简单的随机抽样
- 格式:ppt
- 大小:1.09 MB
- 文档页数:18
用简单随机抽样方法简单随机抽样(Simple Random Sampling)是一种常见的抽样方法,它被广泛应用于统计学、市场调查、研究和实验设计等领域。
简单随机抽样的基本原理是从总体中随机选择一定数量的样本,使得每个样本都有相等的机会被选中,从而保证了样本具有代表性。
下面将详细介绍简单随机抽样的步骤、特点以及优缺点。
简单随机抽样的步骤如下:1. 确定总体:首先,需要明确研究的总体,即需要抽取样本的群体或对象。
例如,如果我们要研究某个城市的市民满意度,那么这个城市的所有居民就是我们的总体。
2. 确定样本大小:根据研究目的和总体规模,确定所需的样本大小。
通常情况下,样本大小需要根据统计学的原理进行计算,以确保具有一定的置信水平和可靠性。
3. 编制抽样框架:将总体分为若干个互不重叠的部分,构成抽样框架。
例如,如果要进行全市居民的抽样调查,可以将城市划分为各个行政区,每个行政区再细分为不同社区或街道等层级,构成抽样框架。
4. 随机抽样:利用随机数发生器或随机数表,根据事先制定的抽样规则,从抽样框架中随机选择样本。
确保每个样本都有被选中的机会,并且样本之间是独立的。
5. 数据收集与分析:对所抽取的样本进行数据收集,可以通过问卷调查、访谈、实地观察等方式获取样本的信息。
然后对收集到的数据进行统计分析,得出研究结论。
简单随机抽样的特点如下:1. 简单性:简单随机抽样是最基本、最简单的一种抽样方法,容易实施。
2. 无偏性:每个个体都有相等的机会被选中,因此样本具有代表性,可以反映总体的特征。
3. 可靠性:经过统计学的计算,可以确定所需的样本大小,以保证样本结果的可靠性。
4. 独立性:简单随机抽样的样本之间是独立的,每个样本都是独立观察的结果,不会相互影响。
简单随机抽样的优点包括:1. 适用性广:适用于各种总体和研究目的,可以应用于不同领域的调查研究。
2. 可行性强:不需要对总体有太多的先验知识,只需要获得总体的名单或抽样框架即可。
简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
简单随机抽样一般采用两种方法:抽签法和随机数表法。
例1:人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?例2:某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?1、为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是A.总体是240 B、个体是每一个学生 C、样本是40名学生 D、样本容量是402、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A、总体B、个体是每一个学生C、总体的一个样本D、样本容量3、一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是。
4、从3名男生、2名女生中随机抽取2人,检查数学成绩,则抽到的均为女生的可能性是。
系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
例题:例1.某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本。
例2.从编号为150的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()C()2,4,6,16,32DA()3,13,23,33,43()5,10,15,20,25B()1,2,3,4,51.从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为()(A)99 (B)99.5 (C)100(D)100.52.从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是()(A)1,2,3,4,5 (B)5,16,27,38,49 (C)2, 4, 6, 8 (D)4,13,22,31,403.某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。
典型的抽样方法1.简单随机抽样:简单随机抽样是指从总体中随机选择个体,使得每个个体被选中的概率相等。
这种抽样方法适用于总体较小、个体之间没有明显差异的情况。
案例:研究人员想要调查大学学生对食堂饭菜满意度的情况。
该大学共有3000名学生,研究人员使用随机数表,随机选取了200名学生进行调查。
研究人员向这200名学生发放问卷,记录他们对食堂饭菜的满意度。
2.系统抽样:系统抽样是指按照一些规则从总体中选择个体,例如每隔一定间隔选择一个个体。
这种抽样方法适用于总体无序排列的情况。
案例:研究人员想要调查小区居民对小区环境的满意度的情况。
该小区共有1000户居民,研究人员将居民按照住址顺序给予编码,然后以编码数为5的倍数进行系统抽样。
例如,从第5户居民开始,每隔5户选取一个居民进行调查,直到选取够样本量为止。
3.分层抽样:分层抽样是指将总体划分为不同层级,然后分别从每个层级中进行抽样。
这种抽样方法适用于总体有明显差异的情况,可为每个层级设置不同的样本量。
案例:研究人员想要调查市不同年龄段人们对健康锻炼的情况。
该市有四个区,每个区又分为青年人、中年人和老年人三个年龄段,研究人员按照这个划分将总体分为12个层级。
然后从每个层级中随机抽取一定数量的样本,如每个层级抽取20人,共计240人进行调查。
4.群组抽样:群组抽样是指将总体划分为若干个群组,然后随机选取部分群组进行抽样。
这种抽样方法适用于群组内个体相似且群组之间有差异的情况。
案例:研究人员想要调查地区学校的教育质量情况。
该地区有20所学校,研究人员使用随机数生成器随机选取了5所学校进行调查。
对于每所选中的学校,研究人员从中随机抽取一定数量的教师和学生,以了解他们对教育质量的看法。
以上是典型的抽样方法及其相应的案例。
在实际应用中,根据研究目的和研究对象的特点,研究人员可以选择最适合的抽样方法来提高研究的准确性和可信度。
常用的随机抽样的方法
1. 简单随机抽样:从总体中随机选取n个样本,每个个体被抽取到的概率相等;
2. 分层随机抽样:将总体划分成不同的层次,然后从每一层中随机抽取相应数量的样本;
3. 整群随机抽样:将总体分为若干个群体,从每个群体中随机选取一个样本;
4. 系统随机抽样:从总体中随机选取一个个体,然后每隔k个个体,选取一个样本,直至达到所需数量的样本;
5. 分配式随机抽样:将总体分为若干个互相独立的子集,每个子集中随机选取一个样本;
6. 整数抽样:从整个总体中随机抽样n个样本,要求每个样本具有唯一的标识编号,之后用随机数生成器不断产生1到总体中个体数之间的随机整数,选择编号为该整数的样本,重复直至抽满n个样本。
简单随机抽样的方法
随机抽样可以分为单纯随机抽样、系统抽样、分层抽样以及整群抽样。
随机抽样要求严格遵循概率原则,每个抽样单元被抽中的概率相同,并且可以重现。
随机抽样常常用于总体个数较少时,它的主要特征是从总体中逐个抽取
抽签法。
一般地,抽签法就是把总体中的n个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
抽签法简单易行,适用于总体中的个数不多时。
当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大。
随机数法。
随机抽样中,另一个经常被使用的方法就是随机数法,即为利用随机数表中、随机数骰子或计算机产生的随机数展开样本。
特点
(1)优点:操作方式简便易行;
(2)缺点:总体过大不易实行。
简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
简单随机抽样一般采用两种方法:抽签法和随机数表法。
例1:人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?例2:某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?1、为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是A.总体是240 B、个体是每一个学生 C、样本是40名学生 D、样本容量是402、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A、总体B、个体是每一个学生C、总体的一个样本D、样本容量3、一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是。
4、从3名男生、2名女生中随机抽取2人,检查数学成绩,则抽到的均为女生的可能性是。
系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
例题:例1.某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本。
例2.从编号为150的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()C()2,4,6,16,32DA()3,13,23,33,43()5,10,15,20,25B()1,2,3,4,51.从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为()(A)99 (B)99.5 (C)100(D)100.52.从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是()(A)1,2,3,4,5 (B)5,16,27,38,49 (C)2, 4, 6, 8 (D)4,13,22,31,403.某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。