tps65530a
- 格式:pdf
- 大小:1.03 MB
- 文档页数:32
yx4305a工作原理-回复yx4305a是一种常见的集成电路,是一种工作在低压区间的倍频锁相环。
它在电子设备中有广泛的应用,如通信设备、计算机、嵌入式系统等。
本文将详细介绍yx4305a的工作原理,并逐步回答相关问题。
首先,我们来了解一下yx4305a的基本结构。
yx4305a由相位频率控制器(PFC)、数字控制振荡器(DCO)、两个分频器(Divider)、两个锁相环(PLL)和多路动态选择器(MUX)等主要部件组成。
接下来,我们来逐步解析yx4305a的工作原理。
首先,外部输入信号进入PFC,PFC负责提取输入信号的频率和相位信息,并将其与设定值进行比较。
根据比较结果,PFC产生控制电压,通过控制电压来调节DCO的频率。
DCO是yx4305a最重要的部件之一,它负责产生基准信号和参考信号。
DCO通过控制电压来调整其频率,以跟随输入信号的频率变化。
其频率可以通过PWM(脉宽调制)信号来控制。
接下来,基准信号和参考信号进入PLL。
PLL起到锁定频率和相位的作用。
首先,基准信号经过第一个PLL进行频率的倍频和除频,产生参考信号。
参考信号经过第二个PLL进行相位锁定,以同步输入信号的相位。
最后,经过锁相环的输出信号进入MUX。
MUX的作用是选择输出信号的路径,将其传递给需要的设备或部件。
以上就是yx4305a的基本工作原理。
下面,我们将进一步回答一些相关问题。
1. yx4305a如何实现倍频和除频功能?yx4305a通过PLL中的分频器来实现倍频和除频功能。
分频器可以将输入信号的频率进行分配,得到所需的频率。
2. 如何根据输入信号的频率和相位信息来调节DCO的频率?PFC会分析输入信号的频率和相位信息,并与设定值进行比较。
根据比较结果,PFC产生控制电压,通过控制电压来调节DCO的频率。
3. yx4305a如何锁定输入信号的频率和相位?yx4305a通过两个锁相环(PLL)来实现频率和相位锁定。
第一个PLL用于产生参考信号,第二个PLL用于实现相位锁定,以同步输入信号的相位。
RGTDGQP R O D U C T P R E V I EWFEATURESAPPLICATIONSDESCRIPTIONTPS65552ASLVS567–JULY 2005INTEGRATED PHOTO FLASH CHARGER AND IGBT DRIVER•Digital Still Cameras (DSC)•Highly Integrated Solution to Reduce Components•Optical Film Cameras•Mobile Phones With Camera •Integrated 50-V Power Switch,R (ON)=200m ΩTypical •PDAs With Camera•Integrated IGBT Driver •High EfficiencyThis device offers a complete solution for charging a •Programmable Peak Current,0.95A ~1.8A photo flash capacitor from battery input,and sub-•Input Voltage of 1.8V to 12Vsequently discharging the capacitor to the xenon •Optimized Control Loop for Fast Charge Time tube.The device has an integrated power switch,IGBT driver,and control logic blocks for charge •Sensing All Trigger From Primary Side pared with discreet solutions,the •10-Pin MSOP/16-Pin QFN Package device significantly reduces the component count,•Protectionshrinks the solution size,and eases design com-–MAX On Timeplexity.Additional advantages are fast charging time and high efficiency due to the optimized PWM control –Over V DS Shutdown algorithm.–Thermal MonitorOther provisions of the device includes four options for determining a different target voltage,programmable peak current,thermal disable monitor,input signal for charge enable,flash enable,and an output signal for charge completion status.Figure 1.Typical Application CircuitPlease be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PowerPAD is a trademark of Texas Instruments.PRODUCT PREVIEW information concerns products in the forma-Copyright ©2005,Texas Instruments Incorporatedtive or design phase of development.Characteristic data and other specifications are design goals.Texas Instruments reserves the right to change or discontinue these products without notice.PRODUCT PREVIEWABSOLUTE MAXIMUM RATINGSRECOMMENDED OPERATING CONDITIONSDISSIPATION RATINGSTPS65552ASLVS567–JULY 2005These devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.ORDERING INFORMATIONTARGET VOLTAGE atT APACKAGE MARKINGPACKAGE PART NUMBER PRIMARY SIDE-35°C to 85°C 29BKV 16-pin QFN TPS65552ARGT -35°C to 85°C29BMA10-pin MSOPTPS65552ADGQover operating free-air temperature range (unless otherwise noted)(1)UNITVCC -0.6V to 6V V SS Supply voltage VBAT-0.6V to 13V V (SW)Switch terminal voltage-0.6V to 50VSwitch current between SW and PGND,ISW 3A V I Input voltage of CHG,I_PEAK,F_ON -0.3V to V CC T stg Storage temperature-40°C to 150°CT J Maximum junction temperature125°C(1)Stresses beyond those listed under "absolute maximum ratings"may cause permanent damage to the