2012初中数学综合试题
- 格式:doc
- 大小:325.50 KB
- 文档页数:8
初中数学综合试卷及答案一.选择题(共10小题)1.(2012•永州)已知a为实数,则下列四个数中一定为非负实数的是()A.a B.﹣a C.|﹣a| D.﹣|﹣a|2.若|a﹣2|+|b+1|=0,则ab的值为()A.2B.﹣2 C.±2 D.03.若|x﹣3|与|2y﹣3|互为相反数,则xy+x﹣y的值是()C.6D.﹣6A.B.﹣4.(2012•佳木斯)若(a﹣1)2+|b﹣2|=0,则(a﹣b)2012的值是()A.﹣1 B.1C.0D.20125.(2013•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106 6.(2013•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 7.(2013•宜昌)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.6.75×105吨D.6.75×10﹣4吨8.(2013•资阳)资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值()A.精确到亿位B.精确到百分位C.精确到千万位D.精确到百万位9.(2013•泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0B.1C.3D.710.计算:41+1=5,42+1=17,43+1=65,44+1=257,…,归纳各计算结果中的个位数字的规律,猜想4100+1个位数字为()A.4B.5C.6D.7二.填空题(共1小题)11.(2011•河北)若|x﹣3|+|y+2|=0,则x+y的值为_________.三.解答题(共19小题)12.(2009•凉山州)我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?13.(2007•邵阳)观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=_________;(2)直接写出下列各式的计算结果:①=_________;②=_________.(3)探究并计算:.14.(2006•自贡)计算:﹣34+(﹣0.25)100×4100+()×()﹣2÷|﹣2|.15.(2005•宿迁)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣).16.(2010•高要市二模)计算:17.计算题:(1)(﹣7)×(﹣5)﹣90÷(﹣15);(2).18.计算:(1)4﹣|﹣6|﹣3×()(2)﹣32+(﹣1)2001÷+(﹣5)219.计算:(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].20.计算:(﹣2)2+{6﹣(﹣3)×2}÷4﹣5÷×21.如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,试求的值.22.先观察下列等式,再完成题后问题:,,(1)请你猜想:=_________.(2)若a、b为有理数,且|a﹣1|+(ab﹣2)2=0,求:的值.23.为体现党和政府对农民健康的关心,解决农民看病难问题,我市某县全面实行新型农村合作医疗,对农民的住院医疗费实行分段报销制.例如:该县有四位农民看病分别花去了1800元、2500元、6000元、22000元住院医药费,请计算应该给这四位农民各报销多少元?24.计算:﹣(﹣3)2﹣[3+0.4×(﹣1)]÷(﹣2).25.先阅读下面的例题,再解答后面的题目.例:已知x2+y2﹣2x+4y+5=0,求x+y的值.解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,即(x﹣1)2+(y+2)2=0.因为(x﹣1)2≥0,(y+2)2≥0,它们的和为0,所以必有(x﹣1)2=0,(y+2)2=0,所以x=1,y=﹣2.所以x+y=﹣1.题目:已知x2+4y2﹣6x+4y+10=0,求xy的值.26.拓广探索七年某班师生为了解决“22012个位上的数字是_________.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=_________,所以24个位上的数字是_________;因为25=_________,所以25个位上的数字是_________;因为26=_________,所以26个位上的数字是_________;(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:_________.(3)利用上述得到的规律,可知:22012个位上的数字是_________.(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_________.27.31=3,32=9,33=27,34=81,335=243,…,通过观察.你发现了什么规律?按照你所发现的规律,则32011的末位数字为_________.28.试确定62012+(﹣25)2013的末位数字是几.29.若a=25,b=﹣3,那么a2003+b2004的末位数是多少?30.如果规定:,,,…(1)你能用幂的形式表示0.0001,0.00001吗?(2)你能将0.000001768表示成a×10n的形式吗?(其中1≤a<10,n是负整数)参考答案与试题解析一.选择题(共10小题)1.(2012•永州)已知a为实数,则下列四个数中一定为非负实数的是()A.a B.﹣a C.|﹣a| D.﹣|﹣a|考点:非负数的性质:绝对值.分析:根据绝对值非负数的性质解答.解答:解:根据绝对值的性质,为非负实数的是|﹣a|.故选C.点评:本题主要考查了绝对值非负数的性质,是基础题,熟记绝对值非负数是解题的关键.2.若|a﹣2|+|b+1|=0,则ab的值为()A.2B.﹣2 C.±2 D.0考点:非负数的性质:绝对值.专题:存在型.分析:先根据非负数的性质求出a、b的值,进而可求出ab的值.解答:解:∵|a﹣2|+|b+1|=0,∴a﹣2=0,b+1=0,解得a=2,b=﹣1,∴ab=2×(﹣1)=﹣2.故选B.点评:本题考查的是非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.3.若|x﹣3|与|2y﹣3|互为相反数,则xy+x﹣y的值是()C.6D.﹣6A.B.﹣考点:非负数的性质:绝对值.分析:根据互为相反数的两个数的和等于0列式,再根据非负数的性质列式求出xy的值,然后代入代数式进行计算即可得解.解答:解:∵|x﹣3|与|2y﹣3|互为相反数,∴|x﹣3|+|2y﹣3|=0,∴x﹣3=0,2y﹣3=0,解得x=3,y=,所以,xy+x﹣y=3×+3﹣=4.5+3﹣1.5=6.故选C.点评:本题考查了绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.4.(2012•佳木斯)若(a﹣1)2+|b﹣2|=0,则(a﹣b)2012的值是()A.﹣1 B.1C.0D.2012考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,所以,(a﹣b)2012=(1﹣2)2012=1.故选B.点评:本题考查了平方数非负数,绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.5.(2013•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3354万用科学记数法表示为:3.354×107.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2013•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2013•宜昌)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.6.75×105吨D.6.75×10﹣4吨考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.解答:解:67 500=6.75×104.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.8.(2013•资阳)资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值()A.精确到亿位B.精确到百分位C.精确到千万位D.精确到百万位考点:近似数和有效数字.分析:近似数精确到哪一位,应当看末位数字实际在哪一位.解答:解:∵27.39亿末尾数字9是百万位,∴27.39亿精确到百万位.故选D.点评:本题考查了近似数的确定,熟悉数位是解题的关键.9.(2013•泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0B.1C.3D.7考点:尾数特征.专题:压轴题.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.10.计算:41+1=5,42+1=17,43+1=65,44+1=257,…,归纳各计算结果中的个位数字的规律,猜想4100+1个位数字为()A.4B.5C.6D.7考点:尾数特征.分析:根据已知中尾数特征得出每2个一循环,进而得出4100+1的个位数字与第2个数字尾数相同,即可得出答案.解答:解:∵41+1=5,42+1=17,43+1=65,44+1=257,…,∴上式中尾数每42个一循环,∵100÷2=50,∴4100+1的个位数字与第2个算式尾数相同,故4100+1个位数字是7.故选:D.点评:此题主要考查了尾数特征,根据已知得出式子中尾数的变化规律是解题关键.二.填空题(共1小题)11.(2011•河北)若|x﹣3|+|y+2|=0,则x+y的值为1.考点:非负数的性质:绝对值.专题:计算题;压轴题.分析:根据非负数的性质,可求出x、y的值,然后将x,y再代入计算.解答:解:∵|x﹣3|+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴x+y的值为:3﹣2=1,故答案为:1.点评:此题主要考查了绝对值的性质,根据题意得出x,y的值是解决问题的关键.三.解答题(共19小题)12.(2009•凉山州)我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?考点:有理数的混合运算.专题:新定义.分析:认真观察已知给出的两个式子:110=1×22+1×21+0×20和110101=1×25+1×24+0×23+1×22+0×21+1×20,得出规律,再计算.解答:解:101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.点评:此题的关键找出规律,按照规定的规律进行计算.13.(2007•邵阳)观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=;(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.考点:有理数的混合运算.专题:压轴题;规律型.分析:(1)从材料中可看出规律是;(2)直接根据规律求算式(2)中式子的值,即展开后中间的项互相抵消为零,只剩下首项和末项,要注意的是末项的符号是负号,规律为;(3)观察它的分母,发现两个因数的差为2,若把每一项展开成差的形式,则分母是2,为了保持原式不变则需要再乘以,即得出最后结果.解答:解:(1);(2)①;②;(3)原式====点评:本题考查的是有理数的运算能力和学生的归纳总结能力.解题关键是会从材料中找到数据之间的关系,并利用数据之间的规律总结出一般结论,然后利用结论直接解题.本题中的难点是第(3)个问题,找出分母因数的差为2,把每一项展开成差的形式,则分母是2,所以为了保持原式不变需要再乘以,是解决此题的关键.14.(2006•自贡)计算:﹣34+(﹣0.25)100×4100+()×()﹣2÷|﹣2|.考点:有理数的混合运算.分析:按照有理数混合运算的顺序:先乘方,再乘除,最后算加减,有括号的要先算括号里面的.注意﹣34表示4个3相乘的相反数,其结果为﹣81.解答:解:原式=﹣81+1+×36×=﹣81+1+3=﹣77.点评:本题考查的是有理数的运算能力.(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.15.(2005•宿迁)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣).考点:有理数的混合运算.分析:含有有理数的加、减、乘、除、乘方多种运算的算式.根据几种运算的法则可知:减法、除法可以转化成加法和乘法,乘方是利用乘法法则来定义的,所以有理数混合运算的关键是加法和乘法.加法和乘法的法则都包括符号和绝对值两部分,同学在计算中要学会正确确定结果的符号,再进行绝对值的运算.解答:解:原式=4﹣7+3+1=1.点评:注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.16.(2010•高要市二模)计算:考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方再乘除后加减,有括号的先算括号里面的,计算过程中注意正负符号的变化并都化成分数形式.解答:解:原式=×(﹣)﹣﹣÷(﹣)=﹣﹣+=﹣.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.17.计算题:(1)(﹣7)×(﹣5)﹣90÷(﹣15);(2).考点:有理数的混合运算.分析:对于一般的有理数混合运算来讲,其运算顺序是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.解答:解:(1)(﹣7)×(﹣5)﹣90÷(﹣15)=35﹣(﹣6)=41.(2)==.点评:本题考查了有理数的混合运算.注意运算顺序及运算法则.18.计算:(1)4﹣|﹣6|﹣3×()(2)﹣32+(﹣1)2001÷+(﹣5)2考点:有理数的混合运算.分析:(1)先算乘法,再算加减;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,注意﹣32=﹣9;解答:解:(1)原式=4﹣6+1=﹣1;(2)原式=﹣9+(﹣1)×6+25=10.点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.19.计算:(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:原式=﹣1×(﹣5)÷(9﹣10)=﹣1×(﹣5)×(﹣1)=﹣5.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.20.计算:(﹣2)2+{6﹣(﹣3)×2}÷4﹣5÷×考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:原式=4+[6+6]÷4﹣5××=4+3﹣4=3.点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.21.如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,试求的值.考点:有理数的混合运算;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:由绝对值和完全平方式的结果为非负数,且两非负数之和为0可得绝对值和完全平方式同时为0,可得ab=2且b=1,把b=1代入ab=2可求出a的值为2,把求出的a与b代入所求的式子中,利用=﹣把所求式子的各项拆项后,去括号合并即可求出值.解答:解:∵|ab﹣2|≥0,(1﹣b)2≥0,且|ab﹣2|+(1﹣b)2=0,∴ab﹣2=0,且1﹣b=0,解得ab=2,且b=1,把b=1代入ab=2中,解得a=2,则=+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣+﹣+﹣+…+﹣=1﹣=.