刹车时的加速度大小为5 m/s 2,则自驾驶员急踩刹车开始计时,2 s 内与5 s 内汽车的位移大小之比为 ( )A .5∶4B .4∶5C .3∶4D .4∶3解析:选C 自驾驶员急踩刹车开始,经过时间t =v 0a=4 s ,汽车停止运动,所以汽车在2 s 内发生的位移为x 1=v 0t -12at 2=30 m,5 s 内发生的位移为x 2=v 022a =40 m ,所以2 s内与5 s 内汽车的位移大小之比为3∶4,选项C 正确.4. (2019届吕梁模拟)如图所示,A 、B 两物体从地面上某点正上方不同高度处,同时做自由落体运动.已知A 的质量比B 的质量大,下列说法正确的是( )A .A 、B 可能在空中相撞 B .A 、B 落地时的速度相等C .下落过程中,A 、B 速度变化的快慢相同D .从开始下落到落地,A 、B 的平均速度相等解析:选C 由于不计空气的阻力,故物体仅受重力,则物体的加速度均为重力加速度g ,与物体的质量无关,下落过程中,A 、B 速度变化的快慢相同,A 、B 不可能在空中相撞,故A 错误,C 正确;根据v 2=2gh 可得物体落地时的速度v =2gh ,由于两物体从不同高度开始自由下落,故到达地面时速度不相同,故B 错误;由v =v2可知落地的速度不相等,平均速度也不相等,故D 错误.5.(多选)(2018届温州五校联考)近来交警部门开展的“车让人”活动深入人心,不遵守“车让人”的驾驶员将受到罚款、扣分的严厉处罚.假设一辆以8 m/s 的速度匀速行驶的汽车即将通过路口,有一老人正在过人行横道,此时汽车的车头距离停车线8 m .该车减速时的加速度大小为5 m/s 2,则下列说法中正确的是( )A .如果驾驶员立即刹车制动,则t =2 s 时,汽车离停车线的距离为1.6 mB .如果在距停车线6 m 处开始刹车制动,汽车能在停车线处停车让人C .如果驾驶员的反应时间为0.4 s ,汽车刚好能在停车线处停车让人D .如果驾驶员的反应时间为0.2 s ,汽车刚好能在停车线处停车让人解析:选AD 若汽车做匀减速直线运动,速度减为零的时间t 0=0-v 0a =-8-5s =1.6 s<2s ,所以从刹车到停止的位移大小x 1=⎪⎪⎪⎪⎪⎪-v 022a =6410m =6.4 m ,汽车离停车线的距离为8 m-6.4 m =1.6 m ,故A 正确;如果汽车在距停车线6 m 处开始刹车制动,刹车位移是6.4 m ,所以汽车不能在停车线处停车让人,故B 错误;刹车的位移是6.4 m ,所以汽车可做匀速运动的位移是1.6 m ,则驾驶员的反应时间t =,8) s =0.2 s 时,汽车刚好能停在停车线处让人,故C 错误,D 正确.6.(多选)在某一高度以v 0=20 m/s 的初速度竖直上抛一个小球(不计空气阻力),当小球速度大小为10 m/s 时,以下判断正确的是(g 取10 m/s 2)( )A .小球在这段时间内的平均速度大小可能为15 m/s ,方向向上B .小球在这段时间内的平均速度大小可能为5 m/s ,方向向下C .小球在这段时间内的平均速度大小可能为5 m/s ,方向向上D .小球的位移大小一定是15 m解析:选ACD 小球被竖直向上抛出,做的是匀变速直线运动,平均速度可以用匀变速直线运动的平均速度公式v =v 0+v2求出,规定竖直向上为正方向,当小球的末速度大小为10 m/s 、方向竖直向上时,v =10 m/s ,用公式求得平均速度为15 m/s ,方向竖直向上,A 正确;当小球的末速度大小为10 m/s 、方向竖直向下时,v =-10 m/s ,用公式求得平均速度大小为5 m/s ,方向竖直向上,C 正确;由于末速度大小为10 m/s 时,球的位置一定,距起点的位移h =v 2-v 02-2g=15 m ,D 正确.7.