角平分线的性质(第1课时)教学设计
- 格式:doc
- 大小:125.13 KB
- 文档页数:6
12.3角的平分线的性质第1课时角平分线性质一、新课导入1.导入课题:投影教材第48页开头的“思考”中的文字和图形,让学生说明道理后提出问题:你能从“思考”中得到的启示通过运用尺规作一个角的平分线吗?2.学习目标:(1)学会角平分线的画法.(2)探究并认知角平分线的性质.(3)熟练地运用角平分线的性质解决实际问题.3.学习重、难点:重点:角的平分线的性质.难点:运用角平分线的性质解决相关的问题.二、分层学习1.自学指导:(1)自学内容:探究“角平分线的作法”.(2)自学时间:5分钟.(3)自学方法:阅读、作图、总结、归纳.(4)自学参考提纲:①投影中AE平分∠DAB是由什么方法得到∠DAE=∠BAE?证明△ABC≌△ADC(SSS).②由平分角的仪器尝试画∠AOB的平分线.③由导入得到作角平分线的方法:a.作法(1)能得到OM=ON;b.作法(2)能得到MC=NC;c.由SSS方法判定△OMC≌△ONC,得到∠MOC=∠NOC,∴OC是∠AOB的平分线;d.在作法的第二步中,去掉“大于12MN的长”这个条件行吗?不行.2.自学:学生结合自学指导进行探究式学习.3.助学:(1)师助生:①明了学情:利用角平分仪悟出画角平分线的方法,由实物抽象出几何图形,应用了数学里面的建模思想,部分学生理解起来还存在一定的困难.②差异指导: a.引导学生理解角平分仪平分角的道理是证明两角相等,回忆前面证明角相等的方法是证明三角形全等.b.在尺规作图的过程中引导学生运用三角形三边关系定理,理解“大于12MN的长”这个条件.(2)生助生:学生之间相互交流帮助.4.强化:(1)让学生口述角平分线的作法步骤.(2)尝试练习:作出△ABC的三条角平分线(保留作图痕迹,写出作法).(3)练习:平分平角∠AOB,通过作角平分线得到射线OC,然后反向延长OC得到直线CD,直线CD 与直线AB存在什么样的位置关系?互相垂直.(4)给一张三角形纸片,你能不借助任何工具找到某一个角的平分线吗?能,将这个三角形沿过一个顶点的线折叠,使在该顶点的角的两边重合,则该线就是这个角的平分线.1.自学指导:(1)自学内容:探究“角平分线上的点到角的两边的距离相等”.(2)自学时间:5分钟.(3)学习方法:先通过折纸画图、测量得出角平分线的性质,再探究几何证明方法.(4)探究提纲:①如图,OC平分∠AOB,点P是OC上任一点,P点到OA、OB的距离怎么找?过点P分别向OA、OB作垂线,P点与垂足之间的线段的长就是P点到OA、OB的距离.②这两个距离可采用什么方法得到它们的大小关系?证三角形全等,然后得出这两个距离相等.③用你采用的方法,得到了什么结论?结论:角的平分线上的点到角的两边的距离相等..④将性质用图形、几何语言表示(填写下表):图形:已知事项:已知∠AOB,OC是∠AOB的平分线,P为OC上一点,且PD⊥OA,PE⊥OB,垂足分别为D、E.由已知事项推出的事项:PD=PE⑤根据探究的内容,写出已知、求证及证明结论的过程.已知:∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.求证:PD=PE.证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO和△PEO中,∠PDO=∠PEO,∠AOC=∠BOC,OP=OP,∴△PDO≌△PEO(AAS),∴PD=PE.⑥由上述证明过程,总结证明一个几何命题的一般步骤:1.明确命题中的已知和求证;2.根据题意,画出图形,并用符号表示已知和求证;3.经过分析,找出由已知推出要证的结论的途径,写出证明过程.2.自学:学生可结合自学指导探究式学习.3.助学:(1)师助生:①明了学情:通过第二层次的学习,学生能够理解角平分线的性质定理,但在证明过程中,大部分学生不习惯把文字语言改成几何语言,教师应了解学生在几何表述中存在的问题.②差异指导:得出结论之后,要通过证明,才能确定命题的正确性,引导学生学会证明文字语言描述的几何题的步骤.(2)生助生:学生之间相互交流帮助.4.强化:(1)用文字及几何语言表述定理;(2)证明题的基本步骤.三、评价1.学生的自我评价:学生相互交谈自己的收获和学习困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课由于采用了动手操作、直观模型的观察以及讨论交流等教学方法.从而有效地增强了学生对角以及角的平分线的感性认识,提高了学生对新知识的理解与感性.所以本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的,不是之处:少数学生在尺规作图上还存在问题,需要在今后的教学与作业中进一步加强巩固和训练.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.角平分线的性质定理:角平分线上的点到角的两边的距离相等.2.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D.下列结论中错误的是 (D)A.PC=PDB.OC=ODC.∠CPO=∠DPOD.OC=PO第2题图第3题图第4题图3.如图,△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,若AB=10cm,则△DBE的周长等于(A)A.10cmB.8cmC.6cmD.9cm4.如图,P是∠AOB角平分线上的点,C、D分别是OA、OB上的点,且PC=PD,PE⊥OA于E,PF⊥OB于F,求证:CE=DF.证明:∵OP是∠AOB的平分线,PE⊥OA,PF⊥OB,∴∠PEC=∠PFD=90°,PE=PF,在Rt△PEC 和Rt△PFD中,PC=PD,PE=PF,∴Rt△PEC≌Rt△PFD(HL),∴CE=DF.二、综合应用(第5题10分,第6题20分,共30分)5.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,则下列四个结论:①AD上任意一点到点C、点B的距离相等;②AD上任意一点到AB,AC的距离相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中,正确的个数是(D)A.1个B.2个C.3个D.4个第5题图第6题图6.如图,在△ABC中,AD为∠BAC的平分线,∠B=90°,DF⊥AC,垂足为F,DE=DC,求证:BE=CF.证明:∵DF⊥AC,∴∠DFA=∠B=90°.∵AD为∠BAC的平分线,∴DB=DF.在Rt△BDE和Rt △FDC中,DE=CD,DB=DF,∴Rt△BDE≌Rt△FDC(HL).∴BE=CF.三、拓展延伸(20分)7.如图,点D、B分别在∠MAN的两边上,C是∠MAN内一点,AB=AD,BC=CD,CE⊥AM于E,CF⊥AN于F.求证:CE =CF.证明:在△ABC和△ADC中,AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS).∴∠DAC=∠BAC.∴AC平分∠MAN.∵CE⊥AM,CF⊥AN,∴CE=CF.人生格言:我们要知道别人能做到的事,只要自己有恒心,坚持努力,就没有什么事是做不到的。
湘教版八下数学1.4.1《角平分线的性质》教学设计一. 教材分析《角平分线的性质》是湘教版八年级下册数学第1.4.1节的内容。
本节主要让学生了解角平分线的性质,学会用角平分线判定角的相等和边的垂直平分关系。
教材通过生活实例引入角平分线的概念,接着引导学生探究角平分线的性质,最后通过角平分线的应用,使学生感受数学与生活的紧密联系。
二. 学情分析八年级的学生已具备一定的几何知识,对图形的性质有一定的了解。
但在探究角平分线的性质过程中,需要学生具备较强的观察能力、分析能力和推理能力。
此外,学生可能对角平分线与边的关系理解不够深入,因此在教学过程中需要引导学生反复探究、总结。
三. 教学目标1.理解角平分线的性质,并能运用角平分线判断角的相等和边的垂直平分关系。
2.培养学生的观察能力、分析能力和推理能力。
3.激发学生学习数学的兴趣,感受数学与生活的紧密联系。
四. 教学重难点1.角平分线的性质2.运用角平分线判断角的相等和边的垂直平分关系五. 教学方法1.采用问题驱动法,引导学生主动探究角平分线的性质。
2.运用几何画板软件,动态展示角平分线的性质,增强学生的直观感受。
3.采用合作交流法,让学生在小组内讨论、分享解题心得,提高学生的合作能力。
4.运用实例分析法,让学生感受数学与生活的紧密联系。
六. 教学准备1.准备相关课件,展示角平分线的性质。
2.准备几何画板软件,用于动态展示角平分线的性质。
3.准备生活实例,使学生感受数学与生活的联系。
4.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例引入角平分线的概念,引导学生思考:如何判断一个角是否为另一个角的平分线?2.呈现(10分钟)展示几何画板软件,动态展示角平分线的性质。
