9.1.2不等式的性质 (2)
- 格式:doc
- 大小:44.00 KB
- 文档页数:2
铁冲中学七年级数学导学案制定人: 审核:课题 9.1.2不等式的性质(第二课时)学习目标 1、掌握一元一次不等式的解法。
2、培养学生利用类比方法学习的能力。
3、培养学生准确的计算能力 学习重点 一元一次不等式的解法;学习难点不等式性质3在解不等式中的运用。
课堂流程 学法指导教师点拨情境导入 目标点睛1.解方程(1) x -7=26 (2)3x = 2x +1 (3)32x = 50 (4)-4x=3解方程的的目的是使方程最后转换成x=a 的形式,同样解不等式的目的也要使不等式逐步化为x >a 或x <a 的形式。
合作探究 激情展示一区例1 解下列不等式,并在数轴上表示解集: (1) x -7>26 (2)3x < 2x +1(3)32x ≥ 50 (4)-4x ≤3解:(1) x -7>26根据不等式的性质 ,给不等式两边同时 ,不等式的方向 ,得x -7 >26 ∴x在数轴上表示这个解集为(2)3x < 2x +1根据 ,不等式两边都 ,不等号的方向 得3x < 2x +1 ,∴x 在数轴上表示这个解集为(3)32x ≥ 50根据不等式的性质 ,不等式两边都 不等号的方向 ,得x ∴x在数轴上表示这个解集为(4)-4x ≤3根据不等式的性质 , 不等式两边都 ,不等号的方向 ,得 ,∴x在数轴上表示这个解集为由上面的x -7>26得x >26+7,实际上是方程中的 ,即把不等式的一边的某项 后移到另一边,而 不等号的方向。
二区解方程21x-1=32 (2x+1) 仿做:解不等式21x-1≤32(2x+1) 解:去分母,得 解:去分母,得去括号,得 去括号,得 移项,得 移项,得 合并,得 合并,得 系数化为1,得 系数化为1,得 归纳:解一元一次不等式的步骤:三区1. 解下列不等式,并把解集在数轴上表示出来.(1) x -5>-1; (2)-2x >3; (3)3x <-9四区(1)4x +3<3x (2)4-2x ≥4 (3)23x -4≥0 五区解一元一次不等式防错汇总:六区巩固梳理当堂检测我的收获。
人教版数学七年级下册9.1.2《不等式的性质》教学设计1一. 教材分析《不等式的性质》是人教版数学七年级下册9.1.2的内容,本节内容是在学生已经掌握了不等式的概念和基本运算的基础上进行教学的。
本节课的主要内容是让学生了解和掌握不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,不等式的两边同时乘除同一个负数,以及不等式的传递性质。
这些性质在解决实际问题和进行不等式运算中具有重要作用。
二. 学情分析学生在七年级上册已经学习了不等式的基本概念和基本运算,对于不等式的符号和基本运算规则有一定的了解。
但是,对于不等式的性质还没有接触过,需要通过本节课的学习来掌握。
学生的思维方式主要以直观形象思维为主,因此,在教学过程中需要通过具体的例子和实际问题来帮助学生理解和掌握不等式的性质。
三. 教学目标1.了解和掌握不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,不等式的两边同时乘除同一个负数,以及不等式的传递性质。
2.能够运用不等式的性质解决实际问题和进行不等式运算。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:不等式的性质及其应用。
2.教学难点:不等式的传递性质的理解和应用。
五. 教学方法1.情境教学法:通过具体的例子和实际问题,引导学生理解和掌握不等式的性质。
2.互动教学法:通过教师提问和学生回答,引导学生主动参与课堂,巩固所学知识。
3.练习法:通过大量的练习题,让学生巩固不等式的性质,提高解题能力。
六. 教学准备1.教学PPT:制作教学PPT,包括不等式的性质的讲解和练习题。
2.练习题:准备一些关于不等式的性质的练习题,用于课堂练习和巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的内容,例如:“小明比小红高,小红比小华高,请问小明比小华高吗?”让学生思考并回答,引导学生了解不等式的性质。