点评:此题考查了有理数的混合运算,要求学生掌握两非负数之和为0时,两非负数必须同时为0,本题若直接按照运算顺序解题,运算量非常大,需利用计算技巧简化运算,根据所求式子各项的特点,利用拆项法进行化简,使拆开的一部分分数互相抵消,达到简化运算的目的.熟练运用=﹣是解本题的关键.22.先观察下列等式,再完成题后问题:,,(1)请你猜想:=.(2)若a、b为有理数,且|a﹣1|+(ab﹣2)2=0,求:的值.考点:有理数的混合运算;非负数的性质:绝对值;非负数的性质:偶次方.专题:规律型.分析:(1)根据=﹣,=﹣,=﹣,…则=;(2)先根据非负数的性质得出a、b的值,代入原式变形为1﹣+﹣+﹣…+﹣是解题的关键.解答:解:(1)=(2分)(2)∵|a﹣1|+(ab﹣2)2=0,∴a﹣1=0,ab﹣2=0,∴a=1,b=2(2分)原式=(2分)=.(1分)点评:考查了有理数的混合运算,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为=﹣.23.为体现党和政府对农民健康的关心,解决农民看病难问题,我市某县全面实行新型农村合作医疗,对农民的住院医疗费实行分段报销制.例如:该县有四位农民看病分别花去了1800元、2500元、6000元、22000元住院医药费,请计算应该给这四位农民各报销多少元?考点:有理数的混合运算.专题:应用题.分析:分别用百分数表示出每人的每段报销的金额后用加法计算.解答:解;应给花1800元医药费的农民报销的金额=500×20%+1300×30%=490(元);应给花2500元医药费的农民报销的金额=500×20%+1500×30%+500×35%=725(元);应给花6000元医药费的农民报销的金额=500×20%+1500×30%+3000×35%+1000×40%=2000(元);应给花22000元医药费的农民报销的金额=500×20%+1500×30%+3000×35%+5000×40%+12000×45%=9000(元).故给这四位农民各报销490元、725元、2000元、9000元.点评:本题利用了百分数来表示报销的金额,结合当前的农村新型农村合作医疗,做到学数学用数学,学以致用.24.计算:﹣(﹣3)2﹣[3+0.4×(﹣1)]÷(﹣2).考点:有理数的混合运算.分析:按照有理数的运算顺序,先乘方,再乘除,有括号的,先算括号里的进行运算.解答:解:原式=﹣9﹣(3﹣×)×(﹣)=﹣9+×=﹣.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.25.先阅读下面的例题,再解答后面的题目.例:已知x2+y2﹣2x+4y+5=0,求x+y的值.解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,即(x﹣1)2+(y+2)2=0.因为(x﹣1)2≥0,(y+2)2≥0,它们的和为0,所以必有(x﹣1)2=0,(y+2)2=0,所以x=1,y=﹣2.所以x+y=﹣1.题目:已知x2+4y2﹣6x+4y+10=0,求xy的值.考点:非负数的性质:偶次方.专题:阅读型.分析:先将左边的式子写成两个完全平方的和的形式,根据非负数的性质求出x、y的值,再代入求出xy的值.解答:解:将x2+4y2﹣6x+4y+10=0,化简得x2﹣6x+9+4y2+4y+1=0,即(x﹣3)2+(2y+1)2=0.∵(x﹣3)2≥0,(2y+1)2≥0,且它们的和为0,∴x=3,y=﹣.∴xy=3×(﹣)=﹣.点评:初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.本题关键是将左边的式子写成两个完全平方的和的形式.26.拓广探索七年某班师生为了解决“22012个位上的数字是6.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=16,所以24个位上的数字是6;因为25=32,所以25个位上的数字是2;因为26=64,所以26个位上的数字是4;(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:尾数每4个一循环分别为:2,4,8,6.(3)利用上述得到的规律,可知:22012个位上的数字是6.(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是3.考点:尾数特征.分析:(1)根据指数运算法则直接求出各数即可;(2)①直接计算得出210个位上的数字是4;②利用(1)中所求得出尾数每4个一循环分别为:2,4,8,6;(3)利用(2)中的规律得出答案;(4)利用(2)中规律得出3的指数变化与尾数的关系.解答:解:(1)因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=16,所以24个位上的数字是6;因为25=32,所以25个位上的数字是2;因为26=64,所以26个位上的数字是4;故答案为:16,6;32,2;64,4;(2)①正确,理由:由(1)可得出:尾数每4个一循环,10÷4=2…2,则210个位上的数字与第2个数据相等是4;②尾数每4个一循环分别为:2,4,8,6.(3)∵2012÷4=503,∴22012个位上的数字与第4个尾数相等,则是6;故答案为:6;(4)因为31=3,所以31个位上的数字是3;因为32=9,所以32个位上的数字是9;因为33=27,所以33个位上的数字是7;因为34=81,所以34个位上的数字是1;因为35=243,所以35个位上的数字是3;…∴尾数每4个一循环,∵2013÷4=503…1,∴32013个位上的数字是3.故答案为:3.点评:此题主要考查了数字尾数特征,根据指数的变化得出位置的变化规律是解题关键.27.31=3,32=9,33=27,34=81,335=243,…,通过观察.你发现了什么规律?按照你所发现的规律,则32011的末位数字为7.考点:尾数特征.分析:通过观察,发现3的乘方的结果上的个位数字:3,9,7,1,3,9,7,1,…4个一循环,所以根据这个规律求得答案.解答:解:∵2011÷4=502…3,∴32011的结果个位数是:7.故答案为:7.点评:本题考查的是尾数的特征,根据题意找出规律是解答此题的关键.28.试确定62012+(﹣25)2013的末位数字是几.考点:尾数特征.分析:先根据题意得出6的2012次方的末位数字,再得出(﹣25)2013的末位数字,求出其差即可.解答:解:∵61=6,62=36,63=216,64=1296,…,∴6的任何次方的结果都是正数,且末位数字均为6,∴62012次方的末位数字是6,∵(﹣25)1=﹣25,(﹣25)2=625,(﹣25)3=﹣15625,(﹣25)4=390625,…,∴(﹣25)2013的末位数字为5,其符号为负号,∴62012+(﹣25)2013的末位数字是6﹣5=1.点评:本题考查的是尾数的特征,根据题意找出规律是解答此题的关键.29.若a=25,b=﹣3,那么a2003+b2004的末位数是多少?考点:尾数特征.分析:应先确定a2003的个位数字,b2004的个位数字,让其相加即可.解答:解:原式=52003+(﹣3)2004,∵3的末位数字是﹣3,9,﹣7,1依次循环,∴(﹣3)2004的个位数字为1,∴原式的末位数字是5+1=6.故a2003+b2004的末位数是6.点评:考查了尾数特征,本题的关键在于确定﹣3的个位数字,﹣3的个位数字应是﹣3,9,﹣7,1依次循环.30.如果规定:,,,…(1)你能用幂的形式表示0.0001,0.00001吗?(2)你能将0.000001768表示成a×10n的形式吗?(其中1≤a<10,n是负整数)考点:科学记数法—表示较小的数.分析:(1)利用已知数据直接得出即可;(2)根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:(1)∵,,,…∴0.0001=10﹣4,0.00001=10﹣5;(2)0.000001768=1.768×10﹣6.点评:此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.。
2012年中考数学试题A 卷(共100分)第1卷(选择题.共30分)一、选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.3-的绝对值是( )A .3B .3-C .13 D .13- 2.函数12y x =- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠- 3.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )A .B .C .D .4.下列计算正确的是( )A .223a a a +=B .235a a a ⋅=C .33a a ÷= D .33()a a -= 5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )A . 59.310⨯ 万元B . 69.310⨯万元C .49310⨯万元D . 60.9310⨯万元6.如图,在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为( )A .( 3-,5-)B .(3,5)C .(3.5-)D .(5,3-)7.已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( )A . 8cmB .5cmC .3cmD .2cm8.分式方程3121x x =- 的解为( ) A .1x = B . 2x = C . 3x = D . 4x = 9.如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) A .AB ∥DC B .AC=BD C .AC ⊥BD D .OA=OCB10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是x ,根据题意,下面列出的方程正确的是( )A .100(1)121x +=B . 100(1)121x -=C . 2100(1)121x +=D . 2100(1)121x -=第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分) 1l .分解因式:25x x - =________.12.如图,将ABCD 的一边BC 延长至E ,若∠A=110°,则∠1=________.13件衬衫,其领口尺寸统计如下表:则这ll 件衬衫领口尺寸的众数是________cm ,中位数是________cm .14.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=,0C=1,则半径OB 的长为________.三、解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算:024cos458((1)π-++-(2)解不等式组:202113x x -<⎧⎪+⎨≥⎪⎩16.(本小题满分6分)化简: 22(1)b a a b a b-÷+-17.(本小题满分8分)如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度.(结果精确到0.1 1.732≈ )18.(本小题满分8分)如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数k y x=(k 为常数,且k ≠0)的图象交于A,B两点,且点A的坐标为(1,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.19.(本小题满分10分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=92a时,P、Q两点间的距离 (用含a的代数式表示).B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为________.22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ (结果保留π)23.有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-= 有两个不相等的实数根,且以x 为自变量的二次函数22(1)2y x a x a =-+-+ 的图象不经过...点(1,O)的概率是________. 24.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数k y x=(k 为常数,且0k >)在第一象限的图象交于点E ,F .过点E 作EM ⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若BE 1BF m =(m 为大于l 的常数).记△CEF 的面积为1S ,△OEF 的面积为2S ,则12S S =________. (用含m 的代数式表示)25.如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为________cm,最大值为________cm.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数. 函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)。
2012年中考适应性考试数学试题参考答案及评分标准一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 D C B A D D C D B C二、填空题(每小题3分,共18分)11. 3 12. 体育委员买了2个篮球,3个足球剩余的钱。
13. 13±14.k<25124k≠且 15. 12 16. 4三、解答题(17小题5分,18、19、20小题各6分,共23分)17.解:原式=2-433232⨯++………………………………3分=2-23323++…………………………4分 =5 ……………………………………5分18.解:()() 201512112 23xx x->⎧⎪⎨+-+⎪⎩≥由(1)可得,x<2………………………………………………2分由(2)可得,x≥-1. …………………………………………4分∴原不等式组的解集为-1≤x<2. ………………………………5分-1 0 2 ………………6分19.证明:连结AC、DB ………………1分∠A和∠D都是 CB所对的圆周角,∴∠A=∠D 同理∠C=∠B ………………3分∴ PAC∽ PDB ……………………4分∴PA PCPD PB=………………………………5分即PA PB=PC PD ……………………6分•PB ACDO20.解:(1)将P (-2,1)代入xmy =2中,得m = -2 …………1分 ∴反比例函数的解析式为x y 22-= ………………2分将Q (1,n )代入解析式xy 22-=中,得n = -2 ………… 3分 将P (-2,1),Q (1,-2)代入y 1=ax +b 中 得⎩⎨⎧+=-+-=ba ba 221 解得 ⎩⎨⎧-=-=11b a ∴一次函数的解析式为:y 1=-x -1 ………………5分(2)由图象可知:当2-<x 或10<<x 时y 1>y 2 ………………………… 6分四、实践应用题(21小题6分,22、23、24题各8分)21.(1)解:240+60=300(人) 240⨯3%=7.2即本次共调查了300名村民,被调查的村民中有8人参加合作医疗并获得返款. ………………………………………………2分 (2) 240300⨯10000=8000(人) ……………………………3分 (3)设平均增长率为x ,则有80002(1)x +=9600 …………5分 解得x ≈0.0954 或x ≈-2.0954(舍去)故平均每年增长率为9.54%. ………………………………6分 22.解:在Rt △ABC 中 tan30°=AB CB (1)分AB =30tan CB =103≈17.32(米)……………………………………3分在Rt △CDB 中 tan18°=DB CB…………………………4分DB =81tan CB =325.010≈30.77(米)………………………………… 6分 DA =DB -AB ≈30.77-17.32=13.45(米)4+DA =17.45>15(米)…………………………………………………………7分 ∴离原坡脚15米的花坛应拆除 …………………………………………8分 23.解:设抢修车的速度为x 千米/时,则吉普车的速度为1.5x 千米/时.…1分 由题意得,1515151.560xx-=. ………………………………………………4分解得,20x =. ……………………………………………………………6分经检验,20x =是原方程的解,并且20, 1.530x x ==都符合题意. ……7分 答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.……8分 24.解:(1)他们在景区游玩了3个小时 ……………………………3分 (2) 由图可得当0≤t <1时 y=30t …………………………………………………4分当1≤t <2 时 y=30+20(t-1)即 y=20t+10 …………………………6分当2≤t ≤4 时y=50+10(t-2)即 y=10t+30 ………………………… 8分 五、推理论证题(本题9分)25.(1)证明:如25答图1连结OB . …………………………1分 ∵△ABC 和△BDE 都是等边三角形,∴∠ABC=∠EBD=60°. ∴∠CBE=60°,∠OBC=30°. ∴∠OBE=90°. ∴BE 是⊙O 的切线. ………………………………………3分(2)证明:如25答图1,连结MB . ……………………4分则∠CMB=180°-∠A=120°.∵∠CBF=60°+60°=120°,∴∠CMB=∠CBF .又∵∠BCM=∠FCB ,∴△CMB ∽△CBF .∴CFCB CBCM =即CF CM CB ⋅=2. ……………………………………5分又∵AC=CB ,∴CF CM AC ⋅=2. …………………………………6分(3)解:如25答图2,作DG//BE ,GH//DE . ………………7分∵AC∥BE∥DG ,∴EGCE BDAB =.∵BC∥DE∥HG ,∴EGCE DH BD =.∴DHBDBD AB =. …………………………………8分 ∴22⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛DH BD BD AB .又∵221⎪⎭⎫ ⎝⎛=BD AB S S ,232⎪⎭⎫ ⎝⎛=DH BD S S , ∴3221S S S S =,即2213.s s s =. …………………………9分25答图125答图2六、拓展探索题(本题10分)26.解:(1)如图1所示,连接AC ,则AC =5.在Rt△AOC 中,AC =5 ,OA =1 ,则OC =2 ∴点C 的坐标为(0,2). …………………1分 设切线BC 的解析式为b kx y +=,它过点C (0,2),B (−4,0),则有⎩⎨⎧=+-=042b k b ,解之得⎪⎩⎪⎨⎧==221b k . ∴221+=x y . ………………………3分 (2)如图1所示,设点G 坐标为(x ,y ),过点G 作GH ⊥x 轴,垂足为H 点.则OH =x , GH =y =21x + 2. …………………………………………4分 连接AP , AG ,则∠AGC =21×120°=60°.在Rt△ACG 中 ,∠AGC =60°,AC =5∴AG =3152. ……………………………………………………5分 在Rt△AGH 中, 2AH +2GH =2AG ,且AH =OH -OA =x -1 ,GH =21x + 2. ∴2(1)x -+21(2)2x +=2)3152(.解之得,1x =332,2x = −332(舍去). ∴点G 的坐标为(332,33+ 2). ………………………………6分 (3)在移动过程中,存在点A ,使△AEF 为直角三角形.AE =AF ,∴∠AEF =∠AFE ≠90°.∴要使△AEF 为直角三角形,只能是∠EAF =90°. ………………7分 如图2所示,当圆心A 在点B 的右侧时,过点A 作AM ⊥BC ,垂足为点M . 在Rt△AEF 中,AE =AF =R =5, 则EF =10,O A CBD xyGPH图1AM =21EF =2110.在Rt△OBC 中,OC =2 , OB =4,则BC =25∠BOC= ∠BMA =90°,∠OBC =∠MBA ,∴△BOC ∽△BMA .∴OC MA =BCBA.∴AB =225. ∴OA =OB -AB =4-225. ∴点A 的坐标为(-4+225,0). ……………………………8分 当圆心A 在点B 的左侧时,设圆心为A ′,过点A ′作A′M ′⊥BC 于点M ′,可得△A ′M ′B ≌△AMB ,得A ′B =AB =225.∴OA ′=OB + A ′B =4 +225.∴点A ′的坐标为(-4-225,0)综上所述,点A 的坐标为(-4+225,0)或(-4-225,0). ………………………………………………………………10分。
2012年白云区初中毕业班综合测试(一)数学试题本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、试室号、座位号、准考证号,再用2B铅笔把准考证号对应的号码标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数据3,1,5,2,7,2的极差是(*)(A)2(B)7(C)6(D)52.单项式-22x y的系数为(*)(A)2(B)-2(C)3(D)-33.不等式组26020xx-<⎧⎨+≥⎩的解集是(*)(A)x>3(B)-2≤x<3(C)x≥-2(D)-2<x≤34.一个多边形的内角和与它的外角和相等,则这个多边形的边数为(*)(A)4(B)5(C)6(D)75.如图1,△ABC中,∠C=90°,∠A的正切是(*)(A)B CA B(B)B CA C(C)A CB C(D)A CA B6.已知两条线段的长度分别为2cm、8cm,下列能与它们构成三角形的线段长度为(*)(A)4cm (B)6cm (C)8cm (D)10cm7.64的算术平方根与64的立方根的差是(*)(A)-12(B)±8(C)±4(D)48.如图2,⊙O是△ABC的外接圆,∠A=50°,则∠OBC的度数等于(*)(A)50°(B)40°(C)45°(D)100°9.如图3,梯形ABCD中,AD∥BC,AC、BD交于点O,AD=1,BC=3,则S△AOD︰S△BOC等于(*)(A)1︰2(B)1︰3(C)4︰9(D)1︰910.若一次函数y=kx+b,当x的值增大1时,y值减小3,则当x的值减小3时,y值(*)(A)增大3 (B)减小3 (C)增大9 ( D)减小9第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.已知∠α=50°,则∠α的余角的度数为 * °. 12.不等式-26x >的解集为 * .13.点P (-2,1)关于原点对称的点P '的坐标为 * .14.在一次数学测验中,某学习小组的六位同学的分数分别是54,85,92,73,61,85.这组数据的平均数是 * ,众数是 * ,中位数是 * . 15.计算并化简式子2224()22y x x xx yyy⋅-÷的结果为 * .16.如图4,A D 是以边长为6的等边△ABC一边AB为半径的四分之一圆周,P为A D 上一动点.当BP经过弦AD的中点E时,四边形ACBE的周长为 * (结果用根号表示).三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 解方程组:32435x y x y +=⎧⎨-=⎩.18.(本小题满分9分)已知,如图5,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF. 求证:BE=DF.19.(本小题满分10分)先化简,再求值:2(2)(3)(3)x x x +-+-,其中x =-32.y1x1O图6BAABCDEF 图5OC B A图2图1 CB A ODCB A 图3 图4BC P DA²20.(本小题满分10分)如图6,等腰△OAB的顶角∠AOB=30°,点B在x 轴上,腰OA=4. (1)B点的坐标为: ;(2)画出△OAB关于y 轴对称的图形△OA1B1(不写画法,保留画图痕迹),求出A1与B1的坐标;(3)求出经过A1点的反比例函数解析式.(注:若涉及无理数,请用根号表示)21.(本小题满分12分)在-2,-3,4这三个数中任选2个数分别作为点P的横坐标和纵坐标. (1)可得到的点的个数为 ;(2)求过P点的正比例函数图象经过第二、四象限的概率(用树形图或列表法求解); (3)过点P的正比例函数中,函数y 随自变量x 的增大而增大的概率为 .22.(本小题满分11分)在同一间中学就读的李浩与王真是两邻居,平时他们一起骑自行车上学.清明节后的一天,李浩因有事,比王真迟了10分钟出发,为了能赶上王真,李浩用了王真速度的1.2倍骑车追赶,结果他们在学校大门处相遇.已知他们家离学校大门处的骑车距离为15千米.求王真的速度.23.(本小题满分13分) 如图7,已知⊙O的弦AB等于半径,连结OB并延长使BC=OB. (1)∠ABC= °;(2)AC与⊙O有什么关系?请证明你的结论;(3)在⊙O上,是否存在点D,使得AD=AC?若存在,请画出图形,并给出证明;若不存在,请说明理由.24.(本小题满分14分)如图8,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,点P、Q分别是边AD和AE上的动点(两动点都不与端点重合).(1)PQ+DQ的最小值是 ;(2)说出PQ+DQ取得最小值时,点P、点Q的位置,并在图8中画出;(3)请对(2)中你所给的结论进行证明.25.(本小题满分14分)已知抛物线y =2x +kx +2k -4.(1)当k =2时,求出此抛物线的顶点坐标;(2)求证:无论k 为什么实数,抛物线都与x 轴有交点,且经过x 轴上的一定点; (3)已知抛物线与x 轴交于A(x 1,0)、B(x 2,0)两点(A在B的左边),|x 1|<|x 2|,与y 轴交于C 点,且S△ABC =15.问:过A,B,C三点的圆与该抛物线是否有第四个交点?试说明理由.如果有,求出其坐标.A B CD E 图8C参考答案及评分建议(2012一模)一、选择题二、填空题三、解答题 17.(本小题满分9分) 解:324 35 x y x y +=⎧⎨-=⎩①②解法一(加减法):①-②³3,………………………………………………3分 得(32)3(3)435x y x y +--=-⨯3239415x y x y +-+=-………………………………………………………5分 1111y =-…………………………………………………………………………6分 y =-1,…………………………………………………………………………7分代入②式,得x =2,……………………………………………………………8分 ∴原方程组的解为:21x y =⎧⎨=-⎩.…………………………………………………9分解法二(代入法):由②得:35 x y =+③,……………………………………………………3分-5542-2-4-6Oyx1备用图把③代入①式,……………………………………………………………………5分得3(35y+)+2y=4,………………………………………………………6分解得y=-1,……………………………………………………………………7分代入③式,得x=2,……………………………………………………………8分∴原方程组的解为:21xy=⎧⎨=-⎩.…………………………………………………9分18.(本小题满分9分)证法一:∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°.…………………………………………4分在△ABE和△CDF中,……………………………………………………5分∵A E C FA CA B C D=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS),……………………8分∴BE=DF(全等三角形对应边相等).…………………………………9分证法二:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,…………………………………………………3分又∵AE=CF,∴AD-AE=BC-CF,……………………………5分即ED=BF,…………………………………………………………………6分而ED∥BF,∴四边形BFDE为平行四边形………………………………………………8分∴BE=DF(平行四边形对边相等).……………………………………9分19.(本小题满分10分)解:2(2)(3)(3)x x x+-+-=2244(9)x x x++--………………………………………………………5分=22449x x x++-+…………………………………………………………6分=413x+………………………………………………………………………7分当x=-32时,………………………………………………………………8分原式=4³(-32)+13=-6+13……………………………………………………………9分=7………………………………………………………………………10分20.(本小题满分10分)解:(1)(4,0);…………………………………………………………1分(2)如图1,过点A作AC⊥x轴于C点.………………………………2分在Rt△OAC中,∵斜边OA=4,∠AOB=30°,∴AC=2,OC=OA²cos.………………………………………………5分由轴对称性,得A点关于y轴的对称点A1,………………………………………………6分B点关于y轴的对称点B1的坐标为(-4,0);…………………………7分(3)设过A1点的反比例函数解析式y=kx,……………………………8分把点A1,2)代入解析式,,∴k从而该反比例函数的解析式为y=-x.…………………………………10分21.(本小题满分12分)解:(1)6;……………………………………………………………………3分(2)树形图如下:所经过的6个点分别为P1(-2,-3)、P2(-2,4)、P3(-3,-2)、P4(-3,4)、P5(4,-2)、P6(4,-3),……………………………8分其中经过第二、四象限的共有4个点,………………………………………………9分∴P(经过第二、四象限)=46=23;……………………………………………10分列表法:y1x1O图1BAA1B1 C 点P的横坐标点P的纵坐标-2-3 4-3-2 4 -24-3……………6分……………………………………………………………………………………………6分所经过的6个点分别为P1(-2,-3)、P2(-2,4)、P3(-3,-2)、P4(-3,4)、P5(4,-2)、P6(4,-3),……………………………8分其中经过第二、四象限的共有4个点,………………………………………………9分∴P(经过第二、四象限)=46=23;……………………………………………10分(3)13.……………………………………………………………………………12分22.(本小题满分11分)解:设王真骑自行车的速度为x千米/时,……………………………………1分则李浩的速度为1.2x千米/时.根据题意,得1510151.260x x+=.…………………………………………………6分即151151.26x x+=,两边同乘以6x去分母,得75+x=90,………………………………………………………………8分解得x=15.……………………………………………………………………9分经检验,x=15是该分式方程的根.………………………………………10分答:王真的速度为15km/时.………………………………………………11分23.(本小题满分13分)解:(1)120°;……………………………………………………………1分(2)AC是⊙O的切线.……………………………………………………3分证法一∵AB=OB=OA,∴△OAB为等边三角形,…………………………4分∴∠OBA=∠AOB=60°.