引导学生观察、分析,总结角平分线的性质。
3.操练(10分钟)学生分组讨论,尝试运用角平分线判断角的相等和边的垂直平分关系。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示练习题,让学生独立完成。
湘教版八下数学1.4角平分线的性质第1课时角平分线的性质和判定教学设计一. 教材分析湘教版八下数学第1.4节角平分线的性质,主要讲述了角平分线的性质和判定。
本节课的内容是学生学习几何知识的重要组成部分,也是学生进一步学习圆的性质和线段平分线性质的基础。
通过本节课的学习,学生可以掌握角平分线的性质和判定方法,为以后的学习打下坚实的基础。
二. 学情分析学生在学习本节课之前,已经掌握了角的定义、角的计算等基本知识,同时也学习了线段的性质和判定。
但是,对于角平分线的性质和判定,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生通过观察、思考、操作等活动,自主探索角平分线的性质和判定方法,从而达到理解掌握的目的。
三. 教学目标1.知识与技能:学生能够理解角平分线的性质,掌握角平分线的判定方法。
2.过程与方法:学生通过观察、操作、思考等活动,培养自己的逻辑思维能力和空间想象力。
3.情感态度与价值观:学生通过对角平分线性质的学习,增强对数学的兴趣和好奇心,培养自己的探索精神。
四. 教学重难点1.重点:角平分线的性质。
2.难点:角平分线的判定方法。
五. 教学方法采用问题驱动法、引导发现法、合作交流法等教学方法,引导学生通过观察、操作、思考等活动,自主探索角平分线的性质和判定方法。
六. 教学准备教师准备多媒体教学课件、角平分线的模型、练习题等教学资源。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的角和线段的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体课件呈现角平分线的性质和判定方法,引导学生观察、思考,引导学生发现角平分线的性质和判定方法。
3.操练(10分钟)教师学生进行小组合作交流,让学生通过实际操作,进一步理解和掌握角平分线的性质和判定方法。
4.巩固(10分钟)教师通过出示一些练习题,让学生独立完成,巩固所学知识。
5.拓展(10分钟)教师出示一些拓展题,引导学生思考,进一步深化对角平分线性质和判定方法的理解。
人教版数学八年级上册《角平分线的性质(1)》教学设计一. 教材分析人教版数学八年级上册《角平分线的性质(1)》这一节的内容主要包括角平分线的定义、性质及其在几何中的应用。
学生通过学习这一节内容,可以进一步了解角的平分线与角的大小、角的边长之间的关系,为后续学习三角形、多边形等几何知识打下基础。
二. 学情分析学生在学习这一节内容之前,已经学习了角的概念、垂线的性质等知识,具备了一定的几何基础。
但部分学生对角平分线的理解可能仍存在困难,因此在教学过程中需要加强对角平分线概念的讲解,并通过大量的实例让学生加深对角平分线的认识。
三. 教学目标1.了解角平分线的定义及其性质;2.学会运用角平分线解决一些简单的几何问题;3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.角平分线的定义及其性质;2.角平分线在几何中的应用。
五. 教学方法1.采用讲解法,让学生理解角平分线的定义和性质;2.运用示例法,让学生通过观察、分析、归纳角平分线的性质;3.采用练习法,让学生在实践中运用角平分线解决几何问题;4.运用小组合作法,让学生在讨论中加深对角平分线性质的理解。
六. 教学准备1.准备相关的教学课件、图片、几何模型等;2.准备一些有关角平分线的练习题。
七. 教学过程1.导入(5分钟)通过复习角的概念、垂线的性质等知识,引导学生进入新课的学习。
2.呈现(10分钟)利用课件、图片等展示角平分线的定义和性质,让学生直观地了解角平分线。
3.操练(10分钟)让学生通过观察、分析、归纳角平分线的性质,并尝试解答一些有关角平分线的问题。
4.巩固(10分钟)让学生分组讨论,运用角平分线的性质解决一些几何问题,加深对角平分线性质的理解。
5.拓展(5分钟)引导学生思考:角平分线在实际生活中有哪些应用?让学生联系生活实际,拓宽思路。
6.小结(5分钟)对本节课的内容进行总结,强化学生对角平分线性质的记忆。
7.家庭作业(5分钟)布置一些有关角平分线的练习题,让学生课后巩固所学知识。
教学设计(一)创设情景,提出问题如图是小明制作的风筝,AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?师生活动:学生根据三角形全等的知识口述其中的道理,从而引入新课.(二)合作探究,形成知识问题1:在练习本上画一个角,怎样得到这个角的平分线?师生活动:学生可能用量角器,也可能用折纸的方法动手操作,然后回答问题.追问1:你能评价这些方法吗?在生产生活中,这些方法是否可行呢?师生活动:学生分析并回答──利用量角器比较方便,但是有误差;利用折叠的方法比较简捷,但是只限于可以折叠的材质,若在木板、钢板等材料上操作,此方法就不可行了.追问2:下图是一个平分角的仪器,其中AB =AD,BC =DC,将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE,射线AE 就是∠DAB 的平分线.你能说明它的道理吗?师生活动:教师启发学生将实际问题抽象为数学模型,并运用全等三角形的知识解释平分角的仪器的工作原理.小组交流完成教学过程教学环节教学活动评估要点追问3:从利用平分角的仪器画角的平分线中,你受到哪些启发?如何利用直尺和圆规作一个角的平分线?师生活动:师生分别在黑板和练习本上利用直尺和圆规作∠AOB的平分线.教师与学生共同归纳,得出利用尺规作角的平分线的具本方法.如果学生没有思路,教师可作如下提示:1.在用平分角的仪器画角的平分线时,把仪器放在角的两边,仪器的顶点与角的顶点重合,且仪器的两边相等(AB=CD),怎样在作图中体现这个过程呢?2.在平分角的仪器中,BC=DC,怎样在作图中体现这个过程呢?追问4:你能说明为什么射线OC是∠AOB的平分线吗?师生活动:学生用三角形全等进行证明,明确作图的理论依据.【设计意图】让学生运用全等三角形的知识解释平分角的仪器的工作原理,体会数学的应用价值,同时从中获得启发,用尺规作角的平分线,增强作图技能.最后让学生在简单推理的过程中体会作法的合理性.问题2 利用尺规我们可以作一个角的平分线,那么角的平分线有什么性质呢?首先思考下面的问题:1.操作测量:任意作一个角∠AOB,作出∠AOB的平分线OC,在OC上任取一点P,取点P的三个不同的位置,分别过点P作PD⊥OA,PE ⊥OB,点D、E 为垂足,测量PD、PE的长.将三次数据填入下表:此处的思考内容,重在发展学生的发散思维,肯定学生的闪光点2.观察测量结果,猜想线段PD与PE的大小关系,写出结论:____________ 3.通过以上测量,你发现了角的平分线的什么性质?师生活动:学生动手操作,独立思考,然后汇报自己的发现.学生互相补充,教师指导,一起猜想出角的平分线的性质.追问1:通过动手实验、观察比较,我们猜想“角的平分线上的点到角的两边的距离相等”,你能通过严格的逻辑推理证明这个结论吗?1.明确命题中的已知和求证.已知:一个点在一个角的平分线上.结论:这个点到这个角两边的距离相等.(如果一个点在一个角的平分线上,那么这个点到这个角两边的距离相等)2.根据题意,画出图形,并用数学符号表示已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E.求证:PD=PE.3.经过分析,找出由已知推出求证的途径,写出证明过程.证明:∵PD⊥OA,PE⊥OB (已知)∴∠PDO= ∠PEO=90°(垂直的定义)∴在△PDO和△PEO中∴△PDO ≌△PEO(AAS)∴PD=PE(全等三角形的对应边相等)符号语言:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,垂足分别为点D、E,∴PD=PE.师生活动:教师首先引导学生分析命题的条件和结论.如果学生感到困难,可以让学生将命题改写成“如果……那么……”的形式,然后引导学生逐字分析结论,进而发现并找出结论中的隐含条件(垂直).最后让学生画出图形,用符号语言写出已知和求证,并独立完成证明过程.学生动手操作,独立思考,然后汇报自己的发现.学生互相补充,教师指导,追问2:由角的平分线的性质的证明过程,你能概括出证明几何命题的一般步骤吗?师生活动:师生共同概括证明几何命题的一般步聚:1.明确命题中的已知和求证.2.根据题意,画出图形,并用数学符号表示已知和求证.3.经过分析,找出由已知推出求证的途径,写出证明过程.