9.2.1 不等式的性质(2)教学设计一、内容和内容解析1.内容利用不等式的性质解不等式,并将解集在数轴上表示.2.内容解析本节课是人教版《义务教育教科书·数学》七年级下册(以下统称为“教材”)第九章“不等式与不等式组”的第一节“不等式”的第2小节第2课时,主要在学生学习了不等式的性质,知道不等式的性质是解不等式的重要依据的基础上,利用不等式的性质将不等式进行变形.利用不等式的性质解不等式,巩固学生对不等式性质的理解,体会不等式的性质在解不等式中的运用.由于例1是解不等式的开始,所以教材在对不等式的解集除用式子表示外,再用数轴表示.一方面可以加深学生对不等式的解集以及解不等式的理解,另一方面也为学生后面学习不等式时用数轴确定不等式组的解集作了准备.基于以上分析,本节课的教学重点为:掌握不等式的基本性质并能用它们将不等式进行变形.二、目标和目标解析1.目标(1)能用不等式的性质将不等式进行变形.(2)会把不等式化为x>a或x<a的形式,求不等式的解集,并能在数轴上表示其解集.2.目标解析达到目标(1)的标志:学生通过观察,会利用不等式的性质进行变形,逐步把不等式转化为x>a或x<a的形式.达到目标(2)的标志:能够将不等式变形为x>a或x<a的形式,求出不等式的解集,并将解集表示在数轴上.三、教学问题诊断分析在七年级上学期,学生已学习解方程,知道利用等式的性质解方程,具备一定的步骤书写以及解答能力,知道利用不等式性质进行解不等式.书写过程比较容易出错的地方在于对含有未知数的x进行系数化为1时,两边乘以系数的倒数时,倒数为负数时容易忽视对不等号的方向进行改变,所以在教学过程中要指出加以改正.有些学生对解不等式的核心思想—划归思想的认识不到位,也是造成学习困难的原因,所以教师应继续加以引导,让学生深入理解解不等式的本质,掌握解不等式就是逐步向“x>a”或“x<a”转化.基于以上分析,本节课的教学难点为:不等式进行变形,求不等式的解集.四、教学过程设计1.复习引入教师提问:不等式的性质有哪些?分别用文字语言与符号语言表示出来.师生活动:学生通过回忆回答老师的提问,教师通过PPT将性质文字语言与符合语言逐一呈现出来.不等式性质文字语言符号语言性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.如果a>b,那么a±c > b±c.性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变. 如果a>b,c>0,那么ac > bc(或a b c c >).性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变. 如果a>b,c<0,那么ac < bc(或a b c c <).设计意图:复习不等式的性质,为下面使用做准备.2.例题讲解例1 利用不等式的性质解下列不等式:(1)x -7>26; (2)3x <2x +1;(3)2503x >; (4)-4x >3. 分析:解不等式,就是要借助不等式的性质使不等式逐步化为x >a 或x <a (a 为常数)的形式.解:(1)利用不等式的性质1,不等式两边加7,不等号方向不变,所以x -7+7>26+7,x >33.(2)利用不等式的性质1,不等式两边减2x ,不等号方向不变,所以3x -2x <2x -2x +1,x <1.(3)利用不等式的性质2,不等式两边乘32,不等号方向不变,所以 32350,232x ⨯>⨯ x >75.(4)利用不等式的性质3,不等式两边除以-4,不等号方向改变,所以43,44x -<-- 3.4x <-设计意图:这些不等式比较简单,可以利用不等式的性质直接求解,从而巩固对不等式性质的理解,体会这些性质在解不等式中的作用,使学生认识到解不等式,就是要借助不等式的性质使不等式逐步化为x >a 或x <a (a 为常数)的形式,渗透化归的思想.教师书写时示范解题书写过程,让学生进行模仿学习.师生活动:由于实数与数轴上的点是一一对应的,所以例1中:(1)不等式x -7>26的解集x >33也可以在数轴上表示,如图所示. (2)不等式3x <2x +1的解集x <1在数轴上的表示如图所示.(3)不等式2503x >的解集 x >75在数轴上的表示如图所示.(4)不等式-4x >3的解集34x <-在数轴上的表示如图所示.教师对(1)(2)进行示范,讲清楚在数轴上表示不等式的解集时要注意的几点:表示出数轴的三要素(方向、原点、单位长度),表示的端点不包含在数轴上画空心圆圈,解集为x<a(a为常数)的形式表示包含的折线方向向左,解集为x>a(a为常数)的形式表示包含的折线方向向右.(3)(4)由学生自己画,班上集体讨论,师生共同完成.设计意图:对不等式的解集除用式子表示外,还用数轴表示.一方面可以加深学生对不等式的解集以及解不等式的理解,另一方面也为学生后面学习不等式时用数轴确定不等式组的解集作了准备.3.