2020版高考数学专用精练:第三章 阶段自测卷(二)
- 格式:rtf
- 大小:5.15 MB
- 文档页数:11
2020年高考数学(理)重难点03 空间向量与立体几何【高考考试趋势】立体几何在高考数学是一个必考知识点,一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.前面的重点专题已经对立体几何进行了一系列详细的说明,本专题继续加强对高考中立体几何出现的习题以及对应的题目类型进行必要的加强.本专题包含了高考中几乎所有题型,学完本专题以后,对以后所有的立体几何你将有一个更加清晰的认识.【知识点分析以及满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2019·遵义航天高级中学高考模拟(理))一个几何体的三视图如图所示,则该几何体的体积为()A.83B.163C.203D.8【答案】B 【解析】由图可知该几何体底面积为8,高为2的四棱锥,如图所示:∴该几何体的体积1168233V =⨯⨯= 故选B【点睛】:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽. 2.(2019·天津高考模拟(理))已知四面体ABCD 的四个面都为直角三角形,且AB ⊥平面BCD ,2AB BD CD ===,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .3πB .C .D .12π【答案】D 【解析】 【分析】由已知中的垂直关系可将四面体放入正方体中,求解正方体的外接球表面积即为所求的四面体外接球的表面积;利用正方体外接球半径为其体对角线的一半,求得半径,代入面积公式求得结果. 【详解】2BD CD ==Q 且BCD ∆为直角三角形 BD CD ∴⊥又AB ⊥平面BCD ,CD ⊂平面BCD CD AB ∴⊥CD \^平面ABD由此可将四面体ABCD 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球O正方体外接球半径为体对角线的一半,即12R == ∴球O 的表面积:2412S R ππ==本题正确选项:D 【点睛】本题考查多面体的外接球表面积的求解问题,关键是能够通过线面之间的位置关系,将所求四面体放入正方体中,通过求解正方体外接球来求得结果.3.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确; 对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确; 对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥, 若1DP BC ⊥,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选:C . 【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.4.(2019·贵州高考模拟(理))设,m n 是两条不同的直线,,αβ是两个不同的平面,有下列四个命题:∴若m α⊂,αβ⊥,则m β⊥; ∴若//a β,m β⊂,则//m α; ∴若m α⊥,//m n ,//αβ,则n β⊥; ∴若//m α,//n β,//m n ,则//αβ其中正确命题的序号是( ) A .∴∴ B .∴∴C .∴∴D .∴∴【答案】C 【解析】∴两个面垂直,推不出面中任意直线和另一个面垂直,错误;故排除A 、B 选项,对于∴,两个平行平面,其中一个平面内的任意直线都和另一个平面平行,故正确,所以选C.5.(2019·福建高考模拟(理))在三棱锥P ABC -中,3PA PB ==,BC =8AC =,AB BC ⊥,平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为( ).A B C D .2【答案】A 【解析】 【分析】取AB 中点D ,AC 中点E ,连PD ,ED ,得E 为∴ABC 外接圆的圆心,且OE∴平面PAB ,然后求出∴PAB 的外接圆半径r 和球心O 到平面PAB 的距离等于d ,由勾股定理得R .【详解】解:取AB 中点D ,AC 中点E ,连PD ,ED 因为AB BC ⊥,所以E 为∴ABC 外接圆的圆心因为OE∴PD ,OE 不包含于平面PAB ,所以OE∴平面PAB 因为平面PAB ⊥平面ABC ,3PA PB ==,得PD ⊥AB ,ED ⊥AB 所以PD ⊥平面ABC ,ED ⊥平面PAB且AB ==PD 1=所以球心O 到平面PAB 的距离等于ED d ==在∴PAB 中,3PA PB ==,AB =1sin 3PAB ∠=, 所以∴PAB 得外接圆半径2r 9sin PB PAB ∠==,即9r 2=由勾股定理可得球O 的半径R ==故选:A. 【点睛】本题考查了三棱锥的外接球问题,经常用球中勾股定理R =R 是外接球半径,d 是球心到截面距离,r 是截面外接圆半径.二、解答题6.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,//AB AD AB CD ⊥,224AB AD CD ===,4PC =.(1)证明:当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC ; (2)求锐二而角A PB C --的余弦值.【答案】(1)证明见解析;(2)5. 【解析】 【分析】(1)由PC ⊥底面ABCD ,证得AC PC ⊥,又由勾股定理,得AC CB ⊥,利用线面垂直的判定定理,得到AC ⊥平面PBC ,再由面面垂直的判定定理,可得平面EAC ⊥平面PBC ,即可得到结论;(2)分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系,求得平面PBC 和平面PAB 的法向量,利用向量的夹角公式,即可求解. 【详解】(1)由题意,因为PC ⊥底面ABCD ,AC ⊂平面ABCD ,所以AC PC ⊥,又因为224AB AD CD ===,所以4AB =,2AD CD ==,所以AC BC ==,所以222AC BC AB +=,从而得到AC CB ⊥.又BC ⊂Q 平面PBC ,PC ⊂平面PBC ,BC PC C ⋂=,所以AC ⊥平面PBC , 又AC ⊂Q 平面ACE ,所以平面EAC ⊥平面PBC , 所以当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC. (2)由条件知PC ⊥底面ABCD ,且AB AD ⊥, AB C D ∥所以过点C 作CF CD ⊥交AB 于点F ,分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系(如图所示),所以(0,0,0)C ,(2,2,0)A ,(2,2,0)B -,(0,0,4)P .由(1)知CA u u u r为平面PBC 的一个法向量,因为(2,2,0)CA =u u u r,(2,2,4)PA =-u u u r (2,2,4)PB =--u u u r ,设平面P AB 的一个法向量为(,,)n=x y z r,则(,,)(2,2,4)00(,,)(2,2,4)00x y z n PA x y z n PB ⎧⋅-=⎧⋅=⇒⎨⎨⋅--=⋅=⎩⎩u uu v r u u u v r ,即02x y z=⎧⎨=⎩,令1z =,则2y =,所以(0,2,1)n =r,所以|||cos ,|5||||CA n CA n CA n ⋅〈〉===uu r ruu r r uu r r ,故锐二面角A PB C --的余弦值5.【点睛】本题考查了线面垂直与面面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.7(2017·广东高考模拟(理))如图,在四棱锥P ABCD -中,90,60ABC ACD BAC CAD ∠=∠=︒∠=∠=︒, PA ⊥平面ABCD ,2,1PA AB ==.(1)设点E 为PD 的中点,求证: //CE 平面PAB ;(2)线段PD 上是否存在一点N ,使得直线CN 与平面PAC 所成的角θ的正弦值为5?若存在,试确定点N 的位置;若不存在,请说明理由. 8.(2019·天津市新华中学高考模拟(理))如图所示的几何体中,PD 垂直于梯形ABCD所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,112PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ; (2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.【答案】(1)见解析(23)在线段EF 上存在一点Q 满足题意,且FQ =【解析】 【分析】(1)由题意结合线面平行的判定定理即可证得题中的结论;(2)建立空间直角坐标系,利用两个半平面的法向量可得二面角的余弦值,然后利用同角三角函数基本关系可得二面角的正弦值;(3)假设点Q 存在,利用直线的方向向量和平面的法向量计算可得点Q 的存在性和位置. 【详解】(1)因为四边形PDCE 为矩形,所以N 为PC 的中点.连接FN ,在PAC V 中,,F N 分别为,PA PC 的中点,所以FN AC ∥, 因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC P 平面DEF .(2)易知,,DA DC DP 两两垂直,如图以D 为原点,分别以,,DA DC DP 所在直线为,,x y z 轴,建立空间直角坐标系.则(1,0,0),(1,1,0),(0,2,0)P A B C,所以(1,1,,(1,1,0)PB BC ==-u u u r u u u r.设平面PBC 的法向量为(,,)m x y z =r,则(,,)(1,1,0(,,)(1,1,0)0m PB x y z m BC x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u u v r u u u v r即0,0,x y x y ⎧+=⎪⎨-+=⎪⎩解得,,y x z =⎧⎪⎨=⎪⎩令1x =,得1,y z =⎧⎪⎨=⎪⎩所以平面PBC的一个法向量为m =r. 设平面ABP 的法向量为(,,)n x y z =r,(,,)(0,1,0)0(,,)(1,1,0n AB x y z n PB x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u uv r u u uv r ,据此可得01x y z ⎧=⎪=⎨⎪=⎩, 则平面ABP的一个法向量为)n =r,cos ,3m n <>==u r r,于是sin ,3m n 〈〉=r r. 故二面角A PB C --(3)设存在点Q 满足条件.由1,0,,(0,22F E ⎛⎫ ⎪ ⎪⎝⎭, 设(01)FQ FE λλ=u u u r u u u r &剟,整理得1),2,22Q λλλ⎛⎫-+ ⎪ ⎪⎝⎭,则1,22BQ λλ⎛+=-- ⎝⎭u u u r . 因为直线BQ 与平面BCP 所成角的大小为6π,所以1sin |cos ,|||62||||BQ m BQ m BQ m π⋅====⋅u u u r u ru u u r u r u u ur u r 解得21λ=,由知1λ=,即点Q 与E 重合.故在线段EF 上存在一点Q,且FQ EF ==. 【点睛】本题的核心在考查空间向量的应用,需要注意以下问题:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设,m n u r r 分别为平面α,β的法向量,则二面角θ与,m n <>u r r互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.9.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,ABC ∆为等边三角形,22PA AB ==,AC CD ⊥,PD 与平面PAC 所成角的正切值 为5.(∴)证明://BC 平面PAD ;(∴)若M 是BP 的中点,求二面角P CD M --的余弦值.【答案】(∴)见解析.(∴ 【解析】 【分析】(∴)先证明DPC ∠为PD 与平面PAC 所成的角,于是可得CD =60CAD ∠=︒.又由题意得到60BCA ∠=︒,故得//BC AD ,再根据线面平行的性质可得所证结论. (∴) 取BC 的中点N ,连接AN ,可证得AN AD ⊥.建立空间直角坐标系,分别求出平面PCD 和平面CDM 的法向量,根据两个法向量夹角的余弦值得到二面角的余弦值. 【详解】(∴)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 所以PA CD ⊥又AC CD ⊥,CA PA A =I , 所以CD ⊥平面PAC ,所以DPC ∠为PD 与平面PAC 所成的角. 在Rt PCD V中,PC ==所以CD =所以在Rt PCD V 中,2AD =,60CAD ∠=︒. 又60BCA ∠=︒,所以在底面ABCD 中,//BC AD , 又AD ⊂平面PAD ,BC ⊄平面PAD , 所以//BC 平面PAD .(∴)解:取BC 的中点N ,连接AN ,则AN BC ⊥,由(∴)知//BC AD , 所以AN AD ⊥,分别以AN ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系Axyz .则(0,0,2)P,1,02C ⎫⎪⎪⎝⎭,(0,2,0)D,1,14M ⎫-⎪⎪⎝⎭所以3,,022CD ⎛⎫=- ⎪ ⎪⎝⎭uu u r ,(0,2,2)PD =-u u ur,9,,144DM ⎛⎫=- ⎪ ⎪⎝⎭uuu u r设平面PCD 的一个法向量为()1111,,n x y z =u r,由1100n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩u u u vu u u v,即111130220y y z ⎧+=⎪⎨-=⎪⎩,得1111x z y ⎧=⎪⎨=⎪⎩,令11y =,则1,1)n =u r.设平面CDM 的一个法向量为()2222,,n x y z =u ur,由2200n CD n MD ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u u v,即2222230940y y z ⎧+=⎪-+=,得222232x y z ⎧=⎪⎨=⎪⎩, 令21y =,则232n ⎫=⎪⎭u u r .所以121212331cos ,||||n n n n n n ++⋅<>===⋅u r u u ru r u u r u r u u r 由图形可得二面角P CD M --为锐角, 所以二面角P CD M --【点睛】空间向量是求解空间角的有利工具,根据平面的法向量、直线的方向向量的夹角可求得线面角、二面角等,解题时把几何问题转化为向量的运算的问题来求解,体现了转化思想方法的利用,不过解题中要注意向量的夹角和空间角之间的关系,特别是求二面角时,在求得法向量的夹角后,还要通过图形判断出二面角是锐角还是钝角,然后才能得到结论. 10.(2018·吉林高考模拟(理))如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F , M , N 分别是棱AB , AD , 11A B , 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)见解析;(2)12λ=±.【解析】以D 为原点,射线DA , DC , 1DD 分别为x , y , z 轴的正半轴建立如图所示的空间直角坐标系D xyz -.由已知得()2,2,0B , ()10,2,2C ,()2,1,0E ,()1,0,0F , ()0,0,P λ, ()1,0,2N , ()2,1,2M ,则()12,0,2BC =-u u u u r, ()1,0,FP λ=-u u u r , ()1,1,0FE =u u u r , ()1,1,0NM =u u u u r , ()1,0,2NP λ=--u u u r.(1)当1λ=时, ()1,0,1FP =-u u u r ,因为()12,0,2BC =-u u u u r ,所以12BC FP =u u u u r u u u r,即1//BC FP ,又FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ . (2)设平面EFPQ 的一个法向量为(),,n x y z =r,则由0{0FE n FP n ⋅=⋅=u u u r ru u u r r,得0{0.x y x z λ+=-+=,于是可取(),,1n λλ=-r . 设平面MNPQ 的一个法向量为()',','m x y z =r,由0{0NM m NP m ⋅=⋅=u u u u r ru u u r r,得()''0{'2'0x y x z λ+=-+-=,于是可取()2,2,1m λλ=--r. 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10m n λλλλ⋅=--⋅-=r r,即()()2210λλλλ---+=,解得1λ=±,显然满足02λ<<.故存在1λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.点睛:立体几何的有关证明题,首先要熟悉各种证明的判定定理,然后在进行证明,要多总结题型,对于二面角问题一般直接建立空间直角坐标系,求出法向量然后根据向量夹角公式求解二面角,要注意每一个坐标的准确性。
2020年高考数学第二次模拟试卷(文科)一、选择题1.已知集合M={x|≤0},N={x|x2﹣6x+5<0},则M∪N=()A.{x|1<x<7}B.{x|1<x≤7}C.{x|3<x<5}D.{x|3≤x<5} 2.已知i为虚数单位,若复数z满足zi=(1﹣i)(2+i),则z=()A.﹣1﹣3i B.3+i C.1+3i D.﹣3+i3.从某校高三年级学生中按分层抽样的方法从男、女同学中共抽取90人进行考前心理辅导,若在女同学层次中每个个体被抽到的概率为,则高三年级总人数为()A.560B.300C.270D.274.函数y=A sin(ωx+φ)+b在一个周期内的图象如图(其中A>0,ω>0,|φ|<),则函数的解析式为()A.y=2sin(x+)+1B.y=2sin(2x+)+1C.y=2sin(x﹣)+1D.y=2sin(2x﹣)+15.如图,在△ABC中,=2,P是BN上一点,若=t+,则实数t的值为()A.B.C.D.6.若=3,则sinθcosθ+cos2θ的值是()A.1B.﹣C.D.﹣17.函数f(x)满足3f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),且f(1)=,则f (2020)=()A.B.﹣C.﹣D.8.过抛物线C:y2=2px(p>0)的焦点,且倾斜角为的直线与物线交于A,B两点,若|AB|=16,则抛物线的方程为()A.y2=2x B.y2=3x C.y2=4x D.y2=8x9.在三棱锥P﹣ABC中,AP⊥平面PBC,PA=2PB=2PC=2,BC=,则三棱锥P﹣ABC的外接球体积为()A.3πB.C.8πD.π10.设α,β为两个平面,命题p:α∥β的充要条件是α内有无数条直线与β平行;命题q:α∥β的充要条件是α内任意一条直线与β平行,则下列说法正确的是()A.“¬p∧¬q”为真命题B.“p∧q”为真命题C.“¬p∧q”为真命题D.“p∨¬q”为真命题11.△ABC的内角A、B、C的对边分别为a、b、c,且b=a(cos C+sin C),若a=1,c =,则角C的大小为()A.B.或C.D.或12.已知函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,则k的取值集合是()A.{k|k<0}B.{k|0}C.{}D.{0}二、填空题13.2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有对垃圾分类或未投放到指定垃圾桶内都会被处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投收到楼下的“可回收物”、“有害垃圾、“湿垃圾”,“干垃圾”四个垃圾桶内,则该居民会被处罚的概率为.14.计算:log10+log50.25﹣()=.15.已知函数f(x)=x﹣2f'(1)ln(x+1)﹣f(0)e x,则f(x)的单调递减区间为.16.过双曲线﹣=1(a>0,b>0)的右焦点F作渐近线的垂线l,垂足为M,l与y 轴交于点P,若=λ,且双曲线的离心率为,则λ的值为.三、解答题:共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.已知等差数列{a n}的前n项和为S n,公差d≠0,S4+S6=31且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n﹣3a n}是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.18.某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价x(单位:千元)与销量y(单位:百件)的关系如表所示:单价x(千元)1 1.52 2.53销量y(百件)10876t已知=,y i=7.(Ⅰ)若变量x,y具有线性相关关系,求产品销量y(百件)关于试销单价x(千元)的线性回归方程=x+;(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与x i对应的产品销量的估计值,当销售数据(x i,y i)对应的残差满足|i﹣y i|<0.3时,则称(x i,y i)为一个“好数据”,现从5个销售数据中任取3个,求其中“好数据”的个数至少为2个的概率.参考公式:==,=﹣.19.如图1,在等腰梯形ABCD中,AD∥BC,AD=2BC=4,∠ABC=120°,E为AD的中点.