(部编版)2020高中物理第一章碰撞与动量守恒1.3动量守恒定律在碰撞中的应用教案粤教版选修3_3
- 格式:doc
- 大小:164.00 KB
- 文档页数:4
动量守恒定律的应用(碰撞)一、选择题1.质量为M和m0的滑块用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图所示,碰撞时间极短,在此过程中,下列哪个或哪些说法是可能发生的?().A.M、m0、m速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=Mv1+m0v2+mv3B.m0的速度不变,M和m的速度变为v1和v2,而且满足Mv=Mv1+mv2C.m0的速度不变,M、m的速度都变为v',且满足Mv=(M+m)v'D.M、m0、m速度均发生变化,M和m0速度都变为v,m速度变为v2,而且满足(M+m)v0=(M+m0)v1+mv22.A、B两物体发生正碰,碰撞前后物体A、B都在同一直线上运动,其位移一时间图象(s-t图象)如图中ADC和BDC所示.由图可知,物体A、B的质量之比为().A.1∶1 B.1∶2 C.1∶3 D.3∶13.三个相同的木块A、B、C从同一高度处自由下落,其中木块A刚开始下落的瞬间被水平飞来的子弹击中,木块B在下落到一定高度时,才被水平飞来的子弹击中.若子弹均留在木块中,则三木块下落的时间t A、t B、t C的关系是().A.t A<t B<t C B.t A>t B>t C C.t A=t C<t B D.t A=t B<t C4.如图所示,木块A和B质量均为2 kg,置于光滑水平面上,B与一轻质弹簧一端相连,弹簧另一端固定在竖直挡板上,当A以4 m/s的速度向B撞击时,由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,具有的弹性势能大小为().A.4 J B.8 J C.16 J D.32 J5.如图所示,有两个质量相同的小球A和B(大小不计),A球用细绳吊起,细绳长度等于悬点距地面的高度,B点静止放于悬点正下方的地面上.现将A球拉到距地面高度为h处由静止释放,摆动到最低点与B球碰撞后粘在起共同上摆,则它们升起的最大高度为().A .h /2B .hC .h /4D .h /26.在光滑水平面上,动能为0E 、动量的大小为0P 的小钢球l 与静止小钢球2发生碰撞.碰撞前后球l 的运动方向相反.将碰撞后球l 的动能和动量的大小分别记为1E 、1P ,球2的动能和动量的大小分别记为2E 、2P ,则必有( ). A .1E <0E B .1P <0PC .2E >0ED .2P >2P7.甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是=5kg m/s P ⋅甲、=7kg m/s P ⋅乙,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10kg m/s ⋅。
高二物理1.1动量定理与动量守恒 §1.3一维弹性碰撞鲁教版【本讲教育信息】一. 教学内容:§1.1动量定理与动量守恒 §1.3一维弹性碰撞§1.1动量定理与动量守恒一. 教学目的:1. 认识动量的概念2. 会用动量定理解释简单问题二. 教学重、难点:1. 会推导动量守恒定律2. 会用动量守恒定律解释处理问题 (一)动量的概念1. 定义:运动物体的质量和速度的乘积叫动量。
2. 公式:m v P = 单位:s /m kg ⋅3. 是矢量:方向与v 的方向相同(即有正负)4. 解释:(1)动量是描述物体运动状态的量,通常说物体的动量是指物体在某一时刻的动量,对应该时刻的速度。
(2)动量具有相对性:选不同的参照物,物体的动量不同,但通常选地面为参考系。
(二)冲量1. 定义:力和力的作用时间的乘积叫做力的冲量。
2. 公式:t F I ⋅=单位:N ·s 或说与P 相同为s /m kg ⋅方向:与F 的方向相同 3. 解释(1)是力在时间上的积累效果(2)计算方法就是力与时间相乘,与其它无关。
(三)动量定理 1. 推导:tv v a 12-=则t v v m ma 12-=即tP P F t mv mv F 1212-=-=或或写成P I P t F P P t F 12∆=∆=⋅-=⋅即与2. 内容:物体所受合外力的冲量等于物体的动量变化。
3. 应用:(1)解释一些现象①玻璃杯落在水泥地上会摔碎而落在海绵上不会碎。
②从高处落下时,曲膝以缓冲减小对人体的伤害。
③汽车突然刹车或启动时人体的前扑与后仰。
(2)计算:(四)动量守恒定律的推导1. 推导:如图所示两小球相撞前后的情形:FFB v 1’v 2’AB则对A 球1111v m 'v m t F -=⋅ 对B 球:2222v m 'v m t F -=⋅-则)v m 'v m (v m 'v m 22221111--=- 即:22112211v m v m 'v m 'v m +=+ 或总总P 'P =或:'v m v m v m 'v m 22221111-=- 即:21P P ∆-=∆(五)表述1. 一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变。
高中物理运动知识点总结1.机械运动机械运动是指物体在空间中改变位置的过程。
根据物体运动的轨迹,机械运动可以分为直线运动、曲线运动和往复运动。
根据物体运动的速度,机械运动可以分为匀速运动和变速运动。
运动物体的速度可以通过速度公式v = Δx / Δt 计算,其中 v 为速度,Δx 为位移,Δt 为时间间隔。
2.相互作用和力相互作用是物体之间产生变化的原因,力是相互作用的一种表现形式。
牛顿第一定律(惯性定律):物体在无外力作用时保持匀速直线运动或静止。
牛顿第二定律(运动定律):物体受到的合力等于质量与加速度的乘积,即 F = ma。
牛顿第三定律(作用与反作用定律):对于任何两个物体,彼此之间的作用力大小相等、方向相反。
3.力的作用和运动力的作用可以改变物体的状态,包括速度、方向和形状等。
物体受到施力时会产生加速度,加速度的大小和方向与所受的合力成正比,与物体质量成反比。
动能定理:物体的动能等于其质量与速度平方的乘积的一半,即 Ek = 1/2mv^2.动量定理:物体的动量等于其质量与速度的乘积,即 p = mv。
4.弹性碰撞与动量守恒弹性碰撞是指碰撞后物体的动能守恒的碰撞。
动量守恒定律:在碰撞过程中,系统内物体的总动量保持不变。
弹性碰撞中,物体彼此碰撞后,能量转化形式,但总能量保持不变。
常见的碰撞类型包括完全弹性碰撞和非完全弹性碰撞。
5.直线运动学直线运动学用于研究物体在直线运动过程中的运动规律。
位移-时间图可以描述物体运动的路径和速度的变化情况。
速度-时间图可以描述物体在直线运动过程中的速度的变化情况。
加速度是速度随时间变化的速率,可以通过速度-时间图的斜率来计算。
6.简谐振动简谐振动是指物体围绕平衡位置作周期性往复运动的现象。
简谐振动的周期 T、角频率ω 和频率 f 之间有如下关系:T =1/f = 2π/ω。
简谐振动的振幅 A 表示运动的最大位移,周期性变化的物理量可以用正弦或余弦函数表示。
7.万有引力和行星运动万有引力是指物体之间由于质量而产生的一种相互吸引力。
动量守恒与碰撞动量守恒与速度关系碰撞是物理学中一个重要的概念,也是动量守恒定律的应用场景之一。
碰撞可以分为弹性碰撞和非弹性碰撞,而碰撞的动量守恒性质使得我们可以通过守恒方程来推导出碰撞后物体的速度关系。
动量是一个物体运动的重要性质,定义为物体质量乘以速度。
对于一个质量为 m,速度为 v 的物体,其动量 p = mv。
动量的守恒性质意味着在一个孤立系统中,物体之间的相互作用力不改变系统的总动量。
在碰撞过程中,物体之间会发生相互作用,这个作用力会改变物体的速度。
根据动量守恒定律,碰撞前后总动量守恒。
假设有两个物体A 和 B,在碰撞前各自的质量分别为 m1 和 m2,速度分别为 v1 和 v2。
根据动量守恒定律,碰撞后两个物体的总动量保持不变。
在弹性碰撞中,碰撞前后物体之间没有能量损失,且物体的动能完全转化为弹性势能之后再转化回动能。
因此,在弹性碰撞中,碰撞后物体的速度关系可以通过动量守恒和能量守恒两个方程来求解。
假设碰撞前后物体 A 和 B 的速度分别为 v1i, v2i 和 v1f, v2f,其中 i表示碰撞前的速度,f 表示碰撞后的速度。
根据动量守恒定律,可以得到以下方程:m1 * v1i + m2 * v2i = m1 * v1f + m2 * v2f (1)另外,根据能量守恒定律,在弹性碰撞中,动能的总和也保持不变。
假设物体 A 和 B 的动能分别为 KE1 和 KE2,在碰撞前后动能守恒可以表示为:0.5 * m1 * v1i^2 + 0.5 * m2 * v2i^2 = 0.5 * m1 * v1f^2 + 0.5 * m2 *v2f^2 (2)通过方程(1)和方程(2),可以求解出碰撞后物体的速度关系。
这个速度关系的具体形式取决于物体的质量和碰撞前的速度。
对于非弹性碰撞而言,碰撞过程中会有能量损失,其中一部分动能转化为其他形式的能量,如热能或声能。
在非弹性碰撞中,虽然动量守恒仍然成立,但能量守恒不再严格成立。
第二节动量动量守恒定律[学习目标] 1。
理解动量、冲量的概念,知道动量的变化量也是矢量.(重点)2。
理解动量定理的确切含义,会用其解释和计算碰撞、缓冲等现象.(难点)3.理解动量守恒定律的确切含义和表达式,理解守恒条件.(重点)4。
学会用动量守恒定律解决一些基本问题.(重点)一、动量及其改变1.冲量物体受到的力与力的作用时间的乘积(用“I"表示),其表达式为:I=FΔt。
2.动量运动物体的质量和速度的乘积,用符号p表示.其表达式:p=mv.其单位为:在国际单位制中,动量的单位是千克米每秒,符号是kg·m/s。
3.动量定理物体所受合力的冲量等于物体动量的改变量,这个关系叫做动量定理.其表达式:F·Δt=mv′-mv.二、碰撞中的动量守恒定律1.系统:指具有相互作用的两个或几个物体.2.外力:指系统外部的其他物体对系统的作用力.3.内力:指系统内各物体之间的相互作用力.4.动量守恒定律内容:如果系统所受到的合外力为零,则系统的总动量保持不变.其表达式:m1v1+m2v2=m1v′1+m2v′2.1.正误判断(正确的打“√”,错误的打“×”)(1)动量是一个矢量,它的方向与速度方向相同.(2)冲量是一个矢量,它的方向与速度方向相同.(3)两个物体的动量相同,其动能也一定相同.(4)只要合外力对系统做功为零,系统动量就守恒.(5)系统动量守恒也就是系统的动量变化量为零.2.(多选)恒力F作用在质量为m的物体上,如图所示,由于地面对物体的摩擦力较大,物体没有被拉动,则经时间t,下列说法正确的是()A.拉力F对物体的冲量大小为零B.拉力F对物体的冲量大小是Ft cos θC.合力对物体的冲量大小为零D.重力对物体的冲量大小是mgtCD [对冲量的计算一定要分清求的是哪个力的冲量,是某一个力的冲量、是合力的冲量、是分力的冲量还是某一个方向上力的冲量,某一个力的冲量与另一个力的冲量无关,故拉力F的冲量为Ft,A、B错误;物体处于静止状态,合力为零,合力的冲量为零,C 正确;重力的冲量为mgt,D正确.]3.(多选)关于动量守恒的条件,下面说法正确的是( )A.只要系统内有摩擦力,动量就不可能守恒B.只要系统所受合外力为零,系统动量就守恒C.只要系统所受合外力不为零,则系统在任何方向上动量都不可能守恒D.系统所受合外力不为零,但系统在某一方向上动量可能守恒BD [动量守恒的条件是系统所受合外力为零,与系统内有无摩擦力无关,选项A错误,B正确.系统合外力不为零时,在某方向上合外力可能为零,此时在该方向上系统动量守恒,选项C错误,D正确.]对动量和冲量的理解(1)对动量的认识①瞬时性:通常说物体的动量是物体在某一时刻或某一位置的动量,动量的大小可用p=mv表示.②矢量性:动量的方向与物体的瞬时速度的方向相同.③相对性:因物体的速度与参考系的选取有关,故物体的动量也与参考系的选取有关.(2)动量的变化量是矢量,其表达式Δp=p2-p1为矢量式,运算遵循平行四边形定则,当p2、p1在同一条直线上时,可规定正方向,将矢量运算转化为代数运算.(3)动量和动能的区别与联系物理量动量动能区标矢性矢量标量别大小p=mv E k=错误!mv2变化情况v变化,p一定变化v变化,ΔE k可能为零联系p=错误!,E k=错误!2.冲量(1)冲量的理解①冲量是过程量,它描述的是力作用在物体上的时间积累效应,求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.②冲量是矢量,冲量的方向与力的方向相同.(2)冲量的计算①求某个恒力的冲量:用该力和力的作用时间的乘积.②求合冲量的两种方法:a.分别求每一个力的冲量,再求各冲量的矢量和;b.如果各个力的作用时间相同,也可以先求合力,再用公式I 合=F合Δt求解.③求变力的冲量:a.若力与时间成线性关系变化,则可用平均力求变力的冲量.b.若给出了力随时间变化的图象如图所示,可用面积法求变力的冲量.c.利用动量定理求解.【例1】如图所示,一足球运动员踢一个质量为0.4 kg的足球.(1)若开始时足球的速度是4 m/s,方向向右,踢球后,球的速度为10 m/s,方向仍向右(如图甲),求足球的初动量、末动量以及踢球过程中动量的改变量;(2)若足球以10 m/s的速度撞向球门门柱,然后以3 m/s的速度反向弹回(如图乙),求这一过程中足球的动量改变量.[解析](1)取向右为正方向,初、末动量分别为p=mv=0。