如图所示,在水平面上固定着三个完全相同的木块,一子弹以水平速度射入木块,若子弹在木块中做匀减速直线运动,当穿透第三个木块时速度恰好为零,则下列关于子弹依次射入每个木块时的速度比和穿过每个木块所用时间比正确的是( )A .v 1∶v 2∶v 3=3∶2∶1B .v 1∶v 2∶v 3=5∶3∶1C .t 1∶t 2∶t 3=1∶2∶ 3D .t 1∶t 2∶t 3=(3-2)∶(2-1)∶1解析:选D 用“逆向思维”法解答,则子弹向左做初速度为零的匀加速直线运动,设每块木块厚度为L ,则v 32=2a ·L ,v 22=2a ·2L ,v 12=2a ·3L ,v 3、v 2、v 1分别为子弹倒过来从右到左运动L 、2L 、3L 时的速度,则v 1∶v 2∶v 3=3∶2∶1,选项A 、B 错误;又由于每块木块厚度相同,则由比例关系可得t 1∶t 2∶t 3=(3-2)∶(2-1)∶1,选项C 错误,D 正确.8.不计空气阻力,以一定的初速度竖直上抛一物体,物体从被抛出至回到抛出点的运动时间为t .现在物体上升的最大高度的一半处设置一块挡板,物体撞击挡板前后的速度大小相等、方向相反,撞击所需时间不计,则这种情况下物体上升和下降的总时间约为( )tt tt解析:选C 物体从抛出至回到抛出点的运动时间为t ,则t =2v 0g,物体上升至最大高度的一半处的速度v x2=v 022,则用时间t 1=x2v 0+vx 22,物体撞击挡板前后的速度大小相等,方向相反,则物体以相同的加速度落回抛出点的时间与上升时间相同,即t 2=t 1,故物体上升和下降的总时间t 总=t 1+t 2=2t 1=2xv 0+v 02=2v 01+2gt ,选项C 正确. 9.(多选)物体从A 点由静止出发,先以加速度大小为a 1做匀加速直线运动到某速度v 后,立即以加速度大小为a 2做匀减速直线运动至B 点时速度恰好减为0,所用总时间为t .若物体以速度v 0匀速通过AB 之间,所用时间也为t ,则( )A .v =2v 0 B.1a 1+1a 2=t vC.1a 1-1a 2=12vD.1a 1+1a 2=t 2v解析:选AB 根据题意可知,A 、B 两点间距x =v2t =v 0t ,解得v =2v 0,选项A 正确;由t 1=v a 1,t 2=v a 2,t =t 1+t 2可解得1a 1+1a 2=tv,选项B 正确,C 、D 错误.10. (2018届河南洛阳一模)如图所示,物体自O 点由静止开始做匀加速直线运动,途经A 、B 、C 三点,其中A 、B 之间的距离l 1=3 m ,B 、C 之间的距离l 2=4 m .若物体通过l 1、l 2这两段位移的时间相等,则O 、A 之间的距离l 等于( )A.34 m B.43 m C.825m D.258m 解析:选D 设物体运动的加速度为a ,通过O 、A 之间的距离l 的时间为t ,通过l 1、l 2每段位移的时间都是T ,根据匀变速直线运动规律,l =12at 2,l +l 1=12a (t +T )2,l +l 1+l 2=12a (t +2T )2,l 2-l 1=aT 2,联立解得l =258m ,选项D 正确.二、非选择题11.(2019届南昌调研)出租车载客后,从高速公路入口处驶入高速公路,并从10时10分55秒开始做初速度为零的匀加速直线运动,经过10 s 时,速度计显示速度为54 km/h.求:(1)这时出租车离出发点的距离;(2)出租车继续做匀加速直线运动,当速度计显示速度为108 km/h 时,出租车开始做匀速直线运动.10时12分35秒时计价器里程表示数应为多少米?(车启动时,计价器里程表示数为零)解析:(1)由题意可知经过10 s 时,速度计上显示的速度为v 1=15 m/s 由速度公式v =v 0+at 得a =v -v 0t =v 1t 1=1.5 m/s 2由位移公式得x 1=12at 12=12×1.5×102 m =75 m这时出租车离出发点的距离是75 m.