第9章S函数
- 格式:ppt
- 大小:1.14 MB
- 文档页数:111
第九章统计热力学初步8+2学时本章从最可几分布引出配分函数的概念,得出配分函数与热力学函数的关系。
由配分函数的分离与计算可求得简单分子的热力学函数与理想气体简单反应的平衡常数。
使学生了解系统的热力学宏观性质可以通过微观性质计算出来。
基本要求:1、理解统计热力学中涉及的一些基本概念如(定域子系统与非定位系统、独立粒子系统与相依粒子系统、微观状态、分布、最可几分布与平衡分布、配分函数)2、理解统计力学的三个基本假定。
理解麦克斯韦–玻尔兹曼分布公式的不同表示形式及其适用条件。
3、理解粒子配分函数的物理意义和析因子性质。
4、明确配分函数与热力学函数间的关系5、了解平动、转动、振动对热力学函数的贡献,了解公式的推导过程。
6、学会利用物质的吉布斯自由能函数、焓函数计算化学反应的平衡常数与热效应。
7、学会由配分函数直接求平衡常数的方法重点:1.平衡分布和玻耳兹曼分布公式;2.粒子配分函数的定义、物理意义及析因子性质;3.双原子分子的平动、转动和振动配分函数的计算;4.热力学能与配分函数的关系式;5.熵与配分函数的关系式;玻耳兹曼熵定理。
难点:1. 粒子配分函数的定义、物理意义及析因子性质;2. 双原子分子的平动、转动和振动配分函数的计算。
第九章统计热力学初步主要公式及其适用条件1. 分子能级为各种独立运动能级之和2. 粒子各运动形式的能级及能级的简并度(1)三维平动子简并度:当a = b = c时有简并,()相等的能级为简并的。
(2)刚性转子(双原子分子):其中。
简并度为:g r,J = 2J +1。
(3)一维谐振子其中分子振动基频为,k为力常数,μ为分子折合质量。
简并度为1,即g v,ν = 1。
(4)电子及原子核全部粒子的电子运动及核运动均处于基态。
电子运动及核运动基态的简并度为常数。
3.能级分布微态数定域子系统:离域子系统:温度不太低时(即时):一般情况下:系统总微态数:4. 等概率定理在N,V,U确定的情况下,系统各微态出现的概率相等。
课时2 范围、最值问题题型一 范围问题例1 (2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433. (1)求直线FM 的斜率;(2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知有c 2a 2=13, 又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),F (-c,0),则直线FM 的方程为y =k (x +c ).由已知,有⎝⎛⎭⎪⎫kc k 2+12+⎝⎛⎭⎫c 22=⎝⎛⎭⎫b 22, 解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c 或x =c . 因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎫c ,233c . 由|FM |= (c +c )2+⎝⎛⎭⎫233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 22=1. (3)设点P 的坐标为(x ,y ),直线FP 的斜率为t ,得t =y x +1,即直线FP 的方程为y =t (x +1)(x ≠-1),与椭圆方程联立. ⎩⎪⎨⎪⎧y =t (x +1),x 23+y 22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t = 6-2x 23(x +1)2>2, 解得-32<x <-1,或-1<x <0. 设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23.①当x ∈⎝⎛⎭⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m = 2x 2-23,得m ∈⎝⎛⎭⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0.因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎫-∞,-233. 综上,直线OP 的斜率的取值范围是⎝⎛⎭⎫-∞,-233∪⎝⎛⎭⎫23,233. 思维升华 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0).(1)求双曲线C 的方程;(2)若直线:y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点M ,N ,且线段MN 的垂直平分线过点A (0,-1),求实数m 的取值范围.