等差数列第二课时教案_北师大版必修5
- 格式:doc
- 大小:177.50 KB
- 文档页数:4
2.1 等差数列-北师大版必修5教案一、教学目标1.了解等差数列的定义和概念;2.掌握等差数列的通项公式和求和公式;3.学会应用等差数列解决实际问题。
二、教学重点1.理解等差数列的概念及其特点;2.掌握等差数列的通项公式和求和公式;3.能够运用等差数列的公式解决实际问题。
三、教学难点1.理解等差数列的特点;2.理解通项公式和求和公式的原理。
四、教学方法1.教师讲授与学生演练相结合的方法;2.课堂练习与小组合作学习相结合的方法;3.让学生通过实例分析来理解概念和方法。
五、教学过程1. 引入(10分钟)教师通过贴近学生生活的例子,引入等差数列的概念和原理。
比如:两个人去旅行,第一个人每次走10米,第二个人每次走20米,问他们能不能相遇?如何计算相遇点的距离?2. 概念讲解(20分钟)教师讲解等差数列的定义和特点,包括公差、通项公式、前n项和公式等。
3. 公示演练(25分钟)教师让学生通过公式来计算等差数列的第n项和前n项和,并让学生互相检查答案。
4. 解决实际问题(20分钟)教师让学生通过实际例子来解决问题。
比如:如何计算摩托车行驶的路程?如果已知起点坐标、速度和时间,如何计算终点坐标?如果已知起点坐标和终点坐标,如何计算旅行时间?5. 小组合作学习(20分钟)将学生分成小组,让他们合作完成几道等差数列的题目,并将答案汇总到黑板上进行讲解。
6. 总结(5分钟)教师帮助学生总结本节课所学的知识。
六、教学资源1.课本;2.计算器;3.练习题。
七、教学评估1.课堂练习;2.作业练习;3.课后测试。
八、教学延伸让学生通过编写程序来计算等差数列的通项公式和前n项和,来巩固和拓展所学知识。
科目:数学教师:授课时间:第周星期年 9 月日精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
等差数列教学设计一、教材分析《等差数列》是北师大版新课标教材《数学》必修5第一章第二节的内容。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了学习对比的依据。
二、学情分析虽然学生刚开始接触数列,但对数列比较感兴趣,愿意研究数列、分析数列,从而归纳结论,这也正是知识产生的过程,学习的本源。
本节课将充分发挥学生的主体作用,引导着学生探究问题,分析问题,归纳结论,从而获得等差数列的系列知识,培养学习兴趣。
部分学生,存在眼高手低现象,简单的运算也会出错,且不擅长检验。
三、教学目标根据教学的要求和学生的实际水平,确定了本次课的教学目标1.知识与技能:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
2.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深刻的理解不完全归纳法。
3.情感态度与价值观:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
四、教材重点和难点分析重点:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
难点:①等差数列的通项公式的推导②用数学思想解决实际问题八、反思总结成功的地方:1.课堂准备充分,环节流程,达到了预期效果!2.课堂注重知识的产生过程,充分发挥学生的主体作用,让学生探究、分析、总结规律。
2019-2020年高中数学 §2.1 等差数列教案(二) 北师大版必修5教学目标1.知识与技能:能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。
2. 过程与方法:进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。
3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。
教学重点:会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。
教学难点:等差数列与一次函数之间的联系 教学过程:一、等差数列的通项公式特征:1 等差数列的通项公式是关于的一次函数,n 是自变量, 是函数2 如果通项公式是关于的一次函数,则该数列成等差数列; 证明:若A n B A B A n A B An a n )1()()1(-++=++-=+= 它是以为首项,为公差的等差数列。
3 图象是直线上一些等间隔的点,公差d 是该直线的斜率. 4公式中若 则数列递增, 则数列递减;则数列为常数列图像见教材P13页例1:已知(1,1),(3,5)是等差数列{an}图像上的两点.(1)求这个数列的通项公式; (2)画出这个数列的图像; (3)判断这个数列的单调性. 解:(1)略.(2)图像是直线y=2x-1上一些等间隔的点.(3)因为一次函数y=2x-1是增函数, 所以数列{an}是递增数列.二、等差中项的概念如果在a 与b 中间插入一个数A, 使a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项 若A 是a 与b 的等差中项,则或 证明:设公差为,则 ∴A d a da ab a =+=++=+222 例2:一个木制梯形架的上、下两底边分别为33cm ,75cm ,把梯形的两腰各6等分,用平行木条连接各对应点,构成梯形架的各级。
试计算梯形架中间各级的宽度。
解: 记梯形架自上而下各级宽度所构成的数列为{an},则由梯形中位 线的性质,易知每相邻三项均成等差数列,从而{an}成等差数列。
§2.2第2课时 等差数列的通项公式教学目标(1)理解等差数列中等差中项的概念;(2)会求两个数的等差中项;(3)掌握等差数列的特殊性质及应用;(4)掌握证明等差数列的方法。
教学重点,难点等差中项的概念及等差数列性质的应用。
教学过程一.问题情境1.复习:等差数列的定义、通项公式 ;2.问题:(1)已知12312,,,,,,n n n a a a a a a + 是公差为d 的等差数列。
①121,,,,n n a a a a - 也成等差数列吗?如果是,公差是多少?2462,,,n a a a a 也成等差数列吗?如果是,公差是多少?(2)已知等差数列{}n a 的首项为1a ,公差为d 。