现分别沿BE,EC将△ABE和△ECD折起,点A折至点A1,点D折至点D1,使得平面A1BE⊥平面BCE,平面ECD1⊥平面BCE,连接A1D1,如图2.(Ⅰ)若M、N分别为EC、BC的中点,求证:平面D1MN∥平面A1BE;(Ⅱ)求多面体A1BCD1E的体积.20.已知椭圆C:+=1(a>b>0)的离心率为,过其右焦点F与长轴垂直的直线与椭圆在第一象限交于点M,且|MF|=.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆C的左、右顶点分别为A,B,点P是椭圆上的动点,且点P与点A,B 不重合,直线PA,PB与直线x=﹣4分别交于点S,T,求证:以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).21.已知函数f(x)=e x﹣2ax﹣2a,a∈R.(Ⅰ)若函数f(x)在x=0处的切线垂直于y轴,求函数f(x)的极值;(Ⅱ)若函数f(x)有两个零点x1,x2,求实数a的取值范围,并证明:(x1+1)(x2+1)<1.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应题号的方框涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程是(φ为参数,0≤φ≤π),在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2的极坐标方程是ρ=4,等边△ABC的顶点都在C2上,且点A,B,C按照逆时针方向排列,点A的极坐标为(4,).(Ⅰ)求点A,B,C的直角坐标;(Ⅱ)设P为C1上任意一点,求点P到直线BC的距离的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+3﹣|x+1|﹣|x﹣1|.(Ⅰ)求不等式f(x)≥0的解集M;(Ⅱ)在(Ⅰ)的条件下,若m,n∈M,求证:|m+n|≤|mn+1|.参考答案一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|≤0},N={x|x2﹣6x+5<0},则M∪N=()A.{x|1<x<7}B.{x|1<x≤7}C.{x|3<x<5}D.{x|3≤x<5}【分析】求出集合M,N,由此能求出M∪N.解:∵集合M={x|≤0}={x|3≤x<7},N={x|x2﹣6x+5<0}={x|1<x<5},∴M∪N={x|1<x<7}.故选:A.2.已知i为虚数单位,若复数z满足zi=(1﹣i)(2+i),则z=()A.﹣1﹣3i B.3+i C.1+3i D.﹣3+i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:∵zi=(1﹣i)(2+i)=3﹣i,∴z=.故选:A.3.从某校高三年级学生中按分层抽样的方法从男、女同学中共抽取90人进行考前心理辅导,若在女同学层次中每个个体被抽到的概率为,则高三年级总人数为()A.560B.300C.270D.27【分析】由题意利用分层抽样的定义,求得结果.解:设高三年级总人数为x,则由题意可得=,∴x=300(人),故选:B.4.函数y=A sin(ωx+φ)+b在一个周期内的图象如图(其中A>0,ω>0,|φ|<),则函数的解析式为()A.y=2sin(x+)+1B.y=2sin(2x+)+1C.y=2sin(x﹣)+1D.y=2sin(2x﹣)+1【分析】由函数的图象的顶点坐标求出A和b,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解:结合函数y=A sin(ωx+φ)+b在一个周期内的图象,可得A==2,b=1,•=﹣,∴ω=2.再根据五点法作图可得2×+φ=0,求得φ=﹣,故函数的解析式为y=2sin(2x ﹣)+1,故选:D.5.如图,在△ABC中,=2,P是BN上一点,若=t+,则实数t的值为()A.B.C.D.【分析】根据即可得出,进而可得出,然后根据B,P,N三点共线即可得出t的值.解:∵,∴,∴,且B,P,N三点共线,∴,解得.故选:C.6.若=3,则sinθcosθ+cos2θ的值是()A.1B.﹣C.D.﹣1【分析】由已知利用同角三角函数基本关系式可求tanθ的值,进而利用二倍角公式,同角三角函数基本关系式化简所求即可求值得解.解:∵==3,∴tanθ=﹣2,∴sinθcosθ+cos2θ====﹣1.故选:D.7.函数f(x)满足3f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),且f(1)=,则f (2020)=()A.B.﹣C.﹣D.【分析】先计算f(0),再根据恒等式寻找f(x)的周期或规律得出答案.解:取x=1,y=0,得3f(0)f(1)=f(1)+f(1)=,∴f(0)=,取x=n,y=1,有3f(n)f(1)=f(n+1)+f(n﹣1),即f(n)=f(n+1)+f(n﹣1),同理:f(n+1)=f(n+2)+f(n),∴f(n+2)=﹣f(n﹣1),∴f(n)=﹣f(n﹣3)=f(n﹣6)所以函数是周期函数,周期T=6,故f(2020)=f(3×336+4)=f(4).∵3f(x)f(y)=f(x+y)+f(x﹣y)令x=y=1,得3f2(1)=f(2)+f(0),可得f(2)=﹣,令x=2,y=1,得3f(2)f(1)=f(3)+f(1),解得f(3)=﹣,令x=3,y=1,得3f(3)f(1)=f(4)+f(2),解得f(4)=﹣.∴f(2020)=﹣;故选:C.8.过抛物线C:y2=2px(p>0)的焦点,且倾斜角为的直线与物线交于A,B两点,若|AB|=16,则抛物线的方程为()A.y2=2x B.y2=3x C.y2=4x D.y2=8x【分析】由题意可得直线AB的方程为:y=(x﹣),与抛物线方程联立,利用韦达定理得到x A+x B=7p,由抛物线的定义可知:|AB|=x A+x B+p=8p=16,即可求出p的值,从而求出抛物线的方程.解:∵抛物线C:y2=2px,∴P(,0),∴直线AB的方程为:y=(x﹣),联立方程,消去y得:,∴x A+x B=7p,由|AB|=16,及抛物线的定义可知:|AB|=x A+x B+p=8p=16,∴p=2,∴抛物线的方程为:y2=4x,故选:C.9.在三棱锥P﹣ABC中,AP⊥平面PBC,PA=2PB=2PC=2,BC=,则三棱锥P﹣ABC的外接球体积为()A.3πB.C.8πD.π【分析】设三棱锥P﹣ABC的外接球的半径为R.由PB=PC=1,BC=,根据勾股定理的逆定理可得:PB⊥PC.根据AP⊥平面PBC,可得:AP⊥PB,AP⊥PC.可得三棱锥P﹣ABC的外接球的半径与三条棱长的关系,进而得出:三棱锥P﹣ABC的外接球体积.解:设三棱锥P﹣ABC的外接球的半径为R.∵PB=PC=1,BC=,∴PB2+PC2=BC2,∴PB⊥PC.又AP⊥平面PBC,∴AP⊥PB,AP⊥PC.∴(2R)2=12+12+22=6,解得:R=.则三棱锥P﹣ABC的外接球体积=π×=π.故选:D.10.设α,β为两个平面,命题p:α∥β的充要条件是α内有无数条直线与β平行;命题q:α∥β的充要条件是α内任意一条直线与β平行,则下列说法正确的是()A.“¬p∧¬q”为真命题B.“p∧q”为真命题C.“¬p∧q”为真命题D.“p∨¬q”为真命题【分析】根据面面平行的判定方法及线面平行几何特征,可以判断P的真假;根据面面平行的定义及判定定理可得q的真假.解:如果平面内有无数条相互平行的直线都与平面平行,则两个平面不一定平行,故P 为假命题;如果平面内任意一条直线都与平面平行,由面面平行的判定定理,可得两个平面平行,故q为真命题.∴¬p∧¬q为假命题;“p∧q”为假命题;“¬p∧q”为真命题;“p∨¬q”为假命题.故选:C.11.△ABC的内角A、B、C的对边分别为a、b、c,且b=a(cos C+sin C),若a=1,c =,则角C的大小为()A.B.或C.D.或【分析】由已知结合正弦定理及和角公式进行化简可求A,然后结合正弦定理可求sin C,进而可求C.解:因为b=a(cos C+sin C),由正弦定理可得,sin B=sin A cos C+sin A sin C,所以sin A cos C+sin C cos A=sin A cos C+sin A sin C,所以sin A=cos A,即A=,因为a=1,c=,由正弦定理可得,,所以sin C=,因为c>a,所以C>A,故C=.故选:B.12.已知函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,则k的取值集合是()A.{k|k<0}B.{k|0}C.{}D.{0}【分析】函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,即方程|e x﹣1|2﹣|e x﹣1|+k =0有一个根,令t=|e x﹣1|,则方程化为t2﹣t+k=0,作出函数t=|e x﹣1|的图象,可得方程t2﹣t+k=0有根的情况,然后分类利用根的分布分析,列关于k的不等式组求解.解:函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,即f(x)=|e x﹣1|2﹣|e x﹣1|+k恰有1个零点,也就是方程|e x﹣1|2﹣|e x﹣1|+k=0有一个根,令t=|e x﹣1|,则方程化为t2﹣t+k=0.作出函数t=|e x﹣1|的图象,要使方程|e x﹣1|2﹣|e x﹣1|+k=0有一个根,则方程t2﹣t+k=0有根的情况为:①两相等0根,该种情况不存在;②两相等大于等于1的根,该种情况也不存在;③一根大于等于1,而另一个小于0,此时,解得k<0.∴k的取值集合是{k|k<0}.故选:A.二、填空题:共4小题,每小题5分,共20分.13.2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有对垃圾分类或未投放到指定垃圾桶内都会被处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投收到楼下的“可回收物”、“有害垃圾、“湿垃圾”,“干垃圾”四个垃圾桶内,则该居民会被处罚的概率为.【分析】基本事件总数n=4,该居民会被处罚包含的基本事件个数m=3,由此能求出该居民会被处罚的概率.解:2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有对垃圾分类或未投放到指定垃圾桶内都会被处罚.某上海居民提着厨房里产生的“湿垃圾”随意地投收到楼下的“可回收物”、“有害垃圾、“湿垃圾”,“干垃圾”四个垃圾桶内,基本事件总数n=4,该居民会被处罚包含的基本事件个数m=3,则该居民会被处罚的概率为p=.故答案为:.14.计算:log10+log50.25﹣()=.【分析】由已知结合对数的运算性质及对数恒等式即可求解.解:log10+log50.25﹣()=2log510+log50.25﹣()=log5100×0.25﹣=2﹣.故答案为:15.已知函数f(x)=x﹣2f'(1)ln(x+1)﹣f(0)e x,则f(x)的单调递减区间为(﹣1,0].【分析】先求导,再令x=1,求出函数的解析式,再根据导数和函数的单调性的关系即可求出.解:∵f(x)=x﹣2f'(1)ln(x+1)﹣f(0)e x,∴f′(x)=1﹣2f'(1)•﹣f(0)e x,令x=1可得f′(1)=1﹣2f'(1)•﹣f(0)e,由f(0)=﹣f(0),∴f(0)=0,∴f′(1)=1﹣f'(1),∴f′(1)=,∴f(x)=x﹣ln(x+1),x>﹣1,∴f′(x)=1﹣≤0,解得﹣1<x≤0,故答案为:(﹣1,0].16.过双曲线﹣=1(a>0,b>0)的右焦点F作渐近线的垂线l,垂足为M,l与y 轴交于点P,若=λ,且双曲线的离心率为,则λ的值为2.【分析】先利用FM与渐近线垂直,写出直线FM的方程,从而求得点P的坐标,利用|FM|=λ|PM,求得点M的坐标,最后由点M在渐近线上,代入得a、b、c间的等式,进而变换求出离心率.解:设F(c,0),则c2=a2+b2∵双曲线C:﹣=1的渐近线方程为y=±x,∴垂线FM的斜率为﹣,∴直线FM的方程为y=﹣(x﹣c),令x=0,得P的坐标(0,),设M(x,y),∵|FM|=λ|PM|,∴(x﹣c,y)=λ(﹣x,﹣y),∴x﹣c=﹣λx且y=﹣4y,即x=,y=,代入y=x,得,即λa2=b2,∴λa2=c2﹣a2,∴(λ+1)a2=c2,∴a=c,∵e=,∴λ=2,故答案为:2.三、解答题:共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知等差数列{a n}的前n项和为S n,公差d≠0,S4+S6=31且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n﹣3a n}是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.【分析】(Ⅰ)由等差数列的通项公式、求和公式,以及等比数列的中项性质,解方程可得首项和公差,进而得到所求通项公式;(Ⅱ)由等比数列的通项公式可得b n﹣3a n,进而得到b n,再由数列的分组求和,结合等差数列和等比数列的求和公式,计算可得所求和.解:(Ⅰ)根据题意得:S4+S6=4a1+6d+6a1+15d=10a1+21d=31,由a1,a3,a9成等比数列可得,∴,∴,∵d≠0,∴a1=d=1,∴a n=1+(n﹣1)=n,n∈N*;(Ⅱ)由题意可得,即b n=3n﹣1+3a n,∴,∴T n=b1+b2+…+b n=(30+31+…+3n﹣1)+3(1+2+…n)=.18.某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价x(单位:千元)与销量y(单位:百件)的关系如表所示:单价x(千元)1 1.52 2.53销量y(百件)10876t已知=,y i=7.(Ⅰ)若变量x,y具有线性相关关系,求产品销量y(百件)关于试销单价x(千元)的线性回归方程=x+;(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与x i对应的产品销量的估计值,当销售数据(x i,y i)对应的残差满足|i﹣y i|<0.3时,则称(x i,y i)为一个“好数据”,现从5个销售数据中任取3个,求其中“好数据”的个数至少为2个的概率.参考公式:==,=﹣.【分析】(Ⅰ)根据已知数据和参考公式计算出这两个系数即可得到回归直线方程;(Ⅱ)先算出每组数据的残差,并判断出是否为”好数据“,然后结合古典概型,分别找出基本事件和总事件的个数,即可求出概率.解:(Ⅰ)由,可得t=4,,,,代入得,,∴回归直线方程为.(Ⅱ),,,,,共有3个“好数据”.设3个“好数据”为A,B,C,2个非“好数据”为D,E,从5个数据中选择3个的取法为ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE,共10种;其中“好数据”的个数至少为2个的取法有7种,∴概率为.19.如图1,在等腰梯形ABCD中,AD∥BC,AD=2BC=4,∠ABC=120°,E为AD的中点.现分别沿BE,EC将△ABE和△ECD折起,点A折至点A1,点D折至点D1,使得平面A1BE⊥平面BCE,平面ECD1⊥平面BCE,连接A1D1,如图2.(Ⅰ)若M、N分别为EC、BC的中点,求证:平面D1MN∥平面A1BE;(Ⅱ)求多面体A1BCD1E的体积.【分析】(Ⅰ)由N、M是BC和CE的中点,得MN∥BE,可得MN∥平面BEA1,再由已知结合平面与平面垂直的性质可得MD1⊥平面BCE,进一步得到MD1∥平面BEA1,然后利用平面与平面平行的判定可得平面MND1∥平面BEA1.(Ⅱ)连接BD1,作CH⊥BE于H,由(Ⅰ)得,MD1∥平面BEA1,则点D1到平面BEA1的距离d等于点M到平面BEA1的距离,等于点C到平面BEA1的距离的,再由求解.【解答】(Ⅰ)证明:∵N、M是BC和CE的中点,∴MN∥BE,又∵MN⊄平面BEA1,BE⊂平面BEA1,∴MN∥平面BEA1,∵△A1BE,△BCE,△ECD1为正三角形,∴MD1⊥CE.又∵平面ECD1⊥平面BCE,平面ECD1∩平面BCE=CE,MD1⊂平面ECD1,∴MD1⊥平面BCE,又∵平面A1BE⊥平面BCE,MD1⊄平面BEA1,∴MD1∥平面BEA1,∵MD1∩NM=M,NM⊂平面MND1,MD1⊂平面MND1,∴平面MND1∥平面BEA1.(Ⅱ)解:连接BD1,作CH⊥BE于H,由(Ⅰ)得,MD1∥平面BEA1,∴点D1到平面BEA1的距离d等于点M到平面BEA1的距离,等于点C到平面BEA1的距离的,∴,则.20.已知椭圆C:+=1(a>b>0)的离心率为,过其右焦点F与长轴垂直的直线与椭圆在第一象限交于点M,且|MF|=.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆C的左、右顶点分别为A,B,点P是椭圆上的动点,且点P与点A,B 不重合,直线PA,PB与直线x=﹣4分别交于点S,T,求证:以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).【分析】(Ⅰ)由题意离心率,及|MF|的值求出a,b,c的值,进而求出椭圆的方程;(Ⅱ)由(Ⅰ)可得A,B的坐标,设P的坐标,求出直线PA与x=﹣4联立求出S的坐标,同理可得T的坐标,进而求出数量积,为0,可证得以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).解:(Ⅰ)由题意和,得,又因为且a2=b2+c2,得a=2,c=1,,所以椭圆C的方程为.(Ⅱ)证明:设点P(m,n),则得,又设直线PA,PB的斜率分别为k1,k2,则,,所以,∴直线PA:y=k1(x+2),直线PB:,所以点S(﹣4,﹣2k1),,由,所以以线段ST为直径的圆过定点Q,同理,以线段ST为直径的圆过定点G.可证以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).21.已知函数f(x)=e x﹣2ax﹣2a,a∈R.(Ⅰ)若函数f(x)在x=0处的切线垂直于y轴,求函数f(x)的极值;(Ⅱ)若函数f(x)有两个零点x1,x2,求实数a的取值范围,并证明:(x1+1)(x2+1)<1.【分析】(Ⅰ)求出f'(x)=e x﹣2a,通过切线的斜率,求解a,利用导函数为0.求解极值点即可.(Ⅱ)由(Ⅰ)知,f(x)有两个零点x1,x2,必须有a>0且最小值f(ln2a)=e ln2a ﹣2aln2a﹣2a=﹣2aln2a<0,得到a的范围,判断函数的单调性,题目转化证明,利用分析法说明即证:h(x2)>h(2ln2a﹣x2),令g(x)=e x﹣e2ln2a﹣x﹣4ax﹣4aln2a(x>ln2a),求出导函数,判断函数的单调性求解证明即可.解:(Ⅰ)f'(x)=e x﹣2a,f'(0)=1﹣2a=0,∴,∴f'(x)=e x﹣1,令f'(x)=0⇒x=0,f'(x)>0⇒x>0,f'(x)<0⇒x<0,∴f(x)的极小值为f(0)=0.(Ⅱ)由(Ⅰ)知,f(x)有两个零点x1,x2,必须有a>0且最小值f(ln2a)=e ln2a﹣2aln2a﹣2a=﹣2aln2a<0,∴ln2a>0,∴2a>1,∴,又∵当x→+∞时,h(x)→+∞;当x→﹣∞时,h(x)→+∞,∴,此时,,∴,,∴,要证:(x1+1)(x2+1)<1,即证:,即证:,即证:x1+x2<2ln2a,即证:x1<2ln2a﹣x2,不妨设x1<x2,∴x1<ln2a<x2,∴x1<2ln2a﹣x2<ln2a,即证:h(x1)>h(2ln2a﹣x2),即证:h(x2)>h(2ln2a﹣x2),令g(x)=(e x﹣2ax﹣2a)﹣[e2ln2a﹣x﹣2a(2ln2a﹣x)﹣2a]=e x﹣e2ln2a﹣x﹣4ax﹣4aln2a(x>ln2a),,当且仅当x=ln2a时取“=”,∴g(x)在(ln2a,+∞)上为增函数,∴g(x)>g(ln2a)=0,∴h(x2)>h(2ln2a﹣x2)成立,∴(x1+1)(x2+1)<1成立.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应题号的方框涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程是(φ为参数,0≤φ≤π),在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2的极坐标方程是ρ=4,等边△ABC的顶点都在C2上,且点A,B,C按照逆时针方向排列,点A的极坐标为(4,).(Ⅰ)求点A,B,C的直角坐标;(Ⅱ)设P为C1上任意一点,求点P到直线BC的距离的取值范围.【分析】(Ⅰ)由极坐标与直角坐标的互化公式可得A的直角坐标,画出图形,数形结合可得B与C的直角坐标;(Ⅱ)写出过BC的直线方程,点,由点到直线的距离公式写出点P到直线BC的距离,再由三角函数求最值可得点P到直线BC的距离的取值范围.解:(Ⅰ)由,且点A的极坐标为(4,),可得A点的直角坐标为,∵等边△ABC的顶点都在C2上,且点A,B,C按照逆时针方向排列,∴B点的直角坐标为(﹣4,0),C点的直角坐标为;(Ⅱ)由B(﹣4,0),C,可得BC的直线方程为,设点,则点P到直线BC的距离为,∵0≤φ≤π,∴,∴,即点P到直线BC的距离的取值范围.一、选择题23.已知函数f(x)=﹣x2+3﹣|x+1|﹣|x﹣1|.(Ⅰ)求不等式f(x)≥0的解集M;(Ⅱ)在(Ⅰ)的条件下,若m,n∈M,求证:|m+n|≤|mn+1|.【分析】(Ⅰ)通过讨论x的范围,得到关于x的不等式组,解出即可;(Ⅱ)根据分析法即可证明.解:(Ⅰ)①当x<﹣1时,不等式f(x)≥0可化为﹣x2+2x+3≥0,解得:﹣1≤x≤3,故此时x无解;②当﹣1≤x≤1时,不等式f(x)≥0可化为﹣x2+1≥0,解得:﹣1≤x≤1,故有﹣1≤x≤1;③当x>1时,不等式f(x)≥0可化为﹣x2+2x﹣3≥0,解得:﹣3≤x≤1,故此时x无解;综上,不等式f(x)≥0的解集M={x|﹣1≤x≤1}.(Ⅱ)要证|m+n|≤|mn+1|,即证|m+n|2≤|mn+1|2,即证m2+2mn+n2≤m2n2+2mn+1,即证m2+n2≤m2n2+1,即证m2n2﹣m2﹣n2+1≥0,即证(m2﹣1)(n2﹣1)≥0,∵m,n∈M,∴m2﹣1≤0,n2﹣1≤0,∴(m2﹣1)(n2﹣1)≥0成立.∴|m+n|≤|mn+1|成立.。