2020衡水名师原创物理专题卷专题十六 碰撞与动量守恒定律考点62 动量 冲量 动量定理 (1、2、3、5、11)考点63 动量守恒定律及其应用 (4、6、7、9、10、15、16、17、19) 考点64 碰撞及其能量变化的判断 (8、12、13、14、20) 考点65实验:验证动量守恒定理 (18)第I 卷(选择题 68分)一、选择题(本题共17个小题,每题4分,共68分。
每题给出的四个选项中,有的只有一个选项符合题意,有的有多个选项符合题意,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.【2017·西藏自治区拉萨中学高三上学期期末】考点62 易下列运动过程中,在任意相等时间内,物体动量变化相等的是( )A .平抛运动B .自由落体运动C .匀速圆周运动D .匀减速直线运动 2.【2017·山东省枣庄市高三上学期期末质量检测】考点62 易质量为60kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,使他悬挂起来;已知弹性安全带的缓冲时间是1.2s ,安全带长5m ,不计空气阻力影响,g 取10m/s 2,则安全带所受的平均冲力的大小为( )A .100 NB .500 NC .600 ND .1100 N3.【2017·长春外国语学校高三上学期期末考试】考点62易关于速度、动量和动能,下列说法正确的是( )A .物体的速度发生变化,其动能一定发生变化B .物体的动量发生变化,其动能一定发生变化C .物体的速度发生变化,其动量一定发生变化D .物体的动能发生变化,其动量一定发生变化4.【2017·安徽省合肥市第一中学高三第三阶段考试】考点63易如图所示, 12F F 、等大反向,同时作用在静止于光滑水平面上的A 、B 两物体上,已知两物体质量关系 A B M M ,经过相等时间撤去两力,以后两物体相碰且粘为一体,这时A 、B将A .停止运动B .向右运动C .向左运动D .仍运动但方向不能确定 5.【2017·湖北省部分重点中学高三新考试大纲适应性考试】考点62中质量为m 的运动员从下蹲状态竖直向上起跳,经过时间 t,身体仲直并刚好离开地面,离开地面时速度为 0υ.在时间t 内( )A .地面对他的平均作用力为 mgB .地面对他的平均作用力为 t m υC .地面对他的平均作用力为 )(g t m -υD .地面对他的平均作用力为)(t g m υ+ 6.【2017年全国普通高等学校招生统一考试物理(全国1卷正式版)】考点63 中将质量为1.00kg 的模型火箭点火升空,50g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg m/s ⋅B .5.7×102 kg m/s ⋅C .6.0×102kg m/s ⋅ D .6.3×102kg m/s ⋅ 7.【2017·四川省成都市高三第一次诊断性检测】考点63难如图所示,小车静止在光滑水平面上,AB 是小车内半圆弧轨道的水平直径,现将一小球从距A 点正上方h 高处由静止释放,小球由A 点沿切线方向经半圆轨道后从B 点冲出,在空中能上升的最大高度为0.8h ,不计空气阻力.下列说法正确的是( )A .在相互作用过程中,小球和小车组成的系统动量守恒B .小球离开小车后做竖直上抛运动C .小球离开小车后做斜上抛运动D .小球第二次冲出轨道后在空中能上升的最大高度为0.6h8.【河南省南阳市第一中学2017届高三上学期第二次周考】考点64难如图所示,倾角为 的固定斜面充分长,一质量为m 上表面光滑的足够长的长方形木板A 正以速度v 0沿斜面匀速下滑,某时刻将质量为2 m 的小滑块B 无初速度地放在木板A 上,则在滑块与木板都在滑动的过程中( )A .木板A 的加速度大小为3gsinθB .木板A 的加速度大小为零C .A 、B 组成的系统所受合外力的冲量一定为零D .木板A 的动量为13mv0时,小滑块B 的动量为23mv09.【2017·西藏自治区拉萨中学高三上学期期末】考点63 中如图所示,小车AB 放在光滑水平面上,A 端固定一个轻弹簧,B 端粘有油泥,AB 总质量为M ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,开始时AB 和C 都静止,当突然烧断细绳时,C 被释放,使C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽略一切摩擦,以下说法正确的是( )A .弹簧伸长过程中C 向右运动,同时AB 也向右运动B .C 与B 碰前,C 与AB 的速率之比为M :mC .C 与油泥粘在一起后,AB 立即停止运动D .C 与油泥粘在一起后,AB 继续向右运动10.【江西省南昌市十所省重点中学命制2017届高三第二次模拟突破冲刺理综物理试题(一)】考点63 中如图所示,质量分别为m1和m2的两个小球A 、B 带有等量异种电荷,通过绝缘轻弹簧相连接,置于绝缘光滑的水平面上.当突然加一水平向右的匀强电场后,两小球A 、B 将由静止开始运动,在以后的运动过程中,对两个小球和弹簧组成的系统(设整个过程中不考虑电荷间库仑力的作用,且弹簧不超过弹性限度),以下说法中错误的是()A. 两个小球所受电场力等大反向,系统动量守恒B. 电场力分别对球A和球B做正功,系统机械能不断增加C. 当弹簧长度达到最大值时,系统机械能最大D. 当小球所受电场力与弹簧的弹力相等时,系统动能最大11.【2017·哈尔滨市第六中学上学期期末考试】考点62中如图甲所示,一质量为m的物块在t=0时刻,以初速度v0从足够长、倾角为θ的粗糙斜面底端向上滑行,物块速度随时间变化的图象如图乙所示.t0时刻物块到达最高点,3t0时刻物块又返回底端.下列说法正确的是()A.物块从开始运动到返回底端的过程中重力的冲量大小为3mgt0sinθB.物块从t=0时刻开始运动到返回底端的过程中动量变化量大小为023vmC.斜面倾角θ的正弦值为085gtvD.不能求出3t0时间内物块克服摩擦力所做的功12.【吉林省普通高中2017届高三下学期第四次调研考试试卷理综物理】考点64 中如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为2B Am m=,规定向右为正方向,A、B两球的动量均为6Kg.m/s,运动中两球发生碰撞,碰撞前后A球动量变化为﹣4Kg.m/s,则()A. 左方是A球B. 右方是A球C. 碰撞后A、B两球速度大小之比为2:5D. 经过验证两球发生的碰撞不是弹性碰撞13.【四川省成都外国语学校2017届高三11月月考】考点64中如图所示在足够长的光滑水平面上有一静止的质量为M的斜面,斜面表面光滑、高度为h、vv0tt0 2t03t0Oθv0(甲)(乙)倾角为θ.