追问3:角的平分线的性质的作用是什么?师生活动:学生回答,角的平分线的性质的作用主要是用于判断和证明两条线段相等,与以前的方法相比,运用此性质不需要先证两个三角形全等.【设计意图】让学生通过实践发现、分析概括、推理证明角的平分线的性质,体会研究几何问题的基本思路.以角的平分线的性质的证明为例,让学生概括证明几何命题的一般步聚,发展他们的归纳概括能力.而反思性质,可以让学生进一步体会到证明两条线段相等时利用角的平分线的性质比先证两个三角形全等更简捷.(三)巩固提高1.下列结论一定成立的是()A.如图1,OC 平分∠AOB,点P 在OC 上,D,E 分别为OA,OB 上的点,则PD =PE.B.如图2,PD⊥OA,PE⊥OB,垂足分别为点D、E,则PD=PE .C.如图3,OC 平分∠AOB,点P 在OC 上,PD⊥OA,垂足为D.若PD =3,则点P 到OB 的距离为3.图1 图2 图32.如图4,△ABC中,∠B =∠C,AD 是∠BAC 的平分线,DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:EB =FC.图4师生活动:学生先独立思考,然后小组交流,派代表回答,教师适时点拨,并板演证明过程.【设计意图】通过有梯度的训练,提高学生运用角的平分线的性质解决问题的能力.板书设计性质一:角的平分线上的点到角的内部到角的两边的距离相等∵∠POA=∠POB(OP平分∠AOB)PA⊥OA、PB⊥OB∴PA=PB课后作业如图, OP 为∠AOB 内一条射线, C,D 分别为 OA ,OB 上两点,且∠PCO+∠PDO=180°, PC=PD.求证: OP 平分∠A0B.课后反思本课时重在理解掌握性质定理一,并将其灵活应用到具体的几何问题中去,一定要让学生明白应用的前提是“角平分线”,1是角平分线,2是涉及到垂直(或90度),两者缺一不可。
人教版数学七年级上册《角平分线的性质》教学设计一. 教材分析人教版数学七年级上册《角平分线的性质》是学生在学习了角的概念、垂线的性质等知识后,进一步研究角平分线的性质。
通过本节课的学习,学生能够掌握角平分线的定义、性质和作法,并为后续学习三角形内心的性质和线段的垂直平分线打下基础。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对角的概念和垂线的性质有一定的了解。
但是,对于角平分线的性质和作法,学生可能还比较陌生。
因此,在教学过程中,教师需要通过生动形象的讲解和丰富的实例,帮助学生理解和掌握角平分线的性质。
三. 教学目标1.知识与技能:学生能够准确地描述角平分线的定义和性质,并会运用角平分线的性质解决一些简单的问题。
2.过程与方法:学生通过观察、操作、思考、交流等活动,培养自己的空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生能够积极参与数学学习,体验成功的喜悦,增强对数学学科的兴趣。
四. 教学重难点1.重点:角平分线的定义和性质。
2.难点:角平分线的作法和在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和模型,引发学生的兴趣,引导学生主动探究角平分线的性质。
2.启发式教学法:教师提问引导学生思考,激发学生的思维,培养学生的创新能力。
3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队协作能力。
六. 教学准备1.教具:三角板、直尺、圆规、多媒体课件等。
2.学具:每人一套几何工具,包括三角板、直尺、圆规等。
七. 教学过程1.导入(5分钟)教师通过一个生活实例引入本节课的主题——角平分线。
例如,教师可以提问:“在修筑公路时,如何确定两个交叉路口之间的距离?”引导学生思考角平分线的作用。
2.呈现(10分钟)教师通过PPT展示角平分线的定义和性质,引导学生初步理解角平分线的概念。
同时,教师可以给出一些实例,让学生观察和思考,进一步加深对角平分线性质的理解。
角的平分线的性质(第1课时)教学目标1.会用直尺和圆规作一个角的平分线,知道作法的合理性.2.探索并证明角的平分线的性质.3.能用角的平分线的性质解决简单问题.教学重点探索并证明角的平分线的性质.教学难点证明以文字命题形式给出的角的平分线的性质.教学过程新课导入【问题】下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是这个角的平分线.你能说明它的道理吗?【师生活动】教师启发学生将实际问题抽象为数学模型,并运用全等三角形的知识解释平分角的仪器的工作原理.【答案】证明:在△ACD和△ACB中,AD ABDC BCAC AC=⎧⎪=⎨⎪=⎩,,,∴△ACD≌△ACB(SSS).∴∠CAD=∠CAB.∴AC平分∠DAB.【动图】仔细观察下面的动图,感受用仪器平分角的过程.【设计意图】让学生运用全等三角形的知识解释平分角的仪器的工作原理,体会数学的应用价值.新知探究一、探究学习【问题】从利用平分角的仪器画角的平分线的过程中,你受到哪些启发?如何利用直尺和圆规作一个角的平分线?【师生活动】师生分别在黑板和练习本上画出∠AOB,学生尝试利用直尺和圆规作∠AOB的平分线,教师与学生共同归纳,得出利用直尺和圆规作角的平分线的具体方法.如果学生没有思路,教师可作如下提示:在用平分角的仪器画角的平分线时,把仪器放在角的两边,仪器的顶点与角的顶点重合且仪器的两边相等,怎样在作图中体现这个过程呢?【问题】已知:∠AOB.求作:∠AOB的平分线.【操作】(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC .射线OC 即为所求.【问题】第2步中,为什么要以大于12MN 的长为半径画弧? 【师生活动】教师引导学生结合作图过程,进行回答. 【答案】若以小于或等于12MN 的长作为半径画弧,则两弧没有交点,不存在点C ,无法作出角的平分线.【问题】第3步中,可以说成是连接OC 吗?【师生活动】引导学生复习角的平分线的定义,从而得出答案.【答案】不可以.因为角平分线OC 是射线,而不是线段.【问题】如何证明OC 是∠AOB 的平分线?【师生活动】学生用三角形全等进行证明,明确作图的理论依据.【答案】证明:连接CM ,CN ,可得OM =ON ,MC =NC .则在△OCM 和△OCN 中,OM ON MC NC OC OC =⎧⎪=⎨⎪=⎩,,,∴△OCM ≌△OCN (SSS ).∴∠MOC =∠NOC .即射线OC 平分∠AOB .【设计意图】让学生通过解释平分角的仪器的工作原理,获得启发,能够用直尺和圆规作角的平分线,增强作图技能,最后让学生在简单推理的过程中,体会作法的合理性.【动图】仔细观察下面的动图,感受用直尺和圆规作角的平分线的过程.【思考】利用直尺和圆规我们可以作一个角的平分线,那么角的平分线有什么性质呢?【操作】如图,任意作一个角∠AOB,作出∠AOB的平分线OC.在OC上任取一点P,过点P画出OA,OB的垂线,分别记垂足为D,E,测量PD,PE并作比较,你得到什么结论?在OC上再取几个点试一试.通过以上测量,你能发现角平分线的什么性质?【师生活动】学生动手操作,独立思考,然后汇报自己的发现.学生之间互相补充,教师指导,一起概括出角的平分线的性质.【问题】通过动手实验、观察比较,我们发现“角的平分线上的点到角的两边的距离相等”,你能通过严格的逻辑推理证明这个结论吗?【师生活动】教师首先引导学生分析命题的条件和结论,发现并找出隐含条件,再让学生画出图形,用符号语言写出已知和求证,最后独立完成证明过程.【答案】已知∠AOC=∠BOC,点P 在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证PD=PE.证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO 和△PEO 中,PDO PEO AOC BOC OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴ △PDO ≌△PEO (AAS ).∴PD =PE .【问题】由角的平分线的性质的证明过程,你能概括出证明几何命题的一般步骤吗?【师生活动】师生共同概括证明几个命题的一般步骤.【答案】(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用符号表示已知和求证;(3)经过分析,找出由已知推出要证的结论的途径,写出证明过程.【动图】仔细观察下面的动图,感受角的平分线的性质.【设计意图】让学生通过实验发现、分析概括、推理证明角的平分线的性质,体会研究几何问题的基本思路.以角的平分线的性质的证明为例,让学生概括证明几何命题的一般步骤,发展他们的归纳概括能力.二、典例精讲【例】如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,BC =8 cm ,BD =5 cm ,点D 到直线AB 的距离是_______cm .【师生活动】教师引导学生思考,角的平分线的性质有什么作用,学生回答.【解析】如图,过点D 作DE ⊥AB 于点E ,则点D 到直线AB 的距离是DE 的长.∵∠C=90°,AD平分∠CAB,∴DE=CD.又∵BC=8 cm,BD=5 cm,∴DE=CD=3 cm.【答案】3【设计意图】让学生体会到证明两条线段相等时利用角的平分线的性质比证明两个三角形全等更便捷.课堂小结板书设计一、用直尺和圆规作角的平分线二、角的平分线的性质三、几何命题的证明步骤课后任务完成教材第50页练习第2题.。
