(通用版)2019版高考数学二轮复习课件+训练:专题跟踪检测(四)“导数与不等式”考法面面观理(重点生,含解析)
- 格式:doc
- 大小:73.79 KB
- 文档页数:6
专题跟踪检测(四) “导数与不等式”考法面面观
1.(2019届高三·唐山模拟)已知f (x )=12x 2-a 2
ln x ,a >0.
(1)求函数f (x )的最小值; (2)当x >2a 时,证明:
f x -f a x -2a >3
2
a .
解:(1)函数f (x )的定义域为(0,+∞),
f ′(x )=x -a 2x =x +a x -a
x
.
当x ∈(0,a )时,f ′(x )<0,f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,f (x )单调递增.
所以当x =a 时,f (x )取得极小值,也是最小值,且f (a )=12a 2-a 2
ln a .
(2)证明:由(1)知,f (x )在(2a ,+∞)上单调递增, 则所证不等式等价于f (x )-f (2a )-3
2a (x -2a )>0.
设g (x )=f (x )-f (2a )-3
2a (x -2a ),
则当x >2a 时,
g ′(x )=f ′(x )-32a =x -a 2
x -3
2a
=
x +a
x -2a
2x
>0,
所以g (x )在(2a ,+∞)上单调递增, 当x >2a 时,g (x )>g (2a )=0, 即f (x )-f (2a )-3
2a (x -2a )>0,
故
f x -f a x -2a >3
2
a .
2.已知函数f (x )=x e x
+2x +a ln x ,曲线y =f (x )在点P (1,f (1))处的切线与直线x +2y -1=0垂直.
(1)求实数a 的值; (2)求证:f (x )>x 2
+2.
解:(1)因为f ′(x )=(x +1)e x
+2+a
x
,
所以曲线y =f (x )在点P (1,f (1))处的切线斜率k =f ′(1)=2e +2+a .
而直线x +2y -1=0的斜率为-1
2
,
由题意可得(2e +2+a )×⎝ ⎛⎭
⎪⎫-12=-1, 解得a =-2e.
(2)证明:由(1)知,f (x )=x e x
+2x -2eln x . 不等式f (x )>x 2
+2可化为x e x +2x -2eln x -x 2
-2>0. 设g (x )=x e x
+2x -2eln x -x 2
-2, 则g ′(x )=(x +1)e x
+2-2e x
-2x .
记h (x )=(x +1)e x
+2-2e x
-2x (x >0),
则h ′(x )=(x +2)e x
+2e x
2-2,
因为x >0,所以x +2>2,e x >1,故(x +2)e x
>2, 又2e x 2>0,所以h ′(x )=(x +2)e x
+2e x
2-2>0,
所以函数h (x )在(0,+∞)上单调递增. 又h (1)=2e +2-2e -2=0,
所以当x ∈(0,1)时,h (x )<0,即g ′(x )<0,函数g (x )单调递减; 当x ∈(1,+∞)时,h (x )>0,即g ′(x )>0,函数g (x )单调递增. 所以g (x )≥g (1)=e +2-2eln 1-1-2=e -1, 显然e -1>0,
所以g (x )>0,即x e x +2x -2eln x >x 2+2,也就是f (x )>x 2
+2.
3.(2018·武汉模拟)设函数f (x )=(1+x -x 2
)e x
(e =2.718 28…是自然对数的底数). (1)讨论f (x )的单调性;
(2)当x ≥0时,f (x )≤ax +1+2x 2
恒成立,求实数a 的取值范围. 解:(1)f ′(x )=(2-x -x 2
)e x =-(x +2)(x -1)e x
. 当x <-2或x >1时,f ′(x )<0;当-2
所以f (x )在(-∞,-2),(1,+∞)上单调递减,在(-2,1)上单调递增. (2)设F (x )=f (x )-(ax +1+2x 2
),F (0)=0,
F ′(x )=(2-x -x 2)e x -4x -a ,F ′(0)=2-a ,
当a ≥2时,F ′(x )=(2-x -x 2
)e x -4x -a ≤-(x +2)·(x -1)e x
-4x -2≤-(x +2)(x -1)e x
-x -2=-(x +2)[(x -1)e x +1],
设h (x )=(x -1)e x
+1,h ′(x )=x e x
≥0,所以h (x )在[0,+∞)上单调递增,h (x )=(x -1)e x
+1≥h (0)=0,
即F ′(x )≤0在[0,+∞)上恒成立,F (x )在[0,+∞)上单调递减,F (x )≤F (0)=0,所以f (x )≤ax +1+2x 2
在[0,+∞)上恒成立.
当a <2时,F ′(0)=2-a >0,而函数F ′(x )的图象在(0,+∞)上连续且x →+∞,F ′(x )逐渐趋近负无穷,必存在正实数x 0使得F ′(x 0)=0且在(0,x 0)上F ′(x )>0,所以F (x )在(0,x 0)上单调递增,此时F (x )>F (0)=0,f (x )>ax +1+2x 2
有解,不满足题意.
综上,a 的取值范围是[2,+∞).
4.(2018·南昌模拟)设函数f (x )=2ln x -mx 2
+1. (1)讨论函数f (x )的单调性;
(2)当f (x )有极值时,若存在x 0,使得f (x 0)>m -1成立,求实数m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞), f ′(x )=2x
-2mx =
-mx 2-x
,
当m ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增; 当m >0时,令f ′(x )>0,得0 , 令f ′(x )<0,得x >m m , ∴f (x )在⎝ ⎛⎭⎪⎫0, m m 上单调递增,在⎝ ⎛⎭ ⎪⎫ m m ,+∞上单调递减. (2)由(1)知,当f (x )有极值时,m >0,且f (x )在⎝ ⎛ ⎭⎪⎫0,m m 上单调递增,在⎝ ⎛⎭ ⎪⎫m m ,+∞上单调递减. ∴f (x )max =f ⎝ ⎛⎭ ⎪⎫ m m =2ln m m -m ·1m +1=-ln m , 若存在x 0,使得f (x 0)>m -1成立,则f (x )max >m -1. 即-ln m >m -1,ln m +m -1<0成立. 令g (x )=x +ln x -1(x >0), ∵g ′(x )=1+1 x >0,∴g (x )在(0,+∞)上单调递增,且g (1)=0,∴0 ∴实数m 的取值范围是(0,1). 5.(2018·成都模拟)已知函数f (x )=a ln x +x b (a ≠0). (1)当b =2时,讨论函数f (x )的单调性; (2)当a +b =0,b >0时,对任意的x ∈⎣⎢⎡⎦ ⎥⎤1e ,e ,恒有f (x )≤e-1成立,求实数b 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞).