高分子材料论文

  • 格式:doc
  • 大小:70.00 KB
  • 文档页数:8

下载文档原格式

  / 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题名称:高分子材料导论学院:

班级:

姓名:

学号:

高分子材料回收利用与发展可降解材料现代文明以经济腾飞和生活水平的提高为主要标志。随着经济发展,大规模的物质循环不可避免地引起各种问题,如资源短缺、环境恶化已为全球所关注。科学家预言地球能源(煤、石油、天然气等)不久将消耗完,会发生严重的能源危机;现代工业以及消费业的发展已给大自然带来严重的影响,大气、海洋等受污染,温室效应发生和臭氧层的破坏等等。所有这些已严重影响着自然界的生态平衡,最终必然会阻碍世界经济的高速发展。

材料的制造、加工、应用等均与环境和资源有直接的关系。高分子材料自从上世纪初问世以来,因重量轻、加工方便、产品美观实用等特点,颇受人们欢迎,其应用越来越广,从而使用过的高分子材料日益增加。据统计,2011年,我国塑料制品的产量达5474万吨,同比增长22%。其中,塑料薄膜的产量为844万吨,占总产量的15%;日用塑料制品的产量为458万吨,占总产量的8%;塑料人造革、合成革的产量为240万吨,占总产量的4%。如何处理这些废料已成为非常重要的课题。

处理废旧高分子材料比较科学的方法是再循环利用。循环是废旧高分子材抖利用的有利途径,不仅使环境污染得到妥善的解决,而且资源得到最有效的节省和利用。从资源利用的角度,对废旧高分子材料的利用首先应考虑材料的循环,然后考虑化学循环及能量回收。

回收:我国塑料回收面临的困难是数量大、分布广、品种多、体积大,许多废塑料与其它城市垃圾混在一起。处理废塑料的主要方法是:填埋和简单焚烧,但可供填埋场地不断减少,填埋费用急剧上升以及简单焚烧带来的二次污染等问题也给我们敲响了警钟。国外在废塑料回收方面已积累了不少经验,他们把废塑料的回收作为一项系统工程,政府、企业、居民共同参与。德国于1993年开始实施包装容器回收再利用,1997年回收再利用废塑料达到60万t,是当年消费量(80万t)的75%。目前,德国在全国设立300多个包装容器回收、分类网点,各网点统一将塑料制品分为瓶、薄膜、杯、PS发泡制品及其他制品,并有统一颜色标志[2]。利用:主要有再生利用、热能利用以及分解产物的利用(包括热分解和化学分解)。

1、再生利用:再生利用分简单再生和改性再生两类。

简单再生,指废塑料经过分类、清洗、破碎、造粒后直接进行成型加工,一般只能制成档次较低的产品。

改性再生,指通过化学或机械方法对废塑料进行改性。改性后的再生制品力学性能得到改善,可以做档次较高的制品。在化学添加剂方面,汽巴-嘉基公司生产出一种含抗氧剂、共稳定剂和其他活性、非活性添加剂的混合助剂,可使回收材料性能基本恢复到原有水平;荷兰有人开发了一种新型化学增容剂,能将包含不同聚合物的回收塑料键合在一起。美国报道采用固体剪切粉碎工艺(Solid State Shear Pulverization, S3P)进行机械加工,无须加热和熔融便可将树脂进行分子水平剪切,形成互容的共混物。共混物大部分由HDPE和LLDPE组成,极限拉伸强度和挠曲模量可与HDPE和LLDPE纯料相媲美[5]。

2、焚烧回收热能:

对于难以进行清洗分选回收的混杂废塑料,可以在专门的焚烧炉中焚烧以回收热能。木材的燃烧热为14.65 GJ/kg,聚乙烯为46.63 GJ/kg,聚丙烯为43.95 GJ/kg,聚氯乙烯为18.08 GJ/kg,ABS为35.26 GJ/kg,均高于木材,若能将这部分热能加以回收是很有意义的。废塑料热能回收可最大限度减少对自然环境的污染,不需要繁杂的预处理,也不需与生活垃圾分离,焚烧后废塑料的质量和体积可分别减少80%和90%以上,燃烧后的渣滓密度较大,