解 (1)设双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0). 由已知得:a =3,c =2,又a 2+b 2=c 2,得b 2=1,∴双曲线C 的方程为x 23-y 2=1. (2)联立⎩⎪⎨⎪⎧ y =kx +m ,x 23-y 2=1,整理得(1-3k 2)x 2-6kmx -3m 2-3=0.∵直线与双曲线有两个不同的交点,∴⎩⎪⎨⎪⎧1-3k 2≠0,Δ=12(m 2+1-3k 2)>0, 可得m 2>3k 2-1且k 2≠13,① 设M (x 1,y 1),N (x 2,y 2),MN 的中点为B (x 0,y 0),则x 1+x 2=6km 1-3k 2,∴x 0=x 1+x 22=3km 1-3k 2,∴y 0=kx 0+m =m 1-3k 2. 由题意,AB ⊥MN , ∴k AB =m 1-3k 2+13km 1-3k2=-1k(k ≠0,m ≠0). 整理得3k 2=4m +1,②将②代入①,得m 2-4m >0,∴m <0或m >4.又3k 2=4m +1>0(k ≠0),即m >-14. ∴m 的取值范围是⎝⎛⎭⎫-14,0∪(4,+∞). 题型二 最值问题命题点1 利用三角函数有界性求最值例2 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则|AF |·|BF |的最小值是( )A.2B. 2C.4D.2 2答案 C解析 设直线AB 的倾斜角为θ,可得|AF |=21-cos θ,|BF |=21+cos θ,则|AF |·|BF |=21-cos θ×21+cos θ=4sin 2θ≥4.命题点2 数形结合利用几何性质求最值例3 (2015·江苏)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________________________.答案 22 解析 双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+(-1)2=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22. 命题点3 转化为函数利用均值不等式或二次函数求最值例4 (2014·湖南)如图,O 为坐标原点,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y 2b 2=1的左,右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2=32,且|F 2F 4|=3-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值.解 (1)因为e 1e 2=32,所以 a 2-b 2a ·a 2+b 2a =32,即a 4-b 4=34a 4,因此a 2=2b 2,从而F 2(b,0),F 4(3b,0),于是3b -b =|F 2F 4|=3-1,所以b =1,a 2=2.故C 1,C 2的方程分别为x 22+y 2=1,x 22-y 2=1.(2)因AB 不垂直于y 轴,且过点F 1(-1,0),故可设直线AB 的方程为x =my -1.由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. 易知此方程的判别式大于0.设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是上述方程的两个实根,所以y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. 因此x 1+x 2=m (y 1+y 2)-2=-4m 2+2, 于是AB 的中点为M (-2m 2+2,m m 2+2), 故直线PQ 的斜率为-m 2,PQ 的方程为y =-m 2x , 即mx +2y =0.由⎩⎨⎧ y =-m 2x ,x 22-y 2=1得(2-m 2)x 2=4,所以2-m 2>0,且x 2=42-m 2,y 2=m 22-m 2, 从而|PQ |=2x 2+y 2=2m 2+42-m 2. 设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4. 因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4. 又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2, 所以2d =22·1+m 2m 2+4. 故四边形APBQ 的面积S =12|PQ |·2d =22·1+m 22-m 2=22·-1+32-m 2. 