①将数列{}n a 中的每一项都乘以常数a ,所得的新数列仍是等差数列吗?如果是,公差是多少?②由数列{}n a 中的所有奇数项按原来的顺序组成的新数列{}n c 是等差数列吗? 如果是,它的首项和公差分别是多少?(3)已知数列{}n a 是等差数列,当m n p q +=+时,是否一定有m n p q a a a a +=+?(4)如果在a 与b 中间插入一个数A ,使得a ,A ,b 成等差数列,那么A 应满足什么条件?二.学生活动与学生一起讨论得出结论。
三.建构数学1.等差中项的概念:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
其中2a b A +=a ,A ,b 成等差数列⇔2a b A +=.2.等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列{}n a 中,相隔等距离的项组成的数列是AP如:1a ,3a ,5a ,7a ,……;3a ,8a ,13a ,18a ,……;(3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n m a a d n m-=-()m n ≠; (4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+四.数学运用1.例题:例1.已知等差数列{}n a 的通项公式是21n a n =-,求首项1a 和公差d 。
第二节等差数列(一)等差数列【教学目标】1.知识与技能(1)理解等差数列的定义,能够应用定义判断一个数列是否为等差数列,并确定等差数列的公差;(2)能运用等差数列的通项公式解决相关问题.2.过程与方法通过对等差数列概念和通项公式的探究,培养学生观察、归纳、类比、猜想、推理等发现规律的一般方法。
3.情感、态度与价值观通过对等差数列概念和通项公式的探究,养成细心观察、认真分析、善于总结的良好学习习惯。
【教学重难点】重点:等差数列概念和通项公式的探究及等差数列通项公式的运用。
难点:等差数列通项公式的探究及其运用。
【教学过程】一、课前预习指导:仔细阅读课本,完成以下预习检测1.观察下面几组数列:(1)3,4,5,6,7,…;(2)6,3,0,-3,-6,…;(3)1.1,2.2,3.3,4.4,5.5,…;(4)-1,-1,-1,-1,-1,…. 回答这几组数列的共同特点是________________________________.2.判断下列数列是否为等差数列,如果是,指出首项a1和公差d;如果不是,请说明理由.(1)4,7,10,13,16,…;(2)31,25,19,13,7,…;(3)0,0,0,0,0,…;(4)a,a-b,a-2b,…;(5)1,2,5,8,11,….二、新课学习问题探究一等差数列的概念例1判断下列数列是否为等差数列.(1)an=2n-1(2)an=(-1)问题探究二等差数列的通项公式例2 已知等差数列{an},a=1,d=2,求通项an.思考:如果等差数列{an}的首项是a1,公差是d,你能用两种方法求其通项吗?例3(1)求等差数列9,5,1,…的第10项;(2)已知等差数列{an},an= 4n-3,求首项a1和公差d.例4已知在等差数列{an}中,a5=-20,a20=-35,求它的通项公式。
学后检测1若{an}是等差数列,a15=8,a60=20,求a75.学后检测2已知{an}为等差数列,a3=5,a7=13,求它的通项公式.问题探究三等差数列与一次函数的联系根据上述对比可知公差d的几何意义是等差数列的图像上任意两点(n,an)、(m,am)连线的斜率,即d=.所以当d>0时,{an}是数列;当d<0时,{an}为数列;当d=0时,{an}为数列.例5已知(1,1),(3,5)是等差数列{an}图像上的两点.(1)求这个数列的通项公式;(2)画出这个数列的图像;(3)判断这个数列的单调性.学后检测3四个数成递增等差数列,中间两数的和为2,首末两项的积为-8,求这四个数.问题探究四等差中项1 如果三个数x,A,y组成等差数列,那么A叫作x和y的等差中项,试用x,y表示A.2 已知A,B,C是△ABC的三个内角,且B是A、C的等差中项,求角B的大小.学后检测4 梯子的最高一级宽33 cm,最低一级宽110 cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度.【课堂小结】1.理解等差数列的定义,能够应用定义判断一个数列是否为等差数列,并确定等差数列的公差;2. 能运用等差数列的通项公式解决相关问题.(二)等差数列的前n项和【教学目标】1.知识与技能(1)理解等差数列前n项和公式的推导过程.(2)熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由其中三个求另外两个.(3)掌握等差数列前n项和公式及性质的应用.2.过程与方法通过对等差数列概念和通项公式的探究,培养学生观察、归纳、类比、猜想、推理等发现规律的一般方法。
第2课时等差数列的性质●三维目标1.知识与技能理解和掌握等差数列的性质,能选择方便快捷的解题方法,掌握等差中项的概念及其应用.2.过程与方法培养学生观察、归纳能力,在学习过程中体会类比思想、数形结合思想.3.情感、态度与价值观通过师生的合作学习,增强学生团队协作能力的培养,并引导学生从不同角度看问题,解决问题.●重点难点重点:等差数列的性质、等差中项.难点:等差数列性质的应用及实际应用.●教学建议本学案针对本节课的重点、难点设计了例1、例2、例3.例1主要是等差数列性质的应用,通过例1进一步了解等差数列的性质,加深性质的应用.例2是等差中项问题,通过例2让学生会求等差中项及利用等差中项解决问题.例3是等差数列的实际应用,通过例3让学生认识到数列在实际生活中的应用,提高学生运用所学知识分析、解决实际问题的能力.●教学流程创设情景,提出3个问题⇒通过引导回答所提出问题,理解等差数列的图像、增减性及等差中项⇒通过例1及变式训练,使学生进一步掌握等差数列的性质⇒通过例2及变式训练,使学生求等差中项及利用等差中项解决问题⇒通过例3及变式训练,让学生认识本数列在实际生活中的应用⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正(对应学生用书第10页)1.(1)首项为-1,公差为1的等差数列-1,0,1,2,3,4,5…的图像如图(1)所示.(2)首项为3,公差为-1的等差数列3,2,1,0,-1,-2,-3…的图像如图(2)所示.(3)首项为2,公差为0的等差数列(常数列)2,2,2,2,…的图像如图(3)所示.(1)(2)(3)图1-2-1观察上述等差数列的图像,它们有什么共同特征?【提示】它们的图像都是呈直线状的一群孤立的点.2.观察上述等差数列的图像,它们的增减性与公差d有何关系?【提示】当d>0时图像上升,数列递增;当d<0时图像下降,数列递减;当d=0时图像不变化,常数列.1.等差数列的图像由a n=dn+(a1-d),可知其图像是直线y=dx+(a1-d)上的一些等间隔的点,其中公差d是该直线的斜率.2.等差数列的增减性对于a n=dn+(a1-d),1.当d>0时,{a n}为递增数列;2.当d<0时,{a n}为递减数列;3.当d=0时,{a n}为常数列.等差数列中任意相邻三项a,b,c,试问a,b,c有何关系?【提示】∵b-a=c-b,∴b=a+c 2.如果在a与b中间插入一个数A,使a、A、b成等差数列,那么A叫作a与b的等差中项,且A=a+b2.(对应学生用书第11页)。