教学资料范本【2020最新】人教版最新高考文科数学复习试卷(2)及参考答案编辑:__________________时间:__________________(附参考答案) 数 学(文史类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位,复数=534ii +- (A ) (B )1i -1i -+(C ) (D )1i +1i --【解析】复数,选C.i ii i i i i i +=+=+-++=-+1171717)4)(4()4)(35(435【答案】C(2)设变量x,y 满足约束条件,则目标函数z=3x-2y的最小值为⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x(A )-5 (B )-4 (C )-2 (D )3【解析】做出不等式对应的可行域如图,由得,由图象可知当直线经过点时,直线的截距最大,而此时最小为,选 B.yx z 23-=223z x y -=223z x y -=)2,0(C 223zx y -=y x z 23-=423-=-=y x z 【答案】B(3)阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )8 (B )18 (C )26 (D )80【解析】第一次循环,第二次循环,第三次循环,第四次循环满足条件输出,选 C.2,2330==-=n S 3,83322==-+=n S 4,2633823==-+=n S 26=S 【答案】C(4) 已知,则a ,b ,c 的大小关系为120.2512,(),2log 22a b c -===(A )c<b<a (B )c<a<b (C )b<a<c (D )b<c<a【解析】因为,所以,,所以,选 A.122.02.022)21(<==-b a b <<114log 2log 2log 25255<===c a b c <<【答案】A(5)设xR ,则“x>”是“2x2+x-1>0”的∈12 (A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件 (D ) 既不充分也不必要条件【解析】不等式的解集为或,所以“”是“”成立的充分不必要条件,选A.0122>-+x x 21>x 1-<x 21>x 0122>-+x x【答案】A(6)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(A ) cos 2y x =,xR ∈(B ) xy 2log =,xR 且x ≠0∈(C ) 2x xe e y --=,xR ∈ (D )31y x =+,xR ∈【解析】函数为偶函数,且当时,函数为增函数,所以在上也为增函数,选B.x y 2log =0>x x x y 22log log ==)2,1( 【答案】B(7)将函数(其中>0)的图像向右平移个单位长度,所得图像经过点,则的最小值是()sin f x x ω=ω4π)0,43(πω(A ) (B )1 C ) (D )21353【解析】函数向右平移得到函数,因为此时函数过点,所以,即所以,所以的最小值为2,选 D.4π)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g )0,43(π0)443(sin =-ππω,2)443(πωπππωk ==-Z k k ∈=,2ωω 【答案】D(8)在△ABC 中, A=90°,AB=1,设点P ,Q 满足=,=(1-), R 。
第2节 二次函数考试要求 1.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题;2.能解决一元二次方程根的分布问题;3.能解决二次函数的最值问题.知 识 梳 理1.二次函数表达式的三种形式 (1)一般式:y =ax 2+bx +c (a ≠0).(2)顶点式:y =a (x +h )2+k (其中a ≠0,顶点坐标为(-h ,k )).(3)零点式:y =a (x -x 1)(x -x 2)(其中a ≠0,x 1,x 2是二次函数的图象与x 轴的两个交点的横坐标).2.二次函数y =ax 2+bx +c 的图象和性质3.二次函数的最值问题二次函数的最值问题主要有三种类型:“轴定区间定”“轴动区间定”“轴定区间动”.解决的关键是弄清楚对称轴与区间的关系,要结合函数图象,依据对称轴与区间的关系进行分类讨论.设f (x )=ax 2+bx +c (a >0),则二次函数f (x )在闭区间[m ,n ]上的最大值、最小值有如下的分布情况:4.一元二次方程根的分布设方程ax2+bx+c=0(a≠0)的不等两根为x1,x2且x1<x2,相应的二次函数为f(x)=ax2+bx+c(a≠0),方程的根即为二次函数图象与x轴的交点,它们的分布情况见下面各表(每种情况对应的均是等价条件)表一:(两根与k的大小比较)表二:(根在区间上的分布)若两根有且仅有一根在(m ,n )内,则需分三种情况讨论:①当Δ=0时,由Δ=0可以求出参数的值,然后再将参数的值代入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去;②当f (m )=0或f (n )=0,方程有一根为m 或n ,可以求出另外一根,从而检验另一根是否在区间(m ,n )内;③当f (m )·f (n )<0时,则两根有且仅有一根在(m ,n )内. [常用结论与易错提醒]不等式ax 2+bx +c >0(<0)恒成立的条件 (1)不等式ax2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c >0或⎩⎪⎨⎪⎧a >0,Δ<0. (2)不等式ax2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c <0或⎩⎪⎨⎪⎧a <0,Δ<0.基 础 自 测1.思考辨析(在括号内打“√”或“×”)(1)如果二次函数f (x )的图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为f (x )=(x -1)2-1.( )(2)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是⎝ ⎛⎭⎪⎫120,+∞.( )(3)二次函数y =ax 2+bx +c (x ∈R )不可能是偶函数.( )(4)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值一定是4ac -b24a.( )答案 (1)√ (2)√ (3)× (4)×2.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)的值是( ) A.5 B.-5 C.6D.-6解析 由f (1)=f (2)=0知方程x 2+px +q =0的两根分别为1,2,则p =-3,q =2,∴f (x )=x 2-3x +2,∴f (-1)=6.答案 C3.若方程x 2+(m +2)x +m +5=0只有负根,则m 的取值范围是( ) A.[4,+∞) B.(-5,-4] C.[-5,-4]D.(-5,-2)解析 由题意得⎩⎪⎨⎪⎧Δ=(m +2)2-4×(m +5)≥0,x 1+x 2=-(m +2)<0,x 1x 2=m +5>0,解得m ≥4.答案 A4.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为( ) A.[0,1] B.[1,2] C.(1,2]D.(1,2)解析 画出函数y =x 2-2x +3的图象(如图),由题意知1≤m ≤2.答案 B5.已知方程x 2+(m -2)x +2m -1=0的较小的实根在0和1之间,则实数m 的取值范围是 .解析 令f (x )=x 2+(m -2)x +2m -1.由题意得 ⎩⎪⎨⎪⎧f (0)>0,f (1)<0,即⎩⎪⎨⎪⎧2m -1>0,1+(m -2)+2m -1<0, 解得12<m <23.答案 ⎝ ⎛⎭⎪⎫12,23 6.若函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上是减函数,则实数a 的取值范围是 ,且函数f (x )恒过点 .解析 二次函数f (x )图象的对称轴是x =1-a ,由题意知1-a ≥3,∴a ≤-2.由函数的解析式易得,函数f (x )恒过定点(0,2). 答案 (-∞,-2] (0,2)考点一 二次函数的解析式 【例1】 求下列函数的解析式:(1)(一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8;(2)已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ). 解 (1)法一(利用一般式解题): 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二(利用顶点式解题): 设f (x )=a (x -m )2+n (a ≠0). ∵f (2)=f (-1),∴二次函数图象的对称轴为x =2+(-1)2=12,∴m =12.又根据题意函数有最大值8,∴n =8.∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8. ∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三(利用零点式解题):由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数的最大值是8,即4a (-2a -1)-(-a )24a =8,解得a =-4,∴所求函数的解析式为f (x )=-4x 2+4x +7. (2)∵f (2-x )=f (2+x )对x ∈R 恒成立, ∴f (x )的对称轴为x =2.又∵f (x )的图象在x 轴上截得的线段长为2, ∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), 又∵f (x )的图象过点(4,3),∴3a =3,∴a =1. ∴所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.规律方法 用待定系数法求二次函数的解析式,关键是灵活选取二次函数解析式的形式,选法如下:【训练1】 若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )= .解析 由f (x )是偶函数知f (x )的图象关于y 轴对称, ∴b =-2,∴f (x )=-2x 2+2a 2,又f (x )的值域为(-∞,4],∴2a 2=4,故f (x )=-2x 2+4.答案 -2x 2+4考点二 二次函数的图象与性质【例2】 已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (3)当a =-1时,求f (|x |)的单调区间.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增, ∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15, 故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4, 故a 的取值范围是(-∞,-6]∪[4,+∞).(3)由-4≤|x |≤6,得-6≤x ≤6,当a =-1时,f (|x |)=x 2-2|x |+3=⎩⎪⎨⎪⎧x 2+2x +3=(x +1)2+2,x ≤0,x 2-2x +3=(x -1)2+2,x >0, 其图象如图所示,∴f (|x |)在[-6,6]上的单调区间有[-6,-1),[-1,0),[0,1),[1,6]. 规律方法 解决二次函数图象与性质问题时要注意:(1)抛物线的开口、对称轴位置、定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论; (2)要注意数形结合思想的应用.【训练2】 (1)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )(2)若函数f (x )=ax 2+2x +3在区间[-4,6]上是单调递增函数,则实数a 的取值范围是W.解析 (1)由A ,C ,D 知,f (0)=c <0,从而由abc >0,所以ab <0,所以对称轴x =-b2a >0,知A ,C 错误,D 满足要求;由B 知f (0)=c >0, 所以ab >0,所以对称轴x =-b2a<0,B 错误.(2)由题意可知f ′(x )=2ax +2≥0在[-4,6]上恒成立, 所以⎩⎪⎨⎪⎧f ′(-4)=-8a +2≥0,f ′(6)=12a +2≥0,所以-16≤a ≤14.答案 (1)D (2)⎣⎢⎡⎦⎥⎤-16,14考点三 二次函数的最值【例3-1】 已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 解 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38; (3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.【例3-2】 将例3-1改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 解 f (x )=(x +a )2+1-a 2,∴f (x )的图象是开口向上的抛物线,对称轴为x =-a , (1)当-a <12,即a >-12时,f (x )max =f (2)=4a +5;(2)当-a ≥12,即a ≤-12时,f (x )max =f (-1)=2-2a .综上,f (x )max=⎩⎪⎨⎪⎧4a +5,a >-12,2-2a ,a ≤-12.规律方法 研究二次函数的性质,可以结合图象进行;对于含参数的二次函数问题,要明确参数对图象的影响,进行分类讨论.【训练3】 设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 解 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1<1,即t <0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数, 所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t >1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.考点四 一元二次方程根的分布 多维探究角度1 两根在同一区间【例4-1】 若二次函数y =-x 2+mx -1的图象与两端点为A (0,3),B (3,0)的线段AB 有两个不同的交点,求实数m 的取值范围. 解 线段AB 的方程为x 3+y3=1(x ∈[0,3]), 即y =3-x (x ∈[0,3]),由题意得方程组:⎩⎪⎨⎪⎧y =3-x ,y =-x 2+mx -1, 消去y 得x 2-(m +1)x +4=0,①由题意可得,方程①在x ∈[0,3]内有两个不同的实根,令f (x )=x 2-(m +1)x +4,则⎩⎪⎨⎪⎧Δ=(m +1)2-16>0,0≤m +12≤3,f (0)=4≥0,f (3)=10-3m ≥0,解得⎩⎪⎨⎪⎧m <-5或m >3,-1≤m ≤5,m ≤103,所以3<m ≤103.故实数m 的取值范围是⎝⎛⎦⎥⎤3,103.角度2 两根在不同区间【例4-2】 求实数m 的取值范围,使关于x 的方程x 2+2(m -1)x +2m +6=0. (1)一根大于1,另一根小于1; (2)两根α,β满足0<a <1<β<4; (3)至少有一个正根.解 令f (x )=x 2+2(m -1)x +2m +6, (1)由题意得f (1)=4m +5<0,解得m <-54.即实数m 的取值范围是⎝⎛⎭⎪⎫-∞,-54. (2)⎩⎪⎨⎪⎧f (0)=2m +6>0,f (1)=4m +5<0,f (4)=10m +14>0,解得⎩⎪⎨⎪⎧m >-3,m <-54,m >-75,所以-75<m <-54.故实数m 的取值范围是⎝ ⎛⎭⎪⎫-75,-54.(3)当方程有两个正根时,⎩⎪⎨⎪⎧Δ=4(m -1)2-4(2m +6)>0,f (0)=2m +6>0,-2(m -1)>0, 解得-3<m <-1.当方程有一个正根一个负根时,f (0)=2m +6<0,解得m <-3. 当方程有一个根为零时,f (0)=2m +6=0,解得m =-3, 此时f (x )=x 2-8x ,另一根为8,满足题意. 综上可得,实数m 的取值范围是(-∞,-1). 角度3 在区间(m ,n )内有且只有一个实根【例4-3】 已知函数f (x )=mx 2-2x +1有且仅有一个正实数的零点,求实数m 的取值范围. 解 依题意,得(1)⎩⎪⎨⎪⎧m >0,Δ=(-2)2-4m >0,无解.f (0)<0, (2)⎩⎪⎨⎪⎧m <0,Δ=(-2)2-4m >0,解得m <0.f (0)>0,(3)⎩⎪⎨⎪⎧m ≠0,Δ=(-2)2-4m =0. 解得m =1,经验证,满足题意.又当m =0时,f (x )=-2x +1,它显然有一个为正实数的零点. 综上所述,m 的取值范围是(-∞,0]∪{1}.规律方法 利用二次函数图象解决方程根的分布的一般步骤: (1)设出对应的二次函数;(2)利用二次函数的图象和性质列出等价不等式(组); (3)解不等式(组)求得参数的范围.【训练4】 (1)已知二次函数y =(m +2)x 2-(2m +4)x +(3m +3)与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围.(2)若关于x 的方程x 2+2(m -1)x +2m +6=0有且只有一根在区间(0,3)内,求实数m 的取值范围.解 (1)令f (x )=(m +2)x 2-(2m +4)x +(3m +3).由题意可知(m +2)·f (1)<0, 即(m +2)(2m +1)<0,所以-2<m <-12.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-2,-12. (2)令f (x )=x 2+2(m -1)x +2m +6,①⎩⎪⎨⎪⎧Δ=4(m -1)2-4(2m +6)=0,0<-(m -1)<3, 解得⎩⎪⎨⎪⎧m =-1或m =5,-2<m <1,所以m =-1.②f (0)·f (3)=(2m +6)(8m +9)<0, 解得-3<m <-98.③f (0)=2m +6=0,即m =-3时,f (x )=x 2-8x ,另一根为8∉(0,3),所以舍去; ④f (3)=8m +9=0,即m =-98时,f (x )=x 2-174x +154,另一根为54∈(0,3),满足条件.综上可得,-3<m ≤-98或m =-1.所以实数m 的取值范围是⎝⎛⎦⎥⎤-3,-98∪{-1}.基础巩固题组一、选择题1.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A.a >0,4a +b =0 B.a <0,4a +b =0 C.a >0,2a +b =0D.a <0,2a +b =0解析 因为f (0)=f (4)>f (1),所以函数图象应开口向上,即a >0,且其对称轴为x =2,即-b2a =2,所以4a +b =0.答案 A2.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( ) A.(-∞,0]B.[2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2]解析 f (x )的对称轴为x =1,由f (x )在[0,1]上递减知a >0,且f (x )在[1,2]上递增,f (0)=f (2),∵f (m )≤f (0),结合对称性,∴0≤m ≤2. 答案 D3.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A.-1 B.1 C.2D.-2解析 ∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎪⎨⎪⎧-a ≥4-3a ,-a =1或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1. 答案 B4.已知函数f (x )=x 2-2ax +b (a ,b ∈R ),记f (x )在[a -b ,a +b ]上的最大值为M ,最小值为m ,则M -m ( ) A.与a 有关,且与b 有关 B.与a 无关,且与b 无关 C.与a 有关,但与b 无关D.与a 无关,但与b 有关解析 函数f (x )=x 2-2ax +b =(x -a )2-a 2+b ,所以f (x )的对称轴为x =a 且开口向上,因为区间[a -b ,a +b ]也关于x =a 对称,所以m =f (a )=b -a 2,M =f (a -b )=f (a +b )=b 2-a 2+b ,所以M -m =b 2,故选D. 答案 D5.(2019·嘉兴检测)若f (x )=x 2+bx +c 在(m -1,m +1)内有两个不同的零点,则f (m -1)和f (m +1)( ) A.都大于1 B.都小于1 C.至少有一个大于1D.至少有一个小于1解析 设函数f (x )=x 2+bx +c 的两个零点为x 1,x 2,则f (x )=(x -x 1)(x -x 2),因为函数f (x )=x 2+bx +c 的两个零点在(m -1,m +1)内,所以f (m -1)>0,f (m +1)>0,又因为f (m-1)f (m +1)=(m -1-x 1)(m -1-x 2)·(m +1-x 1)(m +1-x 2)=[-(m -1-x 1)(m +1-x 1)]·[-(m -1-x 2)(m +1-x 2)]<[-(m -1-x 1)+(m +1-x 1)]24·[-(m -1-x 2)+(m +1-x 2)]24=1,所以f (m-1)和f (m +1)至少有一个小于1,故选D. 