湘教版八下数学1.4.1《角平分线的性质(一)》教学设计一. 教材分析湘教版八下数学1.4.1《角平分线的性质(一)》是初中数学的重要内容,主要让学生掌握角平分线的性质。
本节课的内容是在学生已经掌握了角的概念、角的计算等基础知识的基础上进行学习的,为后续学习角平分线的应用打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了角的概念、角的计算等基础知识,对于图形的性质也有了一定的了解。
但学生的几何直观能力、逻辑推理能力还有待提高,因此,在教学过程中,需要注重培养学生的几何直观能力和逻辑推理能力。
三. 教学目标1.让学生理解角平分线的性质,并能运用角平分线的性质解决一些简单的问题。
2.培养学生的几何直观能力和逻辑推理能力。
3.激发学生学习数学的兴趣,提高学生自主学习的能力。
四. 教学重难点1.角平分线的性质的推导过程。
2.如何运用角平分线的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、推理等过程,发现角平分线的性质。
2.运用几何画板等软件,动态展示角平分线的性质,增强学生的直观感受。
3.采用小组合作学习的方式,让学生在讨论中提高自己的逻辑推理能力。
4.通过典型例题的讲解,引导学生运用角平分线的性质解决实际问题。
六. 教学准备1.准备相关的教学课件、几何画板软件等。
2.准备一些典型的例题和练习题。
3.准备一些关于角平分线的实际问题。
七. 教学过程1.导入(5分钟)通过复习角的概念、角的计算等基础知识,引导学生进入本节课的学习。
2.呈现(15分钟)利用几何画板软件,动态展示角平分线的性质,引导学生观察、思考,发现角平分线的性质。
3.操练(15分钟)让学生通过自主学习、小组合作学习的方式,掌握角平分线的性质。
在此过程中,教师引导学生运用逻辑推理能力,解决一些相关问题。
4.巩固(10分钟)通过一些典型的例题和练习题,让学生巩固所学知识,提高运用角平分线的性质解决实际问题的能力。
学过程设计教探究二:角的平分线的性质实验:1.让学生在已经画好的角平分线上任取一点P.2.分别过P点向OA、OB边作垂线PD⊥OA,PE⊥OB,垂足分别为D、E。
3.测量PD和PE的长,观察PD与PE的数量关系。
,并试着说明理由。
归纳角的平分线的性质:角的平分线上的点到角的两边的距离相等。
应用:如图,ABC中,D为BC中点,且AD恰好平分∠BAC。
求证:AB=AC三、课堂训练1.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O,假设∠1=∠2,求证OB=OC.2.如图,四边形ABCD中,BD平分∠ABC,∠A+∠C=180°,求证:AD=CD四、小结归纳1.用尺规作图法作出角的角平分线的方法;2.角的平分线的性质;3.角的平分线的性质是证明线段相等的又一种方法。
学生做练习。
学生画图,教师巡视指导。
观察、讨论PD与PE的数量系。
学生通过三角形全等,说明PD=PE。
教师引导学生归纳出角的平分线的性质。
教师引导,学生思考并解题,写出证明过程。
学生充分讨论,综合运用所学知识解决问题。
学生小结本节所学的知识点及知识点的应用。
线的方法。
通过学生实验得到结论,重视知识的发生开展过程。
使学生明确角的平分线的性质是证明线段相等的又一种方法。
稳固本节课所学知识及提升综合应用所学知识解决问题的能力。
从总体上把握学知识。
五、作业设计1.教材习题11.3第2、4小题;2.补充作业:①如图,AB ∥CD ,∠BAC 与∠ACD 的平分线交于点O ,OE ⊥AC 于E ,且OE =2,求AB 、CD 间的距离.②如图,在△ABC 中∠C=90°,AC=BC,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB=6㎝,那么△DEB 的周长为_________㎝。
EDBCA②思考题::如图,任意ABC 中,AD 为∠BAC 的平分线。
求证:BD ∶DC =AB ∶AC〔提示:可参照例题[点拨],利用面积证明〕课题 11.3 角的平分线的性质一、角的平分线的作法: 作角的角平分线 例题分析 二、角的平分线的性质:教 学 反 思年级八年级课题13.1 平方根〔2〕课型新授教学媒体多媒体教学目标知识技能1.了解有的正数的算术平方根开不尽方;2.了解无限不循环小数特点;3.会用计算器算术求平方根;4.会比较开不尽方的正数的算术平方根与有理数的大小.过程方法通过拼正方形,体验解决问题方法的多样性,开展学生的形象思维和抽象思维;探究2的大小,培养估算意识,了解从两个方向无限逼近的数学思想,并学会比较开不尽方的正数的算术平方根与有理数的大小.情感态度认识数学和生活实际的密切关系,建立自信心,提高学习热情.教学重点初步感受无理数,能进行比较教学难点探究2大小教学过程设计教学程序及教学内容师生行为设计意图一、情境引入用两个面积为1的小正方形拼成一个面积为2的大正方形,并求出这个大正方形的边长.二、探究新知1.拼法:按以下图所示,很容易用两个面积为1的小正方形拼成一个面积为2的大正方形.2.问题:①拼成的大正方形的边长是多少?②你能像上节课那样得到一个平方等于2的正有理数吗?③我们只能把边长表示为2,那么2是多大呢?2的大小:∵12=1,22=4,∴1<2<4;∵22=2.25,∴1.4<2<1.5;∵22=2.0164,∴1.41<2<1.42;∵22=2.002225,∴1.414<2<1.415;……教师提出问题,组织学生动手拼剪.教师参与学生活动,适当帮助指导学生完成拼图活动,并及时肯定学生各种割、拼的方法.教师设计并向学生提出问题,组织学生思考,交流,并引导学生尝试总结归纳,估算出2的大小,理解无限不循环小数的特点.调动学生思维的积极性,通过拼图活动,经历发现无理数的过程.通过形的研究来感受无理数的存在.从而对数的认识进一步加深,为实现从有理数到实数的过渡作好铺垫.教师设计问题,逐层深入,对学生进行启发引导,通过对2的大小估计,再次从数的角度来感受无理数的存在性.培养学生的估算能力,渗透估算的思想和方法,感受从两端无限逼近的数学思想.如此进行下去,可以得到2的更精确地近似值.事实上,2=1.414 213 56…,同π一样,是一个无限不循环小数,这样的数与以前学的有理数一样吗?得到:小数位数无限且小数局部不循环的小数叫无限不循环小数.像7,5,3,2这样,所有开方开不尽的正数的算术平方根都是无限不循环小数. 4.用计算器计算算术平方根的三个步骤:①进入();②输入(被开方数);③输出()用计算器计算,并将计算结果填在表中. 0625.0 625.025.6 5.62 625 6250 观察上表,你发现什么了吗?(1)被开方数增大,算术平方根怎样变化? (2)被开方数与算术平方根的小数点有何移动规律?(3)直接写出:_____625000;_____62500==. 得到:被开方数增大(或减小),那么算术平方根也增大(或减小);被开方数的小数点向左〔右〕移动两位,它的算术平方根的小数点也相应的向左〔右〕移动一位.用一块面积为400cm 2的正方形纸片沿边的方向,能否裁出一块面积为300cm 2的长方形纸片, 使它的长宽之比为3:2?分析:大正方形的面积为400 cm 2, 可求出其边长为400=20cm ;要裁出面积为300cm 2的长方形纸片,并使其长宽之比为3:2,通过列方程可求得长和宽须分别为cm cm 502,503,用计算器求得1.750≈,所以3.21503≈,而21.3>20,即要裁出的长方形的长大于正方形的边长,故不能裁出.如果不使用计算器,因为21493503=>>20,所以不能裁出.不用计算器,估计一个整数的算术平方根的技巧:将这个整数a 拆成两个整数m 、n 的积,那么a 的算术平方根必在m 、n 之间,m 、n 越接近,估值越精确.如,24的算术平方根在4、6之间;56的算术平方根在7、8之间,这种方法虽然简便,但对有的数只能估计一个粗略范围,如50的算术平方根只能估计在5、10之间。