device.These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions"is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.MINNOMMAX UNIT Supply voltage,VCC 4.5 5.5V V SS Supply voltage,VBAT 1.812V V (SW)Switch terminal voltage,-0.345V Switch current between SW and PGND 2A Operating free-air temperature range-3585°C V IH High-level digital input voltage at CHG and F_ON 2.4V V ILLow-level digital input voltage at CHG and F_ON0.6VPOWER RATINGPOWER RATINGPOWER RATINGPACKAGE R θJA (1)T A <25°CT A =70°CT A =85°CMSOP 49.08°C/W 2.04W 1.12W 815mW QFN47.40°C/W2.11W1.16W844mW(1)The thermal resistance,R θJA ,is based on a soldered PowerPAD™on a 2S2P JEDEC board using thermal vias.2P R O D U C T P R E V I E WELECTRICAL CHARACTERISTICSSWITCHING CHARACTERISTICSTPS65552ASLVS567–JULY 2005T A =25°C,VBAT =4.2V,VCC =5V,V (SW)=4.2V (unless otherwise noted)PARAMETERTEST CONDITIONSMINTYP MAXUNIT R (ONL)ON resistance of XFULLI (XFULL)=-1mA1.53k ΩV (PKH)(1)Upper threshold voltage of I_PEAK 2.4V V (PKL)(1)Lower threshold voltage of I_PEAK 0.6V CHG =H,V (SW)=0V I CC1Supply current from VBAT 27µA (free run by t MAX )CHG =H,V (SW)=0V I CC2Supply current from VCC 2.55mA (free run by t MAX )I CC3Supply current from VCC and CHG =L1µA VBATI lkg1Leakage current of SW terminal 2µA I lkg2Leakage current of XFULL ter-V (XFULL)=5V 1µA minalSW ON resistance between R (ONSW)I (SW)=1A 0.31ΩSW and PGNDR (IGBT1)G_IGBT pullup resistance V (G_IGBT)=0V 51015ΩR (IGBT2)G_IGBT pulldown resistance V (G_IGBT)=5V 255175ΩI (PEAK1)Upper peak of I (SW)V (I_IPEAK)=3V 1.58 1.68 1.78AI (PEAK2)Lower peak of I (SW)V (I_IPEAK)=0V 0.770.870.97A Charge completion detect voltage V (FULL)TPS65552A28.72929.3V at V (SW)V (ZERO)Zero current detection at V (SW)12060mV T (SD)(1)Thermal shutdown temperature 150160170°C Over V DS detection at V (SW)0.95 1.2 1.45V t MAX MAX ON time5080120µs Pulldown resistance of CHG,R (INPD)VCHG =V (F_ON)=4.2V 100k ΩF_ON(1)Specified by design.T A =25°C,VBAT =4.2V,VCC =5V,V (SW)=4.2V (unless otherwise noted)PARAMETERTEST CONDITIONSMINTYP MAXUNIT F_ON ↑↓-G_IGBT ↑↓50ns SW ON after V (SW)dips from V (ZERO)45ns SW OFF after I (SW)exceeds I (PEAK)270ns t PD (1)Propagation delayXFULL ↓after V (SW)exceeds V (FULL)300ns SW ON after CHG ↑20ns SW OFF after CHG ↓20ns(1)Specified by design.3PRODUCT PREVIEWPIN ASSIGNMENTDGQ PACKAGESWVBATF_ONNCPGNDCHGXFULLG_IGBTVCCPGNDPGNDCHGXFULLSWSWVCCF_ONNCVBATG_IGBTNCNCNCNCI_PEAKRGT PACKAGE(TOP VIEW)NC − No internal connection16151413567812341211109TPS65552ASLVS567–JULY2005TERMINAL FUNCTIONSPIN NUMBERSIGNAL I/O DESCRIPTION RGT DGQ1,22SW O Primary side switch33VCC I Power supply voltage44F_ON I G_IGBT control input5,8,13,16–NC No connection(internally open)65I_PEAK I Peak current control input76G_IGBT O IGBT gate driver output97XFULL O Charge completion output108CHG I Charge control input11,129PGND Power ground1410NC No connection(used by TI,should be open pin)151VBAT I Battery voltage input4P R O D U C T P R E V I E WI/O Equivalent CircuitsTPS65552ASLVS567–JULY 2005Figure 2.Functional Block DiagramFigure 3.I/O Equivalent Circuits5PRODUCT PREVIEWPRINCIPLES OF OPERATIONCHG(VOUT)XFULLF_ONG_IGBT(ENA)Start/Stop ChargingIndicate Charging StatusTPS65552ASLVS567–JULY2005Figure4.Whole Operation Sequence ChartTPS65552A has one internal enable latch,F1,that holds a charge(ON/OFF status)of the device.See Figure2. The only way to start charging is to input CHG↑(see time A/C/H in Figure4).Each time CHG↑is reached,the TPS65552A starts charging.There are three trigger events to stop charging:1.Forced stop by inputting CHG=L from the controller(see timeB in Figure4).2.Automatic stop by detecting full charge.VOUT reaches the target value(see TimeD in Figure4).3.Protected stop by over V DS detection(see TimeI in Figure4).When the charging operation is completed,the TPS65552A drives the charge completion indicator pin,XFULL, to GND.XFULL is an open-drain type output.When connecting the indicator LED to XFULL,the LED lights are on when fully charged.The controller detects the status of the device as a logic signal when connecting a pullup resister,R1(see Figure1).XFULL enables the controller to detect the over V DS protection status using software time.If over V DS protection occurs,XFULL never goes L during CHG=H,provided that the timer that starts at CHG↑stops at XFULL↑,and times out within a designed period of maximum charging times.The controller can detect over V DS at time out. The device starts charging at timeH,and over V DS protection occurs at TimeI(see Figure4).At timeI,XFULL stays H,and the controller detects over V DS protection when the timer ends at timeJ.the controller inputs CHG=L to terminate the operation.6P R O D U C T P R E V I E WVVIISWCHGI Control Chargingt = L ON I P E A K V B A T ÷÷øöççèæ(1)TPS65552ASLVS567–JULY 2005Figure 5.Timing Diagram at One Switching CycleFigure 6.Timing Diagram at Beginning/EndingThe TPS65552A provides three comparators to control charging.Figure 2shows the block diagram of TPS65552A and Figure 5shows one timing diagram switching cycle.is placed on Time1and Time3of the waveform in Figure 5.While SW is ON (Time1to Time2in Figure 5),U3monitors current flow through integrated power-MOSFET from SW to PGND.When I (SW)exceeds I (PEAK)turns OFF (Time2in Figure 5).When SW turns OFF (Time2in Figure 5),the magnetic energy in the transformer starts discharging.Meanwhile,U2monitors the kickback SW terminal.As the energy is discharging,the kickback voltage is increasing according to the increase of V OUT (Time2to Time3in Figure 5).When almost all energy is discharged,the system cannot continue rectification via the diode,and the current of I OUT goes to zero (Times3in Figure 5).After rectification stops,the small amount of energy left in the transformer is released via the parasitic the kickback voltage reaches zero (Time3to Time4in Figure 5).During this period,U2makes SW turn ON when (V (SW)-VBAT)dips from V (ZERO)(Time5in Figure 5).circuit,the period between Time4and Time5in Figure 5is small or does not appear the delay time of the U2detection to SW ON.U1also monitors the kickback voltage.When (V (SW)-VBAT)exceeds V (FULL),TPS65552A stops charging (see Figure 6).In Figure 5and Figure 6,ON time is always the same period in every switching.The ON time is calculated by Equation 1This is not dependent on output voltage.However,OFF time is dependant on output voltage.As the output voltage gets higher,the OFF time gets shorter(see Equation 2).7PRODUCT PREVIEW t= N_TURN x LOFFIPEAKVOUT÷÷øöççèæ(2) Reference VoltageTermination Voltage SettingTPS65552ASLVS567–JULY2005The TPS65552A does not have its own reference voltage circuit inside,and the TPS65552A uses the VCC input voltage as a reference to detect I(PEAK),V(ZERO),and V(FULL).Therefore,voltage input at VCC is approximately 5V.VCC differs from5V by system limitations.Table1shows the dependence of each function of TPS65552A to VCC.Table1.VCC Dependence of TPS65552APARAMETER EQUATION VCC4.555.5I(PEAK1)0.52x VCC-0.92 1.42 1.68 1.94I(PEAK2)0.24x VCC-0.330.750.870.99V(FULL)TPS65552A 5.8x VCC26.129.031.9over V DS0.24x VCC 1.08 1.2 1.32To obtain a different