(2)当速度计上显示的速度为v 2=108 km/h =30 m/s 时,由v 22=2ax 2得x 2=v 222a=300 m ,这时出租车从静止载客开始,已经经历的时间为t 2,可根据速度公式得t 2=v 2a =301.5s =20 s这时出租车时间表应显示10时11分15秒.出租车继续匀速运动,匀速运动时间t 3为80 s ,通过位移x 3=v 2t 3=30×80 m=2 400 m所以10时12分35秒时,计价器里程表应显示x =x 2+x 3=(300+2 400)m =2 700 m.答案:(1)75 m (2)2 700 m12.(2018届乌鲁木齐期末)我国ETC(不停车电子收费系统)已实现全国联网,大大缩短了车辆通过收费站的时间.假设一辆家庭轿车以30 m/s 内的速度匀速行驶,接近收费站时,轿车开始减速,至收费站窗口恰好停止,再用10 s 时间完成交费,然后再加速至30 m/s 继续行驶.若进入ETC 通道.轿车从某位置开始减速至15 m/s 后,再以此速度匀速行驶15 m 即可完成交费,然后再加速至30 m/s 继续行驶.两种情况下,轿车加速和减速时的加速度大小均为3 m/s 2.求:(1)轿车从开始减速至通过人工收费通道再加速至30 m/s 的过程中通过的路程和所用的时间;(2)两种情况相比较,轿车通过ETC 交费通道所节省的时间. 解析:(1)设车匀减速至停止通过的路程为x 1x 1=v 022a=150 m车匀加速和匀减速通过的路程相等,设通过人工收费通道通过的路程为x 2x 2=2x 1=300 m车匀减速至停止需要的时间为t 1=v 0-0a=10 s 车通过人工收费通道所用时间为t 2=2t 1+10=30 s.(2)通过人工收费通道所需时间为30 s .此过程总位移为300 m ,通过ETC 通道时,速度由30 m/s 减至15 m/s 所需时间t 3,通过的路程为x 3t 3=v 0-v 1a=5 s路程x 3=v 02-v 122a=112.5 m车以15 m/s 匀速行驶15 m 所用时间t 4=1 s车在x 2=300 m 路程内以30 m/s 匀速行驶的路程x 4和所需时间t 5x 4=x 2-2x 3-15=60 m t 5=x 4v 0=2 sΔt =t 2-2t 3-t 4-t 5=17 s 故通过ETC 的节省的时间为17 s. 答案:(1)30 s (2)17 s。
电势能与电势差1.(北京市101中学2019届三模)让一价氢离子、一价氦离子和二价氦离子的混合物以相同的初动能在同一位置垂直射入水平放置的一对平行板形成的匀强电场,不计离子的重力和离子间的相互作用,离子束从进入到射出该偏转电场的过程中,下列说法正确的是( )A .偏转电场对每个离子做功相等B .偏转电场对每个离子冲量相同C .在偏转电场中它们形成两股离子束D .在偏转电场中它们形成一股离子束2.(河北省张家口市2019届高三一模)空间存在平行于纸面的匀强电场,纸面内有一菱形ABCD 。
将一个电子由C 点移动到D 点,克服电场力做功1eV 。
A 点的电势为3V ,则B 点的电势为( )A .2 VB .3 VC .4 VD .6 V3.(2019年河北省唐山一中高三模拟)如图所示,一个由绝缘材料制成的轻弹簧水平放置,一端固定于竖直墙上,另一端与一带负电的小球相连,小球置于光滑的绝缘水平面上。
当整个装置处于水平向左的匀强电场中时,小球在B 、C 间往复运动,在O 点处所受合力为0。