再掩埋处理也很方便。因此,这种集环保、发电于一体的工业技术,正在使废塑料成为一种资源,在国际上已成为新的投资热点。有些废塑料燃烧会产生HCl等二次污染气体,专用焚烧炉一次性投资较大。不过,随着燃烧技术的不断发展和完善,利用废塑料回收热能的前景还是十分广阔的。

3、热裂解技术:

目前用废塑料制取化工原料技术主要是针对聚苯乙烯的回收。日本制钢所以挤出机为裂解装置,得到的聚苯乙烯分解产物中苯乙烯质量分数达到了78.6%。BP公司计划建设一套2.5万/a的装置,将来自生活和工业的废塑料净化、碾碎、加热后,处理成为一种清洁的液态烃[8]。

为了处理含聚氯乙烯类废塑料,德国Veba公司开发了以减压渣油、褐煤、废塑料的混合物为原料,褐煤为催化剂的4万t/a废塑料油化装置,能处理含10% 聚氯乙烯的废塑料。但Veba法需在氢气存在条件下加压进行,投资与操作费用很高。

日本理化研究所开发的Kurata法采用Ni、Cu、Al等5种金属为催化剂,生成油主要是煤油。HCl的中和装置设计在流程后面,当聚氯乙烯含量占20% 时,HCl脱除率仍可达99.91%,生成油中氯含量小于100μg/g。日本久保田公司采用脱氯技术可从废塑料中几乎完全除去氯乙烯,脱氯后的废塑料作为高炉喷吹原料。

4.化学分解:

这项技术适用于单一品种并经严格预处理的废塑料。尽管多种塑料都可用化学法分解,但目前主要用于处理聚氨酯、热塑性聚酯和聚酰胺等极性类废塑料。例如利用聚氨酯泡沫塑料水解法制聚酯和二胺,聚氨酯软、硬制品醇解法制多元醇,废旧PET解聚制粗对苯二甲酸和乙二醇等。

高分子材料资源化虽然是解决高分子材料的成效之一,但是实际上也有许多问题,例如再生料不如原生材料;循环过程代价高昂等。另外,生产合成高分子材料的原料——石油也总有用尽的一天,因而,寻找新的环境友好型材料,发展非石油基聚合物迫在眉睫,而可生物降解材料正是解决这方面问题的有效途径。

生物降解材料,亦称为“绿色生态材料”,指的是在土壤微生物和酶的作用下能降解的材料。具体地讲,就是指在一定条件下,能在细菌、霉菌、藻类等自然界的微生物作用下,导致生物降解的高分子材料。

理想的可生物降解材料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终转化成CO2 和H2O而成为自然界中碳素循环的一个组成部分的高分子材料。

生物降解材料的分解主要是通过微生物的作用,因而,生物降解材料的降解机理即材料被细菌、霉菌等作用消化吸收的过程。首先,微生物向体外分泌水解酶与材料表面结合,通过水解切断表面的高分子链,生成小分子量的化合物,然后降解的生成物被微生物摄入体内,经过种种代谢路线,合成微生物体物或转化为微生物活动的能量,最终转化成CO2 和H2O[4]。按其降解的化学本质则分为水解和酶解两种。

水解机理

材料的降解实质上是其内部的高分子链段在特定条件下断裂成低分子量的寡聚物,并最终分解为单体的过程。材料的“溶蚀”则是指由于分子链发生断裂,形成的水溶性小分子物质离开聚合物材料,导致材料的力学性能降低,材料最终完全消失的过程,溶蚀又可表面溶蚀和整体溶蚀。

如果分子链段的降解速度比水分子在材料中的扩散速度快,链段的水解限制在材料表面,