……………………………………………5分∵BC=BO,∴BC=BA,∴∠C=∠CAB,……………………………………………………………6分又∵∠OBA=∠C+∠CAB=2∠C,即2∠C=60°,∴∠C=30°,………………………………………7分在△OAC中,∵∠O+∠C=60°+30°=90°,∴∠OAC=90°,…………………………………………………………8分∴AC是⊙O的切线;证法二:∵BC=OB,∴点B为边OC的中点,……………………………………4分即AB为△OAC的中位线,…………………………………………………5分∵AB=OB=BC,即AB是边OC的一半,……………………………6分∴△OAC是以OC为斜边的直角三角形,…………………………………7分∴∠OAC=90°,…………………………………………………………8分∴AC是⊙O的切线;(3)存在.……………………………………………………………………9分 方法一:如图2,延长BO交⊙O于点D,即为所求的点.…………………………10分 证明如下:连结AD,∵BD为直径,∴∠DAB=90°.…………………………11分 在△CAO和△DAB中,∵C A O D A B A O A B A O C A B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CAO≌△DAB(ASA),………………12分 ∴AC=AD.…………………………………………………………………13分 (也可由OC=BD,根据AAS证明;或HL证得,或证△ABC≌△AOD) 方法二:如图3,画∠AOD=120°,……………………………………………10分 OD交⊙O于点D,即为所求的点.…………………………………………11分 ∵∠OBA=60°,∴∠ABC=180°-60°=120°. 在△AOD和△ABC中,∵O A B A A O D A B C O D B C =⎧⎪∠=∠⎨⎪=⎩,∴△AOD≌△ABC(SAS),………………12分 ∴AD=AC.…………………………………………………………………13分24.(本小题满分14分) 解:(1)(2)如图4,过点D作DF⊥AC,垂足为F,………………………3分 DF与AE的交点即为点Q;………………………………………………4分 过点Q作QP⊥AD,垂足即为点P;……………………………………5分 (3)由(2)知,DF为等腰Rt △ADC底边上的高, ∴DF=AD²sin45°=4³2=∵AE平分∠DAC,Q为AE上的点, 且QF⊥AC于点F,QP⊥AD于点P, ∴QP=QF(角平分线性质定理),……………………………………7分∴PQ+DQ=FQ+DQ=DF=CD C下面证明此时的PQ+DQ为最小值: 在AE上取异于Q的另一点Q1(图5).…………………………………9分 ①过Q1点作Q1F1⊥AC于点F1,………………………………………10分 过Q1点作Q1P1⊥AD于点P1,…………………………………………11分 则P1Q1+DQ1=F1Q1+DQ1, 由“一点到一条直线的距离”,可知,垂线段最短, ∴得F1Q1+DQ1>FQ+DQ,即P1Q1+DQ1>PQ+DQ.…………………………………………12分 ②若P2是AD上异于P1的任一点,………………………………………13分 可知斜线段P2Q1>垂线段P1Q1,………………………………………14分 ∴P2Q1+DQ1>P1Q1+DQ1>PQ+DQ. 从而可得此处PQ+DQ的值最小.25.(本小题满分14分) 解:(1)当k =2时,抛物线为y =2x +2x ,…………………………1分 配方:y =2x +2x =2x +2x +1-1 得y =2(1)x +-1,∴顶点坐标为(-1,-1);………………………………………………3分(也可由顶点公式求得) (2)令y =0,有2x +kx +2k -4=0,………………………………4分 此一元二次方程根的判别式⊿=2k -4²(2k -4)=2k -8k +16=2(4)k -,…………………5分 ∵无论k 为什么实数,2(4)k -≥0,方程2x +kx +2k -4=0都有解,…………………………………………6分 即抛物线总与x 轴有交点.P Q A B C D E 图4 F P Q A B C D E图5 FP 2 Q1F 1 P 1由求根公式得x=42k k-±-,………………………………………………7分当k≥4时,x=(4)2k k-±-,x1=(4)2k k-+-=-2,x2=(4)2k k---=-k+2;当k<4时,x=(4)2k k-±-,x1=(4)2k k-+-=-k+2,x2=(4)2k k---=-2.即抛物线与x轴的交点分别为(-2,0)和(-k+2,0),而点(-2,0)是x轴上的定点;…………………………………………8分(3)过A,B,C三点的圆与该抛物线有第四个交点.…………………9分设此点为D.∵|x1|<|x2|,C点在y轴上,由抛物线的对称,可知点C不是抛物线的顶点.……………………………10分由于圆和抛物线都是轴对称图形,过A、B、C三点的圆与抛物线组成一个轴对称图形.……………………11分∵x轴上的两点A、B关于抛物线对称轴对称,∴过A、B、C三点的圆与抛物线的第四个交点D应与C点关于抛物线对称轴对称.……………………………………12分由抛物线与x轴的交点分别为(-2,0)和(-k+2,0):当-2<-k+2,即k<4时,……………………………………………13分A点坐标为(-2,0),B为(-k+2,0).即x1=-2,x2=-k+2.由|x1|<|x2|得-k+2>2,解得k<0.根据S△ABC=15,得12AB²OC=15.AB=-k+2-(-2)=4-k,OC=|2k-4|=4-2k,∴12(4-k)(4-2k)=15,化简整理得267k k--=0,解得k=7(舍去)或k=-1.此时抛物线解析式为y=26x x--,其对称轴为x=12,C点坐标为(0,-6),它关于x=12的对称点D坐标为(1,-6);………………………………14分当-2>-k+2,由A点在B点左边,知A点坐标为(-k+2,0),B为(-2,0).即x 1=-k +2,x 2=-2. 但此时|x 1|>|x 2|,这与已知条件|x 1|<|x 2|不相符, ∴不存在此种情况.故第四个交点的坐标为(1,-6). (如图6)-2-4-6O y x C 1 D B A 图6。
2012中考数学试题及答案2012年中考数学试题是每年中学生们备战中考的重要资源之一。
在本篇文章中,我们将为您提供2012年中考数学试题及答案,帮助您更好地了解试题的类型和解题方法。
1. 选择题:A. 单项选择题:1. 若一个扇形的半径为8 cm,弧长为12 cm,则该扇形的圆心角为:A) 45° B) 60° C) 90° D) 120°解析:我们知道,扇形的圆心角等于扇形所对的圆心弧的度数,而弧长占的圆周长的比值就是扇形的圆心角占的整圆的比值。
因此,设该扇形的圆心角为x,则12cm/2πr = x/360°。
代入r=8 cm,解得x = 90°。
所以答案选C。
2. 若x+2 = 5,则x的值为:A) 5 B) 3 C) 4 D) 7解析:将x+2=5两边同时减去2,得x=3。
所以答案选B。
B. 完形填空:下面是一道完形填空题,请根据上下文和所给选项,选择最佳答案。
Jonas felt nervous as he 1 to the front of the classroom. His legs feltweak and shaky. He could hear his classmates 2 softly to each other, but the teacher's 3 was low and pleasant. He looked out at the rows of faces, all ofthem 4 at him. His heart was pounding, and he felt as if he could hardly breathe. But he liked that 5 . It made him feel alive.1. A) went B) go C) was going D) is going2. A) talk B) talked C) were talking D) talking3. A) voice B) noise C) sound D) words4. A) lay B) sat C) stood D) walking5. A) situation B) idea C) feeling D) chance解析:根据上下文,我们可以知道Jonas走到了教室前面,所以选项A) went符合语境。
2012年辽宁省大连市中考数学试卷一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)(2012•大连)﹣3的绝对值是()C.D.3A.﹣3 B.﹣考点:绝对值.专题:计算题.分析:根据绝对值的定义直接解答即可.解答:解:∵﹣3的绝对值表示﹣3到原点的距离,∴|﹣3|=3,故选D.点评:本题考查了绝对值的定义,知道绝对值表示某点到原点的距离是解题的关键.2.(3分)在平面直角坐标系中,点P(﹣3,1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据点的横纵坐标的符号可得所在象限.解答:解:∵﹣3<0,1>0,∴点P(﹣3,1)所在的象限是第二象限,故选B.点评:考查点的坐标的相关知识;掌握各个象限内点的符号特点是解决本题的关键.3.(3分)(2012•大连)下列几何体中,主视图是三角形的几何体的是()A.B.C.D.考点:简单几何体的三视图.分析:主视图是从找到从正面看所得到的图形,注意要把所看到的棱都表示到图中.解答:解:A、三棱柱的主视图是长方形,中间还有一条竖线,故此选项错误;B、正方体的主视图是正方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、圆柱的主视图是长方形,故此选项错误;故选:C.点评:此题主要考查了几何体的三视图,关键是掌握主视图所看的位置.4.(3分)(2012•大连)甲、乙两班分别有10名选手参加学校健美操比赛,两班参赛选手身高的方差分别=1.5,=2.5,则下列说法正确的是()A.甲班选手比乙班选手身高整齐B.乙班选手比甲班选手身高整齐C.甲、乙两班选手身高一样整齐D.无法确定哪班选手身高更整齐考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵=1.5,=2.5∴<=2.5则甲班选手比乙班选手身高更整齐.故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(3分)(2007•莆田)下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a考点:同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.解答:解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选D.点评:本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.6.(3分)(2012•大连)一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A.B.C.D.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.解答:解:根据题意可得:袋子中有有3个白球,4个黄球和5个红球,共12个,从袋子中随机摸出一个球,它是黄色球的概率=.故选B.点评:此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.(3分)(2012•大连)如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20 B.24 C.28 D.40考点:菱形的性质;勾股定理.专题:数形结合.分析:据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.解答:解:∵菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为20.故选A.点评:本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.8.(3分)(2012•大连)如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1B.2C.3D.4考点:二次函数综合题.专题:动点型.分析:抛物线在平移过程中形状没有发生变化,因此函数解析式的二次项系数在平移前后不会改变.首先,当点B横坐标取最小值时,函数的顶点在C点,根据待定系数法可确定抛物线的解析式;而点A横坐标取最大值时,抛物线的顶点应移动到E点,结合前面求出的二次项系数以及E 点坐标可确定此时抛物线的解析式,进一步能求出此时点A的坐标,即点A的横坐标最大值.解答:解:由图知:当点B的横坐标为1时,抛物线顶点取(﹣1,4),设该抛物线的解析式为:y=a (x+1)2+4,代入点B坐标,得:0=a(1+1)2+4,a=﹣1,即:B点横坐标取最小值时,抛物线的解析式为:y=﹣1(x+1)2+4.当A点横坐标取最大值时,抛物线顶点应取(3,1),则此时抛物线的解析式:y=﹣(x﹣3)2+1=﹣x2+6x﹣8=﹣(x﹣2)(x﹣4)∴A(2,0)、B(4,0).故选B.点评:考查了二次函数综合题,解答该题的关键在于读透题意,要注意的是抛物线在平移过程中形状并没有发生变化,改变的是顶点坐标.注意抛物线顶点所处的C、E两个关键位置,前者能确定函数解析式、后者能得到要求的结果.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)(2012•大连)化简:=1.考点:分式的加减法.分析:根据同分母的分式的加法法则求解即可求得答案,注意运算结果要化为最简.解答:解:===1.故答案为:1.点评:此题考查了同分母分式的加减运算法则.此题比较简单,注意运算结果要化为最简.10.(3分)若二次根式有意义,则x的取值范围是x≥2.考点:二次根式有意义的条件.分析:根据二次根式有意义的条件,可得x﹣2≥0,解不等式求范围.解答:解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为x≥2.点评:本题考查二次根式的意义,只需使被开方数大于或等于0即可.11.(3分)(2007•南通)已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=6 cm.考点:三角形中位线定理.分析:由D,E分别是边AB,AC的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得BC的值即可.解答:解:∵△ABC中,D、E分别是AB、AC边上的中点,∴DE是三角形的中位线,∵DE=3cm,∴BC=2DE=6cm.故答案为6.点评:本题重点考查了中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.12.(3分)(2012•大连)如图,△ABC是⊙O的内接三角形,若∠BCA=60°,则∠ABO=30°.考点:圆周角定理.分析:由∠BCA=60°,根据圆周角定理即可求得∠AOB的度数,又由等边对等角与三角形内角和定理,即可求得∠ABO的度数.解答:解:∵∠BCA=60°,∴∠AOB=2∠BCA=120°,∵OA=OB,∴∠ABO==30°.故答案为:30.点评:此题考查了圆周角定理、等腰三角形的性质以及内角和定理.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.13.(3分)(2012•大连)如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为0.5(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.50考点:利用频率估计概率.专题:图表型.分析:计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.解答:解:由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:≈0.5.故答案为:0.5.点评:此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.14.(3分)(2012•大连)如果关于x的方程x2+kx+9=0有两个相等的实数根,那么k的值为±6.考点:根的判别式.