而0<2-m 2≤2,故当m =0时,S 取得最小值2.综上所述,四边形APBQ 面积的最小值为2.思维升华 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.(1)已知焦点为F 的抛物线y 2=4x 的弦AB 的中点的横坐标为2,则|AB |的最大值为________.答案 6解析 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4,那么|AF |+|BF |=x 1+x 2+2,又|AF |+|BF |≥|AB |⇒|AB |≤6,当AB 过焦点F 时取得最大值6.(2)(2014·北京)已知椭圆C :x 2+2y 2=4.①求椭圆C 的离心率;②设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解 ①由题意,椭圆C 的标准方程为x 24+y 22=1, 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2.因此a =2,c = 2.故椭圆C 的离心率e =c a =22. ②设点A ,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0,即tx 0+2y 0=0,解得t =-2y 0x 0. 又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2 =x 20+y 20+4y 20x 20+4 =x 20+4-x 202+2(4-x 20)x 20+4 =x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立,所以|AB |2≥8. 故线段AB 长度的最小值为2 2.[方法与技巧]1.求解范围问题的方法求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算的方便,在建立关系的过程中也可以采用多个变量,只要在最后结果中把多变量归结为单变量即可,同时要特别注意变量的取值范围.2.圆锥曲线中常见最值问题及解题方法(1)两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时与之相关的一些问题.(2)两种常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用均值不等式法、配方法及导数法求解.[失误与防范]1.求范围问题要注意变量自身的范围.2.利用几何意义求最值时,要注意“相切”与“公共点唯一”的不等价关系.注意特殊关系,特殊位置的应用.A 组 专项基础训练(时间:40分钟)1.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎡⎦⎤-12,12 B.[-2,2] C.[-1,1]D.[-4,4]答案 C解析 Q (-2,0),设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0, 由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0,解得-1≤k ≤1.2.已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM →=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为( )A.95B.125C.4D.5 答案 B解析 由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125,故选B.3.若双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线与抛物线y =x 2+2有公共点,则此双曲线的离心率的取值范围是( )A.[3,+∞)B.(3,+∞)C.(1,3]D.(1,3) 答案 A解析 依题意可知双曲线渐近线方程为y =±b a x ,与抛物线方程联立消去y 得x 2±b ax +2=0. ∵渐近线与抛物线有交点,∴Δ=b 2a 2-8≥0,求得b 2≥8a 2, ∴c =a 2+b 2≥3a ,∴e =c a≥3. 4.(2015·绵阳模拟)若点O 和点F 分别为椭圆x 29+y 28=1的中点和左焦点,点P 为椭圆上的任一点,则OP →·FP →的最小值为________.答案 6解析 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22),依题意得左焦点F (-1,0),∴OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+x +72-8x 29=19·⎝⎛⎭⎫x +922+234.