假定在动动过程中小球的电量保持不变,则( )A .小球在由B 到O 的过程中,弹性势能和电势能都一直减少,动能增加B .小球在由O 到C 的过程中,弹性势能增加,电势能和动能都减少C .小球在由B 经O 到C 的过程中,电势能的变化量大于弹性势能变化量D .小球在由C 到O 的过程中,电势能的变化量和弹性势能的变化量大小相等4.(黑龙江省哈尔滨市第三中学2019届高三模拟)空间存在一沿x 轴方向的静电场,电势φ随x 变化 的关系如图所示,下列说法正确的是( )A .沿x 轴正方向,从0到无穷远电势先降低后升高,场强先减小后增大B .将带正电粒子由10x ~之间的位置静止释放(不包括点1)x 仅受电场力作用,粒子先向右加速,后向右减速,最终速度为零C .1x 位置场强最小,大小为0D .在图示区域内2x 点两侧电场强度方向相反5.(山东省淄博市2019届高三三模)如图所示,实线为两个点电荷Q1、Q2产生的电场的电场线,虚线为电子从A点运动到B点的运动轨迹,则下列判断正确的是( )A.A 点的场强小于B点的场强 B.Q1的电荷量大于Q2的电荷量C.电子在A点的电势能大于在B点的电势能 D.电子在A点的速度大于在B点的速度6.(江苏省苏锡常镇四市2019届高三第二次模拟)在任何静电场中均适用的公式是( )A.B.C.D.7.(湖北省武昌实验中学2019年高三期末)静电场在x轴上的电场强度E随x的变化关系如图所示,在x轴上有四点:x1、x2、x3、x4,相邻两点间的距离相等,x轴正向为场强正方向,带正电的点电荷沿x轴运动,则点电荷( )A.x2和x4两点处电势相等;B.由x1运动到x4的过程中加速度先增大后减小;C.由x1运动到x4的过程中电势能先增大再减小;D.设电荷从x2运动到x1,电场力做功W1,电荷从x3运动到x2,电场力做功W2,则W1=W28.(湖南省永州市2018-2019学年高三期末)下列关于电场强度、电势、电场线的说法中,正确的是( ) A.电场强度为零的地方,电势一定为零B.沿着电场线方向,电势逐渐降低C.电场强度较大的地方,电势一定较高D.电势为零的地方,电场强度一定为零9.(天津市部分区2019届高三期末)两个等量异种点电荷+Q和-Q如图放置,B点为两点电荷连线的中点,AB垂直于两点电荷的连线,下列说法正确的是 ( )A.A点和B点的电势相等B.A点的电场强度大于B点的电场强度C .一个带负电的检验电荷由A 点运动到B 点电场力做负功D .一个带正电的检验电荷放在A 点所具有的电势能比放在B 点所具有的电势能大10.(浙江省东阳中学2018-2019学年期末)如图所示,MN 是由一个正点电荷Q 产生的电场中的一条电场线,一个带正电的粒子+q 飞入电场后,在电场力的作用下沿一条曲线运动,先后通过a 、b 两点,不计粒子的重力,则( )A .粒子在a 点的加速度小于在b 点的加速度B .a 点电势φa 小于b 点电势φbC .粒子在a 点的动能E k a 小于在b 点的动能E k bD .粒子在a 点的电势能E p a 小于在b 点的电势能E p b11.(广东省汕头市第一中学2019届高三模拟)如图所示,绝缘的斜面处在一个水平向右的匀强电场中,一带电金属块由静止开始沿斜面滑到底端,已知在金属块下滑的过程中动能增加了0.3J ,克服电场力做功为0.5J ,重力势能减少了1.5J ,则以下说法正确的是( )A .金属块带正电荷B .电势能减少0.5JC .金属块克服摩擦力做功0.7JD .金属块的机械能减少1.2J12.(江苏省扬州中学2019届高三质量检测)如图所示,a 、b 是静电场中某电场线上的两点,将一个电子由a 点移到b 点的过程中电场力做功为+6eV ,则以下判断正确的是( )A .电子受到电场力从a 指向bB .电子的电势能增加6eVC .a 、b 两点间电势差U ab = -6VD .电场强度的方向一定由a 沿直线指向b13.