答案 D6.若函数f (x )=x 2+kx +m 在[a ,b ]上的值域为[n ,n +1],则b -a ( ) A.既有最大值,也有最小值 B.有最大值但无最小值 C.无最大值但有最小值D.既无最大值,也无最小值解析 取k =m =n =0,f (x )=x 2,由图象可知,显然b -a 不存在最小值.∵f (a )=a 2+ka +m ,f (b )=b 2+kb +m ,f ⎝ ⎛⎭⎪⎫a +b 2=⎝ ⎛⎭⎪⎫a +b 22+k ⎝ ⎛⎭⎪⎫a +b 2+m ,∴(b -a )22=f (a )+f (b )-2f ⎝ ⎛⎭⎪⎫a +b 2≤n +1+n +1-2n =2,∴b -a ≤2,当b =2-k 2,a =-2+k2时,b -a 取得最大值为2,故选B. 答案 B7.(2016·浙江卷)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 ∵f (x )=x 2+bx =⎝ ⎛⎭⎪⎫x +b 22-b24,当x =-b 2时,f (x )min =-b 24.又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎪⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b2≥-b 24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件. 答案 A8.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-b2a 对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集不可能是( ) A.{1,2} B.{1,4} C.{1,2,3,4}D.{1,4,16,64}解析 ∵f (x )=ax 2+bx +c (a ≠0)的对称轴为x =-b2a .设方程m [f (x )]2+nf (x )+p =0的解为f 1(x ),f 2(x ),则必有f 1(x )=y 1=ax 2+bx +c ,f 2(x )=y 2=ax 2+bx +c ,那么从图象上看y =y 1,y =y 2是平行x 轴的两条直线,它们与f (x )有交点, 由对称性,方程y 1=ax 2+bx +c =0的两个解x 1,x 2应关于对称轴x =-b2a 对称,即x 1+x 2=-ba ,同理方程y 2=ax 2+bx +c =0的两个解x 3,x 4也关于对称轴x =-b2a对称, 即x 3+x 4=-b a,在C 中,可以找到对称轴直线x =2.5,也就是1,4为一个方程的根,2,3为一个方程的根,而在D 中,找不到这样的组合使得对称轴一致,也就是说无论怎样分组,都没办法使得其中两个的和等于另外两个的和,故答案D 不可能. 答案 D9.(2019·衢州二中二模)已知函数f (x )=x 2+ax +b (a ,b ∈R ),若存在非零实数t ,使得f (t )+f ⎝ ⎛⎭⎪⎫1t =-2成立,则a 2+4b 2的最小值为( )A.165B.145C.16D.4 解析 由f (t )+f ⎝ ⎛⎭⎪⎫1t =-2知,存在实数t ≠0,使⎝ ⎛⎭⎪⎫t +1t 2+a ⎝ ⎛⎭⎪⎫t +1t +2b =0成立,又a 2+4b 2的几何意义为坐标原点与点(a ,2b )的距离的平方,记2b =m ,u =t +1t,则u 2≥4.故⎝ ⎛⎭⎪⎫t +1t 2+a ⎝⎛⎭⎪⎫t +1t +2b =0,即ua +m +u 2=0,其表示动点(a ,m )的轨迹,设为直线l ,则原点与点(a ,m )的距离的最小值为原点到直线l 的距离,故a 2+4b 2≥⎝ ⎛⎭⎪⎫u 2u 2+12=⎝⎛⎭⎪⎫u 2+1-1u 2+12≥165,故选A. 答案 A 二、填空题10.已知b ,c ∈R ,函数y =x 2+2bx +c 在区间(1,5)上有两个不同的零点,则f (1)+f (5)的取值范围是 .解析 设f (x )的两个零点为x 1,x 2,不妨设1<x 1<x 2<5,则f (1)>f (x 1)=0,f (5)>f (x 2)=0,所以f (1)+f (5)>0.另一方面f (x )=(x -x 1)·(x -x 2),所以f (1)+f (5)=(1-x 1)·(1-x 2)+(5-x 1)(5-x 2)=2x 1x 2-6(x 1+x 2)+26<2x 1x 2-12x 1x 2+26=2(x 1x 2-3)2+8<2(25-3)2+8=16,所以f (1)+f (5)的取值范围是(0,16).答案 (0,16)11.已知f (x )=⎩⎪⎨⎪⎧x 2(x ≥t ),x (x <t ),若存在实数t ,使函数y =f (x )-a 有两个零点,则t 的取值范围是 .解析 由题意知函数f (x )在定义域上不单调,如图,当t =0或t ≥1时,f (x )在R 上均单调递增,当t <0时,在(-∞,t )上f (x )单调递增,且f (x )<0,在(t ,0)上f (x )单调递减,且f (x )>0,在(0,+∞)上f (x )单调递增,且f (x )>0.故要使得函数y =f (x )-a 有两个零点,则t 的取值范围为(-∞,0)∪(0,1).答案 (-∞,0)∪(0,1)12.(2019·诸暨统考)已知a ,b 都是正数,a 2b +ab 2+ab +a +b =3,则2ab +a +b 的最小值等于 .解析 设2ab +a +b =t ,则t >0,且3=ab (a +b )+ab +a +b =ab (t -2ab )+t -ab ,故关于ab 的二次方程2(ab )2+(1-t )ab +3-t =0的解为正数,所以⎩⎪⎨⎪⎧Δ=(1-t )2-8(3-t )≥0,t -12>0,3-t 2>0,解得42-3≤t <3,即2ab +a +b 的最小值等于42-3.答案 42-313.已知f (x +1)=x 2-5x +4. (1)f (x )的解析式为 ;(2)当x ∈[0,5]时,f (x )的最大值和最小值分别是 . 解析 (1)f (x +1)=x 2-5x +4,令x +1=t ,则x =t -1, ∴f (t )=(t -1)2-5(t -1)+4=t 2-7t +10,∴f (x )=x 2-7x +10.(2)∵f (x )=x 2-7x +10,其图象开口向上,对称轴为x =72,72∈[0,5],∴f (x )min =f ⎝ ⎛⎭⎪⎫72=-94, 又f (0)=10,f (5)=0.∴f (x )的最大值为10,最小值为-94.答案 (1)x 2-7x +10 (2)10,-9414.(2018·浙江卷)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是 .若函数f (x )恰有2个零点,则λ的取值范围是 .解析 若λ=2,则当x ≥2时,令x -4<0,得2≤x <4;当x <2时,令x 2-4x +3<0,得1<x <2.综上可知1<x <4,所以不等式f (x )<0的解集为(1,4).令x -4=0,解得x =4;令x 2-4x +3=0,解得x =1或x =3.因为函数f (x )恰有2个零点,结合函数的图象(图略)可知1<λ≤3或λ>4.答案 (1,4) (1,3]∪(4,+∞)能力提升题组15.(2019·杭州质检)设函数f (x )=x 2+ax +b (a ,b ∈R ),记M 为函数y =|f (x )|在[-1,1]上的最大值,N 为|a |+|b |的最大值( ) A.若M =13,则N =3B.若M =12,则N =3C.若M =2,则N =3D.若M =3,则N =3解析 由题意得|f (1)|=|1+a +b |≤M ⇒|a +b |≤M +1,|f (-1)|=|1-a +b |≤M ⇒|a -b |≤M +1.|a |+|b |=⎩⎪⎨⎪⎧|a +b |,ab ≥0,|a -b |,ab <0,则易知N ≤M +1,则选项A ,B 不符合题意;当a =2,b =-1时,M =2,N =3,则选项C 符合题意;当a =2,b =-2时,M =3,N =4,则选项D不符合题意,故选C. 答案 C16.(2019·丽水测试)已知函数f (x )=x 2+ax +b ,集合A ={x |f (x )≤0},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪f (f (x ))≤54,若A =B ≠∅,则实数a 的取值范围是( )A.[5,5]B.[-1,5]C.[5,3]D.[-1,3]解析 设集合B =⎩⎨⎧⎭⎬⎫x |f (f (x ))≤54={x |m ≤f (x )≤n },其中m ,n 为方程f (x )=54的两个根,因为A =B ≠∅,所以n =0且m ≤f (x )min ,Δ=a 2-4b ≥0,于是f (n )=f (0)=b =54,则由a 2-4b =a 2-5≥0得a ≤-5或a ≥5,令t =f (x )≤0,则由f (f (x ))≤54得f (t )≤54,即t 2+at +54≤54,解得-a ≤t ≤0,所以B =⎩⎨⎧⎭⎬⎫x |f (f (x ))≤54={x |m ≤f (x )≤n }={x |-a ≤f (x )≤0},解得m =-a ,所以-a ≤f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=⎝ ⎛⎭⎪⎫-a 22+a ·⎝ ⎛⎭⎪⎫-a 2+54,解得-1≤a ≤5.综上所述,实数a 的取值范围为[5,5],故选A. 答案 A17.已知二次函数f (x )=ax 2+bx (|b |≤2|a |),定义f 1(x )=max{f (t )|-1≤t ≤x ≤1},f 2(x )=min{f (t )|-1≤t ≤x ≤1},其中max{a ,b }表示a ,b 中的较大者,min{a ,b }表示a ,b 中的较小者,下列命题正确的是( ) A.若f 1(-1)=f 1(1),则f (-1)>f (1) B.若f 2(-1)=f 2(1),则f (-1)>f (1) C.若f 2(1)=f 1(-1),则f 1(-1)<f 1(1) D.若f 2(1)=f 1(-1),则f 2(-1)>f 2(1)解析 对于A ,若f 1(-1)=f 1(1),则f (-1)为f (x )在[-1,1]上的最大值,∴f (-1)>f (1)或f (-1)=f (1),故A 错误;对于B ,若f 2(-1)=f 2(1),则f (-1)为f (x )在[-1,1]上的最小值,∴f (-1)<f (1)或f (-1)=f (1),故B 错误;对于C ,若f 2(1)=f 1(-1),则f (-1)为f (x )在[-1,1]上的最小值,而f 1(-1)=f (-1),f 1(1)表示f (x )在[-1,1]上的最大值,∴f 1(-1)<f 1(1),故C 正确;对于D ,若f 2(1)=f 1(-1),由新定义可得f 1(-1)=f 2(-1),则f 2(1)=f 2(-1),故D 错误,综上所述,故选C. 答案 C18.(2019·绍兴适应性考试)已知a >0,函数f (x )=|x 2+|x -a |-3|在[-1,1]上的最大值是2,则a = .解析 由题意知f (0)≤2,即有||a |-3|≤2,又∵a >0,∴||a |-3|≤2⇒|a -3|≤2⇒1≤a≤5.又∵x ∈[-1,1],∴f (x )=|x 2-x -3+a |≤2,设t =x 2-x -3,则t ∈⎣⎢⎡⎦⎥⎤-134,-1,则原问题等价于t ∈⎣⎢⎡⎦⎥⎤-134,-1时,|t +a |=|t -(-a )|的最大值为2,∴a =3或a =54. 答案 3或5419.已知方程x 2+bx +c =0在(0,2)上有两个不同的解,则c 2+2(b +2)c 的取值范围是 .解析 设方程x 2+bx +c =0在(0,2)上的两个根为α,β,α≠β,则f (x )=x 2+bx +c =(x -α)(x -β),0<α<2且0<β<2,所以c 2+2(b +2)c =f (0)·f (2)=αβ(2-α)(2-β)≤⎣⎢⎡⎦⎥⎤α+(2-α)22⎣⎢⎡⎦⎥⎤β+(2-β)22=1,又0<α<2且0<β<2,所以αβ(2-α)(2-β)>0,所以c 2+2(b +2)c 的取值范围是(0,1]. 答案 (0,1]20.已知函数f (x )=ax +3+|2x 2+(4-a )x -1|的最小值为2,则a = .解析 令g (x )=2x 2+(4-a )x -1=0,Δ=(4-a )2+8>0,则g (x )=0有两个不相等的实数根,不妨设为x 1,x 2(x 1<x 2),则x 1=a -4-(4-a )2+84,x 2=a -4+(4-a )2+84,当x ∈[x 1,x 2]时,f (x )=ax +3-[2x 2+(4-a )x -1]=-2x 2+(2a -4)x +4,当x ∈(-∞,x 1)∪(x 2,+∞)时,f (x )=ax +3+[2x 2+(4-a )x -1]=2(x +1)2≥0,因为f (x )的最小值为2,则f (x )min =min{f (x 1),f (x 2)},即ax 1+3=2或ax 2+3=2,解得a =12.答案 12。
2020年3月普通高考新课标3卷全真模拟理科数学卷2数学(理)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =A ,函数()ln 21y x =+的定义域为集合B ,则A B ⋂= A .11,22⎛⎤-⎥⎝⎦ B .11,22⎛⎫-⎪⎝⎭ C .1,2⎛⎫-∞-⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭2.已知复数z 满足(3425z i i i ⋅-=+为虚数单位) ,则在复平面内复数z 对应的点的坐标为( ) A .21,5⎛⎫ ⎪⎝⎭B .2,15⎛⎫⎪⎝⎭C .21,5⎛⎫--⎪⎝⎭D .2,15⎛⎫-- ⎪⎝⎭3.设角α是第二象限角,且αcos 2=-cos α2,则角α2是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角4.命题“[]21,2,0x x a ∀∈-≤”为真命题的一个充分不必要条件是( ) A .4a ≥ B .4a ≤C .5a ≥D .5a ≤5.已知数列321121,,,,n n a a a a a a a -L 是首项为8,公比为12的等比数列,则4a 等于( ) A .8B .32C .64D .1286.“执行如题图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .12s >B .35s >C .710s >D .45s >7.某三棱锥的三视图如图所示,则它的外接球的表面积为( )A .B .C . D8.点O 在ABC ∆所在的平面内,OA OB OC ==uu r uu u r uuu r ,2AB =uu u r ,1AC =uuu r ,AO AB AC λμ=+u u u r u u u r u u u r(),R λμ∈,且()420λμμ-=≠,则BC =uu u r( )A .73B C .7D9.已知函数2()log f x x =,()2g x x a =+,若存在121,,22x x ⎡⎤∈⎢⎥⎣⎦,使得()()12f x g x =,则a 的取值范围是( ) A .[5,0]-B .(,5][0,)-∞-+∞UC .(5,0)-D .(,5)(0,)-∞-⋃+∞10.已知a b >,二次三项式220ax x b ++≥对于一切实数x 恒成立,又0x R ∃∈,使20020ax x b ++=成8π6π4π立,则22a b a b+-的最小值为( )A .2 B. CD .111. 已知双曲线22221x y a b-=(a >0,b >0)的离心率为2,F 1,F 2分别是双曲线的左、右焦点,点M (-a ,0),N (0,b ),点P 为线段MN 上的动点,当12PF PF ⋅uuu r uuu r取得最小值和最大值时,△PF 1F 2的面积分别为S 1,S 2,则21S S =( )A .B .4C .D .812.已知函数()2xe f x x=(其中无理数 2.718e =⋅⋅⋅),关于xλ=有四个不等的实根,则实数λ的取值范围是( )A .0,2e ⎛⎫ ⎪⎝⎭B .()2,+∞C .2,2e e ⎛⎫++∞ ⎪⎝⎭D .224,4e e ⎛⎫++∞ ⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分.13.若21nx ⎛⎫ ⎪⎝⎭展开式中的各项系数之和为1024,则n =_______.14.设变量x y ,满足约束条件23030230x y x y x y -+≥⎧⎪+-≤⎨⎪--≤⎩,则目标函数32z x y =-++的最小值为__________.15.设抛物线:的焦点为,经过点且斜率为的直线与抛物线交于,两点,若的面积是面积的2倍,则的值为______.16.三棱柱中,,侧棱⊥底面,且三棱柱的侧面积为若该三棱柱的顶点都在球的球面上,则球体积的最小值为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)在锐角中,分别是角. (1)求角的大小; (2)若,求的值. C 28y x =F ()1,0A -k l C M N AMF ∆ANF ∆k 111ABC A B C -AB BC AC ==1AA ABC O O ABC ∆,,a b c ,,A B C 2sin c A =C c =ABC ∆+a b18.(12分)如图,是正方形,点在以为直径的半圆弧上(不与,重合),为线段的中点,现将正方形沿折起,使得平面平面.(1)证明:平面.(2)三棱锥的体积最大时,求二面角的余弦值.19.(12分)“绿水青山就是金山银山”的生态文明发展理念已经深入人心,这将推动新能源汽车产业的迅速发展.下表是近几年我国某地区新能源乘用车的年销售量与年份的统计表:某机构调查了该地区30位购车车主的性别与购车种类情况,得到的部分数据如下表所示:(1)求新能源乘用车的销量y 关于年份x 的线性相关系数r ,并判断y 与x 是否线性相关;(2)请将上述22⨯列联表补充完整,并判断是否有90%的把握认为购车车主是否购置新能源乘用车与性别有关;(3)若以这30名购车车主中购置新能源乘用车的车主性别比例作为该地区购置新能源乘用车的车主性别比例,从该地区购置新能源乘用车的车主中随机选取50人,记选到女性车主的人数为X ,求X 的数学期望与方差. 参考公式:()()niix x y y r --=∑()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b cd =+++25≈,若0.9r >,则可判断y 与x 线性相交.ABCD P BCP B C E BC ABCD BC ABCD ⊥BCP BP⊥DCP D BPC -B PD E --20.(12分)已知分别是椭圆的左、右焦点,直线与交于两点,,且. (1)求的方程;(2)已知点是上的任意一点,不经过原点的直线与交于两点,直线的斜率都存在,且,求的值.21.(12分)已知函数()()2xf x x e =-,其中e 为自然对数的底数.(1)求函数()f x 的最小值;(2)若1,12x ⎛⎫∀∈ ⎪⎝⎭都有()ln x x a f x -+>,求证:4a >-.(二)、选考题:共10分. 请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分.22.(10分)在直角坐标系xOy 中,圆C的参数方程为,2x t y t⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为()0θαα=≤≤π.(1)求圆C 的极坐标方程;(2)已知直线l 与圆C 交于A ,B两点,若OA OB +=l 的直角坐标方程. 23. (10分)已知函数()121f x x x =++-. (1)求不等式()3f x ≥的解集;(2)若[]1,0∃∈-,使得不等式()1f x a x ≥-成立,求实数a 的最大值.12,F F ()2222:10x y C a b a b+=>>23b y =C ,A B290AF B ∠=o2209F AB S ∆=C P C O l C ,M N ,,,PM PN MN OP 0MN OP k k +=PM PN k k ⋅。