∵-3≤x ≤3,∴32≤x +92≤152,∴94≤⎝⎛⎭⎫x +922≤2254, ∴14≤19⎝⎛⎭⎫x +922≤22536,∴6≤19·⎝⎛⎭⎫x +922+234≤12,即6≤OP →·FP →≤12.故最小值为6. 5.已知椭圆C 1:x 2m +2-y 2n=1与双曲线C 2:x 2m +y 2n =1有相同的焦点,则椭圆C 1的离心率e 1的取值范围为________.答案 (22,1) 解析 ∵椭圆C 1:x 2m +2-y 2n=1, ∴a 21=m +2,b 21=-n ,c 21=m +2+n ,e 21=m +2+n m +2=1+n m +2.∵双曲线C 2:x 2m +y 2n =1,∴a 22=m ,b 22=-n ,c 22=m -n ,∴由条件有m +2+n =m -n ,则n =-1,∴e 21=1-1m +2.由m >0得m +2>2,1m +2<12,-1m +2>-12,∴1-1m +2>12,即e 21>12,而0<e 1<1,∴22<e 1<1. 6.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y 2=4x 上相异两点,且满足x 1+x 2=2.(1)若AB 的中垂线经过点P (0,2),求直线AB 的方程;(2)若AB 的中垂线交x 轴于点M ,求△AMB 的面积的最大值及此时直线AB 的方程.解 (1)当AB 垂直于x 轴时,显然不符合题意,所以可设直线AB 的方程为y =kx +b ,代入方程y 2=4x ,得:k 2x 2+(2kb -4)x +b 2=0,∴x 1+x 2=4-2kb k 2=2,得b =2k-k , ∴直线AB 的方程为y =k (x -1)+2k, ∵AB 中点的横坐标为1,∴AB 中点的坐标为⎝⎛⎭⎫1,2k , ∴AB 的中垂线方程为y =-1k (x -1)+2k =-1k x +3k. ∵AB 的中垂线经过点P (0,2),故3k =2,得k =32, ∴直线AB 的方程为y =32x -16. (2)由(1)可知AB 的中垂线方程为y =-1k x +3k, ∴点M 的坐标为(3,0),∵直线AB 的方程为k 2x -ky +2-k 2=0,∴M 到直线AB 的距离d =|3k 2+2-k 2|k 4+k 2=2k 2+1|k |,由⎩⎪⎨⎪⎧k 2x -ky +2-k 2=0,y 2=4x 得k 24y 2-ky +2-k 2=0, y 1+y 2=4k ,y 1·y 2=8-4k 2k 2, |AB |= 1+1k 2|y 1-y 2|=41+k 2k 2-1k 2. ∴S △MAB =4⎝⎛⎭⎫1+1k 2 1-1k 2, 设 1-1k2=t ,则0<t <1, S =4t (2-t 2)=-4t 3+8t ,S ′=-12t 2+8,由S ′=0,得t =63, 即k =±3时,S max =1669, 此时直线AB 的方程为3x ±3y -1=0.7.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 2(3,0),离心率为e . (1)若e =32,求椭圆的方程; (2)设直线y =kx 与椭圆相交于A ,B 两点,若AF 2→·BF 2→=0,且22<e ≤32,求k 的取值范围. 解 (1)由焦点F 2(3,0),知c =3,又e =32=c a,所以a =2 3. 又由a 2=b 2+c 2,解得b 2=3.所以椭圆的方程为x 212+y 23=1. (2)由⎩⎪⎨⎪⎧y =kx ,x 2a 2+y 2b 2=1,得(b 2+a 2k 2)x 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知,x 1+x 2=0,x 1x 2=-a 2b 2b 2+a 2k2. 又AF 2→=(3-x 1,-y 1),BF 2→=(3-x 2,-y 2),所以AF 2→·BF 2→=(3-x 1)(3-x 2)+y 1y 2=(1+k 2)x 1x 2+9=0,即-a 2(a 2-9)(1+k 2)a 2k 2+(a 2-9)+9=0,整理得k 2=a 4-18a 2+81-a 4+18a 2=-1-81a 4-18a 2. 由22<e ≤32及c =3, 知23≤a <32,12≤a 2<18.所以a 4-18a 2=(a 2-9)2-81∈[-72,0),所以k 2≥18,则k ≥24或k ≤-24, 因此实数k 的取值范围为⎝⎛⎦⎤-∞,-24∪⎣⎡⎭⎫24,+∞. B 组 专项能力提升(时间:30分钟)8.