《等差数列》第1课时是在生活中具体例子的基础上引出等差数列的概念,接着归纳出等差数列的通项公式,最后根据这个公式进行有关计算。
本课内容的安排旨在培养学生的观察分析、归纳猜想、应用能力。
结合本节课特点,宜采用指导自主学习方法,即学生主动观察—分析概括—师生互动,形成概念—启发引导,演绎结论—拓展开放,巩固提高。
在学法上,引导学生去联想、探索,同时鼓励学生大胆猜想,学会探究。
第2课时主要是让学生明确等差中项的概念,进一步熟练掌握等差数列的通项公式及其推导的公式,并能通过通项公式与图像认识等差数列的性质。
让学生明白一个数列的通项公式是关于正整数n的一次型函数,使学生学会用图像与通项公式的关系解决某些问题。
在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究。
在问题探索过程中,先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳方法进行试探,提出猜想,最后采用证明方法(或举反例)来检验所提出的猜想。
在教学过程中,应遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位。
使学生认识到生活离不开数学,同样数学也是离不开生活的。
学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化。
【知识与能力目标】通过实例理解等差数列的概念,通过生活中的实例抽象出等差数列模型,让学生认识到这一类数列是现实世界中大量存在的数列模型。
同时经历由发现几个具体数列的等差关系,归纳出等差数列的定义的过程。
【过程与方法目标】探索并掌握等差数列的通项公式,由等差数列的概念,通过归纳或迭加或迭代的方式探索等差数列的通项公式。
通过与一次函数的图像类比,探索等差数列的通项公式的图像特征与一次函数之间的联系。
【情感态度价值观目标】通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣。
2.2等差数列(二)一、教学目标1、掌握"判断数列是否为等差数列"常用的方法;2、进一步熟练掌握等差数列的通项公式、性质及应用.3、进一步熟练掌握等差数列的通项公式、性质及应用.二、教学重点、难点重点:等差数列的通项公式、性质及应用.难点:灵活应用等差数列的定义及性质解决一些相关问题.三、教学过程(一)、复习1.等差数列的定义.2.等差数列的通项公式:d n a a n )1(1-+= (=n a d m n a m )(-+或 n a =pn+q (p 、q 是常数))3.有几种方法可以计算公差d:① d=n a -1-n a ② d=11--n a a n ③ d=m n a a m n -- 4. {a n }是首项a1=1, 公差d=3的等差数列, 若a n =2005,则n =( )A. 667B. 668C. 669D. 6705. 在3与27之间插入7个数, 使它们成为等差数列,则插入的7个数的第四个数是( )A. 18B. 9C. 12D. 15二、新课1.性质:在等差数列{a n }中,若m + n=p + q, 则a m + a n = a p + a q特别地,若m+n=2p, 则a m +a n =2a p例1. 在等差数列{a n }中(1) 若a 5=a, a 10=b, 求a 15;(2) 若a 3+a 8=m, 求a 5+a 6;(3) 若a 5=6, a 8=15, 求a 14;(4) 若a 1+a 2+…+a 5=30, a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.解: (1) 2a 10=a 5+a 15,即2b=a+a 15 , ∴a 15=2b ﹣a;(2) ∵5+6=3+8=11,∴a 5+a 6=a 3+a=m(3) a8=a 5+(8﹣3)d, 即15=6+3d, ∴d=3,从而a 14=a 5+(14-5)d=6+9×3=33.13030802)( )(2 )(2)()(2 ,22,1277 ,11166)4(5211076151211107652115121112271116=-⨯=+++-+++=+++∴+++=++++++++=+=∴+=++=+a a a a a a a a a a a a a a a a a a a a a a a a 从而2.判断数列是否为等差数列的常用方法:(1) 定义法: 证明a n -a n-1=d (常数)例2. 已知数列{a n }的前n 项和为S n =3n 2-2n, 求证数列{a n }成等差数列,并求其首项、公差、通项公式. 解: 当n=1时,a 1=S 1=3﹣2=1;当n ≥2时,a n =Sn ﹣S n ﹣1=3n 2﹣2n ﹣ [3(n ﹣1)2﹣2(n ﹣1)]=6n ﹣5;∵n=1时a 1满足a n =6n ﹣5,∴a n =6n ﹣5首项a 1=1,a n ﹣a n ﹣1=6(常数)∴数列{a n }成等差数列且公差为6.(2)中项法: 利用中项公式, 若2b=a+c,则a, b, c 成等差数列.(3)通项公式法: 等差数列的通项公式是关于n 的一次函数.例3. 已知数列}{n a 的通项公式为,q pn a n +=其中p 、q 为常数,且p ≠0,那么这个数列一定是等差数列吗?分析:判定}{n a 是不是等差数列,可以利用等差数列的定义,也就是看1--n n a a (n >1)是不是一个与n 无关的常数。
等差数列的前n 项和
(第二课时)
教学目标:
1.进一步熟练掌握等差数列的通项公式和前n 项和公式
2.使学生会运用等差数列前n 项和的公式解决有关问题,从而提高学生分析问题、解决问题的能力
教学重点:
等差数列n 项和公式的应用
教学过程
一、复习:等差数列前n 项和的公式
二、例子:
1、在等差数列{}n a 中 1︒ 已知488=S 16812=S 求1a 和d ;
2︒ 已知4053=+a a ,求17S .