2020年高考数学第二次监测试卷(理科)一、选择题(共12小题).1.已知全集U=R,集合A={x|x2﹣4x+3>0},B={x|﹣1<x<2},则(∁U A)∪B=()A.(﹣1,1]B.[1,2)C.[1,3]D.(﹣1,3]2.若复数z在复平面内对应的点的坐标为(1,2),则=()A.B.C.1+3i D.﹣1﹣3i3.已知向量=(1+λ,2),=(3,4),若∥,则实数λ=()A.B.C.D.4.若,则sin2α=()A.B.C.D.5.函数f(x)=的大致图象是()A.B.C.D.6.若(2x+)6展开式的常数项为160,则a=()A.1B.2C.4D.87.若过点P(,1)的直线l是圆C:(x﹣2)2+y2=4的一条对称轴,将直线l绕点P旋转30°得到直线l',则直线l'被圆C截得的弦长为()A.4B.C.2D.18.如图,已知圆锥底面圆的直径AB与侧棱SA,SB构成边长为的正三角形,点C是底面圆上异于A,B的动点,则S,A,B,C四点所在球面的面积是()A.4πB.C.16πD.与点C的位置有关9.甲、乙、丙、丁4名学生参加体育锻炼,每人在A,B,C三个锻炼项目中恰好选择一项进行锻炼,则甲不选A项、乙不选B项的概率为()A.B.C.D.10.若函数y=A sinωx(A>0,ω>0,x>0)的图象上相邻三个最值点为顶点的三角形是直角三角形,则A•ω=()A.4πB.2πC.πD.11.若函数,且f(2a)+f(a﹣1)>0,则a的取值范围是()A.(﹣∞,)B.C.D.12.已知O为直角坐标系的原点,矩形OABC的顶点A,C在抛物线x2=4y上,则直线OB的斜率的取值范围是()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣4]∪[4,+∞)C.D.二、填空题:本题共4小题,每小题5分,共20分.13.若实数x,y满足,则z=2x+y的最小值为.14.已知平面α⊥平面β,直线l⊂α,且l不是平面α,β的交线.给出下列结论:①平面β内一定存在直线平行于平面α;②平面β内一定存在直线垂直于平面α;③平面β内一定存在直线与直线l平行;④平面β内一定存在直线与直线l异面.其中所有正确结论的序号是.15.阿波罗尼奥斯是古希腊时期与阿基米德、欧几里得齐名的数学家,以其姓氏命名的“阿氏圆”,是指“平面内到两定点的距离的比值为常数λ(λ>0,λ≠1)的动点轨迹”.设△ABC的角A,B,C所对的边分别为a,b,c,顶点C在以A,B为定点,λ=2的一个阿氏圆上,且,△ABC的面积为,则c=.16.若关于x的不等式lnx≤﹣bx+1恒成立,则ab的最大值是.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n}的前n项和是S n,且S n=2a n﹣2,等差数列{b n}中,b1=20,b3=16.(1)求数列{a n}和{b n}的通项公式;(2)定义:a*b=.记c n=a n*b n,求数列{c n}的前10项的和T10.18.某学校课外兴趣小组利用假期到植物园开展社会实践活动,研究某种植物生长情况与温度的关系.现收集了该种植物月生长量y(cm)与月平均气温x(℃)的8组数据,并制成如图1所示的散点图.根据收集到的数据,计算得到如表值:(x i﹣)21812.325224.04235.96(1)求出y关于x的线性回归方程(最终结果的系数精确到0.01),并求温度为28℃时月生长量y的预报值;(2)根据y关于x的回归方程,得到残差图如图2所示,分析该回归方程的拟合效果.附:对于一组数据(ω,v1),(ω2,v2),…,(ωn,v n),其回归直线的斜率和截距的最小二乘估计分别为,=﹣.19.如图,在四边形ABCD中,AD∥BC,AB⊥AD,∠ABE=30°,∠BEC=90°,AD =2,E是AD的中点.现将△ABE沿BE翻折,使点A移动至平面BCDE外的点P.(1)若,求证:DF∥平面PBE;(2)若平面PBE⊥平面BCDE,求平面PBE与平面PCD所成锐二面角的余弦值.20.在直角坐标系内,点A,B的坐标分别为(﹣2,0),(2,0),P是坐标平面内的动点,且直线PA,PB的斜率之积等于.设点P的轨迹为C.(1)求轨迹C的方程;(2)某同学对轨迹C的性质进行探究后发现:若过点(1,0)且倾斜角不为0的直线l 与轨迹C相交于M,N两点,则直线AM,BN的交点Q在一条定直线上.此结论是否正确?若正确,请给予证明,并求出定直线方程;若不正确,请说明理由.21.已知函数f(x)=.(1)若曲线y=f(x)在x=﹣1处切线的斜率为e﹣1,判断函数f(x)的单调性;(2)若函数f(x)有两个零点x1,x2,证明x1+x2>0,并指出a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1:(t为参数),曲线C2:,(θ为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.(1)求曲线C1,C2的极坐标方程;(2)射线y=x tanα(x≥0,0<α<)分别交C1,C2于A,B两点,求的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+3|+2|x|.(1)求f(x)的值域;(2)记函数f(x)的最小值为M.设a,b,c均为正数,且a+b+c=M,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|x2﹣4x+3>0},B={x|﹣1<x<2},则(∁U A)∪B=()A.(﹣1,1]B.[1,2)C.[1,3]D.(﹣1,3]【分析】求出集合的等价条件,根据集合的基本运算进行求解即可.解:由x2﹣4x+3>0解得x<1或x>3,则A=(﹣∞,1)∪(3,+∞),所以(∁U A)∪B=[1,3]∪(﹣1,2)=(﹣1,3].故选:D.2.若复数z在复平面内对应的点的坐标为(1,2),则=()A.B.C.1+3i D.﹣1﹣3i【分析】由已知求得z,代入,再由复数代数形式的乘除运算化简得答案.解:由z=1+2i,得.故选:B.3.已知向量=(1+λ,2),=(3,4),若∥,则实数λ=()A.B.C.D.【分析】根据即可得出4(1+λ)﹣2×3=0,然后解出λ即可.解:∵,∴4(1+λ)﹣2×3=0,解得.故选:C.4.若,则sin2α=()A.B.C.D.【分析】法一:结合诱导公式及二倍角的余弦公式即可求解;法二:由已知结合两角差的余弦公式展开后,利用同角平方关系即可求解.解:法一:根据已知,有.法二:由得,两边平方得,所以,即.故选:A.5.函数f(x)=的大致图象是()A.B.C.D.【分析】先根据函数奇偶性的概念可知f(﹣x)=﹣f(x),所以f(x)为奇函数,排除选项A和B;再对比选项C和D,比较f(x)与x的大小即可作出选择.解:因为f(﹣x)==﹣f(x),所以f(x)为奇函数,排除选项A和B;当x>0时,,排除选项C.故选:D.6.若(2x+)6展开式的常数项为160,则a=()A.1B.2C.4D.8【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项,再根据常数项等于160求得实数a的值.解:二项式(2x+)6的展开式的通项公式为T r+1=•26﹣r•a r•x6﹣2r,令6﹣2r=0,可得r=3;故二项式展开式的常数项为,解得a=1.故选:A.7.若过点P(,1)的直线l是圆C:(x﹣2)2+y2=4的一条对称轴,将直线l绕点P旋转30°得到直线l',则直线l'被圆C截得的弦长为()A.4B.C.2D.1【分析】由已知可得点P在圆C上,且圆心C在直线l上,求得PC=2.画出图形,利用勾股定理求得半弦长,则直线l'被圆C截得的弦长可求.解:由题意知,点P在圆C上,且圆心C在直线l上,∴PC=2.如图,设l'与圆交于P,Q两点,线段PQ的中点为H,则在Rt△PHC中,,故直线l'被圆C截得的弦长.故选:B.8.如图,已知圆锥底面圆的直径AB与侧棱SA,SB构成边长为的正三角形,点C是底面圆上异于A,B的动点,则S,A,B,C四点所在球面的面积是()A.4πB.C.16πD.与点C的位置有关【分析】如图,设底面圆的圆心为O,S,A,B,C四点所在球面的球心为O1,连接SO,可得SO⊥平面ABC,且O1在线段SO上.设球O1的半径为R,在Rt△O1AO中,由勾股定理可得R.解:如图,设底面圆的圆心为O,S,A,B,C四点所在球面的球心为O1,连接SO,则SO⊥平面ABC,且O1在线段SO上.易知SO=3,.设球O1的半径为R,在Rt△O1AO中,由勾股定理得(3﹣R)2+=R2,解得R =2.故球面面积为4πR2=16π.故选:C.9.甲、乙、丙、丁4名学生参加体育锻炼,每人在A,B,C三个锻炼项目中恰好选择一项进行锻炼,则甲不选A项、乙不选B项的概率为()A.B.C.D.【分析】根据题意,可得每位学生选择三个锻炼项目有种,则总的选择方式有种,其中甲、乙的选择方式有种,故甲不选A、乙不选B项目的概率为或.解:法一:每位学生选择三个锻炼项目有种,则4人总的选择方式共有种,其中甲、乙的选择方式有种,其余两人仍有种,故甲不选A、乙不选B项目的概率为.法二:只考虑甲、乙的选择,不加限制均为3种,受到限制后均为2种,而甲乙的选择相互独立,故甲不选A、乙不选B项目的概率为.故选:B.10.若函数y=A sinωx(A>0,ω>0,x>0)的图象上相邻三个最值点为顶点的三角形是直角三角形,则A•ω=()A.4πB.2πC.πD.【分析】作出函数y=A sinωx(A>0,ω>0,x>0)的大致图象,结合图象求出△MNP 为等腰直角三角形,即可求解结论.解:作出函数y=A sinωx(A>0,ω>0,x>0)的大致图象,不妨取如图的相邻三个最值点.设其中两个最大值点为M,N,最小值点为P.根据正弦函数图象的对称性,易知△MNP为等腰直角三角形,且斜边上的高PQ=2A,所以斜边MN=4A,则y=A sinωx周期T=4A.由,有,所以.故选:D.11.若函数,且f(2a)+f(a﹣1)>0,则a的取值范围是()A.(﹣∞,)B.C.D.【分析】根据函数奇偶性和单调性之间的关系,即可得到结论.解:由题知f(x)的定义域为(﹣1,1),且,所以f(﹣x)=ln=﹣ln+x=﹣f(x),所以f(x)为奇函数且在(﹣1,1)上单调递减.由f(2a)+f(a﹣1)>0,可知f(2a)>﹣f(a﹣1)=f(1﹣a),于是有,解得.故选:C.12.已知O为直角坐标系的原点,矩形OABC的顶点A,C在抛物线x2=4y上,则直线OB的斜率的取值范围是()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣4]∪[4,+∞)C.D.【分析】画出图形,设A(x1,y1),C(x2,y2),则B(x1+x2,y1+y2),通过,推出直线OB的斜率的表达式,利用基本不等式求解即可.解:如图,设A(x1,y1),C(x2,y2),则B(x1+x2,y1+y2),依题意,四边形OABC为矩形,则,即x1x2+y1y2=0,所以,即x1x2=﹣16,从而,直线OB的斜率=,.当且仅当,即时等号成立,故.故选:D.二、填空题:本题共4小题,每小题5分,共20分.13.若实数x,y满足,则z=2x+y的最小值为3.【分析】画出约束条件的可行域,利用目标函数的几何意义,求解真假,得到目标函数的最小值即可.解:不等式组表示的可行域是以(2,0),A(1,1),(3,1)为顶点的三角形及其内部,如图:当目标函数z=2x+y过点A(1,1)时,目标函数在y轴是的的截距取得最小值,此时z取得最小值,z取得最小值3.故答案为:3.14.已知平面α⊥平面β,直线l⊂α,且l不是平面α,β的交线.给出下列结论:①平面β内一定存在直线平行于平面α;②平面β内一定存在直线垂直于平面α;③平面β内一定存在直线与直线l平行;④平面β内一定存在直线与直线l异面.其中所有正确结论的序号是①②④.【分析】利用直线与平面的位置关系结合图形、逐个判断,即可得出答案.解:设平面α∩β=a,①存在b⊂平面β,且b∥a,所以a∥平面α,故正确,②存在c⊂平面β,且c⊥a,所以c⊥平面α,故正确,③若l与两平面的交线相交,则平面β内不存在直线与直线l平行,则③错误;④由以上图可知存在平面β内一定存在直线与直线l异面.故④正确,故答案:①②④.15.阿波罗尼奥斯是古希腊时期与阿基米德、欧几里得齐名的数学家,以其姓氏命名的“阿氏圆”,是指“平面内到两定点的距离的比值为常数λ(λ>0,λ≠1)的动点轨迹”.设△ABC的角A,B,C所对的边分别为a,b,c,顶点C在以A,B为定点,λ=2的一个阿氏圆上,且,△ABC的面积为,则c=.【分析】直接利用余弦定理和三角形的面积公式的应用求出结果.解:由已知,不妨设b=2a,由,,解得a=1,则b=2,据余弦定理有,所以.故答案为:16.若关于x的不等式lnx≤﹣bx+1恒成立,则ab的最大值是e.【分析】由不等式lnx≤﹣bx+1恒成立,且x>0,可化为.设,求导可得f'(x)=,令f'(x)=0可得x=e2,可得在(0,e2)和(e2,+∞)函数f(x)的单调性,求出函数f(x)的最大值.结合图象可得f(x)在的图象的下面恒成立,则的图象与函数f(x)的图象相切时,ab取到最大值,进而求出ab的最大值.解:由a≠0,x>0,原不等式可化为恒成立,设,则,当x∈(0,e2)时,f'(x)>0,f(x)递增;x∈(e2,+∞),f'(x)<0,f(x)递减.所以,f(x)在x=e2处取得极大值,且为最大值;且x>e时,f(x)>0.结合图象可知,的图象恒在f(x)的图象的上方,显然a<0不符题意;当a>0时,ab为直线的横截距,其最大值为f(x)的横截距,再令f(x)=0,可得x=e,所以ab取得最大值为e.此时a=e2,,直线与f(x)在点(e,0)处相切,ab的最大值为e.故答案为:e.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n}的前n项和是S n,且S n=2a n﹣2,等差数列{b n}中,b1=20,b3=16.(1)求数列{a n}和{b n}的通项公式;(2)定义:a*b=.记c n=a n*b n,求数列{c n}的前10项的和T10.【分析】(1)对于数列{a n}:当n=1时,由题设条件求出a1,再由当n≥2时,由S n =2a n﹣2,S n﹣1=2a n﹣1﹣2两式相减整理得a n=2a n﹣1,进而说明数列{a n}是首项为2,公比也为2的等比数列,从而求得a n;对于数列{b n}:先设出等差数列{b n}的公差d,再由题设条件求出d,即可求得b n.(2)先由(1)求得c n,再求出T10即可.解:(1)对于数列{a n},当n=1时,由S n=2a n﹣2得a1=2;当n≥2时,由S n=2a n﹣2,S n﹣1=2a n﹣1﹣2两式相减整理得a n=2a n﹣1,所以数列{a n}是首项为2,公比也为2的等比数列,所以数列{a n}的通项公式.设等差数列{b n}的公差为d,则b3﹣b1=16﹣20=4=2d,解得d=﹣2,所以数列{b n}的通项公式b n=22﹣2n.综合以上知:a n=2n,b n=22﹣2n;(2)由(1)知:c n=a n*b n==,所以T10=a1+a2+a3+b4+b5+b6+…+b10==.18.某学校课外兴趣小组利用假期到植物园开展社会实践活动,研究某种植物生长情况与温度的关系.现收集了该种植物月生长量y(cm)与月平均气温x(℃)的8组数据,并制成如图1所示的散点图.根据收集到的数据,计算得到如表值:(x i﹣)21812.325224.04235.96(1)求出y关于x的线性回归方程(最终结果的系数精确到0.01),并求温度为28℃时月生长量y的预报值;(2)根据y关于x的回归方程,得到残差图如图2所示,分析该回归方程的拟合效果.附:对于一组数据(ω,v1),(ω2,v2),…,(ωn,v n),其回归直线的斜率和截距的最小二乘估计分别为,=﹣.【分析】(1)根据表中数据求出线性回归方程的系数,写出线性回归方程,利用回归方程计算x=28时的值;(2)根据残差图中对应点分布情况判断该回归方程的拟合效果.解:(1)设月生长量y与月平均气温x之间的线性回归方程为,计算,所以,所以y关于x的线性回归方程为;当x=28时,=1.05×28﹣6.63=22.77(cm),所以,在气温在28℃时,该植物月生长量的预报值为22.77cm.(2)根据残差图,残差对应的点比较均匀地落在水平的带状区域中,且带状区域的宽度窄,所以该回归方程的预报精度相应会较高,说明拟合效果较好.19.如图,在四边形ABCD中,AD∥BC,AB⊥AD,∠ABE=30°,∠BEC=90°,AD=2,E是AD的中点.现将△ABE沿BE翻折,使点A移动至平面BCDE外的点P.(1)若,求证:DF∥平面PBE;(2)若平面PBE⊥平面BCDE,求平面PBE与平面PCD所成锐二面角的余弦值.【分析】(1)法一:在线段PB上取靠近点P的四等分点G,可得,由此证明四边形DEGF为平行四边形,可得DF∥EG,进而得证;法二:在线段BC上取靠近点B的四等分点H,可得HF∥PB,由此证明HF∥平面PBE,再证明四边形DEBH为平行四边形,可得DH∥平面PBE,综合可得平面DFH∥平面PBE,再利用面面平行的性质定理得证;(2)建立空间直角坐标系,求出平面PBE及平面PCD的法向量,利用向量的夹角公式直接求解即可.解:(1)法一:依题意得BE=2,BC=4,.…………………………(1分)如图,在线段PB上取靠近点P的四等分点G,连接FG,EG,因为,所以.所以.……………………………………所以四边形DEGF为平行四边形,可得DF∥EG.…………………………又DF⊄平面PBE,EG⊂平面PBE,.………………………………所以DF∥平面PBE.………………………………法二:如图,在线段BC上取靠近点B的四等分点H,连接FH,DH,因为,所以HF∥PB.又HF⊄平面PBE,PB⊂平面PBE,所以HF∥平面PBE.……………………………………依题意得BE=2,BC=4,,而,所以.所以四边形DEBH为平行四边形.所以DH∥EB.又DH⊄平面PBE,EB⊂平面PBE,所以DH∥平面PBE.………………………………而DH⊂平面DFH,FH⊂平面DFH,DH∩FH=H,所以平面DFH∥平面PBE.因为DF⊂平面DFH,所以DF∥平面PBE.………………………………(2)由∠BEC=90°,得BE⊥EC.又因为平面PBE⊥平面BCDE,平面PBE∩平面BCDE=BE,所以EC⊥平面PBE.……………………………………以E为原点,建立如图所示空间直角坐标系E﹣xyz,则E(0,0,0),,,B(2,0,0),由,得.…………………………………………则,.设平面PCD的法向量为,则,令y=1,则,故可取.………………………………又EC⊥平面PBE,可取平面PBE的一个法向量为,.…………………………则=.所以,平面PBE与平面PCD所成锐二面角的余弦值为.………………………………20.在直角坐标系内,点A,B的坐标分别为(﹣2,0),(2,0),P是坐标平面内的动点,且直线PA,PB的斜率之积等于.设点P的轨迹为C.(1)求轨迹C的方程;(2)某同学对轨迹C的性质进行探究后发现:若过点(1,0)且倾斜角不为0的直线l 与轨迹C相交于M,N两点,则直线AM,BN的交点Q在一条定直线上.此结论是否正确?若正确,请给予证明,并求出定直线方程;若不正确,请说明理由.【分析】(1)利用,求解轨迹方程即可.(2)设直线MN的方程为:x=my+1,联立直线与椭圆方程,M(x1,y1),N(x2,y2),结合韦达定理,通过直线AM,BN的交点Q(x0,y0)的坐标满足:.转化求解即可.解:(1)由,得4y2=4﹣x2,即.故轨迹C的方程为:.(2)根据题意,可设直线MN的方程为:x=my+1,由,消去x并整理得(m2+4)y2+2my﹣3=0.其中,△=4m2+12(m2+4)=16m2+48>0.设M(x1,y1),N(x2,y2),则,.因直线l的倾斜角不为0,故x1,x2不等于±2(y1,y2不为0),从而可设直线AM的方程为①,直线BN的方程为②,所以,直线AM,BN的交点Q(x0,y0)的坐标满足:.而=,因此,x0=4,即点Q在直线x=4上.所以,探究发现的结论是正确的.21.已知函数f(x)=.(1)若曲线y=f(x)在x=﹣1处切线的斜率为e﹣1,判断函数f(x)的单调性;(2)若函数f(x)有两个零点x1,x2,证明x1+x2>0,并指出a的取值范围.【分析】(1)求出原函数的导函数,得到f'(﹣1)=ea﹣1由已知列式求得a值,求出导函数的零点,再由导函数的零点对定义域分段,关键导函数在本题区间段内的符号,可得原函数的单调性;(2)当a>0时,若a=1,由(1)知,f(x)为R上的增函数.结合f(﹣1)>0,f (﹣2)<0,可得f(x)只有一个零点,不符合题意.若0<a<1,利用导数研究其单调性可知f(x)最多只有一个零点,不符合题意.若a>1时,利用导数求其极小值,根据极小值大于0,可得f(x)最多只有一个零点,不符合题意.当a<0时,利用导数证明f(x)始终有两个零点x1,x2,不妨令x1<0,x2>0,构造函数F(x)=f(x)﹣f (﹣x),再求导数证明f(x1)<f(﹣x2).结合f(x)的单调性得x1>﹣x2,即x1+x2>0.解:(1)由题,则f'(﹣1)=ea﹣1=e﹣1,得a=1,此时,由f'(x)=0,得x=0.则x<0时,f'(x)>0,f(x)为增函数;x>0时,f'(x)>0,f(x)为增函数,且f'(0)=0,所以f(x)为R上的增函数;证明:(2)①当a>0时,由f'(x)=0,得x=0或x=lna,若a=1,由(1)知,f(x)为R上的增函数.由,f(﹣2)=﹣e2+2<0,∴f(x)只有一个零点,不符合题意.若0<a<1,则x<lna时,f'(x)>0,f(x)为增函数;lna<x<0时,f'(x)<0,f (x)为减函数;x>0时,f'(x)>0,f(x)为增函数.而f(x)极小=f(0)=a>0,故f(x)最多只有一个零点,不符合题意.若a>1时,则x<0时,f'(x)>0,f(x)为增函数;0<x<lna时,f'(x)<0,f(x)为减函数;x>lna时,f'(x)>0,f(x)为增函数,得,故f(x)最多只有一个零点,不符合题意.②当a<0时,由f'(x)=0,得x=0,由x≤0,得f'(x)≤0,f(x)为减函数,由x>0,得f'(x)>0,f(x)为增函数,则f(x)极小=f(0)=a<0.又x→﹣∞时,f(x)>0,x→+∞时,f(x)>0,∴当a<0时,f(x)始终有两个零点x1,x2,不妨令x1<0,x2>0,构造函数F(x)=f(x)﹣f(﹣x),∴,由于x>0时,e x﹣e﹣x>0,又a<0,则F'(x)=ax(e x﹣e﹣x)<0恒成立,∴F(x)为(0,+∞)的减函数,则F(x)<F(0)=f(0)﹣f(0)=0,即f(x)<f(﹣x),故有f(x2)<f(﹣x2).又x1,x2是f(x)的两个零点,则f(x1)=f(x2),∴f(x1)<f(﹣x2).结合f(x)的单调性得x1>﹣x2,∴x1+x2>0,且a的取值范围是(﹣∞,0).(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1:(t为参数),曲线C2:,(θ为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.(1)求曲线C1,C2的极坐标方程;(2)射线y=x tanα(x≥0,0<α<)分别交C1,C2于A,B两点,求的最大值.【分析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用极径的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.解:(1)消去参数t,得曲线C1的直角坐标方程为,则曲线C1的极坐标方程为.消去参数θ,得曲线C2的直角坐标方程为(x﹣1)2+y2=1,即x2+y2﹣2x=0,所以曲线C2的极坐标方程为ρ2﹣2ρcosθ=0,即ρ=2cosθ.(2)射线的极坐标方程为,.联立,得,所以;由,得ρB=2cosα,则|OB|=2cosα,因此=.由,得.所以,当,即时,.故的最大值为.[选修4-5:不等式选讲]23.已知函数f(x)=|x+3|+2|x|.(1)求f(x)的值域;(2)记函数f(x)的最小值为M.设a,b,c均为正数,且a+b+c=M,求证:.【分析】(1)化分段函数,求出每段的值域即可求出函数f(x)的值域;(2)根据(1)求出M=3,再根据基本不等式即可证明.解:(1)当x<﹣3时,f(x)=﹣x﹣3﹣2x=﹣3x﹣3,此时f(x)∈(6,+∞);当﹣3≤x≤0时,f(x)=x+3﹣2x=﹣x+3,此时f(x)∈[3,6];.当x>0时,f(x)=x+3+2x=3x+3,此时f(x)∈(3,+∞),综上,函数f(x)的值域为[3,+∞).(2)由(1)知,函数f(x)的最小值为3,则M=3,即a+b+c=3.因为≥36.其中,当且仅当,b=1,取“=”.又因为a+b+c=3,所以.。