巩固练习练习1 用不等式的性质解下列不等式,并在数轴上表示解集:(1)x+5>-1;(2)4x<3x-5;(3)1677x>;(4)-8x>10.师生活动:此练习学生自己解决,让四名学生进行板演,然后让学生相互纠错.让学生自己发现问题,给学生纠错的机会,而不是教师讲解.此处注意两点:一是第(4)题,利用不等式的性质3进行变形,不等号的方向改变,二是在用数轴表示不等式解集的时候,注意表示的端点不包含在数轴上画空心圆圈,解集为x<a(a为常数)的形式表示包含的折线方向向左,解集为x>a(a为常数)的形式表示包含的折线方向向右.设计意图:巩固利用不等式性质解不等式的化归思想,暴露学生可能出现的错误及时进行修正.4.概念感知提问:回看例1的四个不等式解集在数轴上表示,如果分别在(1)(2)中将数轴上表示数33的点与表示数1的点处的空心圆圈改画成实心圆点,那么此时又该怎么表示不等式的解集呢?(1)(2)师生活动:将数轴上表示数的点由空心圆圈改画成实心圆点,表示不等式的解集不包含这个数变成了包含这个数,所以(1)表示的不等式为x >33或x=33,合并为:x≥33,“≥”读作“大于或等于”,也可以说是“不小于”.(2)表示的不等式为x < 1或x=1,合并为:x≤1,“≤”读作“小于或等于”,也可以说是“不大于”.(3)(4)中表示数75的点与表示数34-的点处的空心圆圈改画成实心圆点,则让学生练习书写表达.由此获得一般性的概念:像a≥b或a≤b这样的式子,也经常用来表示两个数量的大小关系.“≥”读作“大于或等于”,也可以说是“不小于”.“≤”读作“小于或等于”,也可以说是“不大于”.如:为了表示2011年9月1日北京的最低气温是19℃,最高气温是28℃,我们可以用t表示这天的气温,t是随时间变化的,但是它有一定的变化范围,即t≥19℃并且t≤28℃.a≥b或a≤b形式的式子,具有与前面所说的不等式的性质类似的性质.设计意图:通过PPT动画演示数轴上表示某数的点画空心圆圈与画实心圆,即点不包含与包含的区别,对应着不等式解集表示的不同,让学生明确“>”与“≥”,“<”与“≤”符号之间的关系与区别.而a≥b或a≤b形式的式子,具有与前面所说的不等式的性质类似的性质,这里不详细的说明,直接给出即可,以后直接运用.例2 用不等式表示下列语句并写出解集,并在数轴上表示解集:(1)x的3倍大于或等于1;(2)x与3的和不小于6;(3)y与1的差不大于0;(4)y的14小于或等于-2.分析:(1)找出表示不等关系的关键词;(2)表达出不等式两边的式子.解:(1)语句用不等式表示为3x≥1,解集为x≥1 3 .解集在数轴上的表示如图所示.师生活动:教师示范第(1)题的解题过程,学生自己解决后三个问题,让三名学生进行板演,然后让学生相互纠错.教师要让学生自己发现问题,而不是教师讲解,给学生纠错的机会.此处注意几点:一是不等式的表示,注意“大于或等于”“小于或等于”“不小于”“不大于”等词的符号表达;二是求不等式的解集,刚开始解不等式可以把详写步骤;三是解集在数轴上的表示,注意数轴上点画空心圆圈与实心圆点的区别,表示范围的折线方向.设计意图:锻炼文字语言与符号语言的相互能力,巩固利用不等式的性质解不等式的运用,进一步掌握用数轴表示解集的方法,为解不等式组做准备.5.解决问题例3某长方体形状的容器长5 cm,宽3 cm,高10 cm.容器内原有水的高度为3 cm,现准备向它继续注水.用V(单位:cm3)表示新注入水的体积,写出V的取值范围.分析:本题基本数量关系,容器中液体的体积(新注入水的体积V+原有水的体积)≤容器的容积.解:新注入水的体积V与原有水的体积的和不能超过容器的容积,即V+3×5×3≤3×5×10,V≤105.又由于新注入水的体积V不能是负数,因此,V的取值范围是V≥0并且V≤105.在数轴上表示V的取值范围如图所示.设计意图:提出这个实际问题,一是让学生体会“≥”“≤”这两个符号的的意义,而它的解集在数轴上对应的是包含两端点的区间(闭区间),这里并没有把解集写成连写的形式(0≤V≤105),为后面学习一元一次不等式的解集分散难点.6.梳理反思,归纳总结本节课你学到了哪些知识?有什么收获?你还有什么质疑?设计意图:师生共同归纳本节课所学内容,明确简单的一元一次不等式的解法,体会生活中的许多实际问题都可以用不等式的知识去解决.7.布置作业巩固性作业(必做):教科书P120习题5,7.拓展性作业(希望大家都做):练习册P34.研究性作业:比较解不等式与解方程的过程,从依据与结果谈谈两者之间的相同点与不同点.设计意图:分层设计作业,使得不同的层次学生都有不同的收获.