分析:若一元二次方程有两相等根,则根的判别式△=b2﹣4ac=0,建立关于k的等式,求出k的值.解答:解:∵方程有两相等的实数根,∴△=b2﹣4ac=k2﹣36=0,解得k=±6.故答案为±6.点评:本题考查了一元二次方程根的判别式的应用,不是很难,解题的关键是根据根的情况列出有关k 的方程.15.(3分)(2012•大连)如图,为了测量电线杆AB的高度,小明将测量仪放在与电线杆的水平距离为9cm的D处.若测角仪CD的高度为1.5m,在C处测得电线杆顶端A的仰角为36°,则电线杆AB的高度约为8.1m.(精确到0.1m).(参考数据sin36°≈0.59.cos36°≈0.81,tan36°≈0.73).考点:解直角三角形的应用-仰角俯角问题.分析:根据CE和tan36°可以求得AE的长度,根据AB=AE+EB即可求得AB的长度,即可解题.解答:解:如图,在Rt△ACE中,∴AE=CE•tan36°=BD•tan36°=9×tan36°≈6.57米,∴AB=AE+EB=AE+CD=6.57+1.5≈8.1(米).故答案为:8.1.点评:本题考查了三角函数在直角三角形中的运用,本题中正确计算AE的值是解题的关键.16.(3分)(2012•大连)如图,矩形ABCD中,AB=15cm,点E在AD上,且AE=9cm,连接EC,将矩形ABCD沿直线BE翻折,点A恰好落在EC上的点A′处,则A′C=8cm.考点:翻折变换(折叠问题).分析:由题意易证得△A′BC≌△DCE(AAS),BC=AD,A′B=AB=CD=15cm,然后设A′C=xcm,在Rt△A′BC中,由勾股定理可得BC2=A′B2+A′C2,即可得方程,解方程即可求得答案.解答:解:∵四边形ABCD是矩形,∴AB=CD=15cm,∠A=∠D=90°,AD∥BC,AD=BC,∴∠DEC=∠A′CB,由折叠的性质,得:A′B=AB=15cm,∠BA′E=∠A=90°,∴A′B=CD,∠BA′C=∠D=90°,在△A′BC和△DCE中,,∴△A′BC≌△DCE(AAS),∴A′C=DE,设A′C=xcm,则BC=AD=DE+AE=x+9(cm),在Rt△A′BC中,BC2=A′B2+A′C2,即(x+9)2=x2+152,解得:x=8,∴A′C=8cm.故答案为:8.点评:此题考查了矩形的性质、全等三角形的判定与性质、勾股定理以及折叠的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠前后图形的对应关系.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)(2012•大连)计算:+()﹣1﹣(+1)(﹣1)考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用负指数公式化简,第三项利用平方差公式化简,合并后即可得到结果.解答:解:+()﹣1﹣(+1)(﹣1)=2+4﹣(5﹣1)=2+4﹣4=2.点评:此题考查了二次根式的混合运算,涉及的知识有:二次根式的化简,负指数公式,以及平方差公式的运用,熟练掌握公式是解本题的关键.18.(9分)(2012•大连)解方程:.考点:解分式方程.分析:观察可得最简公分母是3(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘3(x+1),得6x=3(x+1)﹣x,解得x=.检验:把x=代入3(x+1)=≠0,即x=是原分式方程的解.则原方程的解为:x=.点评:此题考查了分式方程的求解方法.注意转化思想的应用,注意解分式方程一定要验根.19.(9分)(2012•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:根据ED=BF,可得出AE=CF,结合平行线的性质,可得出∠AEO=∠CFO,∠FCO=∠EAO,继而可判定△AEO≌△CFO,即可得出结论.解答:证明:∵四边形ABCD是平行四边形,∴AD=CB,∠AEO=∠CFO,∠FCO=∠EAO,又∵ED=BF,∴AD﹣ED=BC﹣BF,即AE=CF,在△AEO和△CFO中,,∴△AEO≌△CFO,∴OA=OC.点评:此题考查了平行四边形的性质,根据平行四边形的性质得出ED=BF及∠AEO=∠CFO,∠FCO=∠EAO是解答本题的关键.20.(12分)(2012•大连)某车间有120名工人,为了了解这些工人日加工零件数的情况,随机抽出其中的30名工人进行调查.整理调查结果,绘制出不完整的条形统计图(如图).根据图中的信息,解答下列问题:(1)在被调查的工人中,日加工9个零件的人数为4名;(2)在被调查的工人中,日加工12个零件的人数为8名,日加工14个零件的人数最多,日加工15个零件的人数占被调查人数的20%;(3)依据本次调查结果,估计该车间日人均加工零件数和日加工零件的总数.考点:条形统计图;用样本估计总体.分析:(1)直接观察条形统计图即可求得日加工9个零件的人数;(2)用总人数减去其他小组的人数即可求得日加工零件12个的人数;观察发现日加工零件最多的是加工14个零件的人数;(3)用加权平均数计算加工零件的平均数即可;解答:解:(1)观察条形统计图即可求得日加工9个零件的工人有4人;(2)日加工零件12个的有:30﹣4﹣12﹣6=8人;日加工零件14个的有12人,最多,日加工15个零件的人数占被调查人数的百分比为:6÷30×100%=20%;(3)日加工零件的平均数为:(9×4+12×8+14×12+15×6)÷30=13个,加工零件总个数为120×13=1560个.点评:本题考查了条形统计图及用样本估计总体的知识,解题的关键是从条形统计图中得到进一步解题的相关信息.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)(2012•大连)如图,一次函数y=kx+b的图象与反比例函数y=的图象都经过点A(﹣2,6)和点(4,n).(1)求这两个函数的解析式;(2)直接写出不等式kx+b≤的解集.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式.专题:计算题.分析:(1)把A的坐标代入反比例函数的解析式求出m,得出反比例函数的解析式,把B的坐标代入反比例函数的解析式,能求出n,即可得出B的坐标,分别把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解,即可得出一次函数的解析式;(2)根据一次函数与反比例函数的图象即可得出答案.解答:解:(1)∵把A(﹣2,6)代入y=得:m=﹣12,∴y=﹣,∵把(4,n)代入y=﹣得:n=﹣3,∴B(4,﹣3),把A、B的坐标代入y=kx+b得:,解得:k=﹣,b=3,即y=﹣x+3,答:反比例函数的解析式是y=﹣,一次函数的解析式是y=﹣x+3.(2)不等式kx+b≤的解集是﹣2≤x<0或x≥4.点评:本题考查了用待定系数法求一次函数、反比例函数的解析式,一次函数与反比例函数的交点问题的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较典型,是一道比较好的题目.22.(9分)(2012•大连)甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象.(1)在跑步的全过程中,甲共跑了900米,甲的速度为 1.5米/秒;(2)乙跑步的速度是多少?乙在途中等候甲用了多长时间?(3)甲出发多长时间第一次与乙相遇?此时乙跑了多少米?考点:一次函数的应用.分析:(1)终点E的纵坐标就是路程,横坐标就是时间;(2)首先求得C点对用的横坐标,即a的值,则CD段的路程可以求得,时间是560﹣500=60秒,则乙跑步的速度即可求得;B点时,所用的时间可以求得,然后求得路程是150米时,甲用的时间,就是乙出发的时刻,两者的差就是所求;(3)首先求得甲运动的函数以及AB段的函数,求出两个函数的交点坐标即可.解答:解:(1)根据图象可以得到:甲共跑了900米,用了600秒,则速度是:900÷600=1.5米/秒;(2)甲跑500秒时的路程是:500×1.5=750米,则CD段的长是900﹣750=150米,时间是:560﹣500=60秒,则速度是:150÷60=2.5米/秒;甲跑150米用的时间是:150÷1.5=100秒,则甲比乙早出发100秒.乙跑750米用的时间是:750÷2.5=300秒,则乙在途中等候甲用的时间是:500﹣300﹣100=100秒.(3)甲每秒跑1.5米,则甲的路程与时间的函数关系式是:y=1.5x,乙晚跑100秒,且每秒跑2.5米,则AB段的函数解析式是:y=2.5(x﹣100),根据题意得:1.5x=2.5(x﹣100),解得:x=250秒.乙的路程是:2.5×(250﹣100)=375(米).答:甲出发250秒和乙第一次相遇,此时乙跑了375米.点评:本题考查了识别函数图象的能力,是一道较为简单的题,观察图象提供的信息是关键.23.(10分)(2012•大连)如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.(1)猜想ED与⊙O的位置关系,并证明你的猜想;(2)若AB=6,AD=5,求AF的长.考点:切线的判定;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)连接OD,根据∠CAB的平分线交⊙O于点D,则=,依据垂径定理可以得到:OD⊥BC,然后根据直径的定义,可以得到OD∥AE,从而证得:DE⊥OD,则DE是圆的切线;(2)首先证明△ABD∽△ADE,依据相似三角形的对应边的比相等,即可求得DE的长,然后利用切割线定理即可求得CE的长,和AC的长,再根据△ACF∽△AED,对应边的比相等即可求解.解答:解:(1)ED与⊙O的位置关系是相切.理由如下:连接OD,∵∠CAB的平分线交⊙O于点D,∴=,∴OD⊥BC,∵AB是⊙O的直径,∴∠ACB=90°,即BC⊥AC,∵DE⊥AC,∴DE∥BC,∴OD⊥DE,∴ED与⊙O的位置关系是相切;(2)连接BD.∵AB是直径,∴∠ADB=90°,在直角△ABD中,BD===,∴在直角△ABD和直角△ADE中,∠E=∠ADB=90°,∠EAD=∠DAB∴△ABD∽△ADE,∴=,即=,∴DE=,在直角△ADE中,AE===,∵DE是圆的切线,∴DE2=CE•AE,∴CE==,∴AC=AE﹣CE=﹣=.∵BC∥DE∴△ACF∽△AED,∴,∴AF===.点评:本题考查了切线的判定定理,相似三角形的判定与性质,以及切割线定理,把求AF的长的问题转化成求相似三角形的问题是关键.五、解答题(本题共3小题,其中23题11分,25、26题各12分,共35分)24.(11分)(2012•大连)如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动.当点Q到达点B时,点P、Q同时停止运动.过点P作AC 的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ′R.设点Q的运动时间为t(s),△PQ′R与△PAR重叠部分的面积为S(cm2).(1)t为何值时,点Q′恰好落在AB上?(2)求S与t的函数关系式,并写出t的取值范围;(3)S能否为cm2?若能,求出此时的t值;若不能,说明理由.考点:相似形综合题;根的判别式;勾股定理;轴对称的性质;相似三角形的判定与性质.专题:代数几何综合题;动点型.分析:(1)如图所示,连接QQ′,由题意得到三角形PQC为等腰直角三角形,可得出∠CPQ=45°,再由l与AC垂直,得到∠RPQ也为45°,进而由对称性得出PQ′=PQ,∠QPQ′=90°,QQ′=2t,且QQ′∥CA,由平行得到一对同位角相等,再由公共角相等,利用两对对应角相等的两三角形相似得到△BQQ′∽△BCA,由相似得比例,将各自的值代入列出关于t的方程,求出方程的解即可得到此时t的值;(2)由(1)求出t的值,分两种情况考虑:当0<t≤2.4时,过Q′作Q′D⊥l于D点,则Q′D=t,由RP与BC平行,利用两直线平行得到两对同位角相等,利用两对对应角相等的两三角形相似得到△RPA∽△BCA,由相似得比例表示出RP,利用三角形的面积公式表示出S关于t的关系式即可;当2.4<t≤6时,记PQ′与AB的交点为E,过E作ED⊥l于D,由对称性得到由对称可得:∠DPE=∠DEP=45°,可得出三角形DEP为等腰直角三角形,得到DE=DP,由△RDE∽△BCA,利用相似得比例,表示出DR,再由△RPA∽△BCA,由相似得比例,表示出RP,由RP=RD+DP=RD+DE,将表示出的DR及RP代入,表示出DE,利用三角形的面积公式即可表示出S与t的关系式;(3)S能为cm2,具体求法为:当0<t≤2.4时,令S=,得出关于t的一元二次方程,求出方程的解得到t的值;当2.4<t≤6时,令S=,得出关于t的一元二次方程,求出方程的解得到t的值,经检验得到满足题意t的值.解答:解:(1)连接QQ′,∵PC=QC,∠C=90°,∴∠CPQ=45°,又l⊥AC,∴∠RPQ=∠RPC﹣∠CPQ=90°﹣45°=45°,由对称可得PQ′=PQ,∠QPQ′=90°,QQ′=2t,且QQ′∥CA,∴∠BQQ′=∠BCA,又∠B=∠B,∴△BQQ′∽△BCA,∴==,即=,解得:t=2.4;(2)当0<t≤2.4时,过Q′作Q′D⊥l于D点,则Q′D=t,又∵RP∥BC,∴△RPA∽△BCA,∴=,即=,∴RP=(8﹣t)•=,∴S=RP•Q′D=••t=﹣t2+3t;当2.4<t≤6时,记PQ′与AB的交点为E,过E作ED⊥l于D,由对称可得:∠DPE=∠DEP=45°,又∵∠PDE=90°,∴△DEP为等腰直角三角形,∴DP=DE,∵△RDE∽△BCA,∴===,即DR=DE,∵△RPA∽△BCA,∴=,即=,∴RP=,∴RP=RD+DP=DR+DE=DE+DE=,即DE=,∴DE=,∴S=RP•DE=••=t2﹣t+;(3)S能为cm2,理由为:若t2﹣t+=(2.4<t≤6),整理得:t2﹣16t+57=0,解得:t==8±,∴t1=8+(舍去),t2=8﹣;若﹣t2+3t=(0<t≤2.4),整理得:t2﹣8t+3=0,解得:t==4±,∴t1=4+(舍去),t2=4﹣,综上,当S为cm2时,t的值为(8﹣)或(4﹣)秒.点评:考查了相似形综合题,此题涉及的知识有:相似三角形的判定与性质,一元二次方程的解法,轴对称的性质,勾股定理,以及根的判别式,是一道较难的相似形综合题.25.(12分)(2012•大连)如图,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,点E在AD上,点F 在DC上,且∠BEF=∠A.(1)∠BEF=180°﹣2α(用含α的代数式表示);(2)当AB=AD时,猜想线段EB、EF的数量关系,并证明你的猜想;(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图),求的值(用含m,n的代数式表示)考点:相似三角形的判定与性质;梯形.分析:(1)由梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,根据平行线的性质,易求得∠A的度数,又由∠BEF=∠A,即可求得∠BEF的度数;(2)首先连接BD交EF于点O,连接BF,由AB=AD,易证得△EOB∽△DOF,根据相似三角形的对应边成比例,可得,继而可证得△EOD∽△BOF,又由相似三角形的对应角相等,易得∠EBF=∠EFB=α,即可得EB=EF;(3)首先延长AB至G,使AG=AE,连接BE,GE,易证得△DEF∽△GBE,然后由相似三角形的对应边成比例,即可求得的值.解答:(1)解:∵梯形ABCD中,AD∥BC,∴∠A+∠ABC=180°,∴∠A=180°﹣∠ABC=180°﹣2α,又∵∠BEF=∠A,∴∠BEF=∠A=180°﹣2α;故答案为:180°﹣2α;(2)EB=EF.证明:连接BD交EF于点O,连接BF.∵AD∥BC,∴∠A=180°﹣∠ABC=180°﹣2α,∠ADC=180°﹣∠C=180°﹣α.∵AB=AD,∴∠ADB=(180°﹣∠A)=α,∴∠BDC=∠ADC﹣∠ADB=180°﹣2α,由(1)得:∠BEF=180°﹣2α=∠BDC,又∵∠EOB=∠DOF,∴△EOB∽△DOF,∴,即,∵∠EOD=∠BOF,∴△EOD∽△BOF,∴∠EFB=∠EDO=α,∴∠EBF=180°﹣∠BEF﹣∠EFB=α=∠EFB,∴EB=EF;(3)解:延长AB至G,使AG=AE,连接GE,则∠G=∠AEG===α,∵AD∥BC,∴∠EDF=∠C=α,∠GBC=∠A,∠DEB=∠EBC,∴∠EDF=∠G,∵∠BEF=∠A,∴∠BEF=∠GBC,∴∠GBC+∠EBC=∠DEB+∠BEF,即∠EBG=∠FED,∴△DEF∽△GBE,∴,∵AB=mDE,AD=nDE,∴AG=AE=(n+1)DE,∴BG=AG﹣AB=(n+1)DE﹣mDE=(n+1﹣m)DE,∴==n+1﹣m.