2020届高三第三次模拟考试卷理 科 数 学(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知全集为实数集R ,集合2{|280}A x x x =+->,2{|log 1}B x x =<,则()A B =R I ð( )A .[4,2]-B .[4,2)-C .(4,2)-D .(0,2)答案:D解:依题意,[4,2]A =-R ð,(0,2)B =,则()(0,2)A B =R I ð. 2.已知,a b ∈R ,若i a +与3i b -互为共轭复数,则2(i)a b -=( ) A .86i + B .86i - C .86i --D .86i -+答案:B解:因为3a =,1b =,所以2(3i)86i -=-.3.若双曲线22221(0)2x y m m m -=>+的离心率为2,则实数m 的值为( )A .1B .13C .2D .3答案:A解:由题意,得2222m m m++=,解得1m =(1m =-舍去).4.若π1cos()36α+=-,且π2π63α<<,则7πsin()12α+=( ) A .70212+B .70212-C .27012-D .70212+-答案:B 解:因为π2π63α<<,所以πππ23α<+<,所以πsin()03α+>, 所以2π135sin()1()366α+=--=, 所以7πππππππsin()sin()sin()cos cos()sin 12343434αααα+=++=+++ 35212702626212-=⨯-⨯=. 5.在ABC Rt △中,90A =︒,AB AC a ==,在边BC 上随机取一点D ,则事件“104AD a >”发生的概率为( ) A .34B .23C .12D .13答案:C解:设事件事件“104AD a >”为M , 设BC 的中点为P ,则2222210()24AD AP DP a DP a=+=+>,解得24DP a >, 所以222()124()22a a P M a-==. 6.已知某几何体的三视图如图所示,若该几何体的体积为3π6+,则x 等于( )A .4B .5C .6D .7答案:A解:由三视图知,该几何体由四分之一个圆锥与三棱锥组成, 所以体积为:21111π3333π64332V x x =⨯⨯⨯⨯+⨯⨯⨯⨯=+,解得4x =. 7.已知抛物线24y x =的焦点为F ,抛物线上任意一点P ,且PQ y ⊥轴于点Q ,则PQ PF ⋅u u u r u u u r的此卷只装订不密封班级 姓名 准考证号 考场号 座位号最小值为( ) A .14-B .12-C .1-D .1答案:A解:因为(1,0)F ,设点2(,2)P m m ,则(0,2)Q m ,则2(,0)PQ m =-u u u r ,2(1,2)PF m m =--u u u r ,则2422111()244PQ PF m m m ⋅=-+=--≥-u u u r u u u r .8.“2020”含有两个数字0,两个数字2,“2121”含有两个数字1,两个数字2,则含有两个数字0,两个数字2的四位数的个数与含有两个数字1、两个数字2的四位数的个数之和为( ) A .8 B .9 C .10 D .12答案:B解:第一类:含有两个数字0、两个数字2的四位数的个数为23C 3=, 第二类:含有两个数字1,两个数字2的四位数的个数为24C 6=, 由分类加法计数原理,得满足题意的个数为369+=. 9.已知函数π()sin()(0)6f x x ωω=+>的两个零点之差的绝对值的最小值为π2,将函数()f x 的 图象向左平移π3个单位长度得到函数()g x 的图象,则下列说法正确的是( ) ①函数()g x 的最小正周期为π;②函数()g x 的图象关于点7π(,0)12对称; ③函数()g x 的图象关于直线2π3x =对称;④函数()g x 在π[,π]3上单调递增. A .①②③④ B .①②C .②③④D .①③答案:B解:由题意知函数π()sin()(0)6f x x ωω=+>的最小正周期为π,则2π2πω==, 所以π()sin(2)6f x x =+. 将函数()f x 的图象向左平移π3个单位长度得到函数ππ5πsin[2()]sin(2)366y x x =++=+的图象,即5π()sin(2)6g x x =+, 则()g x 的最小正周期为2ππ2T ==,故①正确; 令5π2π()6x k k +=∈Z ,解得π5π()212k x k =-∈Z , 令2k =,得函数()g x 的图象关于点7π(,0)12对称,故②正确; 令5ππ2π()62x k k +=+∈Z ,解得ππ()26k x k =-∈Z . 令1,2k =,得函数()g x 的图象关于直线π3x =,5π6x =对称,故③错误; 令π5ππ2π22π()262k x k k -≤+≤+∈Z ,得2ππππ()36k x k k -≤≤-∈Z , 所以函数()g x 在π5π[,]36上单调递增,故④错误. 10.杨辉三角是二项式系数在只角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中就有出现.在欧洲,帕斯卡(16231662~)在1654年发现这一规律,比杨辉要迟了393年.如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,⋯,则在该数列中,第37项是( )A .153B .171C .190D .210答案:C解:考查从第3行起每行的第三个数:1,312=+,6123=++,101234=+++, 归纳推理可知第k (3k ≥)行的第3个数为12(2)k +++-L , 在该数列中,第37项为第21行第3个数, 所以该数列的第37项为19(191)12191902++++==L . 11.已知双曲线2222:1x y C a b -=(0a >,0b >)的右焦点为F ,过原点O 作斜率为43的直线交C的右支于点A ,若||||OA OF =,则双曲线的离心率为( ) A 3B 5C .2D 31答案:B解:设双曲线左焦点为F ',因为OA OF OF c '===,所以90FAF '∠=︒,设点4(,)3A m m ,则2163()()95m c m c m m c =+-⇒=,所以点34(,)55A c c , 所以222291612525c ca b -=, 所以224222216925991625251ee e e e e e -=⇒--=--42222950250(95)(5)05e e e e e e ⇒-+=⇒--=⇒=⇒=12.设函数()f x 的定义域为R ,()f x '是其导函数,若3()()0(0)1f x f x f +'>=,,则不等式3()x f x e >-的解集是( )A .(0,)+∞B .(1,)+∞C .(,0)-∞D .(0,1)答案:A解:令3()()xg x e f x =,则333()()()xxe f x e f x g x '=+',因为3()()0f x f x '+>,所以333()()0xxe f x e f x '+>,所以()0g x '>, 所以函数3()()xg x e f x =在R 上单调递增, 而3()xf x e>-可化为3()1xe f x >等价于()(0)g x g >,解得0x >,所以不等式3()xf x e >-的解集是(0,)+∞.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.已知函数3log (1)2,0()(3),0x x f x f x x +-≥⎧=⎨+<⎩,则20()20f =-________. 答案:1-解:3()()(1)(2)log (21)2120202017f f f f ===-==+-=-L --.14.已知7270127(21)x a a x a x a x -=++++L ,则2a =________.答案:84-解:52527C 2(1)84a =⨯⨯-=-.15.已知抛物线29y x =的焦点为F ,其准线与x 轴相交于点M ,N为抛物线上的一点,且满足|2||NF MN =,则点F 到直线MN 的距离为___________.解:由抛物线29y x =,可得9||2MF =, 设点N 到准线的距离为d ,由抛物线定义可得||d NF =,|2||NF MN =,由题意得||cos ||||d NF NMF MN MN ∠===,所以sin NMF ∠==,所以点F 到直线MN的距离为9||sin 2MF NMF ∠== 16.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且2()2cos cos sin sin A C b c B C -=,2a =,则ABC △的面积的最大值是________.解:由2()2cos cos sin sin A C b c B C -=及正弦定理,得222cos cos sin sin si (n )A C B B C -=.显然sin 0B ≠,所以222cos cos sin A C C -=.所以222cos sin cos 1A C C =+=,所以1cos 2A =. 又(0,π)A ∈,所以sin A =,所以2222b c bc +-=,则2242bc b c bc +=+≥, 所以4bc ≤,当且仅当2b c ==时取等号, 所以ABC △的面积:11sin 2224S bc A bc ==⨯=≤ 故ABC △三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)在等差数列{}n a 中,46a =-,且235a a a ,,成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的公差不为0,设3n an n b a =+,求数列{}n b 的前n 项和n T .答案:(1)见解析;(2)129988nn n n T -=-+-.解:(1)设数列{}n a 的公差为d ,因为235a a a ,,成等比数列,所以2325a a a =,又46a =-,所以2(6)(62)(6)d d d --=---+,即3(2)0d d +=,解得0d =或2d =-. 当0d =时,6n a =-;当2d =-时,4(4)6(4)(2)22n a a n d n n -=-+--=-=+. (2)若数列{}n a 的公差不为0,由(1)知,22n a n =-,则22223nn b n -=-+,所以1211[1()](022)999128819n n n n n n T n -⨯-+-=+=-+--.18.(12分)如图,三棱柱111ABC A B C -中,侧面11BCC B 是菱形,2AC BC ==,1π3CBB ∠=,点A 在平面11BCC B 上的投影为棱1BB 的中点E .(1)求证:四边形11ACC A 为矩形;(2)求二面角11E B C A --的平面角的余弦值. 答案:(1)证明见解析;(2)217-. 解:(1)因为AE ⊥平面11BB C C ,所以1AE BB ⊥, 又因为1112BE BB ==,2BC =,π3EBC ∠=,所以3CE =, 因此222BE CE BC +=,所以1CE BB ⊥,因此1BB ⊥平面AEC ,所以1BB AC ⊥, 从而1AA AC ⊥,即四边形11ACC A 为矩形.(2)如图,以E 为原点,EC ,1EB ,EA 所在直线分别为x 轴,y 轴,z 轴,所以(0,0,1)A ,1(0,2,1)A ,1(0,1,0)B ,(3,0,0)C .平面1EB C 的法向量(0,0,1)=m ,设平面11A B C 的法向量为(,,)x y z =n ,由1303CB x y y x ⊥⇒-+=⇒=u u u r n ,由110B A y z ⊥⇒+=u u u u rn , 令13x y =⇒=,3z =-,即(1,3,3)=-n ,所以321cos ,717-<>==-⨯m n , 所以二面角11E B C A --的余弦值是217-. 19.(12分)“互联网+”是“智慧城市”的重要内士,A 市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费WiFi .为了解免费WiFi 在h 市的使用情况,调査机构借助网络进行了问卷调查,并从参与调査的网友中抽取了200人进行抽样分析,得到如下列联表(单位:人):(1)根据以上数据,判断是否有90%的把握认为A 市使用免费WiFi 的情况与年龄有关; (2)将频率视为概率,现从该市45岁以上的市民中用随机抽样的方法每次抽取1人,共抽取3次.记被抽取的3人中“偶尔或不用免费WiFi ”的人数为X ,若每次抽取的结果是相互独立的,求X 的分布列,数学期望()E X 和方差()D x .附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.答案:(1)没有90%的把握认为;(2)分布列见解析,6()5E X =,18()25D X =.解:(1)由列联表可知22200(70406030) 2.19813070100100K ⨯⨯-⨯=≈⨯⨯⨯, 因为2.198 2.706<,所以没有90%的把握认为A 市使用免费WiFi 的情况与年龄有关. (2)由题意可知2(3,)5X B :,X 的所有可能取值为0,1,2,3,033327(0)C ()5125P X ===,1232354(1)C ()()55125P X ==⨯=, 2232336(2)C ()55125P X ==⨯=,33328(3)C ()5125P X ===. 所以X 的分布列为26()355E X =⨯=,2218()3(1)5525D X =⨯⨯-=. 20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>,圆心为坐标原点的单位圆O 在C 的内部,且与C 有且仅有两个公共点,直线22x +=与C 只有一个公共点.(1)求C 的标准方程;(2)设不垂直于坐标轴的动直线l 过椭圆C 的左焦点F ,直线l 与C 交于A ,B 两点,且弦AB 的中垂线交x 轴于点P ,试求ABP △的面积的最大值.答案:(1)2212x y +=;(236.解:(1)依题意,得1b =,将22x y =代入222(2)240a y y a +-+-=,由22324(2)(4)0Δa a =-+-=,22a =,所以椭圆的标准方程为2212x y +=. (2)由(1)可得左焦点(1,0)F -,由题设直线l 的方程为1(0)x my m =-≠, 代入椭圆方程,得22(2)210m y my +--=. 设11(,)A x y ,22(,)B x y ,则12222m y y m +=+,12212y y m -=+, 所以121224()22x x m y y m -+=+-=+,AB 的中点为222(,)22m Q m m -++, 设点0(,0)P x ,则202(2)PQ m k m m x -==-++,解得0212x m -=+, 故222012121222|1|12(1)1||||()422(2)ABPx m m S PF y y y y y y m +++=⋅-=+-=+△, 令21(1)t m t =+>,则221m t =-,且32232221(1)ABPt S t t t t==+++△, 设321()(1)f x t t t t=++>,则22423(3)(3)(1)()1t t t f t t t -++'=--=,所以236163ABP S ≤=△ABP △36.21.(12分)已知函数2()xf x e x kx =--(其中e 为自然对数的底,k 为常数)有一个极大值点和一个极小值点.(1)求实数k 的取值范围;(2)证明:()f x 的极大值不小于1.答案:(1)(22ln 2,)-+∞;(2)证明见解析.解:(1)()2xf x e x k '=--,由()02xf x e x k '=⇒-=,记()2xg x e x =-,()2xg x e '=-,由()0ln 2g x x '=⇒=,且ln 2x <时,()0g x '<,()g x 单调递减,()(22ln 2,)g x ∈-+∞;ln 2x >时,()0g x '>,()g x 单调递增,()(22ln 2,)g x ∈-+∞,由题意,方程()g x k =有两个不同解,所以(22ln 2,)k ∈-+∞.(2)解法一:由(1)知()f x 在区间(,ln 2)-∞上存在极大值点1x ,且112xk e x =-,所以()f x 的极大值为11122111111()(2)(1)xxxf x e x e x x x e x =---=-+,记2()(1)((,ln 2))t h t t e t t =-+∈-∞,则()2(2)t th t te t t e '=-+=-,因为(,ln 2)t ∈-∞,所以20te ->,所以0t <时,()0h t '<,()h t 单调递减;0t >时,()0h t '>,()h t 单调递增, 所以()(0)1h t h ≥=,即函数()f x 的极大值不小于1.解法二:由(1)知()f x 在区间(,ln 2)-∞上存在极大值点1x ,且112xk e x =-,所以()f x 的极大值为11122111111()(2)(1)xxxf x e x e x x x e x =---=-+,因为110x ->,111xe x ≥+,所以21111()(1)(1)1f x x x x ≥-++=,即函数()f x 的极大值不小于1.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】已知在平面直角坐标系中,直线l 的参数方程为1x ty bt=⎧⎨=-+⎩(t 为参数),以坐标原点O 为极点,x 轴非负半轴为极轴且取相同的单位长度建立的极坐标系中,曲线C 的方程为22sin cos 0θρθ-=. (1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于A B ,两点,且4AB =,求b 的值. 答案:(1)22x y =;(2)b =解:(1)因为22sin cos 0θρθ-=,所以222sin cos 0ρθρθ-=,代入sin cos y xρθρθ=⎧⎨=⎩,得220y x -=,即22x y =.(2)由1x ty bt=⎧⎨=-+⎩,得1y bx =-+,联立212y bxx y=-+⎧⎨=⎩,消去y ,得2220x bx -+=,2(2)420Δb =--⨯>,解得b >b <,设11(,)A x y ,22(,)B x y ,则122x x b +=,122x x ⋅=.又||4AB ===,解得b = 23.(10分)【选修4-5:不等式选讲】 已知函数()321||||(0)f x x m x m -=+->. (1)若1m =,解不等式()4f x ≥;(2)若函数()f x 的图象与x 轴围成的三角形的面积为203,求m 的值. 答案:(1)(][),71,-∞-+∞U ;(2)2m =. 解:(1)若1m =,()31||2||2f x x x -=+-,当13x <-时,()4f x ≥可化为(31)(22)4x x -++-≥,解得7x ≤-; 当113x -≤<时,()4f x ≥可化为(31)(22)4x x ++-≥,解得1x ≥,无解; 当1x ≥时,()4f x ≥可化为(31)(22)4x x +--≥,解得1x ≥, 综上,不等式()4f x ≥的解集是(][),71,-∞-+∞U . (2)因为()3|||2|1f x x m x -=+-,又因为0m >,所以2()3()52(1)32(1)m x m x m f x x m x x m x ⎧---<-⎪⎪⎪=+--≤<⎨⎪++≥⎪⎪⎩,因为2()2033m m f -=--<,(1)30f m =+>, 所以()f x 的图象与x 轴围成的ABC △的三个顶点的坐标为(2,0)A m --,2(,0)5mB -,2(,2)33m m C ---, 所以214(3)20||||2153ABCC m S AB y +=⋅==△,解得2m =或8m =-(舍去).。
阶段自测卷(二)(时间:分钟满分:分)一、选择题(本大题共小题,每小题分,共分).(·沈阳东北育才学校联考)已知曲线=()在=处的切线方程是=-+,则()与′()分别为() .,-.-.-.,-答案解析由题意可得()=-+=,′()=-,故选..已知函数()=+,且′=,则等于()....答案解析∵′()=++,且′=,∴++=,即=..(·淄博期中)若曲线=+在点(,)处的切线垂直于轴,则实数等于().-...答案解析()的导数为′()=+,曲线=()在点(,)处的切线斜率为=+=,可得=-.故选..已知()=+,+()是()的导函数,即()=′(),()=′(),…,+()=′(),∈*,则()等于() .--.-.-+.+答案解析∵()=+,∴()=′()=-,∴()=′()=--,∴()=′()=-+,∴()=′()=+=(),∴()是以为周期的函数,∴()=()=-,故选..(·四川诊断)已知函数()的导函数为′(),且满足()=′()+(其中为自然对数的底数),则′()等于() ..-.-.--答案解析已知()=′()+,其导数′()=′()+,令=,可得′()=′()+,变形可得′()=-,故选..函数=-的单调递减区间为().(-] .(] .[,+∞) .(,+∞)答案解析由题意知,函数的定义域为(,+∞),又由′=-≤,解得<≤,所以函数的单调递减区间为(]..(·沈阳东北育才学校模拟)已知定义在(,+∞)上的函数()=+,()=-,设两曲线=()与=()在公共点处的切线相同,则值等于()...-.-答案解析′()=,′()=-,令=-,解得=,这就是切点的横坐标,代入()求得切点的纵坐标为-,将(,-)代入()得+=-,=-.故选..(·新乡模拟)若函数()=+在上单调递增,则的取值范围为().[-].[-,+∞) .[,+∞)答案解析依题意得,′()=+≥,。