一质量为m(m<M)的小物块以一定的初速度沿水平面向右运动,不计冲上斜面过程中的机械能损失.如果斜面固定,则小物块恰能冲到斜面的顶端.如果斜面不固定,则小物块冲上斜面后能达到的最大高度为()A.h B.mhm M+C.mhM D.Mhm M+14.【四川省成都外国语学校2017届高三12月一诊模拟】考点64易在光滑水平面上,一质量为m,速度大小为v的A球与质量为2m静止的B球碰撞后,A球的动能变为1/9,则碰撞后B球的速度大小可能是( )A. 13v B.23v C.49v D.59v16.【黑龙江省牡丹江市第一高级中学2017届高三12月月考】考点63易甲、乙两船的质量均为M,它们都静止在平静的湖面上,质量为M的人从甲船跳到乙船上,再从乙船跳回甲船,经过多次跳跃后,最后人停在乙船上.假设水的阻力可忽略,则()A.甲、乙两船的速度大小之比为1:2B.甲船与乙船(包括人)的动量相同C.甲船与乙船(包括人)的动量之和为零D.因跳跃次数未知,故无法判断17.【黑龙江省牡丹江市第一高级中学2017届高三12月月考】考点63难如图所示,在光滑水平面上有一质量为M的木块,木块与轻弹簧水平相连,弹簧的另一端连在竖直墙上,木块处于静止状态,一质量为m的子弹以水平速度v0击中木块,并嵌在其中,木块压缩弹簧后在水平面做往复运动.木块自被子弹击中前到第一次回到原来位置的过程中,木块受到的合外力的冲量大小为()A.MmvM m+B.2MvC.2MmvM m+D.2mv第II卷(非选择题 42分)二、非选择题(共3小题,共42分,按题目要求作答,计算题应写出必要的文字说明、方程式和重要步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)18.【2017届辽宁省大连市高三第二次模拟考试理科综合物理试卷】考点65 难如图甲所示,在验证动量守恒定律实验时,小车A的前端粘有橡皮泥,推动小车A使之做匀速运动。
弹性碰撞与动量守恒碰撞是物体之间发生相互作用的常见现象,而弹性碰撞则是其中一种特殊的碰撞形式。
本文将讨论弹性碰撞的基本原理以及动量守恒定律在弹性碰撞中的应用。
一、弹性碰撞的定义与特点弹性碰撞是指在碰撞过程中,物体之间发生相互作用后能够完全恢复其初始形状和动能的碰撞形式。
与之相对的是非弹性碰撞,非弹性碰撞中物体会发生形变并损失能量。
弹性碰撞的特点包括以下几个方面:1. 动能守恒:在弹性碰撞中,物体的总动能在碰撞前后保持不变。
2. 动量守恒:碰撞前后物体的总动量保持不变。
3. 反弹性:物体在弹性碰撞中会以相同的速度反弹,反弹角度与入射角度相等。
二、动量守恒定律的表达式动量守恒定律是力学中一个重要的基本原理,它在弹性碰撞中发挥着关键作用。
动量守恒定律可以用数学表达式表示为:m1v1i + m2v2i = m1v1f + m2v2f其中,m1和m2分别为碰撞物体1和物体2的质量,v1i和v2i为碰撞前两个物体的速度,v1f和v2f为碰撞后两个物体的速度。
三、弹性碰撞的示例下面通过一个简单的实例来说明弹性碰撞和动量守恒定律的应用。
假设有两个质量分别为m1和m2的物体,初始时它们分别以v1i和v2i的速度向相反方向运动。
它们经过弹性碰撞后,分别以v1f和v2f的速度反弹。
根据动量守恒定律的表达式,我们可以得到:m1v1i + m2v2i = m1v1f + m2v2f在碰撞前,两个物体的速度方向相反,因此可以将v2i视为负值,即:m1v1i - m2v2i = m1v1f - m2v2f假设碰撞后两个物体的速度分别为v1f = u1f - u2f和v2f = u2f - u1f,代入上式可以得到:m1v1i - m2v2i = m1(u1f - u2f) - m2(u2f - u1f)根据动量守恒定律,我们可以得到:m1v1i - m2v2i = m1u1f - m1u2f - m2u2f + m2u1f整理后,我们可以得到:(m1 + m2)u1f + (m2 - m1)u2f = m1v1i - m2v2i这个方程组可以帮助我们计算出碰撞后物体的速度,进而分析碰撞过程中的相关物理现象。
引言概述:本实验报告旨在探讨碰撞与动量守恒原理,并通过实验验证该原理的有效性。
动量守恒是一个基本的物理原理,适用于各种物体的碰撞问题。
在实验中,我们将通过进行不同类型的碰撞实验来观察和分析碰撞前后物体的动量变化,并据此验证动量守恒原理。
正文内容:1. 碰撞类型及动量守恒原理1.1 弹性碰撞弹性碰撞是指两个物体在碰撞过程中动能和动量都得到守恒的碰撞类型。
在弹性碰撞中,碰撞物体之间相互作用力的大小和方向完全相反,并且动量总和在碰撞前后保持不变。
根据动量守恒原理,我们可以通过测量碰撞前后物体的速度和质量来计算和验证动量守恒。
1.2 非弹性碰撞非弹性碰撞是指两个物体在碰撞过程中不完全弹性恢复的碰撞类型。
在非弹性碰撞中,碰撞物体之间存在能量损失,并且在碰撞后分别以不同速度进行运动。
尽管动能不能守恒,但动量守恒仍然保持不变。
我们可以通过测量碰撞前后物体的速度和质量,以及所损失的能量来验证动量守恒。
2. 实验器材和步骤2.1 实验器材本实验所需的器材包括:弹性碰撞车、非弹性碰撞车、轨道、计时器、测量工具等。
2.2 实验步骤(1) 设置轨道和安装弹性碰撞车。
(2) 确保弹性碰撞车和非弹性碰撞车的初始位置和速度。
(3) 开始实验,并使用计时器记录碰撞前后物体的运动时间。
(4) 测量物体的质量,并记录实验数据。
(5) 重复实验,得出平均值并计算动量变化。
3. 实验结果和数据分析3.1 弹性碰撞实验结果我们进行了一系列弹性碰撞实验,并测量了碰撞前后物体的速度和质量。
通过计算动量的变化,我们发现动量在碰撞前后保持不变的结果与动量守恒原理相一致。
3.2 非弹性碰撞实验结果我们进行了一系列非弹性碰撞实验,并测量了碰撞前后物体的速度和质量。
通过计算动量的变化和能量损失,我们发现动量在碰撞前后仍然保持不变,验证了动量守恒原理的有效性。
4. 实验误差和改进4.1 实验误差来源实验误差主要来自于实验仪器的精确度、人为操作的不准确性以及环境因素的干扰等。
动量守恒与碰撞动量守恒与质量关系动量守恒定律是物理学中的一个基本定律,它表明在一个封闭系统中,当没有外力作用的情况下,物体的总动量将保持不变。
碰撞是动量守恒定律的一个重要应用,它描述了两个物体发生碰撞后动量的变化情况。
而质量则是影响碰撞动量守恒的重要因素之一。
1. 动量守恒定律在物理学中,动量的定义为物体的质量乘以其速度。
动量守恒定律指出,在一个封闭系统中,当没有外力作用时,物体的总动量保持不变。
这意味着系统中一个物体的动量的改变将会导致另一个物体动量的相应改变,两者之间存在着动量的转移。
2. 碰撞与动量守恒碰撞是指两个物体之间发生相互作用的过程。
根据动量守恒定律,碰撞前后系统的总动量应当保持不变。
