第五章 拉普拉斯变换
- 格式:ppt
- 大小:1.50 MB
- 文档页数:86
信号与系统天津大学电子信息工程学院第五章连续系统的复频域分析一、拉普拉斯变换(LT)(一)从傅里叶变换到拉普拉斯变换z1、从FT到双边LT信号f(t)的傅里叶变换(FT)为z许多函数不满足绝对可积条件,其F( jω)中一般都含有冲激函数。
用衰减因子e-σt乘以f(t),适当选择σ的值,使f(t)·e-σt绝对可积,从而可求得其FT:如果令s=σ+jω——称为f(t)的双边LT3z根据FT-1反变换式,可得:——F(s)的双边拉普拉斯反变换z F(s)称为f(t)的象函数,f(t)称为F(s)的原函数。
z记作:F(s)=_{f(t) },f(t)=_-1{F(s) },或者简52、收敛域(ROC)使双边LT 的象函数F b (s )存在的s 平面的区域称为双边LT 的收敛域z (1)因果信号z (2)反因果信号z(3)双边函数73、单边拉普拉斯变换单边拉普拉斯变换单边拉氏逆变换4、单边LT的收敛域——F(s)存在的充分条件对于双边LT,必须认真研究收敛域问题,须由F(s)和收敛域共同确定原函数f(t)9LT的收敛域分为以下三种情况:z①收敛域是整个s平面根据收敛条件:推广:凡时宽有限且幅度有限的信号(满足绝对可11②F (s )在s 平面的部分区域收敛z 一般而言,单边LT 的收敛域是在s 平面上σ>σ0的区域。
z 收敛域的横坐标σ0(=α)称为收敛坐标,直线σ=σ0称为收敛轴。
③在整个平面上,F (s )都不收敛,即F (s )不存在z 如:、t t 等函数,其随t 上升而增加的速度超过指数阶函数,F (s )不存在。
2t e 如因果信号f (t )满足:(1)在有限区间a <t <b ()内可积,(2)对于某个有,则对于,拉普拉斯积分式绝对且一致收敛。
(教材P214定理)0a b ≤<<∞0σ0lim |()|0,t t f t e σσσ−→∞=>0Re()s σσ=>(二)常用函数的单边LT变换z1、复指数函数13可推出一些函数的LT:15z2、f(t)=t n·ε(t),n为正整数17 3、冲激函数δ(t)与冲激偶δ’(t)二、Laplace变换的性质z1、线性性质19 2、尺度变换(比例性)注:a < 0不适用于单边LT213、时移(延时)特性说明:①注意f (t -t 0)·ε(t -t 0) 与f (t -t 0)·ε(t )的区别z②注意延时性与比例性综合应用的情况例123有始周期函数的拉氏变换等于其第一周期的拉氏变换-Ts25z例2(教材P219例5.2-3)试求在t =0-时接入的周期性冲激序列的象函数。
第五章:拉普拉斯变换§5.1 定义、存在性(《信号与系统》第二版(郑君里)4.2)问题的提出:信号()f t 的傅里叶变换存在要求:()[]1L ,f t ∈-∞+∞,但有些信号不绝对可积,例如()1sgn L t ∉。
当时的处理方法是乘以双边指数函数,把符号函数“拉”下来,使相乘以后的信号绝对可积。
(){}(){}||0sgn lim sgn 0t t e t σσσ-→=>F F ,。
因此,便考虑将t e σ-纳入积分核,使非绝对可积信号可以做频谱分析。
为使问题简化,仅考虑t > 0的情形,即因果信号、单边变换。
对因果信号()()()f t f t u t =,(){}()()()j -j 00d d t tttef t f t eet f t e t σωσσω+∞+∞-+--⎡⎤==⎣⎦⎰⎰F()(){}0d stf t e t f t +∞-==⎰L(5-1)定义信号()f t 的(单边)拉普拉斯变换为:()(){}()0d j st F s f t f te t s σω+∞-=+⎰,L(5-2)()()()j j 01d d 2t t t f tef t e t e σωσωωπ+∞+∞-+--∞⎡⎤=⎢⎥⎣⎦⎰⎰ 令j s σω=+,σ为常数,d jd s ω=()()()j j j 1d 2jt f t F s e s σσωσπ+∞+-∞=⎰()(){}()j 1j 1d 2j stf t F s F s e s σσπ+∞--∞⎰L(5-3)(4-2)式和(4-3)式是一对拉普拉斯变换式,()f t 称为原函数,()F s 称为像函数。
定义(指数阶函数):指()f t 分段连续(存在有限个第一类间断点),且00M T ∃>>,,使()0t f t Me σ≤,对t T ∀>。
注:()()0O t f t e σ=。
()F s 存在:()F s <∞。