江西省2020年高考数学三诊试卷(理科)(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6],则等于()A .B . {2,4,7,8}C . {1,3,5,6}D . {2,4,6,8}2. (2分)复数i(i+1)等于()A . 1+iB . -1+iC . 1-iD . -1-i3. (2分) (2018高一下·定远期末) 扇形AOB的半径为1,圆心角为90°.点C , D , E将弧AB等分成四份.连接OC , OD , OE ,从图中所有的扇形中随机取出一个,面积恰为的概率是()A .B .C .D .4. (2分)(2018·衡水模拟) 等比数列中,,函数,则()A .B .C .D .5. (2分)(2014·大纲卷理) 若向量、满足:| |=1,( + )⊥ ,(2 + )⊥ ,则| |=()A . 2B . BC . 1D .6. (2分)(2019·哈尔滨模拟) 阅读如图所示的程序框图,若运行相应的程序输出的结果为,则判断框中的条件不可能是()A .B .C .D .7. (2分)(2017·武汉模拟) 已知函数f(x)=sin(ωx+ )﹣ cos(ωx﹣)(ω>0)的最小正周期为2π,则f(﹣)=()A .B .C .D .8. (2分)某几何体的三视图如图所示,图中的四边形都是边长为1的正方形,两条虚线互相垂直,则该几何体的体积是()A .B .C .D . 19. (2分) (2019高三上·新洲月考) 将函数的图象向右平移个单位长度后所得的图象关于轴对称,则在上的最小值为()A .B . -1C . -2D . 010. (2分) (2017高二上·四川期中) 与双曲线有共同的渐近线,且过点的双曲线方程为()A .B .C .D .11. (2分)已知三棱锥的各顶点都在同一球面上,且平面,若该棱锥的体积为,,,,则此球的表面积等于()A .B .C .D .12. (2分)(2017·石家庄模拟) 若函数f(x)=x3+ax2+bx(a,b∈R)的图象与x轴相切于一点A(m,0)(m≠0),且f(x)的极大值为,则m的值为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2015高三上·平邑期末) 若x,y满足约束条件,且目标函数z=3x+y取得最大值为11,则k=________.14. (1分) (2018高二上·拉萨月考) 已知直线上有两个点和 , 且为一元二次方程的两个根, 则过点且和直线相切的圆的方程为________.15. (1分) (2016高三上·安徽期中) (x2+ ﹣2)3展开式中的常数项为________.16. (1分)在等比数列{an}中,公比q=﹣2,且a3a7=4a4 ,则a8与a11的等差中项为________.三、解答题 (共7题;共75分)17. (10分)(2019·安徽模拟) 在中,已知,且为锐角.(1)求;(2)若,且的面积为,求的周长.18. (15分) (2019高三上·凤城月考) 某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.晋级成功晋级失败合计男16女50合计(1)求图中的值;(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望.(参考公式:,其中)0.400.250.150.100.050.0250.780 1.323 2.072 2.706 3.841 5.02419. (10分) (2017高二上·晋中期末) 如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB 的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F 是AB的中点.(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B﹣DEG的体积.20. (10分)(2018·保定模拟) 椭圆的离心率为,且过点 .(1)求椭圆的方程;(2)设为椭圆上任一点,为其右焦点,点满足 .①证明:为定值;②设直线与椭圆有两个不同的交点,与轴交于点 .若成等差数列,求的值.21. (10分)已知函数有如下性质:如果常数t>0,那么该函数在上是减函数,在上是增函数.(1)已知f(x)= ﹣8,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域;(2)对于(1)中的函数f(x)和函数g(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g (x2)=f(x1)成立,求实数a的取值范围.22. (10分)在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立坐标系,曲线C1的参数方程为(θ为参数).(1)求曲线C1的直角坐标方程;(2)曲线C2的极坐标方程为θ= (ρ∈R),求C1与C2的公共点的极坐标.23. (10分) (2019高一上·启东期中) 已知函数.(1)若时,,求的值;(2)若时,函数的定义域与值域均为,求所有值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共75分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。
2020年高考数学(理)集合与函数突破性讲练20 第三单元自测卷时间:120分钟 满分:150分一、选择题(每小题5分,共60分)1.设f (x )=x e x的导函数为f ′(x ),则f ′(1)的值为( ) A .e B .e +1 C .2e D .e +2【答案】C【解析】由题意知f (x )=x e x ,所以f ′(x )=e x +x e x,所以f ′(1)=e +e =2e. 2.设f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0等于( ) A .e 2B .1C .ln 2D .e【答案】B【解析】f ′(x )=2 019+ln x +1=2 020+ln x ,由f ′(x 0)=2 020,得2 020+ln x 0=2 020,则ln x 0=0,解得x 0=1.3.已知函数f (x )=a ln x +bx 2的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( ) A .-1 B .1 C .3 D .-3【答案】D【解析】由已知可得P (1,1)在函数f (x )的图象上, 所以f (1)=1,即a ln 1+b ×12=1,解得b =1, 所以f (x )=a ln x +x 2,故f ′(x )=a x+2x .则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2, 因为切线与直线x -y +1=0垂直, 所以a +2=-1,即a =-3.4.已知函数f (x )=x 2(x -m ),m ∈R ,若f ′(-1)=-1,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫-43,0B.⎝ ⎛⎭⎪⎫0,43 C.⎝⎛⎭⎪⎫-∞,-43,(0,+∞)D.⎝ ⎛⎭⎪⎫-∞,-43∪(0,+∞) 【答案】C【解析】∵f ′(x )=3x 2-2mx ,∴f ′(-1)=3+2m =-1,解得m =-2, 由f ′(x )=3x 2+4x >0,解得x <-43或x >0,即f (x )的单调递增区间是⎝⎛⎭⎪⎫-∞,-43,(0,+∞). 5.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f [f (1)]=1,则a 的值为( )A.1B.2C.-1D.-2【答案】A【解析】 因为f (1)=lg 1=0,f (0)=⎠⎛0a 3t 2d t =t 3⎪⎪⎪a0=a 3,所以由f [f (1)]=1,得a 3=1,a =1.6.已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的图象大致是( )【答案】A【解析】设g (x )=f ′(x )=2x -2sin x ,g ′(x )=2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,故选A.7.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4【答案】B【解析】由题图可知切线过点(0,2),(3,1),则曲线y =f (x )在x =3处的切线的斜率为-13,即f ′(3)=-13,又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0. 8.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A .[-3,+∞) B .(-3,+∞) C .(-∞,-3) D .(-∞,-3]【答案】D【解析】由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:又f (-9.已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意x >0都有2f (x )+xf ′(x )>0成立,则( )A .4f (-2)<9f (3)B .4f (-2)>9f (3)C .2f (3)>3f (-2)D .3f (-3)<2f (-2)【答案】A【解析】设g (x )=x 2f (x )⇒g ′(x )=2xf (x )+x 2f ′(x )=x [2f (x )+xf ′(x )],则当x >0时,g ′(x )>0,所以g (x )在(0,+∞)上是增函数,易得g (x )是偶函数,则4f (-2)=g (-2)=g (2)<g (3)=9f (3),故选A. 10.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( ) A .1 B.12C.52D.22【答案】D【解析】由已知条件可得|MN |=t 2-ln t , 设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22.11.已知函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A.函数f (x )有极大值f (2)和极小值f (1)B.函数f (x )有极大值f (-2)和极小值f (1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2) 【答案】D【解析】 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.12.已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意x >0都有2f (x )+xf ′(x )>0成立,则( )A .4f (-2)<9f (3)B .4f (-2)>9f (3)C .2f (3)>3f (-2)D .3f (-3)<2f (-2)【答案】A【解析】 设g (x )=x 2f (x )⇒g ′(x )=2xf (x )+x 2f ′(x )=x [2f (x )+xf ′(x )],则当x >0时,g ′(x )>0,所以g (x )在(0,+∞)上是增函数,易得g (x )是偶函数,则4f (-2)=g (-2)=g (2)<g (3)=9f (3),故选A.二、填空题(每小题5分,共20分)13.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________. 【答案】 2【解析】由y =x 2-ln x ,得y ′=2x -1x(x >0),设点P 0(x 0,y 0)是曲线y =x 2-ln x 上到直线y =x -2的距离最小的点, 则y ′|x =x 0=2x 0-1x 0=1,解得x 0=1或x 0=-12(舍去).∴点P 0的坐标为(1,1).∴所求的最小距离为|1-1-2|2= 2.14.若f (x )=x sin x +cos x ,则f (-3),f ⎝ ⎛⎭⎪⎫π2,f (2)的大小关系为________(用“<”表示).【答案】:f (-3)<f (2)<f ⎝ ⎛⎭⎪⎫π2 【解析】由偶函数的定义知函数f (x )为偶函数, 因此f (-3)=f (3).因为f ′(x )=sin x +x cos x -sin x =x cos x , 当x ∈⎣⎢⎡⎦⎥⎤π2,π时,f ′(x )≤0.所以f (x )在区间⎣⎢⎡⎦⎥⎤π2,π上是减函数,所以f ⎝ ⎛⎭⎪⎫π2>f (2)>f (3)=f (-3).15.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________. 【答案】6【解析】因为f (x )的单调递减区间为(-1,1),所以a >0. 由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6.16.已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.【答案】⎝ ⎛⎭⎪⎫0,98【解析】f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t>0,2t >0,Δ=9-8t >0,解得0<t <98.三、解答题(6大题,共70分)17.(10分)已知函数f (x )=a ln x +12x 2+(a +1)x +3.(1)当a =-1时,求函数f (x )的单调递减区间;(2)若函数f (x )在区间(0,+∞)上是增函数,求实数a 的取值范围. 【解析】(1)当a =-1时,f (x )=-ln x +12x 2+3,定义域为(0,+∞),则f ′(x )=-1x +x =x 2-1x.由⎩⎪⎨⎪⎧f ′x <0,x >0,得0<x <1.所以函数f (x )的单调递减区间为(0,1).(2)法一:因为函数f (x )在(0,+∞)上是增函数, 所以f ′(x )=ax+x +a +1≥0在(0,+∞)上恒成立,所以x 2+(a +1)x +a ≥0,即(x +1)(x +a )≥0在(0,+∞)上恒成立. 因为x +1>0,所以x +a ≥0对x ∈(0,+∞)恒成立, 所以a ≥0,故实数a 的取值范围是[0,+∞). 法二:因为函数f (x )在(0,+∞)上是增函数, 所以f ′(x )=a x+x +a +1≥0在(0,+∞)上恒成立, 即x 2+(a +1)x +a ≥0在(0,+∞)上恒成立. 令g (x )=x 2+(a +1)x +a , 因为Δ=(a +1)2-4a ≥0恒成立,所以⎩⎪⎨⎪⎧-a +12≤0,g 0≥0,即a ≥0,所以实数a 的取值范围是[0,+∞). 18.(12分)已知函数f (x )=e x-ax -1. (1)求f (x )的单调递增区间;(2)是否存在实数a ,使f (x )在(-2,3)上单调递减?若存在,求出a 的取值范围;若不存在,请说明理由. 【解析】f ′(x )=e x-a , (1)若a ≤0,则f ′(x )=e x-a >0, 即f (x )在R 上单调递增;若a >0,令e x-a ≥0,解得x ≥ln a . 即f (x )在[ln a ,+∞)上单调递增, 因此当a ≤0时,f (x )的单调递增区间为R , 当a >0时,f (x )的单调递增区间是[ln a ,+∞). (2)存在实数a 满足条件.因为f ′(x )=e x-a ≤0在(-2,3)上恒成立, 所以a ≥e x在(-2,3)上恒成立.又因为-2<x <3,所以e -2<e x <e 3,只需a ≥e 3.当a =e 3时,在(-2,3)上f ′(x )=e x -e 3<0, 即f (x )在(-2,3)上单调递减,所以a ≥e 3.故存在实数a ∈[e 3,+∞),使f (x )在(-2,3)上单调递减. 19.(12分)已知函数f (x )=ln x -ax (a ∈R). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.【解析】(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x .令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞), f ′(x )=1x -a =1-axx(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a.当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点. 20.(12分)已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.【解析】由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x2(a >0).(1)由f ′(x )>0,解得x >1a,所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫1a,+∞;由f ′(x )<0,解得0<x <1a,所以函数f (x )的单调递减区间是⎝⎛⎭⎪⎫0,1a .所以当x =1a时,函数f (x )有极小值f ⎝ ⎛⎭⎪⎫1a =a ln 1a+a =a -a ln a ,无极大值.(2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎪⎫0,1a 时,函数f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1. ②若1<1a <e ,即1e <a <1时,函数f (x )在⎣⎢⎡⎭⎪⎫1,1a 上为减函数,在⎝ ⎛⎦⎥⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝ ⎛⎭⎪⎫1a=a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1.③若1a ≥e,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e =a +1e =0,即a =-1e ,故不满足条件0<a ≤1e.综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0. 21.(12分)设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)求证:当x ∈(1,+∞)时,1<x -1ln x<x .【解析】(1)f ′(x )=1x-1(x >0).由f ′(x )>0,解得0<x <1;由f ′(x )<0,解得x >1.∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)证明:要证当x ∈(1,+∞)时,1<x -1ln x<x ,即证ln x <x -1<x ln x .由(1)得f (x )=ln x -x +1在(1,+∞)上单调递减, ∴当x ∈(1,+∞)时,f (x )<f (1)=0,即有ln x <x -1. 设F (x )=x ln x -x +1, 则F ′(x )=1+ln x -1=ln x .当x ∈(1,+∞)时,F ′(x )>0,F (x )单调递增. ∴F (x )>F (1)=0,即有x ln x >x -1. ∴原不等式成立.22.(12分)已知函数f (x )=ln x -ax 2+(2-a )x ,g (x )=xe x -2.(1)求函数f (x )的极值;(2)若对任意给定的x 0∈(0,e],方程f (x )=g (x 0)在(0,e]上总有两个不相等的实数根,求实数a 的取值范围.【解析】(1)f ′(x )=1x -2ax +(2-a )=2x +1-ax +1x(x >0),①当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增,f (x )无极值. ②当a >0时,令f ′(x )>0,得0<x <1a;令f ′(x )<0,得x >1a.故f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,∴f (x )存在极大值,极大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +1a-1,无极小值.综上所述,当a ≤0时,f (x )无极值;当a >0时,f (x )存在极大值,极大值为ln 1a +1a-1,无极小值.(2)g (x )=x e x -2,g ′(x )=1-xex ,令g ′(x )>0,得x <1;令g ′(x )<0,得x >1.则g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. ∵g (0)=-2,g (1)=1e -2,g (e)=ee e -2>-2,∴当x ∈(0,e]时,g (x )∈⎝⎛⎦⎥⎤-2,1e -2.由(1)得,当a≤0时,f(x)在(0,+∞)上单调递增,此时在(0,e]上f(x)=g(x0)总有两个不相等的实数根不成立,因此a>0.。