根据碰撞的形式,碰撞可以分为完全弹性碰撞和完全非弹性碰撞两种情况。
(1)完全弹性碰撞:在完全弹性碰撞中,碰撞前后两个物体都没有损失动能,动量完全转移。
在这样的碰撞中,碰撞物体的速度和动量可以通过质量和初速度来计算。
(2)完全非弹性碰撞:在完全非弹性碰撞中,碰撞后两个物体会粘合在一起形成一个新的物体。
在这种碰撞情况下,部分动能转化为其他形式,如热能等。
碰撞动量守恒定律依然适用,即碰撞前后系统的总动量保持不变。
3. 质量与碰撞动量守恒质量是物体惯性的度量,它与物体的动量密切相关。
在碰撞中,物体的质量会影响其动量的变化情况。
根据动量的定义,动量等于质量乘以速度。
假设两个物体A和B质量分别为m1和m2,速度分别为v1和v2,在碰撞前后动量守恒可以表示为:m1 * v1 + m2 * v2 = m1' * v1' + m2' * v2'其中,m1'和m2'分别代表碰撞后两个物体的质量,v1'和v2'分别代表碰撞后两个物体的速度。
通过这个方程,可以解出碰撞后物体的速度。
可以看出,质量是影响碰撞后速度的重要因素之一。
当两个物体质量相等时,碰撞后它们的速度也将相等。
第2讲动量守恒定律及应用1•动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律。
(2)表达式①P= P’,系统相互作用前总动量P等于相互作用后的总动量P’。
②m2V2= mivi '+ m2V2 " »相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
③Api =- A P2,相互作用的两个物体动量的增量等大反向。
④Ap= 0,系统总动量的增量为零。
2・动量守恒的条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。
(2)近似守恒:系统受到的合力不为零,但当內力远大于外力时,系统的动量可近似看成守恒。
(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。
3・动量守恒定律的“五性”[思维诊断](1)动量具有瞬时性。
0(2)物体动量的变化等于某个力的冲量。
()(3)动量守恒定律中的速度是相对于同一参考系的速度。
()(4)系统的总动量不变是指系统总动量的大小保持不变。
()(5)系统的动量守恒时,机械能也一定守恒。
()答案:(1)z (2)X (3)z (4)X (5)x[题组训练]1 •[动量守恒的条件]在如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在其中,将弹簧压缩到最短。
若木块和弹簧合在一起作为系统,则此系统在从子弹开始射入到弹簧被将子弹、木块和弹簧合在一压缩至最短的整个过程中()A・动量守恒,机械能守恒B•动量不守恒,机械能不守恒C•动量守恒?机械能不守恒D •动量不守恒,机械能守恒解析:子弹射入木块是瞬间完成的,这个过程相当于子弹与木块发生一次完全非弹性碰撞,动量守恒,机械能不守恒,一部分动能转化为内能,之后木块(连同子弹)压缩弹簧,将其动能转化为弹性势能,这个过程机械能守 恒,但动量不守恒。
由于左侧挡板的支持力的冲量作用,使系统的动量不断减少,所以整个过程中,动量和机械能均不 守恒。
动量守恒实验弹性碰撞与动量守恒动量守恒实验引言动量守恒定律是力学中的重要概念,指出在没有外力作用下,系统的总动量保持不变。
弹性碰撞是动量守恒的经典实验之一。
本文将介绍动量守恒实验中弹性碰撞的原理和实验步骤,以及分析实验结果并结合公式进行解释。
实验原理动量守恒定律指出,一个系统中所有物体的动量之和在任何时刻都保持不变。
对于一个由两个物体组成的系统,在碰撞前后,总动量的大小和方向应保持不变。
实验步骤1. 实验装置准备安装一个弹簧测力计在平滑水平的桌面上。
将一根软质细线通过弹簧测力计的铁环,并在绳的另一端挂上一个小球。
2. 碰撞实验将一个较大的木球静止放置在弹簧测力计的上方约10厘米的高度,并释放小球使其与木球发生碰撞。
观察碰撞后小球和木球的运动情况。
实验结果与分析通过观察实验现象,并结合动量守恒定律的公式,我们可以分析实验结果。
1. 碰撞前碰撞前,小球和木球分别具有自己的质量和速度。
2. 碰撞瞬间在碰撞瞬间,小球和木球发生弹性碰撞,它们之间产生相互作用力。
根据牛顿第三定律,作用力和反作用力大小相等、方向相反。
3. 碰撞后在碰撞后,小球和木球的速度发生改变。
根据动量守恒定律,碰撞前后两个物体的总动量保持不变。
根据动量守恒定律公式:m1 * v1 + m2 * v2 = m1' * v1' + m2' * v2'其中,m1和m2为碰撞前小球和木球的质量,v1和v2为碰撞前小球和木球的速度,m1'和m2'为碰撞后小球和木球的质量,v1'和v2'为碰撞后小球和木球的速度。
结论通过本次实验,我们验证了动量守恒定律在弹性碰撞中的应用。
在没有外力作用下,系统的总动量保持不变。
根据动量守恒定律,我们可以预测和解释碰撞后物体的运动情况。
总结动量守恒是力学中的重要概念,实验它可以帮助我们更好地理解物体运动规律。
弹性碰撞为观察和验证动量守恒定律提供了一个经典的实验场景。
力学练习题弹性碰撞与动量守恒的应用力学练习题:弹性碰撞与动量守恒的应用在力学领域中,弹性碰撞与动量守恒是两个重要的概念。
本文将通过一系列练习题来探讨这些概念的应用。
请注意,为了方便阅读,本文将分为三个部分:弹性碰撞问题、动量守恒问题和综合应用问题。
一、弹性碰撞问题1. 两个质量相同的小球A和B以相等的速度相向运动,并发生完全弹性碰撞,速度不变。
求碰撞前后小球的速度变化。
解析:根据动量守恒定律,碰撞前后系统的总动量保持不变。
由于小球A和B的质量相同,碰撞后它们的速度也应该相同。
2. 在水平桌面上,质量为m1的小球A以速度v1与质量为m2的小球B以速度v2相向运动,发生完全弹性碰撞。
求碰撞后两个小球的速度。
解析:根据动量守恒定律,碰撞前后系统的总动量保持不变。
设碰撞后小球A的速度为v'1,小球B的速度为v'2。
根据动量守恒定律可得:m1 * v1 + m2 * v2 = m1 * v'1 + m2 * v'2由于是完全弹性碰撞,动能守恒定律也成立。
根据动能守恒定律可得:(1/2) * m1 * v1^2 + (1/2) * m2 * v2^2 = (1/2) * m1 * v'1^2 + (1/2) * m2 * v'2^2解上述方程组即可得到碰撞后两个小球的速度。
二、动量守恒问题1. 一辆质量为M的火车以速度v1匀速行驶,在车厢内有一物体以速度v2相对于车厢静止。
物体受到一个作用力F,求物体离开火车后的速度。
解析:在火车内,火车和物体构成一个封闭系统,且没有外力做功。
根据动量守恒定律,系统的总动量保持不变。