termination voltage,transformers of different turn ratio are required.Table2shows the matrix of termination voltage and the turn ratio of the transformer.The table only shows a ratio while there are no limitations for a turn ratio of the transformer in a real application circuit,example1:10.5(= 10:105).Table2.Termination Voltage Setting TableTPS65552A29[V]1:102901:113191:123488P R O D U C T P R E V I E WProgramming PeakCurrent0.8011.201.401.601.802V(I_PEAK) [V]I (S W ) [A ]IGBT Driver ControlTPS65552ASLVS567–JULY 2005The TPS65552A provides a method to program I (PEAK)through the input voltage of the I_PEAK terminal.Figure 7shows how to program I (PEAK).I_PEAK input is treated as a logic input,when its voltage is below V (PKL)(0.6V)and above V (PKH)(2.4V).Between V (PKL)and V (PKH),I_PEAK input is treated as an analog ing this characteristic,I (PEAK)can be set by the logic signal or by an analog input.Typical usages of this function are:1.Charging I (PEAK)depends on the battery rge I (PEAK)for an adequate battery,small I (PEAK)for a poor battery.2.Reducing I (PEAK)when zooming lens (motor works);this avoids shutdown of the battery with a large current output.In Figure 1,three optional connections to I_PEAK are shown.e the controller to treat I_PEAK as the logic input pin.This option is the easiest.e a D/A converter to force I (PEAK)to follow analog information,such as battery voltage.e an analog circuit to achieve the same results as the D/A converter.Figure 7.I_PEAK vs I (SW)The IGBT driver provided by the TPS65552A is a simple buffer in the logical table.Table 3shows the function (see Figure 4).Table 3.IBGT Driver Function TableF_ON G_IGBTL L HH9PRODUCT PREVIEW ProtectionsThermal ShutdownMAX ON TimeOvervoltage at Power SWPCB InformationTPS65552ASLVS567–JULY2005TPS65552A provides three protections:thermal shutdown,max on time,and overvoltage at power SW.When TPS65552A overheats,all functions stop.The only way to recover is to wait for the TPS65552A to cool down.This protection is not through SHUTDOWN,so the TPS65552A restarts charging if CHG stays H during the whole overheated period.To prevent a condition such as pulling current from a poor power source(i.e.,an almost empty battery),the TPS65552A provides a maximum ON time protection.If the ON time exceeds t MAX,the TPS555x is forced OFF regardless of I(PEAK)detection.To avoid the stress of power dissipation,the TPS65552A provides an overvoltage monitor function at the SW terminal.If this protection occurs,the overvoltage status is latched(see Figure4and its descriptions).This function also protects short-circuit of the secondary side.In the short-circuit state of the secondary side, almost100%of the battery voltage is supplied to SW,which stresses the device.Figure8.PCB Design Guideline10P R O D U C T P R E V I E WAdditional Technical InformationTPS65552ASLVS567–JULY 2005Figure 8shows key points when designing a PCB.1.In many DSC designs,parasitic resistance that cannot be ignored,exists on the power line path from the battery to the primary side turn of the transformer.The TPS65552A has one ground point connection inside the IC at the PGND PAD.So,the PCB layout should also keep a one-point ground connection at the PGND terminal of TPS65552A.2.The loop indicated by dotted-lines is laid out as small as possible to reduce the open area of the loop.3.The TPS65552A uses the VCC input as a reference voltage.Considering Note 1,the ground of the power unit that sources VCC is connected to PGND.4.Regarding Note 3,the bypass