2、一个等差数列的前12项之和为354,前12项中偶数项与奇数项之比为32:27,求公差.(注意讨论偶奇
S S 的一般结论)
3、已知数列{},n a 是等差数列,S n 是其前n 项和,若n S m =,m S n =,求n m S +
4、两个等差数列,它们的前n 项和之比为1
235-+n n , 求这两个数列的第九项的比 解:38)(2
17)(217'171717117117117199==++=++=S S b b a a b b a a b a 5、一个等差数列的前10项和为100,前100项和为10,求它的前110项和 解:在等差数列中,
10S , 20S -10S , 30S -20S , ……, 100S -90S , 110S -100S , 成等差数列,
∴ 新数列的前10项和=原数列的前100项和,
1010S +2
910⨯·D =100S =10, 解得D =-22
∴ 110S -100S =10S +10×D =-120, ∴ 110S =-110. 注:等差数列中坐标形如)n
S ,n (n 的点在同一条直线上 小结:运用等差数列前n 项和的公式解决有关问题。
2.1 等差数列(二)明目标、知重点 1.能根据等差数列的定义推出等差数列的重要性质.2.能运用等差数列的性质解决有关问题.1.等差数列的图像等差数列的通项公式a n =a 1+(n -1)d ,当d =0时,a n 是关于n 的常函数;当d ≠0时,a n 是关于n 的一次函数;点(n ,a n )分布在以d 为斜率的直线上,是这条直线上的一列孤立的点. 2.等差数列的项与序号的关系(1)等差数列通项公式的推广:在等差数列{a n }中,已知a 1,d, a m, a n (m ≠n ),则d =a n -a 1n -1=a n -a mn -m,从而有a n =a m +(n -m )d . (2)项的运算性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N +),则a m +a n =a p +a q .3.等差数列的性质 (1)等差数列的项的对称性在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和.即a 1+a n =a 2+a n -1=a 3+a n -2=….(2)若{a n }、{b n }分别是公差为d ,d ′的等差数列,则有数列 结论{c +a n } 公差为d 的等差数列(c 为任一常数) {c ·a n } 公差为cd 的等差数列(c 为任一常数) {a n +a n +k } 公差为2d 的等差数列(k 为常数,k ∈N +) {pa n +qb n }公差为pd +qd ′的等差数列(p ,q 为常数)(3){a n }n n n }为常数列.[情境导学]在等差数列{a n }中,若已知首项a 1和公差d 的值,由通项公式a n =a 1+(n -1)d 可求出任意一项的值,如果已知a m 和公差d 的值,有没有一个公式也能求任意一项的值?由等差数列的通项公式能得到等差数列的哪些性质?本节我们继续探讨.探究点一 等差数列通项公式的推广思考1 等差数列的通项公式a n =a 1+(n -1)d 是由等差数列的前几项归纳得出的,公式只是一个猜想,不算是证明,那么,如何证明? 答 (1)叠加法:由等差数列的定义知: a n -a n -1=d (n ≥2),⎭⎪⎬⎪⎫a 2-a 1=da 3-a 2=da 4-a 3=d …a n-a n -1=d (n -1)个 将以上(n -1)个等式两边分别相加,可得a n -a 1=(n -1)d ,即a n =a 1+(n -1)d . (2)迭代法:{a n }是等差数列,则:a n =a n -1+d =a n -2+2d =a n -3+3d =…=a 1+(n -1)d . 所以a n =a 1+(n -1)d .思考2 已知等差数列{a n }的首项a 1和公差d 能表示出通项a n =a 1+(n -1)d ,如果已知第m 项a m 和公差d ,又如何表示通项a n?答 设等差数列的首项为a 1,则a m =a 1+(m -1)d , 变形得a 1=a m -(m -1)d ,则a n =a 1+(n -1)d =a m -(m -1)d +(n -1)d =a m +(n -m )d .思考3 对于任意的正整数m 、n 、p 、q ,若m +n =p +q .则在等差数列{a n }中,a m +a n 与a p +a q 之间有怎样的关系?为什么?答 a m +a n =a p +a q .因为a m +a n =a 1+(m -1)d +a 1+(n -1)d =2a 1+(n +m -2)d ,而a p +a q =a 1+(p -1)d +a 1+(q -1)d =2a 1+(p +q -2)d ,又因m +n =p +q ,所以a m +a n =a p +a q . 小结 (1)等差数列的第二通项公式:a n =a m +(n -m )d ;(2)对于任意的正整数m 、n 、p 、q ,若m +n =p +q .则在等差数列{a n }中,a m +a n 与a p +a q 之间的关系为a m +a n =a p +a q . 例1 在等差数列{a n }中,已知a 2=5,a 8=17,求数列的公差及通项公式. 解 因为a 8=a 2+(8-2)d ,所以17=5+6d ,解得d =2. 又因a n =a 2+(n -2)d ,所以a n =5+(n -2)×2=2n +1.反思与感悟 利用等差数列的第二通项公式及等差数列的性质,不难得出等差数列另外一些性质:(1){a n }为有穷等差数列,则与首末两项等距离的两项之和都相等,且等于首末两项之和.(2)下标成等差数列且公差为m 的项a k ,a k +m ,a k +2m ,…(k ,m ∈N +)组成公差为md 的等差数列.(3)若数列{a n }和{b n }均为等差数列,则{a n ±b n },{ka n +b n }(k 为非零常数)也为等差数列. 