设物体离开火车后的速度为v',根据动量守恒定律可得:M * v1 + 0 = (M + m) * v'其中m为物体的质量。
解上述方程即可求得物体离开火车后的速度。
2. 一枪弹射出子弹,枪和子弹构成一个封闭系统,没有外力做功。
子弹的质量为m1,枪的质量为m2,子弹的初速度为v1,枪的初速度为v2,求子弹和枪的共同速度。
动量定理及碰撞类动量守恒定律的应用1.动量定理及动量守恒定律在高考物理中拥有极其重要的地位,它们不仅是力学知识体系的核心组成部分,也是分析和解决物理问题的重要工具。
2.在高考命题中,动量定理及动量守恒定律的考查形式丰富多样。
这些考点既可能以选择题、计算题的形式直接检验学生对基本原理的掌握情况,也可能通过复杂的计算题、应用题,要求学生运用动量定理和动量守恒定律进行深入分析和计算。
此外,这些考点还经常与其他物理知识点相结合,形成综合性强的题目,以检验学生的综合应用能力。
3.备考时,考生应首先深入理解动量定理和动量守恒定律的基本原理和概念,明确它们的适用范围和条件。
其次,考生需要熟练掌握相关的公式和计算方法,并能够在实际问题中灵活运用。
此外,考生还应注重解题方法的总结和归纳,特别是对于典型题目的解题思路和方法,要进行反复练习和巩固。
考向一:弹簧类问题中应用动量定理1.动量定理的表达式F ·Δt =Δp 是矢量式,在一维的情况下,各个矢量必须以同一个规定的方向为正方向。
运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F 是物体或系统所受的合力。
2.动量定理的应用技巧(1)应用I =Δp 求变力的冲量如果物体受到大小或方向改变的力的作用,则不能直接用I =Ft 求冲量,可以求出该力作用下物体动量的变化Δp ,等效代换得出变力的冲量I 。
(2)应用Δp =F Δt 求动量的变化考向二:流体类和微粒类问题中应用动量定理1.流体类“柱状模型”问题流体及其特点通常液体流、气体流等被广义地视为“流体”,质量具有连续性,通常已知密度ρ分析步骤1建立“柱状模型”,沿流速v 的方向选取一段柱形流体,其横截面积为S2微元研究,作用时间Δt 内的一段柱形流体的长度为Δl ,对应的质量为Δm =ρSv Δt 3建立方程,应用动量定理研究这段柱状流体2.微粒类“柱状模型”问题微粒及通常电子流、光子流、尘埃等被广义地视为“微粒”,质量具有独立性,通常给出单位体其特点积内粒子数n分析步骤1建立“柱状模型”,沿运动的方向选取一段微元,柱体的横截面积为S2微元研究,作用时间Δt内一段柱形流体的长度为Δl,对应的体积为ΔV=Sv0Δt,则微元内的粒子数N=nv0SΔt3先应用动量定理研究单个粒子,建立方程,再乘以N计算考向三:碰撞类和类碰撞类问题中应用动量守恒定律1.碰撞三原则:(1)动量守恒:即p1+p2=p1′+p2′.(2)动能不增加:即E k1+E k2≥E k1′+E k2′或p212m1+p222m2≥p1′22m1+p2′22m2.(3)速度要合理①若碰前两物体同向运动,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。
碰撞与动量守恒复习学习目标1.进一步理解碰撞的基本概念,学会利用碰撞模型解决生活中的问题2.进一步生疏动量守恒定律,能结合能量规律求解简洁的综合题3.进一步增加问题意识,提高分析问题、解决问题的力量重点难点重点:运用动量守恒定律解决实际问题难点:临界问题设计思想通过本节课的学习,使同学对碰撞和动量守恒的规律有进一步的生疏,能综合运用牛顿运动定律、动能定理解决简洁的综合题,能够运用动量守恒定律解决新情景中的问题,更加体会到守恒的思想在物理学中的重要作用,进一步提高分析问题和解决问题的力量。
教学资源多媒体课件教学设计【课堂学习】学习活动一:基本概念和基本规律问题1:系统、内力和外力的概念。
问题2:动量和动能的区分和联系。
问题3:什么是碰撞?碰撞的分类?问题4:动量守恒的条件是什么?什么是动量守恒定律的矢量性?问题5:何为反冲?它满足哪些物理规律学习活动二:碰撞后速度的可能性分析例题1:质量为m的小球A,沿光滑水平面以速度v0与质量为2m的静止小球B发生正碰,碰撞后,A球的动能变为原来的1/9,那么小球B的速度可能是( )A.13v0 B.23v0 C.49v0 D.59v0分析争辩碰撞中应遵循的三个原则1.系统动量守恒的原则:两个物体碰撞前后系统的总动量保持不变,符合m1v1+m2v2=m1v1′+m2v2′,或p1+p2=p1′+p2′.2.不违反能量守恒的原则:碰撞后系统的总动能不大于碰撞前的总动能,满足1 2m1v21+12m2v22≥12m1v1′2+12m2v2′2或p212m1+p222m2≥p1′22m1+p2′22m2.3.物理情景可行性原则:碰撞问题的解要符合物理实际.(1)若为追及碰撞,碰撞前在后面运动的物体的速度肯定大于在前面运动的物体的速度(否则不能发生碰撞),且碰后在前面运动物体的速度肯定增大.(2)若碰撞后两物体同向运动,则在前面运动的物体的速度肯定不小于在后面运动的物体的速度(否则还要发生碰撞).(3)若要物体相向碰撞,则不行以消灭跨跃过另一物体连续向前运动的状况.【答案】AB学习活动三:人船模型例题2:质量为M、长为L的船静止在静水中,船头及船尾各站着质量分别为m1及m2的人,当两人互换位置后,船的位移有多大?【分析】“人船模型”的特点:两个物体均处于静止,当两个物体存在相互作用而不受外力作用时,系统动量守恒,所以本质上也是反冲模型.这类问题的特点:两物体同时运动,同时停止.绳梯等均属于“人船模型”.【解析】利用“人船模型”易求得船的位移大小为:2121)(mmMLmmS++-=.提示:若m1>m2,本题可把(m1-m2)等效为一个人,把(M+2m2)看着船,再利用人船模型进行分析求解较简便.应当留意到:此结论与人在船上行走的速度大小无关.不论是匀速行走还是变速行走,甚至来回行走,只要人最终到达船的左端,那么结论都是相同的.以上所列举的人、船模型的前提是系统初动量为零.假如发生相互作用前系统就具有肯定的动量,那就不能再用m1v1=m2v2这种形式列方程,而要利用(m1+m2)v0=m1v1+m2v2列式.学习活动四:完全非弹性碰撞模型例题3:如图所示,质量为M的车厢静止在光滑的水平面上,车厢内有一质量为m的滑块,以初速度v0在车厢地板上向右运动,与车厢两壁发生若干次碰撞,最终静止在车厢中,则车厢最终的速度是()A.0B.v0,方向水平向右C.mv0M+m,方向肯定水平向右D.mv0M+m,方向可能是水平向左解析:对m和M组成的系统,水平方向所受的合外力为零,动量肯定守恒,由mv0=(M+m)v可得;车厢最终的速度为mv0M+m,方向肯定水平向右,所以C选项正确.