如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x轴的垂线交椭圆于A 、A ′两点,|AA ′|=4.(1)求该椭圆的标准方程; (2)取平行于y 轴的直线与椭圆相交于不同的两点P 、P ′,过P 、P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求△PP ′Q 的面积S 的最大值,并写出对应的圆Q 的标准方程. 解 (1)由题意知点A (-c,2)在椭圆上,则(-c )2a 2+22b2=1. 从而e 2+4b 2=1.由e =22得b 2=41-e 2=8, 从而a 2=b 21-e 2=16. 故该椭圆的标准方程为x 216+y 28=1. (2)由题意,可设Q (x 0,0).又设M (x ,y )是椭圆上任意一点,则|QM |2=(x -x 0)2+y 2=x 2-2x 0x +x 20+8⎝⎛⎭⎫1-x 216 =12(x -2x 0)2-x 20+8(x ∈[-4,4]). 设P (x 1,y 1),由题意知,P 点是椭圆上到点Q 的距离最小的点,因此,上式当x =x 1时取最小值, 又因为x 1∈(-4,4),且上式当x =2x 0时取最小值,从而x 1=2x 0,且|QP |2=8-x 20.由对称性知P ′(x 1,-y 1),故|PP ′|=|2y 1|,所以S =12|2y 1||x 1-x 0|=12×28⎝⎛⎭⎫1-x 2116|x 0| = 2 (4-x 20)x 20= 2 -(x 20-2)2+4.当x 0=±2时,△PP ′Q 的面积S 取到最大值2 2. 此时对应的圆Q 的圆心坐标为Q (±2,0),半径|QP |=8-x 20=6, 因此,这样的圆有两个,其标准方程分别为(x +2)2+y 2=6,(x -2)2+y 2=6.9.如图所示,在直角坐标系xOy 中,点P (1,12)到抛物线C :y 2=2px (p >0)的准线的距离为54.点M (t,1)是C 上的定点,A ,B 是C 上的两动点,且线段AB 的中点Q (m ,n )在直线OM 上.(1)求曲线C 的方程及t 的值;(2)记d =|AB |1+4m 2,求d 的最大值.解 (1)y 2=2px (p >0)的准线为x =-p2,∴1-(-p2)=54,p =12,∴抛物线C 的方程为y 2=x .又点M (t,1)在曲线C 上,∴t =1.(2)由(1)知,点M (1,1),从而n =m ,即点Q (m ,m ), 依题意,直线AB 的斜率存在,且不为0,设直线AB 的斜率为k (k ≠0),且A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧ y 21=x 1,y 22=x 2,得(y 1-y 2)(y 1+y 2)=x 1-x 2,故k ·2m =1,∴直线AB 的方程为y -m =12m (x -m ),即x -2my +2m 2-m =0.由⎩⎪⎨⎪⎧ x -2my +2m 2-m =0,y 2=x消去x , 整理得y 2-2my +2m 2-m =0,∴Δ=4m -4m 2>0,y 1+y 2=2m ,y 1y 2=2m 2-m .从而|AB |= 1+1k 2·|y 1-y 2|=1+4m 2·4m -4m 2=2(1+4m 2)(m -m 2).∴d =|AB |1+4m 2=2m (1-m )≤m +(1-m )=1,当且仅当m =1-m ,即m =12时,上式等号成立, 又m =12满足Δ=4m -4m 2>0.∴d 的最大值为1.。
第九章 传递函数的状态空间实现§9.1实现与最小实现一、实现问题的提法我们知道,对于一个线性定常系统,可以用传递函数矩阵进行输入输出描述)(ˆ)(ˆ)(ˆs s s u G y = (9.1.1)如果系统还是集中的,则还可以用状态空间方程来描述 Du Cx y Bu Ax x+=+=(9.1.2)如果已知状态空间方程(9.1.2),则相应的传递矩阵可由D B A I C G +-=-1)()(ˆs s (9.1.3)求出,且求出的矩阵是唯一的。
现在,我们来研究它的反问题,即由给定的传递矩阵来求状态空间方程,这就是所谓的实现问题。
事实上,对于时变系统也有实现问题,只是它的输入输出描述不再是传递矩阵。
定义9.1:实现传递矩阵)(ˆs G 称为是能实现的是指存在一个有限的维状态方程(9.1.2)或简记为{ A , B , C , D },使得D B A I C G+-=-1)()(ˆs s 且{ A , B , C , D }称作)(ˆs G的实现。
注意:一个线性定常系统的分布系统可以用传递矩阵来描述,但不能描述为有限维的状态方程。
所以说并非所有的)(ˆs G都是能实现的。