12.3 角的平分线的性质一、教学目标(一)核心素养(二)学习目标会用尺规作一个角的平分线,知道作法的合理性;探索并证明角平分线的性质;能用角的平分线的性质解决简单问题.(三)学习重点角的平分线的性质的证明及应用.(四)学习难点角的平分线的性质的探究.二、教学设计(一)课前设计预习任务用尺规作图作一个角的平分线的方法,其依据是SSS .角的平分线上的点到角的两边的距离相等.预习检测一、填空题1.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若BC=8cm,BD=5cm,则点D到AB的距离为.答案:3cm解析:根据题意画出图形,过点D作DE⊥AB,交AB于点E,D点到AB的距离即为DE 的长.∵∠BCA=90°∴AC⊥BC∵AC⊥BC,DE⊥AB,AD平分∠CAB∴CD=DE∵BC=8cm,BD=5cm,CD=DE,BC=CD+BD∴DE=3cm即D点到直线AB的距离是3cm.点拨:根据角平分线的性质添加辅助线作答2.∠AOB的平分线上一点P,P到OA的距离为2.5cm,则P到OB的距离为cm.答案:2.5解析:∵P是∠AOB平分线上一点,点P到OA的距离是2.5cm,∴P到OB的距离等于点P到OA的距离,为2.5cm.因此,本题正确答案是:2.5.点拨:根据角平分线上的点到角的两边的距离相等解答.二、选择题3.如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A.PD=PEB.OD=OEC.∠DPO=∠EPOD.PD=OD答案:D解析:A项;由角分线性质,正确B项;由角分线性质知PD=PE,由HL知Rt△OEP≌△ODP,则两三角形全等知OD=OE,正确.C项;同B项,由两三角形全等知∠DPO=∠EPOD项;错误点拨:由题设可知OP为∠AOB的角平分线,PE为P到OB的距离,PD为P到OA的距离,再由角的平分线性质判断即可.可由角分线的性质找出相应的结论.(二)课堂设计1.知识回顾(1)三角形的判断方法有哪些?SSS,SAS,AAS,ASA,HL(2)三角形中有哪些重要线段?三角形中有三条重要线段,它们分别是:三角形的高,三角形的中线,三角形的角的平分线.(3)从直线外一点到这条直线的垂线段的长叫做点到直线的距离.2.问题探究探究一角的平分线的作法●活动①请同学们拿出准备好的角,用你自己的方法画出它的角平分线,然后与大家交流分享.【设计意图】通过学生动手实践,寻找作已知角的平分线的方法,目的是为了引入尺规作图作已知角的平分线.12BD●活动②如图是一个平分角的仪器,其中AB=AD ,BC=DC.将点A 放在角的顶点,AB 和AD 沿着角的两边放下,画一条射线AE ,AE 就是∠DAB 的平分线. 你能说明它的道理吗?让同学们把推理过程写在课堂作业本上,老师巡查学生完成情况,对个别学生进行引导,最后教师把有典型错误的解答过程展示出来,让同学们去纠正错误.【设计意图】为如何用尺规作图作已知角的平分线作铺垫.●活动③老师提出问题:通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)讨论结果展示:已知:∠MAN求作:∠MAN 的角平分线.作法:(1)以A 为圆心,适当长为半径画弧,交AM 于B ,交AN 于D.(2)分别以 B.D 为圆心,大于 的长为半径画弧,两弧在∠MAN 的内部交于点C.(3)画射线AC.∴射线AC 即为所求.分组讨论: 1.在上面作法的第二步中,去掉“大于12BD的长”B这个条件行吗?2.第二步中所作的两弧交点一定在∠MAN的内部吗?学生讨论结果总结:1.去掉“大于12BD的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以B.D为圆心,大于12BD的长为半径画两弧,两弧的交点可能在∠MAN的内部,也可能在∠MAN的外部,而我们要找的是∠MAN内部的交点,否则两弧交点与顶点连线得到的射线就不是∠MAN的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.练一练:任意画一角∠AOB,作它的平分线.【设计意图】设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯探究二角的平分线的性质●活动①如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,三条折痕分别表示什么?你能得出什么结论?学生回答后师生归纳:OC表示∠AOB的角平分线,PD和PE分别表示P到OA和OB的距离,P到角两边的距离相等(PD=PE)【设计意图】让学生感知角平分线的性质.●活动②学生活动:作已知∠AOB的平分线,过平分线上一点P,作两边的垂线段.投影出下面两个图形,让学生评一评.结论:同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点作两边的垂线段,所以他的画法不符合要求.问题1:如何用文字语言叙述所画图形的性质?师生共同归纳:角平分线上的点到角的两边的距离相等.问题2:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话?已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D.E为垂足.由已知事项推出的事项:PD=PE.【设计意图】进一步理解角平分线的题设和结论.●活动③以上结论成立吗?让同学们独立进行证明,然后展示学生的证明过程:证明:∵PD⊥OA,PE⊥OB (已知)∴∠PDO = ∠PEO=90°(垂直的定义)在△PDO和△PEO中∠PDO = ∠PEO(已证)∠AOC = ∠BOC (已知)OP=OP (公共边)∴△PDO ≌△PEO(AAS)∴PD=PE(全等三角形的对应边相等)于是我们得角的平分线的性质:角的平分线上的点到角的两边的距离相等.符号语言:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,垂足分别为点D.E.(已知)∴PD=PE(角的平分线上的点到角的两边的距离相等)【设计意图】展示符号语言的目的在于规范学生的书写过程,培养学生严谨的推理能力.探究三用角的平分线的性质解决简单问题●活动①应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,我们可以直接利用性质解决问题.例1(1) 下面四个图中,点P都在∠AOB的平分线上,则图形( )中PD=PE.A B C D【知识点】角平分线的性质.【思路点拨】利用角平分线的性质时,非常重要的条件是PD和PE是到角两边的距离.【解答过程】选项A中如果增加一个条件OD=OE,就能得出PD=PE;选项B和C中PD不是到OA的距离;选项D中P到OA和OB的距离为PD和PE.【答案】D(2)下图中,PD⊥OA,PE⊥OB,垂足分别为点D.E,则图中PD=PE吗?【知识点】角平分线的性质.【思路点拨】已知没有告诉OC为∠AOB的平分线,由此PD与PE不相等.【解答过程】PD与PE不相等,因为OC不是∠AOB的平分线.(3)如图,△ABC中,∠C=90°,BD平分∠ABC,CD=2cm,则点D到AB的距离为cm.【知识点】角平分线的性质.【思路点拨】过D作AB的垂线段DE,垂足为E,由BD平分∠ABC,可得DC=DE=2.【解答过程】解:过D作AB的垂线段DE,垂足为E,∵BD平分∠ABC,CD⊥BC,DE⊥AB,∴DC=DE∵CD=2cm,∴DE=2cm,即点D到AB的距离为2cm【答案】2练习:如图,△ABC中,∠C=90°,BD平分∠ABC,DE⊥AB,垂足为点E,AC=7cm,则AD+DE= cm.EDCBA【知识点】角平分线的性质.【思路点拨】由BD平分∠ABC,可得DC=DE,AD+DE=AD+DC=AC.【解答过程】解:∵BD平分∠ABC,CD⊥BC,DE⊥AB,∴DC=DE∴AD+DE=AD+DC=AC.∵AC=7cm,∴AD+DE=7cm.【答案】7【设计意图】通过练习,理解角平分线的性质.●活动②例2如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20 000)?【知识点】角平分线的性质【思路点拨】1.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处.2.在纸上画图时,我们经常以厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了.1 m=100 cm,所以比例尺为1:20 000,其实就是图中1 cm表示实际距离200 m的意思.作图如下:【答案】第一步:尺规作图法作出∠AOB的平分线OP.第二步:在射线OP上截取OC=2.5 cm,确定C点,C点就是集贸市场所建地了.练习:在S区有一个贸易市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路,怎样修才能使路最短?它们有怎样的数量关系呢?【知识点】角平分线的性质【思路点拨】过P分别作公路和铁路的垂线段,这两条垂线段就是P点到公路和铁路的最短距离.