(安徽省阜阳市第三中学2019届高三调研)如图所示,匀强电场中三点A 、B 、C 是一个三角形的三个顶点,30ABC CAB ∠=∠=,23BC m =,已知电场线平行于ABC △所在的平面,一个电荷量6210q -=-⨯ C 的点电荷由A 移到B 的过程中,电势能增加了51.210-⨯ J ,由B 移到C 的过程中电场力做功6610-⨯ J ,为方便计算,设B 点电势为0,下列说法正确的是( )U V B.A点的电势低于B点的电势A.B、C两点的电势差3BCC.负电荷由C点移到A点的过程中,电势能减少 D.该电场的场强为1 V/m14.(湖北省武汉市武昌区2019届高三调研)如图是静电除尘器除尘原理图,M、N是直流高压电源的两极,通过某种机制使电场中的尘埃带上负电,在电场力的作用下向集尘极迁移并沉积,以达到除尘目的。
阶段滚动练(二)教师用书独具(时间:60分钟满分:100分)一、单项选择题(本题5个小题,每小题6分,共30分)1.某工厂的生产流水线上用水平放置的皮带传送装置传送工件,当工件随皮带做减速运动时,工件受到的静摩擦力的方向是()A.跟速度方向相反B.跟速度方向相同C.跟速度方向无关D.不能确定解析工件随皮带做减速运动,则工件必受阻力,此阻力为皮带给工件的静摩擦力,必与速度方向相反。
答案 A2.(2018·广东六校第二次联考)体操运动员静止悬挂在单杠上,当两只手掌握点之间的距离减小时,关于运动员手臂受到的拉力,下列判断正确的是()图1A.不变B.变小C.变大D.无法确定解析对运动员受力分析如图所示。
运动员静止悬挂在单杠上,受力平衡,设两臂与竖直方向夹角为α,根据三力平衡的特点可知运动员手臂受到的拉力F=mg2cos α,α减小,cos α增大,F减小,故选项B正确。
答案 B3.(2018·湖北孝感一模)质量为50 kg的某中学生参加学校运动会立定跳远项目比赛,起跳直至着地过程如简图2,经实际测量得知上升的最大高度是0.8 m,在最高点的速度为 3 m/s,则起跳过程该同学所做功最接近(取g=10 m/s2)()图2A.225 J B.400 JC.625 J D.850 J解析运动员做抛体运动,从起跳到达到最大高度的过程中,竖直方向做加速度为g的匀减速直线运动,则t=2hg=2×0.810s=0.4 s,竖直方向初速度v y=gt=4 m/s,水平方向做匀速直线运动,则v0=3 m/s,则起跳时的速度v=v20+v2y=32+42m/s=5 m/s。
运动员的质量为50 kg,根据动能定理得W=12m v2=625 J,故C正确,A、B、D错误。
答案 C4.如图3甲所示,固定的粗糙斜面长为10 m,一小滑块自斜面顶端由静止开始沿斜面下滑的过程中,小滑块的动能E k随位移x的变化规律如图乙所示,取斜面底端的重力势能为零,小滑块的重力势能E p随位移x的变化规律如图丙所示,重力加速度g=10 m/s2。
根据上述信息可以求出()图3A.斜面的倾角B.小滑块与斜面之间的动摩擦因数C.小滑块下滑的加速度的大小D.小滑块受到的滑动摩擦力的大小解析图乙是动能—位移图像(E k-x图像),其斜率的绝对值是小滑块所受合外力大小F合=mg sin θ-μmg cos θ,由图乙可知:F合=mg sin θ-μmg cos θ=2.5 N;图丙是重力势能—位移图像(E p-x图像),其斜率的绝对值是小滑块所受重力沿斜面向下的分量G x=mg sin θ,由图丙可知,G x=mg sin θ=10 N。
则可求出小滑块受到的滑动摩擦力的大小f=μmg cos θ=7.5 N,D正确;由于滑块质量未知,故其他量均不可求。
答案 D5.(2018·四川泸州一诊)如图4所示,木块从左边斜面的A点自静止开始下滑,经过一段水平面后,又滑上右边斜面并停留在B点。