六、板书设计9.1.2 不等式的性质(第2课时)不等式性质文字语言符号语言如果a>b,那么a±c > b±c.性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变. 如果a>b,c>0,那么ac > bc(或a b c c >).性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变. 如果a>b,c<0,那么ac < bc(或a b c c <).3.用不等式来解决实际问题时,对解集的取值范围还需要考虑实际意义.七、教学反思本节课教学过程贯穿了“尝试—引导—示范—归纳—练习—点评”等一系列环节,旨在改变学生的学习方式,将被动的、接受式的学习方式转变为动手实践、自主探索和合作交流等方式.教师的组织者、引导者与合作者的角色在这节课得到了充分的体现.教师尊重学生的个体差异,满足多样化学习的要求.对学习确实有困难的学生,及时给予关系和帮助,鼓励它们主动参与数学学习活动,尝试着用自己的方式去解决问题,勇于发表自己的观点.。
《9.1.2不等式的性质》第二课时教案一、教学目标:知识与技能目标:使学生熟练掌握简单不等式的解法,初步认识不等式的应用价值。
过程与方法目标:对比简单不等式的解法与方程的解法,让学生感知不等式与方程的不同作用与内在联系,体会其中渗透的类比思想。
情感与价值观目标:让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。
二、教学的重、难点重点:会用不等式的性质准确地解简单不等式难点:确定不等量关系解决简单的实际问题三、教学方法:引导发现法四、教学过程:活动一:复习引入1.用“>”或“<”填空。
(1)若a>b,那么a+2 b+2; (2)若a<b,那么3a 3b ;(3)若-a<-b,那么a b ;(4)若6a+1>6b+1,那么a b ;2.解下列不等式,并在数轴上表示解集强调:解不等式要注意当两边同时乘或除以一负数时,要改变不等号的方向。
设计意图:通过练习1复习不等式的性质,为进一步学习不等式的解法做好准备;练习2规范书写格式,使学生对解不等式的过程从感性认识逐步上升到理性认识,同时渗透类比思想。
活动二:学习新知关于a ≥b 或a ≤b 形式的式子1.填空。
(1)像a ≥b 或a ≤b 这样的式子,也经常用来表示两个数量的________关系.(2)符号“≥”读作“大于或等于”,也可以说是“ ”。
符号“≤”读作“ ”,也可以说是 “ ”. .26)3(;2-35)2(;35)1(>-<>-x x x x0 105-2 4 0 (3)a ≥b 或a ≤b 形式的式子,具有与前面所说的_________的性质类似的性质.2.完成教材119页练习第二题。
师生活动:学生自主分析,并写出不等式,求出答案,并说明理由。
设计意图:通过阅读教材完成填空和相应的练习题培养学生自主学习的能力;练习第二题让学生用式子表示,发展学生的符号感,同时加深学生对不等式的理解。
人教版七年级下册9.1.2《不等式的性质》课程教学设计1 / 49.1.2 不等式的基本性质普定县马官中学教师:曹倩一、教学目标 (一)知识与技能:1.探索并理解不等式的基本性质。
2.体会探索过程中所应用的归纳和类比方法。
(二)过程和方法:1.通过联想等式的性质,探究不等式的性质,初步体会“类比”的数学思想。
2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般,由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。
(三)情感、态度与价值观:通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好思维品质。
培养学生对数学的好奇心与求知欲,并从数学学习活动中获得成功的体验。
二、教学重点探索不等式的基本性质。
三、教学难点不等式性质3的探索及其理解。
四、教学过程 1.复习引入:教师引出本节课所学内容:在上一节课,我们学习了什么是不等式。
对于某些简单的不等式,我们可以直接想出它们的解集,例如不等式63>+x 的解集是3>x ,不等式82<x 的解集是4<x 。
但是对于比较复杂的不等式,例如452615->-+x x ,直接想出解集就比较困难。
因此,还要讨论怎样解不等式。
与解方程需要依据等式的性质一样,解不等式需要依据不等式的性质。
这节课我们先来看看不等式有什么性质。