【答案】过P点分别作铁路和公路的垂线段,它们的数量关系为相等.●活动3例3如图,△ABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,F在BC上,AD=DF 求证:CF=EA【知识点】角平分线的性质和三角形的判定和性质S公路铁路P初中-数学-打印版【思路点拨】证CF和EA所在的两个三角形全等【解答过程】证明:∵∠C=90°,BD平分∠ABC,DE⊥AB于E,∴DC=DE又∵AD=DF∴△DCF≌△DEA(HL)∴CF=EA练习:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC,求证:OB=OC.【知识点】角平分线的性质和全等三角形的判定【思路点拨】利用角平分线的性质可得OD=OE,证明△BOD ≌△COE可得OB=OC 【答案】证明:∵CD⊥AB,BE⊥AC,AO平分∠BAC,∴OD=OE,∠BDO=∠CEO=90°.∵∠BOD=∠COE,∴△BOD ≌△COE.∴OB=OC.3. 课堂总结知识梳理(以课堂内容为根据,结合教学目标的几点要求,对涉及到的知识细致梳理)(1)会用尺规作一个角的平分线,知道作法的理论依据;(2)探索并证明角平分线的性质;(3)能用角的平分线的性质解决简单问题.重难点归纳(本节课的中心知识点在此进行回顾,对课堂上的典型方法、特殊例题进行归纳点拨)(1)角的平分线的性质的探究.(2)角的平分线的性质的证明及应用.(3)证明线段相等通常证明线段所在的两个三角形全等.初中-数学-打印版。
人教版数学八年级上册《角平分线的性质(1)》教案一. 教材分析人教版数学八年级上册《角平分线的性质(1)》这一节,主要让学生掌握角平分线的性质,能够运用角平分线解决一些几何问题。
教材通过角的平分线上的点到角的两边的距离相等这一性质,引导学生探究并证明这一结论,从而培养学生的逻辑思维能力和探究精神。
二. 学情分析学生在学习本节课之前,已经学习了角的概念,线段的概念,对几何图形的认知有一定的基础。
但是,对于角平分线的性质,可能还没有直观的认识,需要通过实例和证明来理解和掌握。
同时,学生可能对证明过程感到困难,需要教师耐心引导和解答。
三. 教学目标1.让学生了解角平分线的性质,能够运用角平分线解决一些几何问题。
2.培养学生的逻辑思维能力和探究精神。
3.提高学生的几何证明能力。
四. 教学重难点1.角平分线性质的掌握。
2.角平分线性质的证明。
五. 教学方法采用问题驱动法,让学生在解决问题的过程中,发现和总结角平分线的性质。
同时,运用分组合作法,让学生在小组讨论中,共同探究和证明角平分线的性质。
最后,运用实例讲解法,让学生通过具体的例子,理解和掌握角平分线的性质。
六. 教学准备1.准备角平分线的性质的实例和证明。
2.准备相关的几何题目,用于巩固和拓展。
七. 教学过程1.导入(5分钟)通过提问方式,引导学生回顾角的概念,线段的概念,为新课的学习做好铺垫。
2.呈现(10分钟)展示角平分线的性质的实例,让学生观察并描述实例中的特点。
引导学生发现角平分线上的点到角的两边的距离相等这一性质。
3.操练(10分钟)让学生在小组内,运用角平分线的性质,解决一些几何问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)讲解一些运用角平分线解决几何问题的题目,让学生在解题过程中,巩固对角平分线性质的理解。
5.拓展(10分钟)引导学生思考:角平分线性质的证明。
让学生尝试用已学的知识,证明角平分线上的点到角的两边的距离相等。
6.小结(5分钟)教师引导学生总结本节课所学的内容,让学生明确角平分线的性质,并能够运用到实际问题中。
北师大版数学八年级下册1.4《角平分线》(第1课时)教学设计一. 教材分析《角平分线》是北师大版数学八年级下册第1.4节的内容,本节课主要介绍了角平分线的定义、性质和作法。
通过本节课的学习,使学生能够理解角平分线的概念,掌握角平分线的性质,学会如何作一个角的平分线。
教材通过生活中的实例引入角平分线,激发学生的学习兴趣,接着引导学生通过观察、思考、操作、交流等活动,探索角平分线的性质和作法,培养学生的动手能力和合作意识。
二. 学情分析学生在学习本节课之前,已经学习了角的概念、垂线的性质等知识,具备了一定的几何基础。
但是,对于角平分线的理解和运用还需要进一步的引导和培养。
因此,在教学过程中,教师需要关注学生的认知水平,针对学生的实际情况进行教学设计,引导学生通过自主学习、合作交流等方式,掌握角平分线的性质和作法。
三. 教学目标1.知识与技能目标:使学生理解角平分线的定义,掌握角平分线的性质,学会如何作一个角的平分线。
2.过程与方法目标:通过观察、思考、操作、交流等活动,培养学生的动手能力和合作意识。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自主学习能力和创新精神。
四. 教学重难点1.教学重点:角平分线的定义、性质和作法。
2.教学难点:角平分线的性质的理解和运用。
五. 教学方法1.情境教学法:通过生活中的实例引入角平分线,激发学生的学习兴趣。
2.引导发现法:教师引导学生观察、思考、操作、交流,发现角平分线的性质。
3.合作学习法:学生分组合作,共同探索角平分线的性质和作法。
六. 教学准备1.教学课件:制作角平分线的课件,包括图片、动画、例题等。
2.教学素材:准备一些角的模型和画图工具,如直尺、圆规等。
3.学生活动材料:准备一些练习题和小组讨论题。
七. 教学过程1.导入(5分钟)教师通过生活中的实例引入角平分线,如剪刀的剪切角、太阳伞的遮阳角等,引导学生关注角平分线在生活中的应用。
2.呈现(10分钟)教师展示一些角的模型,让学生观察并思考:如何作一个角的平分线?学生分组讨论,尝试用工具画出角的平分线。
12.3角的平分线的性质第1课时角的平分线的性质教学步骤师生活动教学目标课题12.3第1课时角的平分线的性质授课人素养目标1.能用尺规作图:作一个角的平分线,强化学生的分析及作图能力.2.理解角平分线的概念,探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等,并能运用这个定理解决相关问题,培养学生观察、归纳及动手能力,发展学生的推理能力.教学重点尺规作图:作一个角的平分线,探索并证明角平分线的性质定理及应用.教学难点角平分线的性质定理的探索过程.教学活动教学步骤师生活动活动一:旧知回顾,新课引入设计意图回顾角的平分线的概念及作法,并设问为引入角平分线的尺规作图及其性质做铺垫.【复习引入】问题1:想一想,我们学过的角的平分线的概念是什么?答:问题2:我们在练习本上画一个角,怎样得到它的平分线?答:用量角器度量,或者用折纸的方法.我们已经能用尺规作一个角等于已知角了,那能否用尺规作一个角的平分线呢?角的平分线除了平分角之外,还具有其他的性质吗?让我们在这节课中展开探索吧.【教学建议】教师提问,选取学生代表进行回答,对于问题2,学生也可动手尝试,活跃气氛,在进入新课前进行实操演练.教师最后用总结结束回顾,以提问的方式引发学生思考,从而过渡到新课的内容.活动二:动手操作,交流新知设计意图通过实际情境引入角的平分线的尺规作图方法,并引导学生动手作图,加深学生对于作已知角的平分线的理解,加强作图能力.探究点1角的平分线的作法思考如图是一个平分角的仪器,其中AB=AD,BC=DC.将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE,AE 就是这个角的平分线.你能说明它的道理吗?答:在△ABC 和△ADC 中,AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC(SSS).∴∠BAC =∠DAC.∴AE 是∠BAD 的平分线.【教学建议】这里由一种平分角的仪器的工作原理引入了作一个角的平分线的尺规作图.与作一个角等于已知角的尺规作图类似,它们依据的都是全等三角形的“边边边”判定方法.教师可演示这种角平分仪,从而加深学生的直观感受.通过实验启发引入角平分线的尺规作图方法后,学生交流探究,自主动手画图.注意该作图属这种平分角的方法告诉了我们一种作已知角的平分线的方法,如下所示:请按这种方法自己动手试试看,然后与同伴交流操作心得,并回答下列问题:问题1:作图步骤(2)中,为什么要以“大于12MN 的长”为半径画弧?答:以“大于12MN 的长为半径画弧”是因为以小于12MN 的长为半径画弧,两弧没有交点,以等于12MN 的长为半径画弧不易操作.问题2:作图步骤(2)中,两弧的交点一定在∠AOB 的内部吗?答:若分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧的交点可能在∠AOB 的内部,也可能在∠AOB 的外部.而我们要作的是角的平分线,角的平分线在角的内部,所以交点应在∠AOB 内部寻找,否则两弧交点与顶点连线得到的射线就不是∠AOB 的平分线了.