capacitor,C2,is required to avoid grounding noise.TI provides an application note for this device.For more technical information,please find the application note on the TI Web site or consult your sales contact.Literature number SLVA197.The application note provides the following information.1.Recommended external parts 2.PCB layout3.Detailed operation theory4.Calculation of the efficiency5.Key points to design your system11IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. T esting and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. T o minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotiveDSP Broadband /broadbandInterface Digital Control /digitalcontrolLogic Military /militaryPower Mgmt Optical Networking /opticalnetwork Microcontrollers Security /securityTelephony /telephonyVideo & Imaging /videoWireless /wirelessMailing Address:Texas InstrumentsPost Office Box 655303 Dallas, Texas 75265Copyright 2005, Texas Instruments Incorporated。
NZM 1-4系列塑壳断路器目录1.1系统综览1.2产品概述1.3断路器1.4隔离开关1.6用于北美地区的断路器1.11 断路器,隔离开关NZM 1-4系列塑壳断路器断路器,隔离开关 (2)断路器,隔离开关,3/4极 (4)热磁式脱扣器,3极磁式3极短路脱扣器电子式脱扣器,3极热磁式脱扣器,4极电子式脱扣器,4极 (6) (10) (12) (16) (20)热磁式脱扣器,3极磁式3极短路脱扣器电子式脱扣器,3极 (28) (32) (34)辅助触点带螺钉端子带弹簧压接端子欠压脱扣器带螺钉端子分励脱扣器带螺钉端子门联动旋转手柄门联锁功能的旋转手柄,用于具有UL/CSA认证的NA开关旋转手柄门联锁功能的旋转手柄主开关旋转手柄组件附件机械联锁 (46) (48) (55) (62) (64) (66) (67) (68) (70) (72)3极4极 (24) (25)1.7用于北美地区的塑壳开关3极 (40)1.5产品概述用于北美地区的断路器、隔离开关,3极 (26)1.8技术概述用于1000V AC的断路器和隔离开关,3极 (41)1.9断路器用于是1000V,3极 (42)1.10 安装布线辅助触点,脱扣指示辅助触点 (44)结构紧凑,仅四种电流壳架等级具有3极和4极产品额定电流达到1600A 多种安装方式可选择50℃环境温度下无需降容适用于世界范围市场,通过IEC、UL/CSA,CCC认证安全可靠地对电能进行分配、通断和控制,应用于工业、建筑和机器设备制造业。
创新的保护理念,具有故障诊断和通信功能。
断路器系列NZM1到NZM4• •• • ••Page 4具有故障诊断数据记录和调试功能在运行中可进行负荷分析诊断软件NZM-XPC-SOFT• • • 下载网址:/en/support/ser-viceresult.jsp合闸延时短,60~100 ms 可加锁、铅封,确保安全操作远程操作机构• • Page 74不同型号具有统一的开孔尺寸自动调节,定位中心位置侧面操作功能,节约了主开关的安装空间门联动旋转手柄••• Page 62同一型号的辅助触点安装在不同位置,具有不同功能减少了型号种类,降低了库存要求直接卡装,节约了安装成本标准/脱扣指示辅助触点与Titan系列产品通用• • • Page 46NZM 1-4系列塑壳断路器产品描述塑壳断路器NZM 1,2,3,4,至1600A产品描述NZM 1-4系列塑壳断路器目录 1.11 断路器,隔离开关1.12 选择性保护,线路保护,后备保护NZM 1-4系列塑壳断路器平形联动机构远程操作机构插拔式单元,抽屉式单元NZM1接线端子NZM2接线端子NZM3接线端子NZM4接线端子附件绝缘外壳接地保护脱扣器漏电保护附件多功能适配元件........................................................................................................73......................................................................................................74....................................................................................76....................................................................................................92....................................................................................................96..................................................................................................100..................................................................................................106..................................................................................................................114..............................................................................................................116...............................................................................................118....................................................................................................119. (121)断路器脱扣特性断路器允通特性剩余电流继电器的频率响应.................................................................................................127.................................................................................................131 (135)断路器隔离开关塑壳开关功率耗散接线能力辅助触点辅助触点的安装,ON-OFF时间差欠压脱扣器,分励脱扣器远程操作机构,电容单元数据管理界面(DMI模块)总线连接剩余电流继电器压力释放方向,最小安装间隙,管状接线头................................................................................................................136.............................................................................................................141............................................................................................................142............................................................................................................144............................................................................................................146............................................................................................................148....................................................................149..................................................................................150..................................................................................151.................................................................................152...........................................................................................................153................................................................................................155 (156)在进线断路器NZM...和出线断路器FAZ-B(C),PKZ...之间实现选择性保护在进线断路器NZM...和出线断路器NZM...之间实现选择性保护线路保护,后备保护................................................................................122........................................................................................................124 (126)1.14 技术数据1.13 脱扣特性机械联锁用于远程操作机构的机械联锁 (157) (158)1.15 安装设计NZM型号说明隔离开关型号说明....................................................................................................204.. (205)1.17 型号规则1.16 尺寸断路器,隔离开关 (159)NZM 1-4系列塑壳断路器系统总览NZM 1-4系列塑壳断路器系统总览1.11.1断路器,隔离开关断路器,隔离开关断路器额定持续电流,最大1600 A 分断能力25, 50, 100, 150 kA 于415 V过载保护和短路保护范围可调节时间选择性可调节接地保护低压系统保护,电缆保护,电动机保护,发电机保护3极和4极,IEC/EN 60947隔离开关额定持续电流,最大1600 A 远程脱扣功能,需带欠压或分励脱扣器3极和4极,IEC/EN 60947附加功能安装附件标准辅助触点随主触头动作而动作用于脱扣指示和电气互锁功能脱扣指示辅助触点指示因过载、短路和欠压而产生的脱扣提前闭合辅助触点用于电气互锁和减负荷功能,及在主回路/急停电路应用中欠压脱扣器的提前闭合电压脱扣器电压脱扣器·瞬时·延时分励脱扣器垫块欠压线圈的延时单元门联动旋转手柄门·可加锁·有门联锁功能用于柜体侧面安装的断路器旋转手柄延长杆可以切割成任意长度旋转手柄可加锁远程操作机构通过2线和3线控制实现ON,OFF 复位上下扳动手柄的锁定装置侧面操作手柄数据管理界面(DMI模块)可以查询诊断数据和运行数据记录电流值利用电子式脱扣器对断路器进行参数设置和控制EASY-LINK-DS数据插头PROFIBUS-DP通讯接口1165538971817241125252613, 151214161920212223241011控制回路端子顶部或底部管状式接线端子,铜线或铝线标准配置控制回路端子盒式接线端子框架1的标准配置安装干开关壳体内端子盖在使用电缆接线片,母排或管状接线端子处,防止直接接触安装支架NZM1-XC35用于35 mm导轨NZM1-XC75用于75 mm导轨后部接线端子插拔式和抽屉式单元绝缘框用于上下扳动式手柄,带有旋转驱动机构的旋转式手柄和远程操作机构外部警示牌/显示板指触防护等级为IP2X的防护盖用于盒式接线端子指触防护等级为IP2X的防护盖用于相间隔板NZM 1-4系列塑壳断路器产品概述NZM 1-4系列塑壳断路器产品概述1.21.2断路器隔离开关适用于世界范围的断路器和隔离开关的选型,从第26页起。
第二节 STR-W6553A 电源简介STR-W6553A 为内藏功率MOSFET 和控制器,以准共振方式工作的开关电源用厚膜集成电路。
通常工作以准共振或Bottom Skip 准共振动作,实现了开关电源的高效率,低噪声等优良性能,待机时以间歇振荡方式工作以降低待机功率。
使用该IC 可以大量减少电源元件的数量,简化电路的设计。
一、特点1、 在待机的状态下,当输出电压下降时电源以间歇振荡方式工作以降低待机功率。
2、 在原来的准共振工作方式的基础上增加了Bottom Skip 功能,改善了高电压输入时的电源效率。
3、电源启动时,以SOFT-START 方式启动。
4、内藏STEP-DRIVER 功能以减小开关噪声。
5、 使用SENSE-MOSFET ,不需要漏极电流检测用的电阻,且可以做到过电流保护的调整。
6、 内藏过电流保护电路,过电压保护电路,过负载保护电路,和最大的ON 时间限制电路。
7、保证MOSFET 的雪崩耐量。
二、IC 引脚介绍: 记号 名称 功能 1D MOSFET 漏极端子 开关管漏极D 2NC3S/GND MOSFET 源极端子/GND 控制器GND 4VCC 电源端子 启动电路5 SS/ADJ SOFT-START/过电流保护调整端子6 FB 反馈端子7BD Bottom 检测端子 U n R e g i s t e r e d三、启动原理启动电路检测VCC 端子(4号端子)的电压,控制IC 的动作开始和停止。
当AC 电源输入以后,AC 输入电压通过启动电阻R803对C808充电。
当C808的电压达到启动开始电压VCC (on )=18V 时,STR-W6553A 开始工作,开关管开始有开关动作。
随着输出电压和辅助绕组电压的上升,由辅助绕组给IC 供电。
1、关于启动①由于IC 的启动电流很小,R803可使用高阻值的电阻,来降低待机功耗。
但是要注意R803要向IC 提供足够的锁定电路保持电流,特别是低电压输入的时候能向IC 提供100UA 以上的电流。