跟踪训练1 已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=______. 答案 12解析 由题意设这4个根为14,14+d ,14+2d ,14+3d .则14+⎝⎛⎭⎫14+3d =2,∴d =12, ∴这4个根依次为14,34,54,74,∴n =14×74=716,m =34×54=1516或n =1516,m =716,∴|m -n |=12.探究点二 等差数列性质的应用例2 已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式. 解 因为a 1+a 7=2a 4,a 1+a 4+a 7=3a 4=15, 所以a 4=5.又因为a 2a 4a 6=45,所以a 2a 6=9, 即(a 4-2d )(a 4+2d )=9,(5-2d )(5+2d )=9, 解得d =±2.若d =2,a n =a 4+(n -4)d =2n -3; 若d =-2,a n =a 4+(n -4)d =13-2n .反思与感悟 解决本类问题一般有两种方法:一是运用等差数列{a n }的性质:若m +n =p +q =2w ,则a m +a n =a p +a q =2a w (m ,n ,p ,q ,w 都是正整数);二是利用通项公式转化为数列的首项与公差的结构完成运算,属于通性通法,两种方法都运用了整体代换与方程的思想. 跟踪训练2 在等差数列{a n }中,已知a 1+a 4+a 7=39,a 2+a 5+a 8=33,求a 3+a 6+a 9的值. 解 方法一 ∵a 1+a 4+a 7=(a 1+a 7)+a 4=3a 4=39, ∴a 4=13,∵a 2+a 5+a 8=(a 2+a 8)+a 5=3a 5=33. ∴a 5=11,∴d =a 5-a 4=-2. ∵a 3+a 6+a 9=(a 3+a 9)+a 6 =2a 6+a 6=3a 6=3(a 5+d )=3(11-2)=27.方法二 ∵a 1+a 4+a 7=a 1+(a 1+3d )+(a 1+6d ) =3a 1+9d =39, ∴a 1+3d =13,①∵a 2+a 5+a 8=(a 1+d )+(a 1+4d )+(a 1+7d ) =3a 1+12d =33. ∴a 1+4d =11,②由①②联立⎩⎪⎨⎪⎧ a 1+3d =13,a 1+4d =11,得⎩⎪⎨⎪⎧d =-2,a 1=19.∴a 3+a 6+a 9=(a 1+2d )+(a 1+5d )+(a 1+8d ) =3a 1+15d =3×19+15×(-2)=27.例3 三个数成等差数列,和为6,积为-24,求这三个数.解 方法一 设三个数的等差中项为a ,公差为d ,则这三个数分别为a -d ,a ,a +d , 依题意得,3a =6且a (a -d )(a +d )=-24, 所以a =2,代入a (a -d )(a +d )=-24, 化简得d 2=16,于是d =±4, 故三个数为-2,2,6或6,2,-2.方法二 设首项为a ,公差为d ,这三个数分别为a ,a +d ,a +2d , 依题意得,3a +3d =6且a (a +d )(a +2d )=-24, 所以a =2-d ,代入a (a +d )(a +2d )=-24, 得2(2-d )(2+d )=-24,4-d 2=-12,即d 2=16,于是d =±4,三个数为-2,2,6或6,2,-2.反思与感悟 当等差数列{a n }的项数n 为奇数时,可设中间一项为a ,再以公差为d 向两边分别设项:…a -2d ,a -d ,a ,a +d ,a +2d ,…;当项数n 为偶数时,可设中间两项为a -d ,a +d ,再以公差为2d 向两边分别设项:…a -3d ,a -d ,a +d ,a +3d ,…,这样可减少计算量.跟踪训练3 四个数成递增等差数列,中间两数的和为2,首末两数的积为-8,求这四个数. 解 方法一 设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ). 依题意得,2a =2,且(a -3d )(a +3d )=-8, 即a =1,a 2-9d 2=-8, ∴d 2=1,∴d =1或d =-1.又四个数成递增等差数列,所以d >0, ∴d =1,故所求的四个数为-2,0,2,4.方法二 设这四个数为a ,a +d ,a +2d ,a +3d (公差为d ), 依题意得,2a +3d =2,且a (a +3d )=-8, 把a =1-32d 代入a (a +3d )=-8,得(1-32d )(1+32d )=-8,即1-94d 2=-8,化简得d 2=4,所以d =2或-2.又四个数成递增等差数列,所以d >0,所以d =2,a =-2. 故所求的四个数为-2,0,2,4. 探究点三 等差数列在实际中的应用例4 一个木制梯形架的上、下两底边分别为33 cm,75 cm ,把梯形的两腰各6等分,用平行木条连接各对应分点,构成梯形架的各级.试计算梯形架中间各级的宽度.解 记梯形架自上而下各级宽度所构成的数列为{a n },则由梯形中位线的性质,易知每相邻三项均成等差数列,从而{a n }成等差数列. 依题意有a 1=33 cm ,a 7=75 cm ,现要求a 2,a 3,…,a 6,即中间5层的宽度.d =a 7-a 17-1=75-336=7(cm).a 2=33+7=40(cm),a 3=40+7=47(cm),a 4=47+7=54(cm),a 5=54+7=61(cm),a 6=61+7=68(cm).答 梯形架中间各级的宽度自上而下依次是40 cm ,47 cm ,54 cm,61 cm,68 cm.反思与感悟 在实际问题中,若一组数依次成等数额增长或下降,则可考虑利用等差数列方法解决.在利用数列方法解决实际问题时,一定要分清首项、项数等关键问题.跟踪训练4 在通常情况下,从地面到10 km 高空,高度每增加1 km ,气温就下降某一个固定数值.如果1 km 高度的气温是8.5℃,5 km 高度的气温是-17.5℃,求2 km ,4 km,8 km 高度的气温.