【对应训练】教材P 50练习第1题.于基本的尺规作图,课标有所要求,需要学生加以掌握.通过实践操作,按各种情况动手画一画,就能清楚地解释左栏问题1和问题2.教师注意跟学生强调作图步骤(3)中的“画射线OC”不能说成“连接OC”,因为“连接OC”得到的是线段,而角的平分线是射线,不是线段.【教学建议】设置练习是为了强化学生的基本作图能力,尺规作图可以不写作法,但最后一定要说明所求作的内容,作图痕迹必须保留因为可以据此看出作图思路.设计意图使学生经历探索角的平分线的性质定理的过程,并利用三角形全等证明角的平分线的性质定理,归纳证明几何命题的一般步骤,并通过例题与练习加深对于角的平分线的性质定理的理解.探究点2角的平分线的性质思考如图,任意作一个角∠AOB ,作出∠AOB 的平分线OC ,在OC 上任取一点P ,过点P 画出OA ,OB 的垂线,分别记垂足为D ,E ,测量PD ,PE 并作比较,你得到什么结论?在OC 上再取几个点试一试.通过以上测量,你发现了角的平分线的什么性质?答:PD =PE.在OC 上再取几个点试一试,发现上述结论依然成立.于是我们猜想角的平分线有以下性质:【教学建议】设置思考可以让学生通过作图、测量来猜想角的平分线的性质.为了让学生准确推断该性质的内容,并且确信他们推出的性质具有一般性,教师需在学生作图时强调:(1)所作的角应为任意大小的;(2)在角的平分线上取的点应是任意位置的;(3)过角的平分线上一点向角的两边所作的与两边相交的线段必须是垂线教学步骤师生活动拓展:几何画板演示角的平分线的性质:如图,点P在∠AOB的平分线上:下面,我们利用三角形全等证明这个性质.首先,要分清其中的“已知”和“求证”.显然,已知为“一个点在一个角的平分线上”,要证的结论为“这个点到这个角两边的距离相等”.为了更直观、清楚地表达题意,我们通常在证明之前画出图形,并用符号表示已知和求证.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OBPD=PE.一般情况下,我们要证明一个几何命题时,可以按照类似的步骤进行,即根据题意,画出图形,并用符号表示已知和求证;师生活动活动三:综合运用,巩固新知设计意图综合考查角的平分线的性质与三角形的面积,强化角的平分线的性质定理的运用能力.例如图,BD 是△ABC 的角平分线,DE ⊥AB ,垂足为E.若△ABC 的面积为70,AB =16,DE =5,求BC 的长.解:如图,过点D 作DF ⊥BC 于点F.∵BD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥BC ,∴DF =DE =5.∵S △ABD =12AB·DE =12×16×5=40,S △ABC =70,∴S △BCD =S △ABC -S △ABD =70-40=30.又S △BCD =12BC·DF =12BC×5=30,∴BC =12.【对应训练】如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,AF 是△ABC 的中线,AB =16,AC =8,DE =5.求△ADF 的面积.解:如图,过点D 作DM ⊥AB ,垂足为M.∵AD 是△ABC 的角平分线,DE ⊥AC ,DM ⊥AB ,∴DM =DE =5,∴S △ABD =12AB·DM =12×16×5=40,S △ACD =12AC·DE =12×8×5=20,∴S △ABC =S △ABD +S △ACD =40+20=60.∵AF 是△ABC 的中线,∴S △ACF =12S △ABC =12×60=30,∴S △ADF =S △ACF -S △ACD =30-15=15.【教学建议】角平分线的性质定理可以得到垂线段相等,所以角平分线跟三角形的面积结合时,往往能分割出等高的三角形,于是面积问题就转化为了边长问题.解答此类题目,当题干中出现角平分线时,要首先想到是否可利用角的平分线的性质定理解题,有时候也需要添加辅助线,一般是过角的平分线上一点向角的两边作垂线段.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是角的平分线?你能用尺规作一个角的平分线吗?2.角的平分线的性质是什么?你能证明吗?能运用角的平分线的性质解题吗?3.证明一个几何命题的一般步骤是什么?【知识结构】【作业布置】1.教材P51~52习题12.3第2,4,5,6题.2.《创优作业》主体本部分相应课时训练.板书设计12.3角的平分线的性质第1课时角的平分线的性质1.尺规作图:作已知角的平分线.2.角的平分线的性质:角的平分线上的点到角的两边的距离相等.3.证明几何命题的一般步骤.教学步骤师生活动教学反思本节课采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而学生对所学的新知识掌握较好,达到了教学的目的.教学中需要注意:学生对定理的图形语言认识不足出现混淆,如把角平分线上的点到角两边的距离错当成过此点与角平分线垂直(或相交)的直线与角两边相交所得的线段的长.解题大招一与尺规作图有关的推理题作一个角的平分线是课标要求的尺规作图,学生不仅要能够作图,还要了解作图的原理,而最直观的体现就是通过作图痕迹去判断作图目的.例1如图,在Rt△ABC中,∠C=90°,用尺规作图法作出射线AE,AE交BC于点D,CD=5,P为AB上一动点,则DP的最小值为5.解析:由尺规作图可知:AE是∠CAB的平分线,由垂线段最短可知:当DP⊥AB时,DP最小.∵AE是∠CAB的平分线,DP⊥AB,∠C=90°,∴DP=CD=5.故DP的最小值为5.解题大招二文字类几何命题的证明方法1.根据命题的题设结合图形写出已知,根据命题的结论结合图形写出求证.2.为了便于分清命题中的已知和求证,可以将命题改写成“如果……那么……”或“若……则……”的形式.例2求证:两角和其中一角对应的角平分线分别相等的两个三角形全等.分析:首先将文字命题用符号表示成已知和求证,然后进行证明.解:已知:如图,AD,A′D′分别为△ABC,△A′B′C′的角平分线,且AD=A′D′,∠B=∠B′,∠BAC=∠B′A′C′.求证:△ABC≌△A′B′C′.证明:∵AD,A′D′分别为△ABC,△A′B′C′的角平分线,∴∠1=12∠BAC,∠2=12∠B′A′C′.∵∠BAC=∠B′A′C′,∴∠1=∠2.在△ABD和△A′B′D′B=∠B′,1=∠2,=A′D′,∴△ABD≌△A′B′D′(AAS).∴AB=A′B′.在△ABC和△A′B′C′B=∠B′,=A′B′,BAC=∠B′A′C′,∴△ABC≌△A′B′C′(ASA).解题大招三与角的平分线的性质有关的线段证明(不作辅助线)当题目中要证相等的一组线段分别与一个角的两边垂直,且它们的公共点在这个角的平分线上时,可利用角平分线的性质定理直接得证(学过角平分线的性质定理后,不要再使用先证三角形全等再利用性质去解题,那样会使过程繁琐),所有证明条件的收集都应围绕这个“两垂直,一平分”进行展开,这样可以明确解题思路.例3如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M,N.求证:PM=PN.证明:∵BD是∠ABC的平分线,∴∠ABD=∠CBD.在△ABD 和△CBD =CB ,ABD =∠CBD ,=BD ,∴△ABD ≌△CBD(SAS ).∴∠ADB =∠CDB.∴∠ADP =∠CDP ,即DP 平分∠ADC.∵PM ⊥AD ,PN ⊥CD ,∴PM =PN.解题大招四利用角的平分线的性质作垂线解题利用角的平分线的性质解决问题的关键是确定角的平分线上的点到角的两边的垂线段,若已知条件中存在一条垂线段,则考虑通过作辅助线作出另一条垂线段;若已知条件中不存在垂线段,则考虑通过作辅助线作出两条垂线段.1.作一条垂线例4如图,点P 在∠AOB 的平分线上,过点P 作PC ⊥OA ,垂足为C.若PC =8,点P 到直线OB 的距离为8.解析:如图,过点P 作PD ⊥OB 于点D.∵点P 在∠AOB 的平分线上,PC ⊥OA ,PD ⊥OB ,∴PD =PC =8,即点P 到直线OB 的距离为8.例5如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,E 为AC 上一点,且∠ECD =∠EDC.(1)求证:DE ∥BC ;(2)若∠A =90°,S △BCD =26,BC =13,求AD 的长.(1)证明:∵CD 平分∠ACB ,∴∠ECD =∠BCD.又∠ECD =∠EDC ,∴∠BCD =∠EDC ,∴DE ∥BC.(2)解:如图,过点D 作DF ⊥BC 于点F.∵∠A =90°,DF ⊥BC ,CD 平分∠ACB ,∴AD =DF.∵S △BCD =26,BC =13,∴12×13DF =26,∴DF =4,∴AD =4.2.