点评:此题考查了相似三角形的判定与性质、梯形的性质以及等腰三角形的判定与性质.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.26.(12分)(2012•大连)如图,抛物线y=ax2+bx+c经过A(﹣,0)、B(3,0)、C(0,3)三点,线段BC与抛物线的对称轴相交于D.该抛物线的顶点为P,连接PA、AD、DP,线段AD与y轴相交于点E.(1)求该抛物线的解析式;(2)在平面直角坐标系中是否存在点Q,使以Q、C、D为顶点的三角形与△ADP全等?若存在,求出点Q的坐标;若不存在,说明理由;(3)将∠CED绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴相交于点N,连接PM、DN,若PM=2DN,求点N的坐标(直接写出结果).考点:二次函数综合题.专题:计算题;压轴题;数形结合.分析:(1)已知抛物线经过的三点坐标,直接利用待定系数法求解即可.(2)由于点Q的位置可能有四处,所以利用几何法求解较为复杂,所以可考虑直接用SSS判定两三角形全等的方法来求解.那么,首先要证明CD=DP,设出点Q的坐标后,表示出QC、QD 的长,然后由另两组对应边相等列方程来确定点Q的坐标.(3)根据B、D的坐标,容易判断出△CDE是等边三角形,然后通过证△CEM、△DEN全等来得出CM=DN,首先设出点M的坐标,表示出PM、CM的长,由PM=2DN=2CM列方程确定点M的坐标,进一步得到CM的长后,即可得出DN的长,由此求得点N的坐标.解答:解:(1)设抛物线的解析式为:y=a(x+)(x﹣3),代入点C(0,3)后,得:a(0+)(0﹣3)=3,解得a=﹣∴抛物线的解析式:y=﹣(x+)(x﹣3)=﹣x2+x+3.(2)设直线BC的解析式:y=kx+b,依题意,有:,解得∴直线BC:y=﹣x+3.由抛物线的解析式知:P(,4),将点P代入直线BC中,得:D(,2).设点Q(x,y),则有:QC2=(x﹣0)2+(y﹣3)2=x2+y2﹣6y+9、QD2=(x﹣)2+(y﹣2)2=x2+y2﹣2x﹣4y+7;而:PA2=(﹣﹣)2+(0﹣4)2=28、AD2=(﹣﹣)2+(0﹣2)2=16、CD=PD=2;△QCD和△APD中,CD=PD,若两个三角形全等,则:①QC=AP、QD=AD时,②QC=AD、QD=AP时,解①、②的方程组,得:、、、;∴点Q的坐标为(3,4)、(,﹣2)、(﹣2,1)或(0,7).(3)根据题意作图如右图;由D(,2)、B(3,0)知:DF=2,BF=2;∴∠BDF=∠ADF=∠CDE=∠DCE=60°,即△CED是等边三角形;又∵∠CEC′=∠DED′,且CE=DE∴△CEM≌△DEN,则CM=DN,PM=2CM=2DN;设点M(x,﹣x+3),则有:PM2=(﹣x)2+(4+x﹣3)2=x2﹣x+4、CM2=x2+x2=x2;已知:PM2=4CM2,则有:x2﹣x+4=4×x2,解得x=(负值舍去);∴CM=DN=×x=×=;则:FN=DF﹣DN=2﹣=,∴点N(,).点评:该题的难度较大,涉及到:函数解析式的确定、等边三角形的判定和性质、图形的旋转以及全等三角形的应用等重点知识.在解题时,一定要注意从图中找出合适的解题思路;能否将琐碎的知识运用到同一题目中进行解答,也是对基础知识掌握情况的重点考查.。
2012年天津市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2012•天津)2cos60°的值等于()A. 1 B.C.D. 22.(3分)(2012•天津)下列标志中,可以看作是中心对称图形的是()A.B. C.D.3.(3分)(2012•天津)据某域名统计机构公布的数据显示,截至2012年5月21日,我国“.NET”域名注册量约为560000个,居全球第三位,将560000用科学记数法表示应为()A.560×103B.56×104C. 5.6×105D. 0.56×1064.(3分)(2012•天津)估计的值在()A.2到3之间B.3到4之间C. 4到5之间D. 5到6之间5.(3分)(2012•天津)为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有()A.300名B.400名C. 500名D. 600名6.(3分)(2012•天津)将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.菱形D.正方形7.(3分)(2012•天津)如图是一个由4个相同的正方体组成的立体图形,它的三视图是()A.B.C.D.8.(3分)(2012•天津)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.9.(3分)(2012•天津)某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.汽车在高速公路上的行驶速度为100km/hB.乡村公路总长为90kmC.汽车在乡村公路上的行驶速度为60km/hD.该记者在出发后4.5h到达采访地10.(3分)(2012•天津)若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>﹣;③二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是()A.0 B. 1 C. 2 D. 3二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2011•铜仁地区)|﹣3|=_________.12.(3分)(2012•天津)化简的结果是_________.13.(3分)(2012•天津)袋子中装有5个红球和3个黑球,这些球除了颜色外都相同.从袋子中随机的摸出一个球,则它是红球的概率是_________.14.(3分)(2012•天津)将正比例函数y=﹣6x的图象向上平移,则平移后所得图象对应的函数解析式可以是_________(写出一个即可).15.(3分)(2012•天津)如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,点D为⊙O上一点,若∠CAB=55°,则∠ADC的大小为_________(度).16.(3分)(2012•天津)若一个正六边形的周长为24,则该六边形的面积为_________.17.(3分)(2012•天津)如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为_________.18.(3分)(2012•天津)“三等分任意角”是数学史上一个著名问题.已知一个角∠MAN,设∠α=∠MAN.(Ⅰ)当∠MAN=69°时,∠α的大小为_________(度);(Ⅱ)如图,将∠MAN放置在每个小正方形的边长为1cm的网格中,角的一边AM与水平方向的网格线平行,另一边AN经过格点B,且AB=2.5cm.现要求只能使用带刻度的直尺,请你在图中作出∠α,并简要说明做法(不要求证明)_________.三、解答题(共8小题,满分66分)19.(6分)(2012•天津)解不等式组.20.(8分)(2012•天津)已知反比例函数y=(k为常数,k≠1).(Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;(Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;(Ⅲ)若其图象的一直位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1>y2时,试比较x1与x2的大小.21.(8分)(2012•天津)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如图.(Ⅰ)求这50个样本数据的平均数、众数和中位数;(Ⅱ)根据样本数据,估算该校1200名学生共参加了多少次活动?22.(8分)(2012•天津)已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B.(Ⅰ)如图①,若∠BAC=25°,求∠AMB的大小;(Ⅱ)如图②,过点B作BD⊥AC于E,交⊙O于点D,若BD=MA,求∠AMB的大小.23.(8分)(2012•天津)如图,甲楼AB的高度为123m,自甲楼楼顶A处,测得乙楼顶端C处的仰角为45°,测得乙楼底部D处的俯角为30°,求乙楼CD的高度(结果精确到0.1m,取1.73).24.(8分)(2012•天津)某通讯公司推出了移动电话的两种计费方式(详情见下表).月使用费/元主叫限定时间/分主叫超时费/(元/分)被叫方式一58 150 0.25 免费方式二88 350 0.19 免费设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据表中提供的信息回答下列问题:(Ⅰ)用含有t的式子填写下表:t≤150 150<t<350 t=350 t>350方式一计费/元58 _________108 _________方式二计费/元88 88 88 _________(Ⅱ)当t为何值时,两种计费方式的费用相等?(Ⅲ)当330<t<360时,你认为选用哪种计费方式省钱(直接写出结果即可).25.(10分)(2012•天津)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标洗中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).26.(10分)(2012•天津)已知抛物线y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,y A)、B(0,y B)、C(﹣1,y C)在该抛物线上.(Ⅰ)当a=1,b=4,c=10时,①求顶点P的坐标;②求的值;(Ⅱ)当y0≥0恒成立时,求的最小值.2012年天津市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.3分)(2012•天津)2cos60°的值等于()A.( 1 B.C.D. 2故选A.点评:本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.2.(3分)(2012•天津)下列标志中,可以看作是中心对称图形的是()A.B.C.D.考点:中心对称图形。
2012年中考数学试题一、选择题:1.若x 5=,则x 的值是【 】A .5B .-5C .5±D .51 2.下列运算正确的是【 】A .5510a a a +=B .339a a a ⋅=C .()3393a 9a = D .1239a a a ÷=3.函数y x 2=-中自变量x 的取值范围是【 】A .x 2>B .x 2≥C .x 2≤D .x 2<4.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字应为【 】 A .56.7510⨯- 克 B .56.7410-⨯ 克 C .66.7410-⨯ 克 D . 66.7510-⨯克 5.若关于x 的一元二次方程2x 2x m 0-+=有两个不相等的实数根,则m 的取值范围是【 】 A .m 1< B .m 1<- C .m 1> D . m 1>- 6.下列命题中,真命题是【 】A .有两条对角线相等的四边形是等腰梯形B .两条对角线互相垂直且平分的四边形是正方形C .等边三角形既是轴对称图形又是中心对称图形D .有一个角是60°的等腰三角形是等边三角形7.如图,在△ABC 中,∠ACB =90°,∠A =20°,若将△ABC 沿CD 折叠,使B 点落在AC 边上的E 处,则∠ADE 的度数是【 】A .30°B .40°C .50°D .55°8.一组数据为2、3、5、7、3、4,对于这组数据,下列说法错误的是【 】A .平均数是4B .极差是5C .众数是3D . 中位数是6 9.若m 、n 是一元二次方程2x 5x 20--=的两个实数根,则m n mn +-的值是【 】 A .-7 B .7 C .3 D . -310.圆锥底面圆的半径为1㎝,母线长为6㎝,则圆锥侧面展开图的圆心角是【 】 A .30° B .60° C .90° D . 120°第Ⅱ卷(非选择题)二、填空题:11.因式分解:2ax 2ax a -+= ▲ .12.如图,□ABCD 中,AB =5,AD =3,AE 平分∠DAB 交BC 的延长线于F 点,则CF = ▲ .13.已知:P A 、PB 与⊙O 相切于A 点、B 点,OA =1,P A =3,则图中阴影部分的面积是 ▲ (结果保留π).14.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加优育小组,35%的人参加美术小组,则参加音乐小组的有 ▲ 人. 15.直线y (3a)x b 2=-+-在直角坐标系中的图象如图所示, 化简:2b a a 6a 92b ---+--= ▲ .16.在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 ▲ .第14题 第15题 第17题 三、计算题:本大题共2个小题,每小题6分,共12分.17.计算:)2014cos301212-⎛⎫+-⎪⎝⎭18.解方程:11x 3x 22x -+=-- 解不等式组()2x 13x 22x 4⎧--⎪⎨-⎪⎩≥<19.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为A(-3 ,0),B(-1 ,-2),C(-2 ,2).(1)请在图中画出△ABC绕B点顺时针旋转90°后的图形;(2)请直接写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标.20.如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.21.有质地均匀的A.B.C.D四张卡片,上面对应的图形分别是圆、正方形、正三角形、平行四边形,将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(不放回),再随机抽出第二张.(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢。