阶段自测卷(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2019·沈阳东北育才学校联考)已知曲线y =f (x )在x =5处的切线方程是y =-x +5,则f (5)与f ′(5)分别为( )A .5,-1B .-1,5C .-1,0D .0,-1 答案 D解析 由题意可得f (5)=-5+5=0,f ′(5)=-1,故选D. 2.已知函数f (x )=x sin x +ax ,且f ′⎝⎛⎭⎫π2=1,则a 等于( ) A .0 B .1 C .2 D .4 答案 A解析 ∵f ′(x )=sin x +x cos x +a ,且f ′⎝⎛⎭⎫π2=1, ∴sin π2+π2cos π2+a =1,即a =0.3.(2019·淄博期中)若曲线y =mx +ln x 在点(1,m )处的切线垂直于y 轴,则实数m 等于( ) A .-1 B .0 C .1 D .2 答案 A解析 f (x )的导数为f ′(x )=m +1x ,曲线y =f (x )在点(1,m )处的切线斜率为k =m +1=0,可得m =-1.故选A.4.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 020(x )等于( ) A .-sin x -cos x B .sin x -cos x C .-sin x +cos x D .sin x +cos x答案 B解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x , ∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x =f 1(x ),∴f n (x )是以4为周期的函数,∴f 2 020(x )=f 4(x )=sin x -cos x ,故选B.5.(2019·四川诊断)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x (其中e 为自然对数的底数),则f ′(e)等于( ) A .1 B .-1 C .-e D .-e -1解析 已知f (x )=2xf ′(e)+ln x , 其导数f ′(x )=2f ′(e)+1x,令x =e ,可得f ′(e)=2f ′(e)+1e ,变形可得f ′(e)=-1e ,故选D.6.函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞) 答案 B解析 由题意知,函数的定义域为(0,+∞),又由y ′=x -1x ≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].7.(2019·沈阳东北育才学校模拟)已知定义在(0,+∞)上的函数f (x )=x 2+m ,g (x )=6ln x -4x ,设两曲线y =f (x )与y =g (x )在公共点处的切线相同,则m 值等于( ) A .5 B .3 C .-3 D .-5 答案 D解析 f ′(x )=2x ,g ′(x )=6x -4,令2x =6x -4,解得x =1,这就是切点的横坐标,代入g (x )求得切点的纵坐标为-4,将(1,-4)代入f (x )得1+m =-4,m =-5.故选D.8.(2019·新乡模拟)若函数f (x )=a e x +sin x 在⎣⎡⎦⎤-π2,0上单调递增,则a 的取值范围为( ) A.⎝ ⎛⎭⎪⎫-22π4e ,+∞ B .[-1,1] C .[-1,+∞) D .[0,+∞)答案 D解析 依题意得,f ′(x )=a e x +cos x ≥0, 即a ≥-cos xe x 对x ∈⎣⎡⎦⎤-π2,0恒成立, 设g (x )=-cos xex ,x ∈⎣⎡⎦⎤-π2,0, g ′(x )=2sin ⎝⎛⎭⎫x +π4ex,令g ′(x )=0,则x =-π4,当x ∈⎣⎡⎭⎫-π2,-π4时,g ′(x )<0; 当x ∈⎝⎛⎦⎤-π4,0时,g ′(x )>0, 故g (x )max =max ⎩⎨⎧⎭⎬⎫g ⎝⎛⎭⎫-π2,g (0)=0,则a ≥0.9.(2019·河北衡水中学调研)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27 C .81π D .128π答案 B解析 小圆柱的高分为上下两部分,上部分同大圆柱一样为5,下部分深入底部半球内设为h (0<h <5),小圆柱的底面半径设为r (0<r <5),由于r ,h 和球的半径5满足勾股定理,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导V ′=-π(3h -5)·(h +5),当0<h ≤53时,体积V 单调递增,当53<h <5时,体积V 单调递减.所以当h =53时,小圆柱体积取得最大值,V max =π⎝⎛⎭⎫25-259⎝⎛⎭⎫53+5=4 000π27,故选B. 10.(2019·凉山诊断)若对任意的0<x 1<x 2<a 都有x 2ln x 1-x 1ln x 2<x 1-x 2成立,则a 的最大值为( )A.12 B .1 C .e D .2e 答案 B解析 原不等式可转化为1+ln x 1x 1<1+ln x 2x 2,构造函数f (x )=1+ln x x ,f ′(x )=-ln xx 2,故函数在(0,1)上导数大于零,单调递增,在(1,+∞)上导数小于零,单调递减.由于x 1<x 2且f (x 1)<f (x 2),故x 1,x 2在区间(0,1)上,故a 的最大值为1,故选B.11.(2019·洛阳、许昌质检)设函数y =f (x ),x ∈R 的导函数为f ′(x ),且f (x )=f (-x ), f ′(x )<f (x ),则下列不等式成立的是(注:e 为自然对数的底数)( ) A .f (0)<e -1f (1)<e 2f (2)B .e -1f (1)<f (0)<e 2f (2)C .e 2f (2)<e -1f (1)<f (0)D .e 2f (2)<f (0)<e -1f (1)答案 B解析 设g (x )=e -x f (x ),∴g ′(x )=-e -x f (x )+e -x f ′(x )=e -x (f ′(x )-f (x )),∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )为减函数. ∵g (0)=e 0f (0)= f (0),g (1)=e -1f (1),g (-2)=e 2f (-2)=e 2f (2), 且g (-2)>g (0)>g (1), ∴e -1f (1)< f (0)<e 2f (2),故选B.12.(2019·廊坊省级示范高中联考)已知函数f (x )=-13x 3-12x 2+ax -b 的图象在x =0处的切线方程为2x -y -a =0,若关于x 的方程f (x 2)=m 有四个不同的实数解,则m 的取值范围为( ) A.⎣⎡⎭⎫-323,-56 B.⎣⎡⎭⎫-2,-56 C.⎝⎛⎭⎫-323,-56 D.⎝⎛⎭⎫-2,-56 答案 D解析 由函数f (x )=-13x 3-12x 2+ax -b ,可得f ′(x )=-x 2-x +a ,则f (0)=-b =-a ,f ′(0)=a =2,则b =2 , 即f (x )=-13x 3-12x 2+2x -2,f ′(x )=-x 2-x +2=-(x -1)(x +2),所以函数f (x )在(-2,1)上单调递增,在(-∞,-2),(1,+∞)上单调递减,又由关于x 的方程f (x 2)=m 有四个不同的实数解,等价于函数f (x )的图象与直线y =m 在x ∈(0,+∞),上有两个交点,又f (0)=-2,f (1)=-56,所以-2<m <-56,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·陕西四校联考)已知函数f (x )=ln x +2x 2-4x ,则函数f (x )的图象在x =1处的切线方程为________________. 答案 x -y -3=0解析 ∵f (x )=ln x +2x 2-4x ,∴f ′(x )=1x +4x -4,∴f ′(1)=1,又f (1)=-2,∴所求切线方程为y -(-2)=x -1,即x -y -3=0.14.已知函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则实数a 的取值范围是________. 答案 ⎝⎛⎭⎫-1e 2,0 解析f ′(x )=ln x +1x (x -a )=ln x +1-ax,函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则f ′(x )有两个变号零点, 即f ′(x )=0有两个不等实根,即a =x (ln x +1)有两个不等实根,转化为y =a 与y =x (ln x +1)的图象有两个不同的交点.令g (x )=x (ln x +1), 则g ′(x )=ln x +2,令ln x +2=0,则x =1e 2,即g (x )=x (ln x +1)在⎝⎛⎭⎫0,1e 2上单调递减, 在⎝⎛⎭⎫1e 2,+∞上单调递增. [g (x )]min =-1e 2,当x →0时,g (x )→0,当x →+∞时,f (x )→+∞,所以结合f (x )的图象(图略)可知a 的取值范围为⎝⎛⎭⎫-1e 2,0. 15.(2019·山师大附中模拟)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,f (a -1)+f (2a 2) ≤0,则实数a 的取值范围是________. 答案 ⎣⎡⎦⎤-1,12 解析 由函数f (x )=x 3-2x +e x -1e x ,得f ′(x )=3x 2-2+e x +1e x ≥-2+e x +1e x ≥-2+2e x ·1ex=0,当且仅当x =0时等号成立,可得f (x )在R 上递增,又f (-x )+f (x )=(-x )3+2x +e -x -e x +x 3-2x +e x -1e x =0,可得f (x )为奇函数,则f (a -1)+f (2a 2)≤0 ,即有f (2a 2)≤0-f (a -1)=f (1-a ),即有2a 2≤1-a ,解得-1≤a ≤12.16.(2019·湖北黄冈中学、华师附中等八校联考)定义在R 上的函数f (x )满足f (-x )=f (x ),且对任意的不相等的实数x 1,x 2∈[0,+∞)有f (x 1)-f (x 2)x 1-x 2<0成立,若关于x 的不等式f (2mx -ln x-3)≥ 2f (3)-f (-2mx +ln x +3)在x ∈[1,3]上恒成立,则实数m 的取值范围是______________. 答案 ⎣⎡⎦⎤12e,1+ln 36 解析 ∵函数f (x )满足f (-x )=f (x ), ∴函数f (x )为偶函数.又f (2mx -ln x -3)≥2f (3)-f (-2mx +ln x +3) =2f (3)-f (2mx -ln x -3), ∴f (2mx -ln x -3)≥f (3).由题意可得函数f (x )在(-∞,0)上单调递增,在[0,+∞)上单调递减. ∴|2mx -ln x -3|≤3对x ∈[1,3]恒成立, ∴-3≤2mx -ln x -3≤3对x ∈[1,3]恒成立, 即ln x2x ≤m ≤ln x +62x对x ∈[1,3]恒成立. 令g (x )=ln x2x ,x ∈[1,3],则g ′(x )=1-ln x 2x 2,∴g (x )在[1,e ]上单调递增,在(e,3]上单调递减, ∴g (x )max =g (e)=12e.令h (x )=ln x +62x ,x ∈[1,3],则h ′(x )=-5-ln x2x 2<0,∴h (x )在[1,3]上单调递减, ∴h (x )min =h (3)=6+ln 36=1+ln 36. 综上可得实数m 的取值范围为⎣⎡⎦⎤12e ,1+ln 36. 三、解答题(本大题共70分)17.(10分)(2019·辽宁重点高中联考)已知函数f (x )=x 3+mx 2-m 2x +1(m 为常数,且m >0)有极大值9. (1)求m 的值;(2)若斜率为-5的直线是曲线y =f (x )的切线,求此直线方程. 解 (1)f ′(x )=3x 2+2mx -m 2=(x +m )(3x -m )=0, 令f ′(x )=0,则x =-m 或x =13m ,当x 变化时,f ′(x )与f (x )的变化情况如下表:从而可知,当x =-m 时,函数f (x )取得极大值9, 即f (-m )=-m 3+m 3+m 3+1=9,∴m =2. (2)由(1)知,f (x )=x 3+2x 2-4x +1,依题意知f ′(x )=3x 2+4x -4=-5, ∴x =-1或x =-13,又f (-1)=6,f ⎝⎛⎭⎫-13=6827, 所以切线方程为y -6=-5(x +1)或 y -6827=-5⎝⎛⎭⎫x +13, 即5x +y -1=0或135x +27y -23=0.18.(12分)(2019·成都七中诊断)已知函数f (x )=x sin x +2cos x +ax +2,其中a 为常数. (1)若曲线y =f (x )在x =π2处的切线斜率为-2,求该切线的方程;(2)求函数f (x )在x ∈[0,π]上的最小值. 解 (1)求导得f ′(x )=x cos x -sin x +a , 由f ′⎝⎛⎭⎫π2=a -1=-2,解得a =-1. 此时f ⎝⎛⎭⎫π2=2,所以该切线的方程为 y -2=-2⎝⎛⎭⎫x -π2,即2x +y -2-π=0. (2)对任意x ∈[0,π],f ″(x )=-x sin x ≤0, 所以f ′(x )在[0,π]内单调递减. 当a ≤0时,f ′(x )≤f ′(0)=a ≤0,∴f (x )在区间[0,π]上单调递减,故f (x )min =f (π)=a π. 当a ≥π时,f ′(x )≥f ′(π)=a -π≥0,∴f (x )在区间[0,π]上单调递增,故f (x )min =f (0)=4.当0<a <π时,因为f ′(0)=a >0,f ′(π)=a -π<0,且f ′(x )在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x 0∈(0,π),使得f ′(x 0)=0,且f (x )在[0,x 0]上单调递增,在[x 0,π]上单调递减.故f (x )的最小值等于f (0)=4和f (π)=a π中较小的一个值. ①当4π≤a <π时,f (0)≤f (π),故f (x )的最小值为f (0)=4.②当0<a <4π时,f (π)≤f (0),故f (x )的最小值为f (π)=a π.综上所述,函数f (x )的最小值f (x )min=⎩⎨⎧4,a ≥4π,a π,a <4π.19.(12分)(2019·武汉示范高中联考)已知函数f (x )=4ln x -mx 2+1(m ∈R ).(1)若函数f (x )在点(1,f (1))处的切线与直线2x -y -1=0平行,求实数m 的值; (2)若对于任意x ∈[1,e ],f (x )≤0恒成立,求实数m 的取值范围. 解 (1)∵f (x )=4ln x -mx 2+1, ∴f ′(x )=4x -2mx ,∴f ′(1)=4-2m ,∵函数f (x )在(1,f (1))处的切线与直线2x -y -1=0平行,∴f ′(1)=4-2m =2, ∴m =1.(2)∵对于任意x ∈[1,e ],f (x )≤0恒成立, ∴4ln x -mx 2+1≤0,在x ∈[1,e ]上恒成立, 即对于任意x ∈[1,e ],m ≥4ln x +1x 2恒成立, 令g (x )=4ln x +1x 2,x ∈[1,e ],g ′(x )=2(1-4ln x )x 3,令g ′(x )>0,得1<x <14e , 令g ′(x )<0,得14e <x <e ,当x 变化时,g ′(x ),g (x )的变化如下表:∴函数g (x )在区间[1,e ]上的最大值g (x )max =g (14e )=141244ln e 1(e )+=2e e ,∴m ≥2ee, 即实数m 的取值范围是⎣⎡⎭⎫2e e ,+∞.20.(12分)已知函数f (x )=ln x -ax (ax +1),其中a ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围. 解 (1)依题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=1x -2a 2x -a =2a 2x 2+ax -1-x=(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增; 当a >0时,由f ′(x )>0,得0<x <12a ,由f ′(x )<0,得x >12a,函数f (x )在⎝⎛⎭⎫0,12a 上单调递增, 在⎝⎛⎭⎫12a ,+∞上单调递减.当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a,函数f (x )在⎝⎛⎭⎫0,-1a 上单调递增,在⎝⎛⎭⎫-1a ,+∞上单调递减. (2)①当a =0时,函数f (x )在(]0,1内有1个零点x 0=1;②当a >0时,由(1)知函数f (x )在⎝⎛⎭⎫0,12a 上单调递增,在⎝⎛⎭⎫12a ,+∞上单调递减. 若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;若0<12a <1,即当a >12时,f (x )在⎝⎛⎭⎫0,12a 上单调递增,在⎝⎛⎦⎤12a ,1上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足f ⎝⎛⎭⎫12a ≥0,即ln 12a ≥34, 又∵a >12,∴ln 12a <0,∴不等式不成立.∴f (x )在(0,1]内无零点;③当a <0时,由(1)知函数f (x )在⎝⎛⎭⎫0,-1a 上单调递增,在⎝⎛⎭⎫-1a ,+∞上单调递减. 若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;若0<-1a <1,即a <-1时,函数f (x )在⎝⎛⎭⎫0,-1a 上单调递增,在⎝⎛⎦⎤-1a ,1上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,f ⎝⎛⎭⎫-1a =ln ⎝⎛⎭⎫-1a <0,知函数f (x )在(0,1]内无零点. 综上可得a 的取值范围是[-1,0].21.(12分)(2019·湖北黄冈中学、华师附中等八校联考)在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边BC 的直线DE 将△ADE 剪去,得到所需的梯形钢板BCED ,记这个梯形钢板的周长为x (单位:米),面积为S (单位:平方米).(1)求梯形BCED 的面积S 关于它的周长x 的函数关系式;(2)若在生产中,梯形BCED 的面积与周长之比⎝⎛⎭⎫即Sx 达到最大值时,零件才能符合使用要求,试确定这个梯形的周长x 为多少时,该零件才可以在生产中使用? 解 (1)∵DE ∥BC ,△ABC 是正三角形,∴△ADE 是正三角形,AD =DE =AE ,BD =CE =3-AD , 则DE +2(3-AD )+3=9-AD =x , S =(3+AD )·(3-AD )·sin 60°2=3(12-x )(x -6)4(6<x <9),化简得S =34(-x 2+18x -72)(6<x <9). 故梯形BCED 的面积S 关于它的周长x 的函数关系式为 S =34(-x 2+18x -72)(6<x <9). (2)∵由(1)得S =34(-x 2+18x -72)(6<x <9), 令f (x )=S x =34⎝⎛⎭⎫-x -72x +18(6<x <9), ∴f ′(x )=34⎝⎛⎭⎫-1+72x 2,令f ′(x )=0,得x =62或x =-62(舍去), f (x ),f ′(x )随x 的变化如下表:∴当x =62时,函数f (x )=Sx有最大值,Earlybird为f (62)=923-3 6. ∴当x =62米时,该零件才可以在生产中使用.22.(12分)(2019·衡水中学调研)已知函数f (x )=k e x -x 2(其中k ∈R ,e 是自然对数的底数).(1)若k =2,当x ∈(0,+∞)时,试比较f (x )与2的大小;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),求k 的取值范围,并证明:0<f (x 1)<1.解 (1)当k =2时,f (x )=2e x -x 2,则f ′(x )=2e x -2x ,令h (x )=2e x -2x ,h ′(x )=2e x -2, 由于x ∈(0,+∞),故h ′(x )=2e x -2>0,于是h (x )=2e x -2x 在(0,+∞)上为增函数, 所以h (x )=2e x -2x >h (0)=2>0,即f ′(x )=2e x -2x >0在(0,+∞)上恒成立,从而f (x )=2e x -x 2在(0,+∞)上为增函数,故f (x )=2e x -x 2>f (0)=2.(2)函数f (x )有两个极值点x 1,x 2,则x 1,x 2是f ′(x )=k e x -2x =0的两个根,即方程k =2x ex 有两个根,设φ(x )=2x e x ,则φ′(x )=2-2x ex , 当x <0时,φ′(x )>0,函数φ(x )单调递增且φ(x )<0;当0<x <1时,φ′(x )>0,函数φ(x )单调递增且φ(x )>0;当x >1时,φ′(x )<0,函数φ(x )单调递减且φ(x )>0.作出函数φ(x )的图象如图所示,要使方程k =2x e x 有两个根,只需0<k <φ(1)=2e, 故实数k 的取值范围是⎝⎛⎭⎫0,2e ,又可知函数f (x )的两个极值点x 1,x 2满足0<x 1<1<x 2, 由f ′(x 1)=1e x k -2x 1=0得k =112e x x , 所以f (x 1)=1e x k -x 21=112ex x 1e x -x 21=-x 21+2x 1 =-(x 1-1)2+1,由于x 1∈(0,1),所以0<-(x 1-1)2+1<1,所以0<f (x 1)<1.。