作两条垂线例6如图,∠AOB =90°,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA ,OB 交于点C 和点D.求证:PC =PD.证明:如图,过点P 分别作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∴∠PEC =∠PFD =90°.∵OM 是∠AOB 的平分线,∴PE =PF.∵∠AOB =90°,∠CPD =90°,∴∠PCE +∠PDO =360°-90°-90°=180°.又∠PDO +∠PDF =180°,∴∠PCE =∠PDF.在△PCE 和△PDF PCE =∠PDF ,PEC =∠PFD ,=PF ,∴△PCE ≌△PDF(AAS ),∴PC =PD.培优点与角的平分线的性质有关的探究题例(1)如图①,在△ABC 中,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,∠MDN 的两边分别与AB ,AC 相交于M ,N 两点,且DM =DN ,求证:∠BAC +∠MDN =180°;(2)如图②,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,∠BAC +∠MDN =180°,试判断AM ,AN ,AC 之间的数量关系,并说明理由.分析:(1)先利用角的平分线的性质得到DE =DF ,再利用“HL ”证明Rt △DEM ≌Rt △DFN ,于是可得∠MDE =∠NDF ,进一步利用角的和差得∠MDN =∠EDF ,最后再结合四边形的内角和为360°可得结论.(2)先结合已知、四边形的内角和为360°及角的和差可得∠MDE =∠NDC ,再根据角的平分线的性质得DE =DC ,同时易知AE =AC ,然后利用“ASA ”证明△MDE ≌△NDC ,于是得EM =CN ,最后再根据线段的和差可得结论.(1)证明:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴∠DEM =∠DFN =90°,DE =DF.在Rt △DEM 和Rt △DFN =DN ,=DF ,∴Rt △DEM ≌Rt △DFN(HL ),∴∠MDE =∠NDF.∴∠MDE +∠EDN =∠NDF +∠EDN ,即∠MDN =∠EDF.∵四边形AEDF 的内角和是360°,且∠AED +∠AFD =90°+90°=180,∴∠BAC +∠MDN =∠BAC +∠EDF =360°-(∠AED +∠AFD)=180°.(2)解:AM +AN =2AC.理由如下:如图②,过点D 作DE ⊥AB 于点E ,∴∠AED =∠DEM =90°,∴∠BAC +∠CDE =360°-∠AED -∠C =360°-90°-90°=180°.又∠BAC +∠MDN =180°,∴∠MDN =∠CDE ,∴∠MDN -∠EDN =∠CDE -∠EDN ,即∠MDE =∠NDC.∵AD 平分∠BAC ,DE ⊥AB ,DC ⊥AC ,∴DE =DC ,且易得AE =AC.在△MDE 和△NDC DEM =∠C =90°,=DC ,MDE =∠NDC ,∴△MDE ≌△NDC(ASA ),∴EM =CN.∴AM +AN =(AE +EM)+(AC -CN)=(AE +AC)+(EM -CN)=2AC.模型提炼:如图,∠1=∠2,AP =CP ,∠PCB +∠BAP =180°,BF =12(AB +BC),这四个条件可知二推二.。
《角平分线的性质》第一课时教学教案《角平分线的性质》第一课时教学教案教学目标:一、知识储备点:用尺规作角的平分线的方法二、能力培养点:①应用三角形全等的知识,解释角的平分线的作法原理;②会用尺规作一个已知角的平分线三、情感体验点在探究角的平分线作法的过程中,培养探究兴趣,增强解决问题的信心,在利用尺规作图的过程中,培养学生动手操作能力和探究精神。
教学设想一、教学重点:利用尺规作已知角的平分线。
二、教学难点:角的平分线的作图方法的提炼。
教学方法:在教师的引导下,以学生自主探究,小组合作交流的方式展开教学活动,探索用尺规作一个角的平分线的方法。
学法引导1、通过对以前角平分线画法的回忆,在条件不允许的情况下,探索新的作法。
2、通过老师的引导,体会用尺规作任意角的平分线的方法。
教具准备:1、角尺2、平分角的仪器3、直角三角尺是一个任意角,在边OA,,移动角尺,使角尺两边相同的刻度分别与重合。
过角尺顶点C的射线的平分线。
为什么?1、以O为圆心,以适当的长为半径画弧,于M,交OB于N;、分别以M、N为圆心,以大于画弧,两弧在∠AOB的内部交于点生:它也是利用“SSS”证得三角形全等,从而得到8角平分线的性质1 用尺规作一个角的平分线⎪⎩⎪⎨⎧===OC OC CN CM ON OM△OMC ≌△ONC (SSS )∠MOC =∠NOC作法:①_________________ _________________②__________________________________③_________________、角的平分仪9。
1.知识与技能:能够利用三角形全等,证明角平分线的性质,能对角平分 线的性质进行简单推理,解决一些实际问题 2・过程与方法:经历探索、猜想、证明的过程,进一步发展学生的推理证 明意识和能力3. 情感态度与价值观:经历探索、猜想、证明的过程,进一步发展学生的推理证明意识 和能力重 点 1、重点:角平分线的性质 胡2、难魚“对角平分线的性质进行简单推理,解决一些实际问题 点课前、课中反思 一.创设情境,引入新课。
# 1、 引导学生回顾上节课的主要内容。
乙、 2、 三角形屮有哪些重要线段?你能作出这些线段吗? °气二73、 多媒体展示如下问题,请学生思考。
$如图是一个平分角的仪器,其中AB 二AD, BC=DC.将 * 点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿 AC 画.一条射线AE, AE 就是角平分线.你能说明它的y 道理吗?4、 学生互相讨论,教师巡视班级,观察监督学生的活动 情况,也可参与到学生的讨论中去。
5、 师生共同分析讨论,探究问题的解答。
分析:要说明AC 是ZDAC 的平分线,其实就是证明ZCAD=ZCABZ CAD 和ZCAB 分别在△ CAD 和厶CAB 屮,那么证明这两个三角形全 等就可以了.看看条件够不够.AB = ADBC = DCAC = AC所以△ ABC^AADC (SSS). 所以ZCAD 二ZCAB ・ 即射线AC 就是ZDAB的平分线. 二、探究角平分线的作法和性质。
1、教师总结指出:由上面的探究可以得出作已知角的平分线的方法。
作已知角的平分线的方法: 角平分线的性质 共2课时第1课时 课型 新课教学策略教学目# 经历探索、猜想、 证明的过程,进 一步发展学生的 推理证明意识和 能力已知:ZAOB・求作:ZAOB的平分线.作法:(1)以0为圆心,适当长为半径作弧,分别交OA、0B于M、N.(2)分別以Ms N为圆心,大于2 MN的长为半径作弧.两弧在ZAOB 内部交于点C.(3)作射线OC,射线OC即为所求.议一议:1.在上面作法的第二步中,去掉“大于2 MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在ZAOB的内部吗?1.去掉''大于2MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于空MN的长为半径画两弧,两弧的交点对能在ZAOB的内部・,也可能在ZAOB的外部,而我们要找的是Z AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是ZAOB 的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.练一练:任意画一平角ZAOB,作它的平分线.结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。
11.3 角平分线的性质(第1课时)教学设计
教学目标:
知识与技能目标:
1、掌握作角的平分线和作直线垂线的方法
2、学握角平分线的性质
情感态度目标:
1、在探讨作角平分线的方法及角平分线的性质的过程中,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,
2、培养学生团结合作精神
教学重点:角平分线的性质
教学难点:探索作角平分线的过程
教学工具:多媒体课件。
直尺,圆规等
教学过程设计
AO BO
AC BC
OC OC
∴△AOC≌△BOC
∴∠AOC=∠BOC
∴OC为∠AOB的角平分线师:可见,
(PDO
PEO DOP EOP OP OP 上证)
=(上证)(公共边)
∴△AOC ≌△BOC (AAS ∴PD =PE
教师:板书:角平分线的性质定理:。