2012年中考数学试题一、选择题:1.若x 5=,则x 的值是【 】A .5B .-5C .5±D .51 2.下列运算正确的是【 】A .5510a a a +=B .339a a a ⋅=C .()3393a 9a = D .1239a a a ÷=3.函数y x 2=-中自变量x 的取值范围是【 】A .x 2>B .x 2≥C .x 2≤D .x 2<4.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字应为【 】 A .56.7510⨯- 克 B .56.7410-⨯ 克 C .66.7410-⨯ 克 D . 66.7510-⨯克 5.若关于x 的一元二次方程2x 2x m 0-+=有两个不相等的实数根,则m 的取值范围是【 】 A .m 1< B .m 1<- C .m 1> D . m 1>- 6.下列命题中,真命题是【 】A .有两条对角线相等的四边形是等腰梯形B .两条对角线互相垂直且平分的四边形是正方形C .等边三角形既是轴对称图形又是中心对称图形D .有一个角是60°的等腰三角形是等边三角形7.如图,在△ABC 中,∠ACB =90°,∠A =20°,若将△ABC 沿CD 折叠,使B 点落在AC 边上的E 处,则∠ADE 的度数是【 】A .30°B .40°C .50°D .55°8.一组数据为2、3、5、7、3、4,对于这组数据,下列说法错误的是【 】A .平均数是4B .极差是5C .众数是3D . 中位数是6 9.若m 、n 是一元二次方程2x 5x 20--=的两个实数根,则m n mn +-的值是【 】 A .-7 B .7 C .3 D . -310.圆锥底面圆的半径为1㎝,母线长为6㎝,则圆锥侧面展开图的圆心角是【 】 A .30° B .60° C .90° D . 120°第Ⅱ卷(非选择题)二、填空题:11.因式分解:2ax 2ax a -+= ▲ .12.如图,□ABCD 中,AB =5,AD =3,AE 平分∠DAB 交BC 的延长线于F 点,则CF = ▲ .13.已知:P A 、PB 与⊙O 相切于A 点、B 点,OA =1,P A =3,则图中阴影部分的面积是 ▲ (结果保留π).14.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加优育小组,35%的人参加美术小组,则参加音乐小组的有 ▲ 人. 15.直线y (3a)x b 2=-+-在直角坐标系中的图象如图所示, 化简:2b a a 6a 92b ---+--= ▲ .16.在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 ▲ .第14题 第15题 第17题 三、计算题:本大题共2个小题,每小题6分,共12分.17.计算:)2014cos301212-⎛⎫+-⎪⎝⎭18.解方程:11x 3x 22x -+=-- 解不等式组()2x 13x 22x 4⎧--⎪⎨-⎪⎩≥<19.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为A(-3 ,0),B(-1 ,-2),C(-2 ,2).(1)请在图中画出△ABC绕B点顺时针旋转90°后的图形;(2)请直接写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标.20.如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.21.有质地均匀的A.B.C.D四张卡片,上面对应的图形分别是圆、正方形、正三角形、平行四边形,将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(不放回),再随机抽出第二张.(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢。
2012北京中考数学试题及答案2012年北京中考数学试题及答案一、选择题(本题共10分,每小题2分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个三角形的三边长分别为3,4,5,那么这个三角形是什么类型的三角形?A. 等边三角形B. 等腰三角形C. 直角三角形D. 等差数列三角形答案:C3. 圆的周长是直径的多少倍?A. 2πB. πC. π/2D. 4答案:A4. 一个数的平方根是它本身,这个数可能是?A. 0B. 1C. -1D. 2答案:A5. 以下哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B二、填空题(本题共20分,每小题4分)6. 一个数的绝对值是5,这个数可能是______。
答案:±57. 如果一个角是直角的一半,那么这个角的度数是______。
答案:45°8. 一个长方体的长、宽、高分别是2、3、4,那么它的体积是______。
答案:249. 一个数的倒数是1/2,这个数是______。
答案:210. 如果一个分数的分子是5,分母是10,那么这个分数化简后的结果是______。
答案:1/2三、解答题(本题共70分)11. 解一元一次方程:3x - 5 = 14答案:首先移项得3x = 14 + 5,然后合并同类项得3x = 19,最后系数化为1得x = 19/3。
12. 证明:如果一个角是直角三角形的一个锐角的两倍,那么这个角是直角。
答案:设直角三角形ABC中,∠C是直角,∠A是锐角,假设∠A= α,根据题意,∠B = 2α。
根据三角形内角和定理,∠A + ∠B +∠C = 180°,代入已知条件得α + 2α + 90° = 180°,解得α = 30°,所以∠B = 60°,这与直角三角形的性质矛盾,因此假设不成立,原命题得证。
2012中考数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 2答案:C2. 一个圆的半径是5厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B3. 如果一个等腰三角形的底边长为6厘米,腰长为5厘米,那么它的周长是多少厘米?A. 16B. 21C. 22D. 26答案:B4. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/12答案:C5. 一个数的平方根是4,这个数是?A. 16B. 8C. 4D. 2答案:A6. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是多少立方米?A. 24B. 12C. 8D. 6答案:B7. 一个数的倒数是1/5,这个数是?A. 5B. 1/5C. 1/4D. 4/5答案:A8. 一个直角三角形的两条直角边分别是3和4,斜边长是多少?A. 5B. 6C. 7D. 8答案:A9. 一个分数的分子是8,分母是它的4倍,这个分数是多少?A. 1/4B. 1/3C. 1/2D. 2/3答案:A10. 一个数的立方是27,这个数是?A. 3B. 9C. 27D. 81答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。
答案:5或-512. 如果一个数的平方是25,那么这个数是______或______。
答案:5或-513. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的平方根和立方根相等,这个数是______。
答案:0或115. 如果一个数的对数是2,那么这个数是______。
答案:10016. 一个数的平方是36,那么这个数是______或______。
答案:6或-617. 一个数的倒数是2/3,这个数是______。
答案:3/218. 如果一个数的立方是-27,那么这个数是______。
(精编版)2012全国各地中考数学试题分类解析汇编代数综合问题1. (2012广东佛山10分)规律是数学研究的重要内容之一.初中数学中研究的规律主要有一些特定的规则、符号(数)及其运算规律、图形的数值特征和位置关系特征等方面.请你解决以下与数的表示和运算相关的问题:(1)写出奇数a用整数n表示的式子;(2)写出有理数b用整数m和整数n表示的式子;(3)函数的研究中,应关注y随x变化而变化的数值规律(课本里研究函数图象的特征实际上也是为了说明函数的数值规律).下面对函数y=x2的某种数值变化规律进行初步研究:由表看出,当x的取值从0开始每增加1个单位时,y的值依次增加1,3,5...请回答:当x的取值从0开始每增加12个单位时,y的值变化规律是什么?当x的取值从0开始每增加1n个单位时,y的值变化规律是什么?【答案】解:(1)n是任意整数,则表示任意一个奇数的式子是:2n+1。
(2)有理数b=mn(n≠0)。
(3)①当x的取值从0开始每增加1个单位时,列表如下:故当x 的取值从0开始每增加12个单位时,y 的值依次增加14、34、54 …2i 14-。
②当x 的取值从0开始每增加1n 个单位时,列表如下:故当x 的取值从0开始每增加1n个单位时,y 的值依次增加21n 、23n 、25n …22i 1n -。
【考点】分类归纳(数字的变化类),二次函数的性质,实数。
【分析】(1)n 是任意整数,偶数是能被2整除的数,则偶数可以表示为2n ,因为偶数与奇数相差1,所以奇数可以表示为2n+1。
(2)根据有理数是整数与分数的统称,而所有的整数都可以写成整数的形式,据此可以得到答案。
(3)根据图表计算出相应的数值后即可看出y 随着x 的变化而变化的规律。
2. (2012广东梅州10分)(1)已知一元二次方程x 2+px+q=0(p 2﹣4q≥0)的两根为x 1、x 2;求证:x 1+x 2=﹣p ,x 1•x 2=q .y i+1-y i14 34 54 74 94 114...x i 0 1n 2n 3n 4n 5n ... y i 021n 24n 29n 216n 225n ... y i+1-y i21n23n 25n27n 29n 211n...(2)已知抛物线y=x 2+px+q 与x 轴交于A 、B 两点,且过点(﹣1,﹣1),设线段AB 的长为d ,当p 为何值时,d 2取得最小值,并求出最小值. 【答案】(1)证明:∵a=1,b=p ,c=q ,p 2﹣4q≥0,∴1212bc x x =p x x =q a a+=--⋅=,。
2012年中考数学综合型问题试题考点解析归总综合型问题一、选择题1.(2011重庆江津4分)下列说法不正确是A、两直线平行,同位角相等B、两点之间直线最短C、对顶角相等D、半圆所对的圆周角是直角【答案】B。
【考点】平行线的性质,对顶角的性质,线段公理,圆周角定理。
【分析】利用平行线的性质可以判断A正确;利用两点之间线段最短的线段公理可以判断B错误;利用对顶角相等的性质可以判断C正确;利用圆周角定理可以判断D正确。
故选B。
2.(2011重庆潼南4分)如图,在平行四边形ABCD中(AB≠B C),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是A、①②B、②③C、②④D、③④【答案】B。
【考点】平行四边形的性质,全等三角形的判定和性质,相似三角形的判定。
【分析】①根据平行四边形的对边相等的性质即可求得AO≠BO,即判定该选项错误;②由ASA可证△AOE≌△COF,即可求得EO=FO,该选项正确;③根据相似三角形的判定即可求得△EAM∽△EBN,该选项正确;④易证△EAO≌△FCO,而△FCO和△CNO不全等,根据全等三角形的传递性即可判定该选项错误。
即②③正确。
故选B。
3.(2011浙江杭州3分)正方形纸片折一次,沿折痕剪开,能剪得的图形是A. 锐角三角形B. 钝角三角形C. 梯形D. 菱形【答案】 C。
【考点】剪纸问题。
【分析】此题可以直接作图,由图形求得答案,也可利用排除法求解:如图,若沿着EF剪下,可得梯形ABEF与梯形FECD,∴能剪得的图形是梯形;∵如果剪得的有三角形,则一定是直角三角形,∴排除A与B;如果有四边形,则一定有两个角为90°,且有一边为正方形的边,∴不可能是菱形,排除D。
故选C。
4.(2011浙江义乌3分)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD 交 CE于点G,连结BE. 下列结论中:① CE=BD;② △ADC是等腰直角三角形;③ ∠ADB=∠AEB;④ CD AE=EF CG;一定正确的结论有A.1个 B.2个 C.3个 D.4个【答案】D。
2012年七年级数学考试卷一、选择题。
1.下列说法正确的是( )A 、不相交的两条直线叫做平行线B 、不平行的两条直线一定相交C 、垂直于同一直线的两条直线互相垂直D 、平行于同一直线的两条直线互相平行 2.下列命题中正确的有 ( ).① 相等的角是对顶角; ② 若a ∥b ,b ∥c ,则a ∥c ; ③ 同位角相等; ④ 邻补角的平分线互相垂直. A .0个 B .1个 C .2个 D .3个3.在等腰△ABC 中,AB=AC ,一腰中线BD 将三角形周长分为15和21两部分,则这个三角形的底边长为( )A .8 B.12 C.8或16 D.8或12 4、一个三角形的三个内角中( )A. 至少有一个等于90°B. 不可能都小于60°C. 不可能有两个大于89°D. 至少有一个大于90°5、从多边形一个顶点出发最多可以引9条对角线,则这个多边形的内角和等于( )A 、1620°B 、1440 °C 、1260°D 、1800° 6、如图小陈从O 点出发,前进5米后向右转020,再向前进5米后又向右转020……,这样一直下去,他第一次回到出发点O 时,一共走了( )A 、 60米B 、100米C 、120米D 、90米 7. 已知三角形的三边长分别是3,8,,若的值为偶数,则的值有 ( ). A .3个 B .4个 C .5个 D .6个8. 在下列四组多边形地板砖中,①正五边形与正十边形;②正三角形与正六边形;③正六边形与正方形;④正八边形与正方形.将每组中的两种多边形结合,能镶嵌地面的是 ( ).A .①③④B .②③④C .①②④D .①②③9.一个人从点A 出发,沿北偏东70°的方向走到B 处,再从点B 处沿南偏西15°的方向走到点C 处,那么∠ABC 的度数是( )A .55°B .85°C .105°D .125°10.已知:面积为16的A B C ∆中两中线AD BE ⊥,若:2:3A D B E =,则B E =( )A.2B.4C.6D.8二、填空题。
2012年天河区初中毕业班综合练习一数学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必在答题卡第1面、第3面上用黑色字迹的钢笔或签字笔填写自己的班级、姓名、座位号;填写考号,再用2B铅笔把对应号码的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题号的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.6-的绝对值是().A.6-B.6C.16D.16-2.已知△ABC中,∠A=70°,∠B=60°,则∠C =().A.50°B.60°C.70°D.80°3.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是( ).4.下列二次根式中,属于最简二次根式的是().A.15B.0.5C.5D.505.己知△ABC和△DEF的相似比是1:2,则△ABC和△DEF的面积比是().A.2:1B.1:2C.4:1D.1:46.下列计算正确的是().第5题A. a 2+a 3=a 5B. a 6÷a 3=a 2C. 4x 2-3x 2=1D. (-2x 2y )3=-8 x 6y 3 7.下列各点中,在函数21y x =-图象上的是( ). A. 5(,4)2-- B. (1,3) C. 5(,4)2D. (1,3)-8.五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为( ).A. 19和20B. 20和19C. 20和20D. 20和219.抛物线223y x =-的对称轴是( ).A. y 轴B. 直线2x =C. 直线34=x D.直线3x =-10.如果△+△=*,○=□+□,△=○+○+○+○,则*÷□=( ).A. 2B. 4C. 8D. 16第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,共18分.)11.命题“如果0a b +>,那么0,0a b >>”是 命题(填“真”或“假”). 12.9的算术平方根是 .13.因式分解:21x -= .14.等腰三角形的两边长分别为4和8,则第三边的长度是 .15.将点A (2,1)向右平移2个单位长度得到点A ′,则点A ′的坐标是 . 16.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.三、解答题(本大题共9小题,共102 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解不等式2(1)34x x +>-,并在数轴上表示它的解集. 18.(本小题满分9分)同时投掷两个正方体骰子,请用列举法求出点数的和小于5的概率. 19.(本小题满分10分)第16题先化简式子231111x x x x x -÷--+-,然后从22x -<≤中选择一个合适的整数x 代入求值. 20.(本小题满分10分)如图,ABC ∆的三个顶点都在55⨯的网格(每个小正方形的边长均为1个单位长度)的格点上. (1)在网格中画出将ABC ∆绕点B 顺时针旋转90°后的 △A ′BC ′的图形.(2)求点A 在旋转中经过的路线的长度.(结果保留π)21.(本小题满分12分)如图,AE ∥BF ,AC 平分∠BAE ,且交BF 于点C ,在AE 上取一点D ,使得AD=BC ,连接CD 和BD ,BD 交AC 于点O .(1)求证:△AOD ≌△COB (2)求证:四边形ABCD 是菱形.22.(本小题满分12分)某班将开展“阳光体育”活动,班长在班里募捐了80元给体育委员小明去购买体育用品.小明买了5个毽子和8根跳绳,毽子每个2元,共花了34元.买回后班长觉得用品不够,还需再次购买,下面两图是小明再次买回用品时与班长的对话情境,请根据所给的信息,解决问题:(1)试计算每根跳绳多少元?(2)试计算第二次买了毽子和跳绳各多少件? (3)请你解释:为什么不可能找回33元?23.(本小题满分12分)如图,直线l 经过点A (1,0),且与曲线m y x=(x >0) 交于点B (2,1).过点P (p,p -1)(p ≥2)作x 轴的平行线分yl第20题第22题第21题别交曲线m y x =(x >0)和my x=-(x <0)于M ,N 两点.(1)求m 的值及直线l 的解析式;(2)是否存在实数p ,使得S △AMN =4S △APM ?若存在,请求出 所有满足条件的p 的值;若不存在,请说明理由.24.(本小题满分14分)如图(1),AB 、BC 、CD 分别与⊙O 相切于点E 、F 、G ,且AB ∥CD , 若8,6==OC OB , (1)求BC 和OF 的长; (2)求证:E O G 、、三点共线;(3)小叶从第(1)小题的计算中发现:等式222111OC OB OF +=成立,于是她得到这样的结论: 如图(2),在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥, 垂足为D ,设,BC a AC b ==,CD h =,则有等式222111hb a =+成立.请你判断小叶的结论是否正确, 若正确,请给予证明,若不正确,请说明理由.25.(本小题满分14分)使得函数值为零的自变量的值称为函数的零点.例如,对于函数1-=x y ,令0=y ,可得1=x ,我们就说1是函数1-=x y 的零点.请根据零点的定义解决下列问题:已知函数)3(222+--=m mx x y (m 为常数). (1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x 和2x ,且411121-=+x x ,此时函数图象与x 轴的交点分别为A 、B (点A在点B 左侧),点M 在直线10-=x y 上,当MA +MB 最小时,求直线AM 的函数解析式.第24题图(1)DACB GOFE 第24题图(2)h ba DCBA。