二、实现的不唯一性仔细回忆一下我们在状态变换和规范分解时得到的结论可知:尽管对于给定系统{ A , B , C , D },它的传递函数矩阵)(ˆs G是唯一的;但反过来,对于给定系统的传递函数矩阵)(ˆs G,求它的状态空间实现{ A , B , C , D },结论便不唯一。
因为我们知道,状态变换前后,系统的状态空间方程可能大相径庭,但其传递函数矩阵却是相同的;同样,不能控或不能观系统,经规范分解后的整个系统与其中的既能控又能观的子系统均是其传递函数的一个实现。
所以,如果)(ˆs G是能实现的则其有无穷多各个实现,且不一定具有相同的维数。
三、最小实现尽管每一个传递函数阵,可以有无限多个实现。
我们感兴趣的是这些实现中维数最小的实现,即所谓最小实现,也叫不可约实现、最小维实现、最小阶实现。
第9章界面现象习题解答1、293K 时,水的表面张力为0.0728N ·m -1,汞的表面张力为0.483N ·m -1,汞-水的界面张力为0.375N ·m -1。
试判断水能否在汞的表面上铺展?汞能否在水的表面上铺展?解:(1)1lg m N 0352.0375.00728.0483.0-⋅=--=--=∆-=ls sg A A A G S S =0.0352N ·m -1>0,能铺展开(2)1lg m N 7852.0375.0483.00728.0-⋅=--=--=∆-=ls sg A A A G S S =-0.7852N ·m -1<0,不能铺展开答:(1)S =0.0352N ·m -1>0,能铺展开(2)S =-0.7852N ·m -1<0,不能铺展开2、在293.15K 及101.325kPa 下,半径为1×10-3m 的汞滴分散成半径为1×10-9m 的小汞滴,试求此过程系统的表面吉布斯函数变为若干?已知293.15K 汞的表面张力为0.470N ·m -1。
解:每个半径为m 1013-⨯的汞滴的表面积为252321m 10256.1)101(14.344--⨯=⨯⨯⨯==r A π每个半径为m 1019-⨯的汞滴的表面积为2172922m 10256.1)101(14.344--⨯=⨯⨯⨯==r A π将一滴半径为m 10131-⨯=r 的汞滴分散成半径为m 10192-⨯=r 的微粒时,微粒的个数n 为183********101101()(3434⨯=⨯⨯===--r r r n ππ故表面积增加变化25171812m 56.1210256.110256.1101=⨯-⨯⨯⨯=-=∆--A nA A 表面吉布斯函数变化2-1242,7.2810N m (4m 410m )0.914J T p s G A A ππ--∆=∆=⨯⋅⨯-⨯=J903.556.12470.0,=⨯=∆⋅=∆A A G p T 答:5.906J3、在293.15K 时,乙醚-水、乙醚-汞及水-汞的界面张力分别为0.0107N ·m -1、0.379N ·m -1及0.375N ·m -1,若在乙醚与汞的界面上滴一滴水,试求其润湿角。
第9章微分方程初步§9.1 微分方程的基本概念§9.2 一阶微分方程§9.3 二阶常系数线性微分方程§9.4 微分方程在经济学中的应用§9.1 微分方程的基本概念一、问题的提出例1 一曲线通过点(1,2),且在该曲线上任一点),(y x M 处的切线的斜率为x 2,求这曲线的方程.解)(x y y =设所求曲线为x dxdy 2=∫=xdx y 2(1)2y =且,2C x y +=,1=C 求得.12+=x y 所求曲线方程为(1)2y =由条件⇒⇒⇒#例2 列车在平直的线路上以20米/秒的速度行驶,当制动时列车获得加速度4.0−米/秒2,问开始制动后多少时间列车才能停住?以及列车在这段时间内行驶了多少路程?解)(,t s s s t =米秒钟行驶设制动后4.022−=dtsd ,20,0,0====dt ds v s t 时14.0C t dtdsv +−==2122.0C t C t s ++−=代入条件v(0)=20120C ⇒=,202.02t t s +−=,204.0+−==t dtdsv ),(504.020秒==t 列车在这段时间内行驶了).(5005020502.02米=×+×−=s 开始制动到列车完全停住共需代入条件s(0)=020C ⇒=#含有未知函数的导数或微分的方程叫微分方程。
例,xy y =′,0)(2=++xdx dt x t ,32x e y y y =−′+′′,y x xz+=∂∂二、微分方程的定义联系自变量、未知函数以及未知函数的某些导数(或微分)的关系式:()(,,,,)0n F x y y y ′= 微分方程的实质:微分方程的阶:分类1: 常微分方程& 偏微分方程。
,0),,(=′y y x F );,(y x f y =′,0),,,,()(=′n y y y x F ).,,,,()1()(−′=n n y y y x f y 分类2: 一阶微分方程& 高阶(n阶)微分方程。