《自动控制原理》3-6+线性系统的稳态误差分析
- 格式:ppt
- 大小:1.28 MB
- 文档页数:95
自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
本科实验报告课程名称:自动控制原理实验项目:控制系统的稳定性和稳态误差实验地点:多学科楼机房专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:1.学会利用MATLAB 对控制系统的稳定性进行分析; 2.学会利用MATLAB 计算系统的稳态误差。
二、实验内容和原理:1.利用MATLAB 描述系统数学模型如果系统的的数学模型可用如下的传递函数表示nn n m m m a s a s b s b s b s U s Y s G ++++++==-- 11110)()()( 则在MATLAB 下,传递函数可以方便的由其分子和分母多项式系数所构成的两个向量惟一确定出来。
即num=[b 0,b 1 ,…, b m ]; den=[1,a 1,a 2 ,…,a n ]例2-1 若系统的传递函数为5234)(23+++=s s s s G 试利用MA TLAB 表示。
当传递函数的分子或分母由若干个多项式乘积表示时,它可由MA TLAB 提供的多项式乘法运算函数conv( )来处理,以获得分子和分母多项式向量,此函数的调用格式为 p=conv(p1,p2)其中,p1和p2分别为由两个多项式系数构成的向量,而p 为p1和p2多项式的乘积多项式系数向量。
conv( )函数的调用是允许多级嵌套的。
例2-2 若系统的传递函数为)523)(1()66(4)(232++++++=s s s s s s s s G试利用MA TLAB 求出其用分子和分母多项式表示的传递函数。
2.利用MATLAB 分析系统的稳定性在分析控制系统时,首先遇到的问题就是系统的稳定性。
判断一个线性系统稳定性的一种最有效的方法是直接求出系统所有的极点,然后根据极点的分布情况来确定系统的稳定性。
对线性系统来说,如果一个连续系统的所有极点都位于左半s 平面,则该系统是稳定的。
MATLAB 中根据特征多项式求特征根的函数为roots( ),其调用格式为r=roots(p) 其中,p 为特征多项式的系数向量;r 为特征多项式的根。
自动控制原理稳态误差相关的基本原理引言自动控制原理是研究如何通过对被控对象进行测量和调节,使其输出达到期望值的一门学科。
在实际应用中,我们往往希望被控对象能够快速、准确地达到期望值,并且能够稳定在该期望值附近。
然而,由于各种因素的影响,被控对象在实际操作中往往会存在一定的误差。
稳态误差就是描述系统输出与期望值之间的偏差。
稳态误差的定义稳态误差是指系统在长时间运行后,输出与期望值之间的持续偏差。
通常使用误差函数来描述稳态误差,常见的有积分误差、百分比偏差等。
稳态误差分类根据系统输入信号和输出响应之间的关系,稳态误差可以分为以下几种类型:阶跃输入信号下的稳态误差当输入信号为阶跃函数时,系统响应过程中存在一个阶段性变化。
根据输出与期望值之间的偏差大小和持续时间的不同,可以将阶跃输入信号下的稳态误差分为零稳态误差、常数稳态误差和无限稳态误差三种情况。
零稳态误差当系统输出在长时间运行后与期望值完全一致时,称系统具有零稳态误差。
这意味着系统能够快速、准确地响应输入信号,并最终达到期望值。
常数稳态误差当系统输出在长时间运行后与期望值存在一个固定的偏差时,称系统具有常数稳态误差。
虽然系统能够达到期望值附近,但始终存在一个固定的偏差。
无限稳态误差当系统输出在长时间运行后与期望值之间的偏差持续增大,并且无法消除时,称系统具有无限稳态误差。
这种情况下,系统无法达到期望值。
正弦输入信号下的稳态误差当输入信号为正弦函数时,系统响应过程中存在周期性变化。
对于正弦输入信号下的稳态误差,我们通常关注其幅频特性和相频特性。
幅频特性描述了输出信号的幅值与输入信号频率之间的关系。
对于稳定系统,幅频特性通常是一个函数,它可以用来衡量系统对不同频率的正弦输入信号的响应能力。
当幅频特性在某个频率处衰减到0时,称该频率为系统的截止频率。
相频特性相频特性描述了输出信号与输入信号相位之间的关系。
对于稳定系统,相频特性通常是一个函数,它可以用来衡量系统对不同相位的正弦输入信号的响应能力。
3-6 线性系统的稳态误差计算把在阶跃函数作用下没有原理性稳态误差的系统,称为无差系统;把具有原理性稳态误差的系统称为有差系统。
非线性因素引起的系统稳态误差称为附加稳态误差,或结构性稳态误差。
习惯上常把系统在阶跃输入作用下的稳态误差称为静差。
因而,0型系统可称为有(静)差系统或零阶无差度系统,一型系统可称为一阶无差度系统,二型系统可称为二阶无差度系统。
4-3 广义根轨迹2、附加开环零点的作用增加开环零点也就是增加了闭环零点,闭环零点对系统性能的影响,相当于减小闭环系统的阻尼,从而使系统的过渡过程有出现超调的趋势,并且这种作用将随闭环零点接近坐标原点的强度而加强。
4-4 系统性能的分析1、 闭环零极点与时间响应经验指出,如果闭环零、极点之间的距离比它们本身的模值小一个数量级,则这一对闭环零、极点就构成了偶极子。
在略去偶极子和非主导零、极点的情况下,闭环系统的根轨迹增益常会发生改变,必须注意核算,否则将导致性能的估算错误。
闭环系统零、极点位置对时间响应性能的影响,可以归纳为以下几点:(1) 稳定性。
如果闭环极点全部位于s 左半平面,则系统一定是稳定的,即稳定性只与闭环极点位置有关,而与闭环零点位置无关。
(2) 运动形式。
如果闭环系统无零点,且闭环极点均为实数极点,则时间响应一定是单调的;果闭环极点均为复数极点,则时间响应一般是振荡的。
(3) 超调量。
超调量主要取决于闭环复数主导极点的衰减率1//d σωξ=,并与其他闭环零、极点接近坐标原点的程度有关。
(4) 调节时间。
调节时间主要取决于最靠近虚轴的闭环复数极点的实部绝对值1n σξω= ;如果实数极点距虚轴最近,并且它附近没有实数零点,则调节时间主要取决于该实数极点的模值。
(5) 实数零、极点影响。
零点减小系统阻尼,使峰值时间提前,超调量增大;极点增大系统阻尼,使峰值时间滞后,超调量减小。
它们的作用,随着其本身接近坐标原点的程度而加强。
(6) 偶极子及其处理。