若动摩擦因数处处相等,AB连线与水平面夹角为θ,不考虑木块在路径转折处碰撞损失的能量,则()图4A.木块与接触面间的动摩擦因数为sin θB.木块与接触面间的动摩擦因数为tan θC.两斜面的倾角一定大于θD.右边斜面的倾角可以大于θ解析设AB间的水平分位移为x,高度差为h,对从A到B间的过程运用动能定理,有:mgh-W克f =0,其中W克f=μmgx,联立解得:μ=hx=tan θ,故A错误,B正确;设左侧斜面倾角为α,木块要从左侧斜面能够滑下来满足mg sin α>μmg cos α,由于μ=tan θ,故α>θ,设右侧斜面倾角为β,木块在右侧斜面不能滑下满足mg sin β≤μmg cos β,由于μ=tan θ,故β≤θ,C、D错误。
答案 B二、多项选择题(本题5个小题,每小题6分,共30分)6.从同一水平直线上的两位置分别沿同方向抛出两小球A和B,其运动轨迹如图5所示,不计空气阻力。
要使两球在空中相遇,则必须()图5A.两球的初速度一样大B.A球初速度比B大C.同时抛出两球D.先抛出A球解析小球在竖直方向上做自由落体运动,由h=12gt2,两小球从同一高度抛出在空中某处相遇,则两小球下落时间相同,故说明两小球从同一时刻抛出,C正确,D错误;由x=v0t,A的水平位移大,说明A的初速度大,A 错误,B正确。
答案BC7.北京时间3月22日,2018年世界女子冰壶世锦赛在日本札幌进行了最终的决赛,上届冠军瑞士队以5比3战胜加拿大队卫冕成功,在近四届世锦赛中第三次夺得冠军,加拿大队获得亚军,俄罗斯队获得第三名。
一冰壶以速度v 垂直进入三个相等宽度的矩形区域做匀减速直线运动,且在刚要离开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比分别是()A.v1∶v2∶v3=3∶2∶1B.v1∶v2∶v3=3∶2∶1C.t1∶t2∶t3=1∶2∶3D.t1∶t2∶t3=(3-2)∶(2-1)∶1解析因为冰壶做匀减速直线运动,且末速度为零,故可以取反向的匀加速直线运动来研究,通过连续相等位移所用的时间之比为1∶(2-1)∶(3-2),故冰壶匀减速通过三段连续相等位移所用的时间之比为(3-2)∶(2-1)∶1,选项C错误,D正确;初速度为零的匀加速直线运动在各位移等分点的速度之比为1∶2∶3…,则冰壶匀减速进入每个矩形区域时的速度之比为3∶2∶1,选项A错误,B正确。
答案BD8.质量为2 kg的质点在竖直平面内斜向下做曲线运动,它在竖直方向的速度图像和水平方向的位移图像分别如图6甲、乙所示。
下列说法正确的是()图6A.前2 s内质点处于失重状态B.2 s末质点速度大小为4 m/sC.质点的加速度方向与初速度方向垂直D.质点向下运动的过程中机械能减小解析质点在竖直方向上有向下的加速度,可知质点在前2 s内处于失重状态,故A正确;2 s末竖直方向上的分速度为4 m/s,水平分速度为43m/s,则合速度大小为v=16+169m/s>4 m/s,故B错误;质点的加速度方向竖直向下,竖直方向和水平方向都有初速度,则合初速度不沿水平方向,质点的加速度方向与初速度方向不垂直,故C错误;质点竖直向下的加速度为1 m/s2,可知质点除受重力以外,还受到其他力,且其他力做负功,所以质点的机械能减小,故D正确。
答案AD9.若已知引力常量G,地球表面处的重力加速度g,地球半径R,地球上一个昼夜的时间T1(地球自转周期),一年的时间T2(地球公转周期),地球中心到月球中心的距离L1,地球中心到太阳中心的距离L2。
你能计算出()A.地球的质量m地=gR2 GB.太阳的质量m太=4π2L32 GT22C.月球的质量m月=4π2L31 GT21D.月球、地球及太阳的密度解析对地球表面的一个物体m0来说,应有m0g=Gm地m0R2,所以地球质量m地=gR2G,选项A正确;对地球绕太阳运动来说,有Gm太m地L22=m地4π2T22L2,则m太=4π2L32GT22,B项正确;对月球绕地球运动来说,能求地球质量,不知道月球的相关参量及月球的卫星运动参量,无法求出它的质量和密度,C、D项错误。