液晶电源管理芯片代换大全1200AP40 1200AP60、1203P60200D6、203D6 DAP8A 可互代203D6/1203P6 DAP8A2S0680 2S08803S0680 3S08805S0765 DP104、DP7048S0765C DP704加24V的稳压二极管ACT4060 ZA3020LV/MP1410/MP9141ACT4065 ZA3020/MP1580ACT4070 ZA3030/MP1583/MP1591MP1593/MP1430ACT6311 LT1937ACT6906 LTC3406/AT1366/MP2104AMC2576 LM2576AMC2596 LM2596AMC3100 LTC3406/AT1366/MP2104AMC34063A AMC34063AMC7660 AJC1564AP8012 VIPer12AAP8022 VIPer22ADAP02 可用SG5841 /SG6841代换DAP02ALSZ SG6841DAP02ALSZ SG6841DAP7A、DP8A 203D6、1203P6DH321、DL321 Q100、DM0265RDM0465R DM/CM0565RDM0465R/DM0565R 用cm0565r代换(取掉4脚的稳压二极管)DP104 5S0765DP704 5S0765DP706 5S0765DP804 DP904FAN7601 LAF0001LD7552 可用SG6841代(改4脚电阻)LD7575PS 203D6改1脚100K电阻为24KOB2268CP OB2269CPOB2268CP SG6841改4脚100K电阻为20-47KOCP1451 TL1451/BA9741/SP9741/AP200OCP2150 LTC3406/AT1366/MP2104OCP2160 LTC3407坂面精通家电维修中心电话0598-OCP2576 LM2576OCP3601 MB3800OCP5001 TL5001OMC2596 LM2596/AP1501PT1301 RJ9266PT4101 AJC1648/MP3202PT4102 LT1937/AJC1896/AP1522/RJ9271/MP1540SG5841SZ SG6841DZ/SG6841DSM9621 RJ9621/AJC1642SP1937 LT1937/AJC1896/AP1522/RJ9271/MP1540STR-G5643D STR-G5653D、STR-G8653DTEA1507 TEA1533TEA1530 TEA1532对应引脚功能接入THX202H TFC719THX203H TFC718STOP246Y TOP247YVA7910 MAX1674/75 L6920 AJC1610VIPer12A VIPer22A[audio01]ICE2A165(1A/650V.31W);ICE2A265(2A/650V.52W);ICE2B0565(0.5A/650V.23W):ICE2B165(1A/650V.31W);ICE2B265(2A/650V.52W);ICE2A180(1A/800V.29W);ICE2A280(2A/800.50W).KA5H0365R, KA5M0365R, KA5L0365R, KA5M0365RN# u) t! u1 W1 B) R, PKA5L0365RN, KA5H0380R, KA5M0380R, KA5L0380R1、KA5Q1265RF/RT(大小两种体积)、KA5Q0765、FSCQ1265RT、KACQ1265RF、FSCQ0765RT、FSCQ1565Q这是一类的,这些型号的引脚功能全都一样,只是输出功率不一样。
(19)中华人民共和国国家知识产权局(12)实用新型专利(10)授权公告号 (45)授权公告日 (21)申请号 201920286456.7(22)申请日 2019.03.07(73)专利权人 惠州市爱博智控设备有限公司地址 516081 广东省惠州市大亚湾西区响水北路11号(72)发明人 陈旭东 (74)专利代理机构 深圳市千纳专利代理有限公司 44218代理人 蔡义文(51)Int.Cl.H03K 17/567(2006.01)H03K 17/081(2006.01)(54)实用新型名称一种大功率P-MOS管的驱动电路(57)摘要本实用新型公开了一种大功率P -MOS管的驱动电路,包括施密特触发器U2、光耦U1、P -MOS芯片T1、电阻R1、电阻R2、电容C1、电容C2、电容C3,施密特触发器U2的信号输出端与电阻R2的一端连接,电阻R2的另一端与光耦U1的信号输入端连接,光耦U1的信号输出端分别与P -MOS芯片T1的栅极和电阻R1的一端连接,P -MOS芯片T1的源极与电源连接,漏极与负载连接,电阻R1的另一端与外接电源连接,电容C1、电容C2的一端分别与光耦U1的电源端与外部电源之间的公共连接点连接;通过P -MOS管T1设置,实现了大功率驱动控制,不受开关速度的限制,采用P -MOS芯片T1驱动,起到真正意义上的关断,不会出现漏电等隐患,采用光耦U1驱动,对单片机起到隔离和保护作用。
权利要求书1页 说明书3页 附图1页CN 209402493 U 2019.09.17C N 209402493U权 利 要 求 书1/1页CN 209402493 U1.一种大功率P-MOS管的驱动电路,其特征在于:包括施密特触发器U2、光耦U1、P-MOS 芯片T1、电阻R1、电阻R2、电容C1、电容C2、电容C3,施密特触发器U2的信号输出端与电阻R2的一端连接,电阻R2的另一端与光耦U1的信号输入端连接,光耦U1的信号输出端分别与P-MOS芯片T1的栅极和电阻R1的一端连接,P-MOS芯片T1的源极与电源连接,漏极与负载连接,电阻R1的另一端与外接电源连接,电容C1、电容C2的一端分别与光耦U1的电源端与外部电源之间的公共连接点连接。
FEATURES APPLICATIONSDESCRIPTION/TPS65530SLVS744B–OCTOBER2007–REVISED NOVEMBER2007 FULLY INTEGRATED8-CHANNEL DC/DC CONVERTER FOR DIGITAL STILL CAMERAS•Digital Still Cameras(DSCs)•8-Channel DC/DC Converters and LDO•Portable Electronics Equipment•Integrated Power MOSFET Switch Except CH8–Boost(CH5/7)–Buck(CH1/3)ORDERING INFORMATION–Buck-Boost(CH2/4)The TPS65530is highly integrated8-channel –Invert(CH6)switching dc/dc converter,and seven channels have •Low-Power Suspend Mode(Sleep Mode)integrated power FET.•Power ON/OFF Sequence(CH1/2/3and CH5/6)CH2/4are configured for H bridge for buck-boost •LED-Back Light Brightness Control(CH7)topology and single inductor supports.Thesechannels achieve higher efficiency in spite of •Fixed Switching Frequency(CH1–4:1.5MHz,input/output voltage conditions.CH5–8:750kHz)CH7has a brightness control and drives white LED •Fixed Max Duty Cycle Internallyby constant current.Also,CH7supports overvoltage •Soft Startprotection for open load.