板书课题:9.1.2不等式的性质问题1:等式有什么性质?师生活动:学生作答,教师归纳总结,为下一步引出不等式性质作铺垫。
2.探究新知:问题2:探究等式性质时在等式的两边同时作哪些相同的运算?运算后结果如何?师生活动:学生各抒己见,必要时,教师给予提示。
设计意图:从学生已有的数学经验出发,建立新旧知识之间的联系,通过总结等式性质的探究方法,明确不等式性质的探究方向。
问题3:为了研究不等式的性质,我们可以先从一些数字的运算开始。
用“<”或“>”完成下列两组填空,你能发现其中的规律吗?(1)5 >3,5+2 3+2,5+(-2)3+(-2),5+0 3+0;5-2 3-2; 5-(-2) 3-(- 2),5-0 3-0;(2)-1<3,(-1)+2 3+2,(-1)+(-3) 3+(-3),(-1)+0 3+0;-1-2 3-2,-1-(-3) 3-(- 3),-1-0 3-0.师生活动:学生作答,教师引导学生通过类比等式性质1,获得“当不等式两边加(或减)同一个数(或式子)时,不等号的方向不变。
9.1.2不等式的性质(2)岚皋县城关中学数学教研组:余静一、课标分析数学新课程标准提到:要注重提高学生的数学思维能力,即“在学生学习数学运用数学解决问题时,应经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程”。
通过认真学习领会新课程标准,我在不等式的性质(2)教学设计中注重类比思想的应用,采用传统的讲练结合的方法进行教学。
二、教材分析(1)本节内容是新人教版七年级下第九章《不等式与不等式组》中的重点部分,是在学习了不等式的三条基本性质定理后,进一步理解不等式的性质,会解简单的一元一次不等式,能在数轴上表示出解集,并了解含有符号“≥”和“≤”的不等式。
(2)不等式的性质是后继深入学习一元一次不等式(组)以及解决与不等式有关问题的基础和依据。
教材中列举了不等式的三条基本性质定理,这三条性质是不等式的最基本、也是最重要的性质,不仅要掌握它们的内容、理解掌握它们成立的条件、把握它们之间的联系,还要对这些性质进行拓展探究。
(3)不等式的性质是培养学生数学能力的良好题材,学习不等式,要经常用到观察、分析、归纳、猜想的思想,还要综合运用前面的知识解决不等式中的一些问题,这些都有助于学生数学能力的提高。
(4)在本章内容之前我们已经学习了一元一次方程和二元一次方程组的内容,现在再学习一元一次不等式和一元一次不等式组已是顺理成章的了,但是知识体系的变化会引起对不等式整个内容的理解与把握上的不同,相应问题的难度与方程的综合程度会有所加大,并且突出由一些具体的实际问题抽象为不等关系模型的过程,让学生体会建立不等关系及学习一元一次不等式和一元一次不等式组的意义,并且关注学生学习习惯的养成,渗透方程、不等式思想。
因此,“不等式的性质”在初中数学内容里占有十分重要的地位。
它在利用不等式的观点解决问题中起着十分重要的作用,为培养创新意识和实践能力提供了重要方式和途径三、学生分析从学生的知识上看,学生已经掌握了等式的性质和解一元一次方程,并初步掌握了不等式的性质,接下来的任务是进一步理解不等式的性质并了解含有符号“≥”和“≤”的不等式。
学科:数学授课教师:张辉贤年级:七时间:课题§9.1.2不等式的性质(2)课时数
教学目标知识与技能
巩固不等式的性质,并利用不等式的性质解决简单的实
际问题。
过程与方法通过类比等式性质来学习不等式的性质。
情感价值观
在利用一元一次不等式解决问题的过程中,感受数学的
应用价值,提高分析问题、解决问题的能力。
教学重点不等式的性质及在实际问题中建立一元一次不等式的数量关系。
教学难点根据实际问题建立一元一次不等式
教学方法类比探究
使用媒体多媒体
教学过程
教学
流程
教学活动学生活动设计意图
复习1.叙述不等式的性质。
2.用不等式表示下列语句并写出解集:
(1)x与5的差小于或等于6:
(2)y与的6倍不小于12。
口答
板书
复习性质
解集的表示
例题
解析
课本P119页:例题2的解析讨论解答应用知识
巩固练习1、课本P119页练习第2题
2、某公司要招甲、乙两种工作人员30人,甲种工
作人员月薪600元,乙种工作人员月薪1000元.现
要求每月的工资不能超过2.2万元,问至多可招乙
种工作人员多少名?
板演巩固知识
深化提高例3 已知不等式3x-a≤0的解集是x≤2,求a的取值范围. 探究讨论
深化应用
课堂
不等式的性质及在实际问题中建立不等式的数量关系
小结
作业
P120页:习题9.1:第7、8、9题
布置
教学
列不等式解决实际问题与列方程解实际问题类似。
反思。