解 用{a n }表示自下而上各高度气温组成的等差数列,则a 1=8.5,a 5=-17.5,由a 5=a 1+4d =8.5+4d =-17.5,解得d =-6.5,∴a n =15-6.5n .∴a 2=2,a 4=-11,a 8=-37,即2 km,4 km,8 km 高度的气温分别为2℃,-11℃,-37℃.1.等差数列{a n }中,已知a 3=10,a 8=-20,则公差d 等于( ) A .3 B .-6 C .4 D .-3答案 B解析 由等差数列的性质,得a 8-a 3=(8-3)d =5d ,所以d =-20-105=-6.2.在等差数列{a n }中,已知a 4=2,a 8=14,则a 15等于( ) A .32 B .-32 C .35 D .-35答案 C解析 由a 8-a 4=(8-4)d =4d ,得d =3,所以a 15=a 8+(15-8)d =14+7×3=35. 3.等差数列{a n }中,a 4+a 5=15,a 7=12,则a 2等于( ) A .3 B .-3C.32D .-32答案 A解析 由数列的性质,得a 4+a 5=a 2+a 7,所以a 2=15-12=3.4.某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?解 根据题意,当该市出租车的行程大于或等于4 km 时,每增加1 km ,乘客需要支付1.2元.所以,可以建立一个等差数列{a n }来计算车费.令a 1=11.2表示4 km 处的车费,公差d =1.2,那么,当出租车行至14 km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元). 即需要支付车费23.2元. [呈重点、现规律]1.在等差数列{a n }中,当m ≠n 时,d =a m -a nm -n 为公差公式,利用这个公式很容易求出公差,还可变形为a m =a n +(m -n )d .2.等差数列{a n }中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列.3.等差数列{a n }中,若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N +),特别地,若m +n =2p ,则a n +a m =2a p .4.在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关a 1、d 的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.一、基础过关1.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( ) A .12 B .8 C .6D .4答案 B解析 由等差数列性质a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32, ∴a 8=8,又d ≠0,∴m =8.2.设公差为-2的等差数列{a n },如果a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( )A .-182B .-78C .-148D .-82答案 D解析 a 3+a 6+a 9+…+a 99=(a 1+2d )+(a 4+2d )+(a 7+2d )+…+(a 97+2d ) =(a 1+a 4+…+a 97)+2d ×33 =50+2×(-2)×33=-82.3.下面是关于公差d >0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3D .p 1,p 4答案 D解析 a n =a 1+(n -1)d ,d >0, ∴a n -a n -1=d >0,命题p 1正确. na n =na 1+n (n -1)d ,∴na n -(n -1)a n -1=a 1+2(n -1)d 与0的大小关系和a 1的取值情况有关. 故数列{na n }不一定递增,命题p 2不正确. 对于p 3:a n n =a 1n +n -1n d ,∴a n n -a n -1n -1=-a 1+dn (n -1), 当d -a 1>0,即d >a 1时,数列{a nn }递增,但d >a 1不一定成立,则p 3不正确. 对于p 4:设b n =a n +3nd , 则b n +1-b n =a n +1-a n +3d =4d >0. ∴数列{a n +3nd }是递增数列,p 4正确.综上,正确的命题为p 1,p 4.4.在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为( )A .4B .6C .8D .10 答案 C解析 由a 2+a 4+a 6+a 8+a 10=5a 6=80,∴a 6=16,∴a 7-12a 8=12(2a 7-a 8)=12(a 6+a 8-a 8)=12a 6=8.5.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案 20解析 设公差为d ,则a 3+a 8=2a 1+9d =10,∴3a 5+a 7=4a 1+18d =2(2a 1+9d )=20. 6.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图像与x 轴的交点的个数为________. 答案 1或2解析 ∵a ,b ,c 成等差数列,∴2b =a +c , ∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图像与x 轴的交点个数为1或2. 7.在等差数列{a n }中,已知a m =n ,a n =m ,求a m +n 的值. 解 方法一 设公差为d , 则d =a m -a n m -n =n -mm -n=-1,从而a m +n =a m +(m +n -m )d =n +n ·(-1)=0.方法二 设等差数列的通项公式为a n =an +b (a ,b 为常数),则⎩⎪⎨⎪⎧a m =am +b =n ,a n =an +b =m ,得a =-1,b =m +n .