答案:C学习活动五:临界问题例题4:甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6 m/s.甲车上有质量为m=1 kg 的小球若干个,甲和他的车及所带小球的总质量为M1=50 kg,乙和他的车总质量为M2=30 kg.现为避开相撞,甲不断地将小球以相对地面16.5 m/s的水平速度抛向乙,且被乙接住.假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,此时:(1)两车的速度各为多少? (2)甲总共抛出了多少个小球?解:两车刚好不相撞的条件是某次甲抛出球后的速度与乙接住该球后的速度相等.无论是甲抛球的过程,还是乙接球的过程,或是整个过程动量均守恒.(1)甲、乙两小孩及两车组成的系统总动量守恒沿甲车的运动方向,甲不断抛球、乙接球后,当甲和小车与乙和小车具有共同速度时,可保证刚好不撞.设共同速度为v,则M1v1-M2v1=(M1+M2)vv=M1-M2M1+M2v1=2080×6 m/s=1.5 m/s.(2)这一过程中乙小孩及车的动量变化为Δp=30×6-30×(-1.5)=225(kg·m/s)每一个小球被乙接收后,最终的动量变化为Δp 1=16.5×1-1.5×1=15(kg·m/s)故小球个数为n =Δp Δp 1=22515=15(个).【答案】 (1)v 甲=v 乙=1.5 m/s (2)15个随堂训练:【2021天津-9】如图所示,在光滑水平面的左侧固定一竖直挡板,A 球在水平面上静止放置.B 球向左运动与A 球发生正碰,B 球碰撞前、后的速率之比为3:1,A 球垂直撞向挡板,碰后原速率返回。
2020年高考物理三轮冲刺与命题大猜想专题07 碰撞与动量守恒目录猜想一 :结合生活现象考查动量定理的简单应用 (1)猜想二 :结合生活现象考查动量守恒定律的简单应用 (2)猜想三:动量与能量综合考查碰撞与爆炸 (3)最新模拟冲刺练习 (6)猜想一 :结合生活现象考查动量定理的简单应用【猜想依据】高空坠物的危害,物体的制动情况以及体育运动中球类的冲击力等,以此情境命制的试题都会涉及动量定理的应用体现了分析问题解决问题这一思想。
【要点概述】1.对动量定理的理解(1)动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F 应理解为变力在作用时间内的平均值.(2)动量定理的表达式F ·Δt =Δp 是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F 是物体或系统所受的合力.2.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt 越短,力F 就越大,力的作用时间Δt 越长,力F 就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F 一定时,力的作用时间Δt 越长,动量变化量Δp 越大,力的作用时间Δt 越短,动量变化量Δp 越小.【例1】(2020·湖北部分重点中学模拟)质量为m 的运动员从下蹲状态竖直向上起跳,经过时间t ,身体伸直并刚好离开地面,离开地面时速度为v .在时间t 内( )A .地面对他的平均作用力为mgB .地面对他的平均作用力为mv tC .地面对他的平均作用力为m ⎪⎭⎫⎝⎛-g t v D .地面对他的平均作用力为m ⎪⎭⎫ ⎝⎛+g t v 【答案】:D.【进行】人的速度原来为零,起跳后变化v ,则由动量定理可得:(F -mg )t =mv ,故地面对人的平均作用力为F =m ⎪⎭⎫ ⎝⎛+g t v ,D 正确.【例2】.(2020·广东广州一模)如图为跳水运动员从起跳到落水过程的示意图,运动员从最高点到入水前的运动过程记为Ⅰ,运动员入水后到最低点的运动过程记为Ⅰ,忽略空气阻力,则运动员( )A .过程Ⅰ的动量改变量等于零B .过程Ⅰ的动量改变量等于零C .过程Ⅰ的动量改变量等于重力的冲量D .过程Ⅰ 的动量改变量等于重力的冲量【答案】C.【解析】:过程Ⅰ中动量改变量等于重力的冲量,即为mgt ,不为零,故A 错误,C 正确;运动员进入水前的速度不为零,末速度为零,过程Ⅰ的动量改变量不等于零,故B 错误;过程Ⅰ的动量改变量等于合外力的冲量,不等于重力的冲量,故D 错误.【例3】(2020·湖南长沙二模)乒乓球运动的高抛发球是由我国运动员刘玉成于1964年发明的,后成为风靡世界乒乓球坛的一项发球技术.某运动员在一次练习发球时,手掌张开且伸平,将一质量为2.7 g 的乒乓球由静止开始竖直向上抛出,抛出后向上运动的最大高度为2.45 m ,若抛球过程,手掌和球接触时间为5 ms ,不计空气阻力,则该过程中手掌对球的作用力大小约为( )A .0.4 NB .4 NC .40 ND .400 N【答案】B.【解析】:向上为正,手离开球后的速度为v :v =2gh =2×10×2.45 m/s =7 m/s ,重力忽略由动量定理有:F =mv t =2.7×10-3×75×10-3 N≈4 N ,故B 正确,A 、C 、D 错误. 猜想二 :结合生活现象考查动量守恒定律的简单应用【猜想依据】教材例题、高考题、模拟题中都加重了试题与实际的联系、命题导向由单纯解题向解决问题转变,对于动量守恒定律这一重要规律我们也要关注其在生活实际中的应用,学会模型构建、科学推理。
1.3 动量守恒定律在碰撞中的应用
课堂互动
三点剖析
一、动量守恒定律的应用
1.应用动量守恒定律解决问题关键要注意两点:第一是根据动量守恒的条件选取合适的系统,第二是分清系统初、末状态的动量.
2.动量定理通常选某单个物体为研究对象,而动量守恒定律是以两个或两个以上相互作用的物体系为对象,并分析此物体系是否满足动量守恒的条件,即这个物体系是否受外力作用,或合外力是否为零(或近似为零).显然物体系内力(即系统内物体间相互作用)仍然存在,这些相互作用的内力,使每个物体的动量变化,但这物体系的总动量守恒.
3.应用动量守恒定律表达式列方程时,必须明确过程的初状态和末状态,对于碰撞过程来说,初状态是指刚开始发生相互作用时的状态,末状态是指相互作用刚结束时的状态,只要抓住过程的初末状态,而无须考虑过程的细节,根据动量守恒定律即可求解碰撞问题.
4.动量守恒定律应用的思路
(1)确哪几个物体组成的系统为研究对象; (2)分析受力和物理过程,判断动量是否守恒;
(3)规定正方向,确定初、末状态各物体的动量,并把矢量化成标量; (4)利用动量守恒定律列方程求解. 二、碰撞及碰撞过程的特点 1.碰撞特点
(1)时间特点:在碰撞、爆炸现象中,相互作用时间很短.
(2)相互作用力特点:在相互作用过程中,相互作用力先是急剧增大,然后再急剧减小,平均作用力很大.
(3)动量守恒条件特点:系统的内力远远大于外力,所以,系统即使所受外力之和不为零,外力也可以忽略,系统的总动量守恒.