答案AB10.(2018·四川成都诊断)在倾角为θ的光滑斜面上有两个用轻弹簧相连接的物块A、B,它们的质量分别为m1、m2,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态。
现开始用一恒力F沿斜面方向拉物块A使之向上运动,当物块B刚要离开C时,物块A运动的距离为d,速度为v,则此时()图7A.m2g sin θ=kdB.物块A加速度为F-kd m1C.重力对物块A做功的功率大小为(kd-m2g sin θ)vD.弹簧的弹力对物块A做功的功率大小为(kd-m2g sin θ)v解析开始系统处于静止状态,弹簧弹力等于A的重力沿斜面下的分力,当B刚离开C时,弹簧的弹力等于B的重力沿斜面向下的分力,故m2g sin θ=kx2,但由于开始时弹簧是压缩的,d>x2,故m2g sin θ<kd,A错误;当B刚离开C 时,物块A 的加速度a =F -kx 2-m 1g sin θm 1,开始弹簧处于压缩状态,压缩量kx 1=m 1g sin θ,又x 1+x 2=d ,解得a =F -kd m 1,故B 正确;由于速度v 与重力夹角不为零,故物块A 重力的瞬时功率等于m 1g v sin θ,又m 1g sin θ+m 2g sin θ=kd ,所以重力做功的功率P =(kd -m 2g sin θ)v ,故C 正确;弹簧的弹力为kx 2=m 2g sin θ,则弹力对物块A 做功的功率大小为m 2g sin θ·v ,故D 错误。
答案 BC三、非选择题(本题共2个小题,共40分)11.(20分)如图8所示是跳台滑雪的示意图,雪道由倾斜的助滑雪道AB 、水平平台BC 、着陆雪道CD 及减速区DE 组成,各雪道间均平滑连接,A 处与水平平台间的高度差h =45 m ,CD 的倾角为30°。
运动员自A 处由静止滑下,不计其在雪道ABC 滑行和空中飞行时所受的阻力。
运动员可视为质点。
图8(1)求运动员滑离平台BC 时的速度;(2)为保证运动员落在着陆雪道CD 上,雪道CD 长度至少为多少?(3)若实际的着陆雪道CD 长为150 m ,运动员着陆后滑到D 点时具有的动能是着陆瞬间动能的80%。
在减速区DE ,滑行s =100 m 后停下,运动员在减速区所受平均阻力是其重力的多少倍?解析 (1)A →C 过程中机械能守恒mgh =12m v 2C① 得v C =2gh =30 m/s ②(2)设落点D ′距抛出点C 的距离为L ,由平抛运动规律得L cos 30°=v C t ③L sin 30°=12gt 2 ④解得:L =120 m ⑤(3)运动员由A 运动到落点D ′过程中,由机械能守恒得mg (h +L sin 30°)=12m v 2D ′ ⑥设运动员在减速区减速过程中所受平均阻力是重力的k 倍,根据动能定理有-kmgs =0-12m v 2D⑦ 根据题意有12m v 2D =0.80×12m v 2D ′⑧ 解得k =0.84 ⑨答案 (1)30 m/s (2)120 m (3)0.8412.(20分)如图9所示的装置由传送带AB 、水平地面CD 、光滑半圆形轨道DE 三部分组成。
一质量为5 kg 的物块从静止开始沿倾角为37°的传送带上滑下。
若传送带顺时针运动,其速度v =10 m/s ,传送带与水平地面之间通过光滑圆弧BC 相连,圆弧BC 长度可忽略不计,传送带AB 长度为L AB =16 m ,水平地面长度为L CD =6.3 m ,半圆轨道DE 的半径R =1.125 m ,物块与水平地面间、传送带间的动摩擦因数均为μ=0.5。