所以a m +n =a (m +n )+b =0. 二、能力提升8.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( ) A .45B .75C .180D .300答案 C解 ∵a 3+a 4+a 5+a 6+a 7=(a 3+a 7)+(a 4+a 6)+a 5 =5a 5=450,∴a 5=90.∴a 2+a 8=2a 5=180.9.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为( ) A. 3 B .± 3C .-33D .-3答案 D解析 由等差数列的性质得a 1+a 7+a 13=3a 7=4π, ∴a 7=4π3.∴tan(a 2+a 12)=tan(2a 7)=tan8π3=tan 2π3=- 3. 10.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________. 答案 105解析 ∵a 1+a 2+a 3=3a 2=15,∴a 2=5. ∵a 1a 2a 3=(a 2-d )a 2(a 2+d )=5(25-d 2)=80, 又d 为正数,∴d =3.∴a 11+a 12+a 13=3a 12=3(a 2+10d )=3(5+30)=105.11.成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数. 解 设这四个数为a -3d ,a -d ,a +d ,a +3d ,则由题设得⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,所以⎩⎪⎨⎪⎧4a =26,a 2-d 2=40. 解得⎩⎨⎧a =132,d =32或⎩⎨⎧a =132,d =-32.所以这四个数为2,5,8,11或11,8,5,2.12.正项数列{a n }中,a 1=1,a n +1-a n +1=a n +a n . (1)数列{a n }是否为等差数列?说明理由. (2)求a n . 解 (1)∵a n +1-a n +1=a n +a n ,∴a n +1-a n =a n +1+a n ,打印版高中数学 ∴(a n +1+a n )·(a n +1-a n )=a n +1+a n , ∴a n +1-a n =1,∴{a n }是等差数列,公差为1.(2)由(1)知{a n }是等差数列,且d =1, ∴a n =a 1+(n -1)×d =1+(n -1)×1=n , ∴a n =n 2.三、探究与拓展13.已知数列{a n },满足a 1=2,a n +1=2a n a n +2. (1)数列{1a n}是否为等差数列?说明理由. (2)求a n .解 (1)数列{1a n}是等差数列,理由如下: ∵a 1=2,a n +1=2a n a n +2, ∴1a n +1=a n +22a n =12+1a n , ∴1a n +1-1a n =12, 即{1a n }是首项为1a 1=12, 公差为d =12的等差数列. (2)由上述可知1a n =1a 1+(n -1)d =n 2, ∴a n =2n.。
2019-2020学年高中数学第1章数列2.1 等差数列第2课时等差数列的性质教案北师大版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020学年高中数学第1章数列2.1 等差数列第2课时等差数列的性质教案北师大版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020学年高中数学第1章数列2.1 等差数列第2课时等差数列的性质教案北师大版必修5的全部内容。
第2课时等差数列的性质学习目标核心素养1。
掌握等差中项的概念及其应用.2.掌握等差数列的项与序号的性质.(重点)3.理解等差数列的项的对称性.(重点) 4.能够熟练应用等差数列的性质解决有关实际问题.(难点)1。
通过对等差数列性质的研究培养逻辑推理的素养.2.通过学习等差中项的概念提升数学运算的素养.1.等差数列的单调性与图像阅读教材P13“练习1”以下“例5”以上部分,完成下列问题(1)等差数列的图像由a n=dn+(a1-d),可知其图像是直线y=dx+(a1-d)上的一些等间隔的点,其中公差d 是该直线的斜率.(2)从函数角度研究等差数列的性质与图像由a n=f(n)=a1+(n-1)d=dn+(a1-d),可知其图像是直线y=dx+(a1-d)上的一些等间隔的点,这些点的横坐标是正整数,其中公差d是该直线的斜率,即自变量每增加1,函数值增加d。
当d>0时,{a n}为递增数列,如图(甲)所示.当d<0时,{a n}为递减数列,如图(乙)所示.当d=0时,{a n}为常数列,如图(丙)所示.甲乙丙思考:(1)等差数列{a n}中,a3=4,a4=2,则数列{a n}是递增数列,还是递减数列?[提示] 因为公差d=a4-a3=-2<0,所以数列{a n}是递减数列.(2)等差数列的公差与直线的斜率之间有什么关系?[提示]等差数列的公差相当于图像法表示数时直线的斜率.2.等差中项如果在a与b中间插入一个数A,使a,A,b成等差数列,那么A叫作a与b的等差中项.思考:(1)若A是a与b的等差中项,如何用a和b表示A?[提示] A=a+b 2。
等差数列教学目标1.明确等差中的概念.2.进一步熟练掌握等差数列的通项公式及推导公式3.培养学生的应用意识.教学重点等差数列的性质的理解及应用教学难点灵活应用等差数列的定义及性质解决一些相关问题教学方法讲练相结合教具准备投影片2张(内容见下面)教学过程(I)复习回顾师:首先回忆一下上节课所学主要内容:1. 等差数列定义:d a a n n =--1(n ≥2)2. 等差数列通项公式:d n a a n )1(1-+=(n ≥2)推导公式:d m n a a m n )(-+=(Ⅱ)讲授新课1. 解:由题意可知⎩⎨⎧=+==+=(2)3111(1) 10411215d a a d a a 解之得⎪⎩⎪⎨⎧=-=321d a 即这个数列的首项是-2,公差是3。