(4)位移特点:碰撞、爆炸过程是在一瞬间发生的,时间极短,所以,在物体发生碰撞、爆炸的瞬间,可忽略物体的位移,可以认为物体在碰撞、爆炸前后仍在同一位置.
(5)能量特点:碰前总动能E k 与碰后总动能E k′满足:E k ≥E k′. (6)速度特点:碰后必须保证不穿透对方. 2.追及碰撞满足的关系
(1)碰撞过程满足动量守恒:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′; (2)碰撞前,后面物体速度大于前面物体速度:v 1>v 2;
(3)碰撞后,后面物体的速度小于等于前面物体的速度:v 1′≤v 2′; (4)碰撞后的总动能小于等于碰撞前的总动能. 三、碰撞的类型
碰撞的过程由于作用时间短,内力远大于外力,不论相互碰撞的物体所处的平面是否光滑都可以认为系统动量守恒,但根据碰撞过程中机械能的损失情况可将碰撞分为三种类型.
1.完全非弹性碰撞:两物体碰后合为一个整体,以共同的速度运动,这种碰撞机械能损失最多. 满足:m 1v 1+m 2v 2=(m 1+m 2)v 损失的机械能:ΔE=
221222211)(2
12121v m m v m v m +-+. 2.弹性碰撞:两物体碰后很短时间内分开,发生的是弹性形变,机械能无损失.
满足:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′
2222'11222211'2
1212121v m v m v m v m +=+
当两小球的质量相等时,碰撞后交换速度.
3.非弹性碰撞:两物体碰后虽能分开,但碰撞时间较长,机械能有损失,但不如完全非弹性碰撞的机械能损失大.这种类型的碰撞在练习题中出现得不多. 各个击破
【例1】两只小船平行逆向航行,如图1-3-2所示,
航线邻近,当它们头尾相齐时,由每一只船上各投质量m=50 kg 的麻袋到对面一只船上去,结果载重较小的一只船停了下来,另一只船则以v=8.5 m/s 的速度向原方向航行,设两只船及船上的载重量分别为m 1=500 kg 及m 2=1 000 kg,问:在交换麻袋前两只船的速率为多少?(水的阻力不计)
图1-3-2
解析:选取小船和从大船投过的麻袋为系统,并以小船的速度为正方向,根据动量守恒定律有:(m 1-m)v 1-mv 2=0 即450v 1-50v 2=0 ① 选取大船和从小船投过的麻袋为系统有:-(m 2-m)v 2+mv 1=-m 2v
即-950v 2+50v 1=-1 000×8.5 kg·m/s ② 选取四个物体为系统有:m 1v 1-m 2v 2=-m 2v
即500v 1-1 000v 2=-1 000×8.5 kg·m/s ③ 联立①②③式中的任意两式解得v 1=1 m/s,v 2=9 m/s. 答案:大船速度1 m/s,小船速度9 m/s. 类题演练1
甲乙两人均以2 m/s 的速度在冰上相向滑行,m 甲=50 kg ,m 乙=52 kg ,甲拿着一个质量Δm=2 kg 的球,当甲将球传给乙,乙再传给甲,这样传球若干次后,乙的速度变为零,球在甲手中,求甲的速度. 解析:无论传球多少次,甲、乙两人和球组成的系统动量守恒. (m 甲+Δm )v-m 乙v=(m 甲+Δm )v 甲
即(50+2)×2-52×2=(50+2)v 甲 得v 甲=0. 答案:0
【例2】 在光滑水平面上,质量为m 的小球A 以速度v 0与质量为3m 的静止小球B 发生正碰,碰后A 球的速率为02
1
v ,试求碰后B 球的速度v B 的大小.
解析:设A 球初速度方向为正,假设碰后A 球仍沿原方向运动,则据动量守恒定律知:mv 0=20v m
+3mv B 得v B =6
0v 由于碰后A 、B 两球都沿正方向运动,且B 球在前A 球在后,应有:v A <v B ,而实际计算结果是v A >v B ,因此,不会出现这种情况,即碰后A 球不能沿原方向运动,因此碰后A 球被反弹,据动量守恒定律有:mv 0=2
v m
+3mv B 得v B =
2
v . 答案:
2
v
如图1-3-3所示,水平桌面上放着一个半径为R 的光滑环形轨道,在轨道内放入两个质量分别是M 和m 的小球(均可看作质点),两球间夹着少许炸药.开始时两球接触,点燃炸药爆炸后两球沿轨道反向运动一段时间后相遇.到它们相遇时,M 转过的角度θ是多少?
图1-3-3
解析:在炸药爆炸瞬间,两球作为一个系统的总动量守恒,以后两小球在轨道外壁弹力作用下在水平轨道内做匀速圆周运动,经过一段时间相遇.
设炸药爆炸后,M 的速度为v 1,m 的速度为v 2,两球的运动方向相反,由动量守恒定律有Mv 1-mv 2=0,即Mv 1=mv 2 ①
以后两球各自沿圆轨道做圆周运动,由于两球都只受外壁压力(方向指向环中心),因此两球都做匀速圆周运动.设经过时间t 两球再次相遇,则由运动学公式有v 1t+v 2t=2πR ② 由①式有v 2=
1v m M ,代入②,得v 1t=
m
M Rm
+π2 ③ v 1t 就是小球M 在圆环轨道内移过的距离(即弧长).因此,M 球转过的角度θ=
m
M m
R t v +=
π21. 答案:
m
M Rm
+π2
【例3】 如图1-3-4所示,在水平面地上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(1)子弹射入后,木块在地面上前进的距离;(2)射入的过程中,系统的机械能损失.
图1-3-4
解析:(1)设子弹射入木块时,二者的共同速度为v′,取子弹的初速度方向为正方向,则有:mv=(M+m)v′ ①
二者一起沿平面滑动,前进的距离为s ,由动能定理: μ(M+m)gs=
2
1(M+m)v′2
② 由①②两式解得s=g
m M v m μ22
2)(2+.
(2)射入过程中的机械能损失ΔE=
21mv 2-2
1(M+m)v′2
③ 将①代入③式解得ΔE=)
(22
m M Mmv +.
答案:(1)g
m M v m μ22
2)(2+ (2))(22m M Mmv +
质量为m 1的小球以速度v 0与质量为m 2的小球发生弹性正碰,求碰后两个小球的速度. 解析:设碰后m 1球的速度为v 1,m 2球的速度为v 2,由系统动量守恒有 m 1v 0=m 1v 1+m 2v 2 ① 由系统动能守恒有:
2
2
22112012
12121v m v m v m += ② 将②变形为m 1(v 02
-v 12
)=m 2v 22
③
将①变形为m 1(v 0-v 1)=m 2v 2 ④ ③/④得v 0+v 1=v 2 ⑤ 将⑤代入①得v 1=
02
12
1v m m m m +- ⑥
将⑥代入⑤得v 2=
02
11
2v m m m + ⑦
答案:碰后m 1球的速度为02121v m m m m +-,m 2球的速度为02
11
2v m m m +.。