番禺区2012年九年级数学综合训练试题(一)参考答案与评分说明一、 选择题(本大题共10小题,每小题3分,满分30分)第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分) 11.3-;12.2-;13.60︒;14.25︒,(0~45︒︒均可);15.3a -;16. 41 三、解答题(本大题共9小题,满分102分)17.解:原式=2221x x x x +++- ……………………6分 =3 ……………………7分当x ==3(1⨯+ ……………………8分=1-+……………………9分18.证明:如图,在□ABCD 中,BC=DA ,C A ∠=∠.……………………4分∵BF=DH ,∴BC -BF=D A -DH, 即FC=HA . ……………………6分又∵AE=CG ,……………………7分∴AEH △≌CGF △. ……………………9分19.解:(1)∵ 点A (1,)n -在一次函数2y x =-的图象上,∴ 2(1)2n =-⨯-=.… 2分 ∴ 点A 的坐标为12-(,).……………………4分 ∵ 点A 在反比例函数ky x=的图象上,∴ 2k =-.………………5分∴ 反比例函数的解析式为2y x=-.……… 6分(2)点P 的坐标为(2,0)(0,4)-或.………………10分20.解: (1)P (抽到牌面数字4)=13.………………3分 (2)游戏规则对双方不公平.………………4分 理由如下:【方法一】作数形图如图所示, ………………7分数学试卷及试题 2由上述树状图知:所有可能出现的结果共有9种.P (抽到牌面数字相同)=3193=,………………8分 P (抽到牌面数字不相同)=6293=.………………9分∵1233<,∴此游戏不公平,小李赢的可能性大.………………10分 【方法二】列表如下, ………………7分【以下同上】21.解:(1) 抽测的学生有50人, …2分 抽测成绩的众数是5(次).…4分(2)如图所示; …………7分(3)1614635025250++⨯=(人). …………10分答:估计该校350名九年级男生中,约有250人左右体能达标.…………12分22.解:如图,设,,CD x AD y ==/次数学试卷及试题3则由题意有50BD y =-.…………1分 在Rt △ACD 中,tan37AD yCD x︒==,…………4分则tan37y x =⋅︒,在Rt△BCD 中,50tan48BD yCD x-︒==,…………7分 则50tan48y x =-⋅︒,∴tan3750tan48x x ⋅︒=-⋅︒.…………8分∴505026.82tan37tan480.7536 1.1106x =≈=︒+︒+.…………10分答:小明家所在居民楼与大厦的距离CD 大约是27米.…………………12分 23.(1)证明:连结AE .…………1分∵ AB 是⊙O 的直径,∴ 90AEB ∠=︒ , ∴ 1290∠+∠=︒.…………2分∵ AB=AC ,∴ 112CAB ∠=∠.又∵ 12CBF CAB ∠=∠,∴ 1CBF ∠=∠.∴ 290CBF ∠+∠=︒.即∠ABF = 90°.…………3分 ∵ AB 是⊙O 的直径,…………4分 ∴ 直线BF 是⊙O 的切线.…………5分 (2)解:过点C 作CG ⊥AB 于点G .…………6分 ∵sin CBF ∠【过点C 作CG ⊥BF 亦可类似求解】1CBF ∠=∠,∴sin 1∠=.…………7分 ∵ 90AEB ∠=︒,AB=5,∴ BE=sin 1AB ⋅∠.又∵ AB=AC ,90AEB ∠=︒, ∴2BC BE ==.在Rt △ABE 中,由勾股定理得 AE=8分∴sin 2∠=,cos 2∠=.在Rt △CBG 中,可求得 4GC =,2GB =.∴ AG=3.∵ GC ∥BF ,∴ △AGC ∽△ABF .…………10分∴ GC AG BF AB =.∴ 203GC AB BF AG ⋅==.…………12分24.解:(1)GF DF ∴=.…………1分连接EF ,则90EGF D ∠=∠=°,EG AE ED EF EF ===,.题12数学试卷及试题4Rt Rt EGF EDF ∴△≌△.…………2分 GF DF ∴=.…………3分(2)由(1)知,GF DF =.设AB a =,DF b =,则有BC =,CF DC DF a b =-=-,…………4分由对称性有BG AB a ==,BF BG GF a b ∴=+=+.…………5分在Rt BCF △中,222BC CF BF +=,即222)()()a b a b +-=+,…………6分2a b ∴=,…………7分∴2DC aDF b==.…………8分(3)由(1)知,GF DF =.设DF x BC y ==,,则有.GF x AD y ==,DC n DF =·,DC AB BG nx ∴===.…………9分(1)1CF n x BF BG GF n x ∴=-=+=+,().…………10分在Rt BCF △中,222BC CF BF +=,即222[1][(1)]y n x n x +-=+().…………12分y ∴= …………13分AD y AB nx n ∴==⎝…………14分25. 解:(1)()()()0300A m B m D -,,,,.…………3分(2)设直线ED 的解析式为y kx b =+,将()()300D -,、代入得:图14FA DBC数学试卷及试题530k b b -+=⎧⎪⎨=⎪⎩,…………4分解得,3k m b ==,. ∴直线ED的解析式为y =+. …………5分将)()3y x m x m =+-化为顶点式:)2y x m =-+. ∴顶点M的坐标为m ⎛⎫⎪ ⎪⎝⎭. …………7分代入3y mx =得:2m m =. 01m m >∴=,.所以,当1m =时,M 点在直线DE 上. (8)连接CD C ,为AB 中点,C 点坐标为()0C m ,.312OD OC CD D ==∴=,,点在圆上,又222312OE DE OD OE ==+=,,22222164EC CD CD DE EC ==∴+=,,.90FDC ∴∠=°,∴直线ED 与C ⊙相切.…………10分 (3)当03m <<时,()1322AED S AE OD m ==-△· 即:222S m m =-+.…………11分 当3m >时,()1322AED S AE OD m m ==-△·, 即:222S m m =-.…………12分 其图象示意图如图中实线部分.…………【每个区间1分】14分图15。
2012年中考适应性考试
数学试卷
(全卷共8页,满分120分,120分钟完卷) 题 号 一 二 三 四 五 六 总分 总分人
题 分 30 18 23 30 9 10 120
得 分
一、选择题:下面各小题给出的四个选项中,只有一个选项符合题目的
要求,请将符合要求的选项的代号填涂在机读卡上的相应位置。
(每小题3分,共30分)
1.-2012的倒数是
A .2012
B .-2012
C .
12012 D .1
2012
- 2.给出下列运算:⑴()
2
5
-=25 (2)212⎛⎫
- ⎪⎝⎭
=12 (3)4139-= 其中正确有
A .0个 B.1个 C.2个 D.3个
3.下列图形,既是轴对称图形,又是中心对称图形的是
4.玉树地震后,2010年4月20日央视赈灾晚会共募得善款21.75亿元,这个数用科学记数
法表示为:
A.2.175×109
元 B.2.175×108
元 C. 2.175×107
元 D.2.175×106
元 5.如果2是关于x 的方程
2
0c x
+=的一个根,那么常数c 与方程的另一个根之和等于
A .2
B .0
C .-2.
D .-6
6.如图,o 的半径OC 平分弦AB, 40,OAB ABC ∠=∠=
A .40
B .30
C .20
D .25
(第6题图) 7.下列说法正确的是
A..连续抛硬币10次,“10次都是正面朝上”是不可能事件
B .掷正方体骰子5次都未出现数字6,则第6次一定出现数字6
得分 评卷人
C .买一注体育彩票中一等奖的概率为
1
16000000
,则买一注这种体育彩票可能中一等奖
D .栽某种树的成活率是99.9%,则栽一棵这种树一定存活
8.以一个圆的内接正三角形、正方形、正六边形的边为三边作三角形,则 A .不能构成三角形 B .能构成等腰三角形 C .能构成钝角三角形 D .能构成直角三角形
9.国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年年人均收
入(单位:元)情况如下表,该乡去年年人均收入的中位数是
A .3700元
B .3800元
C .3850元
D .3900元
10.如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为
t ,蚂蚁到...O .点的距离....为S ,则S 关于t 的函数图象大致为 二、填空题:请把最简答案直接填在题目的横线上
(每小题3分,共18分)
11.计算:
1
273
⨯=__________________. 12.体育委员带了300元钱去买体育用品,已知一个蓝球 a 元,一个足球 b 元。
则代数式
300-2a -3b 表示的数为_______________________________________________. 13.已知a -
2a =5, 则a +2
a
=__________________. 14.若关于x 的一元二次方程(x -3)(x +2)-k
2
x
=0有两个不相等的实数根,则常数k 的取
值范围为______________________________________.
15.在一个不透明的布袋中,有2个白球,n 个黄球,这些球只有颜色不同,若从中随机摸
出一个球,摸到黄球的概率为
6
7
,则黄球个数n 应是_______________. 16.若圆锥的侧面展开图扇形的圆心角是120
,则圆锥的全面积是底面积的 ________倍.
年人均收入
3500 3700 3800 3900 4500 村庄个数 1 1 3 3 1 得分 评卷人
A
B
O
s
t O
s
t O s
t O s
t O A . B . C . D .
三、解答题:(17小题5分,18、19、20各小题6分,本大题4个小题
共23分)
17.计算: 2--4cos 30
+1
13-⎛⎫ ⎪⎝⎭
+12
18.解不等式组20
51
2112
3x x x ->⎧⎪+-⎨+⎪⎩≥ 并把解集在数轴上表示出来。
19.如图,已知⊙O 中,弦AB 与CD 相交于点P .
求证:PA •PB =PC •PD .
(第19题图)
得分 评卷人
•
P
B
A C
D O
20.如图,一次函数y 1=ax +b (a ≠0)与反比例函数x
m
y
2(m ≠0)的图象交于P (-2,1)、Q (1,n )两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出当y 1>y 2时自变量x 的取值范围.
(第20题图)
四、实践应用题(本大题共4个小题,其中21题6分,22、23、24每
小题8分,共30分)
21.为增强农民抵御大病风险的能力,我市推行了新型农村合作医疗制度.农民每年只要交
30元钱,就可以加入合作医疗,住院费用按规定当场报销,门诊医疗年终时也可获得一定比例的返还款.小丁同学随机调查了他们乡的一些农民,根据收集的数据绘制了如图所示的统计图:
(第21题图) 得分 评卷人
Q P
-4
-3-2-112
34O x
y -4
-3
-2
-1
4
3
2
1
E
D C B
A
15米
10米
30°
18°花坛
试根据以上信息,解答下列问题:
(1)本次共调查了多少名村民?被调查的村民中有多少人参加合作医疗并得到了返款;
(结果用“进一法”取整数)
(2)若该乡有10000村民,估计有多少人参加了合作医疗;
(3)若两年后参加合作医疗人数增加到9600人,假设这两年平均每年增长率相同,则
平均每年增长的百分率约为多少?(结果保留三位有效数字.参考数据:
30 5.477)
22.如图,一人行天桥的高是10米,坡面C A 的坡角为30°.为了方便行人推车过桥,市政部门决定降低坡度,使新坡面CD 的坡角为18°。
若需留DE 为4米的人行道,问离原坡脚A 处15米的花坛E 是否需要拆除?
(参考数据sin18°=0.309; cos18°=0.951 ;tan18°=0.325)
(第22题图)
23.在2011年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.
24.动能车队的一群自行车爱好者从广安出发到70千米远的一个景点去春游,请根据下面骑行路程与时间的关系图象回答下面问题:
路程(km)
80
70
60
50
40
30
20
10
1 2 3 4 5 6 7 8 t(小时)
(第24题图)
(1)他们在景区游玩了多少时间(单位:小时)
(2)如果用y(km)表示他们在时间t(小时)时骑行的路程,请写出到达景区前y关于t的函数解析式(标明t的取值范围)
25.如图,B 为线段AD 上一点,△ABC 和△BDE 都是等边三角形,连接CE 并延长,交AD 的
延长线于F ,△ABC 的外接圆⊙O 交CF 于点M . (1)求证:BE 是⊙O 的切线;
(2)求证:CF CM AC ⋅=2;
(3)若过点D 作DG//BE 交EF 于G ,过G 作GH//DE 交DF 于H ,则易知△DHG 是等边三角形.设△ABC 、△BDE 、△DHG 的面积分别为1S 、2S 、3S ,试探究1S 、2S 、3S 之间的数量关系,并证明你的猜想.
(第25题图)
26.已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为5,过点C作⊙A的切线交x轴于点B(-4,0).
(1)求切线BC的解析式;
(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;
(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于点E、F,在移动过程中是否存在使△AEF是直角三角形的位置?若存在,求出点A的坐标;若不存在,请说明理由.
(第26题图)。