或由题意可得:d a a )512(512-+=即:31=10+7d可求得d=3,再由d a a 415+=求得1=-22. 解设{}n a 表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知:a 1=33, a 12=110,n=12∴d a a )112(112-+=,即时10=33+11d解之得:7=d因此,,103,96,89,82,75,68,61,54,47740,40733111098765432=========+==+=a a a a a a a a a a 答:梯子中间各级的宽度从上到下依次是40cm ,47cm ,54cm ,61cm ,68cm ,75cm ,82cm ,89cm ,96cm ,103cm.师:[提问]如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列数列,那么A 应满足什么条件?生:由定义得A-a =b -A 即:2b a A +=反之,若2b a A +=,则A-a =b -A 师:由此可可得:,,2b a b a A ⇔+=成等差数列,若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
§2.1 等差数列(二)教学设计
教学目标
1.知识与技能:能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。
2. 过程与方法:进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。
3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。
教学重点:会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。
教学难点:等差数列与一次函数之间的联系
教学过程设计:
一、复习导入
等差数列的定义,通项公式,推广的通项公式以及怎样通项公式的证明过程
怎样判断一个数列是不是等差数列(由等差数列的定义,要判定数列{}n a 是不是等差数列,只要看1n n a a --(n ≥2)是不是一个与n 无关的常数。
)
二、等差数列的通项公式
)(1d a dn a n -+=
性质1:在等差数列中,如果项数的和相等,那么项的和也相等
即 数列{}n a 是等差数列p ,q ,r ,s 分别是项数,且p q r s +=+,则
p q r s a a a a +=+
)()(1d a dn n f -+=
性质2:借助一次函数的性质总结等差数列特征
1 等差数列的通项公式是关于n 的一次函数,n 是自变量,+∈N n n a 是函数
2 如果通项公式是关于n 的一次函数,则该数列成等差数列;
(利用这个结论证明一个数列是否为等差数列)
证明:若A n B A B A n A B An a n )1()()1(-++=++-=+=
它是以B A +为首项,A 为公差的等差数列。
3 图象是直线)(1d a dx y -+=上一些等间隔的点,公差d 是该直线的斜率.
4 公式中若 0>d 则数列递增,0<d 则数列递减;0=d 则数列为常数列
图像见教材P13页
等差数列与一次函数的异同:
例1:已知(1,1),(3,5)是等差数列{an}图像上的两点.
(1)求这个数列的通项公式;
(2)画出这个数列的图像;
(3)判断这个数列的单调性.
解:(1)略.
(2)图像是直线y=2x-1上一些等间隔的点.
(3)因为一次函数y=2x-1是增函数, 所以数列{n a }是递增数列.
三、等差中项的概念()
如果在a 与b 中间插入一个数A, 使a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中
项
若A 是a 与b 的等差中项,则2
b a A +=
或b a A +=2 证明:设公差为d ,则d a A += d a b 2+= ∴A d a d a a b a =+=++=+222 性质3:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它
的前一项与后一项的等差中项
即 {}n a 是等差数列⇔ *112(2,)n n n a a a n n N -+=+≥∈
(用于证明一个数列是否为等差数列)
例2:一个木制梯形架的上、下两底边分别为33cm ,75cm ,把梯形的两腰各6等分,用平行木
条连接各对应点,构成梯形架的各级。
试计算梯形架中间各级的宽度。
解: 记梯形架自上而下各级宽度所构成的数列为{an},则由梯形中位线的性质,可知每相邻三项均成等差数列,从而{n a }成等差数列。
依题意有cm a 331= cm a 757=
现要求65432,,,a a a a a ,即中间5层的宽度。
)(76
33751717cm a a d =-=--=cm a 407332=+=, cm a 477403=+=,cm a 544=, cm a 615=,cm a 686=
答:梯形架中间各级的宽度自上而下依次40cm,47cm,54cm,61cm,68cm.
例3:在-1与7之间顺次插入三个数c b a ,,使这五个数成等差数列,求此数列。
解法1:∵成等差数列7,,,,1c b a - ∴b 是-1与7 的等差中项 ∴ 3271=+-=
b 又∵ a 是-1与3的等差中项 ∴12
31=+-=a c 是1与7的等差中项 ∴52
73=+=c 解法二:设11-=a 75=a ∴d )15(17-+-= 2=⇒d ∴所求的数列为-1,1,3,5,7 课堂练习:P14 练习2 第1——4题
小结:
这节课你学习了哪些知识?
体会到了哪些数学思想方法?
你最大的收获是什么?
思考题:1、证明你刚才关于等差数列特征的猜想。
2、总结归纳:证明一个数列为等差数列的方法有哪些?
作业: P 19 习题1-2 第9、11、13题
课后反思:
7533。