•Undervoltage Lockout(UVLO)CH1/2/3has power ON/OFF sequence suitable for a •Protectiondigital still camera(DSC)system.CH5/6has a power –Thermal Shutdown(TSD)ON/OFF sequence,depending on the CCD.PowerON/OFF for CCD block(CH5/6)is selectable by the –Overvoltage Protection(OVP)input voltage level at the SEQ56pin.CH4and CH7–Overcurrent Protection(OCP)Except CH8have individual ON/OFF sequences.•Supply Voltage Range:1.5V to5.5VThe TPS65530high switching frequency is achieved •Operating Temperature Range:–25°C to85°Cby an integrated power MOSFET switch.It reduces •6×6mm,0.4-mm Pitch,48-Pin QFN Package external parts dynamically.Shutdown currentconsumption is less than1µA as a typical value.ORDERING INFORMATIONT A PACKAGE(1)ORDERABLE PART NUMBER TOP-SIDE MARKINGReel of250TPS65530RSLT–25°C to85°C QFN TPS65530Reel of2500TPS65530RSLR(1)For the most current package and ordering information,see the Package Option Addendum at the end of this document,or see the TIwebsite at .Please be aware that an important notice concerning availability,standard warranty,and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PowerPAD is a trademark of Texas Instruments.PRODUCTION DATA information is current as of publication date.Copyright©2007,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasInstruments standard warranty.Production processing does notnecessarily include testing of all parameters. CHANNEL CONFIGURATIONSW4SPGND4SW4IVOUT4FB4ENAFEXSLEEPEN7S/SAGNDREFVCC2SW2PGNDSW2VOUTFBVCCSWPGNDFBFBVCCSWPGND3SW8LDLL8SW8HDFB8FBG7/8B-ADJFBCCINFBVSW7PSPGND5/7SW5SWOUTVCC5FB5VCC6SW6FB6S/S56EN56SEQ56VCC4QFN PACKAGE(TOP VIEW)TPS65530SLVS744B–OCTOBER2007–REVISED NOVEMBER2007These devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.MAXIMUMOUTPUTOPERATION RECTIFY CONTROL SUPPLY CHANNEL VOLTAGE APPLICATIONMODE MODE METHOD CURRENT(V)(mA) CH1Buck SW Synchronous Voltage0.9to2.5Engine core600Engine I/O(DSP CH2Buck-boost SW Synchronous Average current 2.5to3.6600I/F) CH3Buck SW Synchronous Voltage0.9to2.5External memory300 CH4Buck-boost SW Synchronous Average current 2.2to3.6AFE300 CH5Boost SW Non-Synchronous Peak current Up to18.0CCD+50 CH6Invert SW Non-Synchronous Voltage–10.0to–5.0CCD–100 CH7Boost SW Non-Synchronous Voltage 3.0to20.0Backlight LED25Motor controller CH8Boost SW Synchronous Voltage 3.3to5.5-and IC drive supplyLow dropout Internal supply for REF–– 2.815 voltage logic2Submit Documentation Feedback Copyright©2007,Texas Instruments IncorporatedProduct Folder Link(s):TPS65530TPS65530SLVS744B–OCTOBER2007–REVISED NOVEMBER2007 TERMINAL FUNCTIONSTERMINALI/O(1)DESCRIPTIONNAME NO.SW4S1O Buck-side terminal of coil for CH4PGND42G GND for CH4low-side FETSW4I3I Boost-side terminal of coil for CH4V OUT44O Output of CH4Output voltage feedback for CH4.The external resistors should be connected as close as possible FB45Ito the terminal.ENAFE6I Enable for CH4(L:Disable,H:Enable)XSLEEP7I Control for sleep mode/normal operation(L:Sleep mode,H:Normal operation)EN78I Enable for CH7(L:Disable,H:Enable)Soft start time adjustment.The time is programmable by an external capacitor.Please see the soft S/S9I/Ostart description.AGND10G Analog groundREF11O Output of LDO.From2.2µF to4.7µF,capacitor should be connected to AGND.V CC212P Power supply at CH2buck-side FET from batterySW2S13O Buck-side terminal of coil for CH2PGND214G GND for CH2low-side FETSW2I15I Boost-side terminal of coil for CH2V OUT216O Output of CH2Output voltage feedback for CH2.The external resistors should be connected as close as possible FB217Oto the terminal.V CC118P Power supply at CH1high-side FET from batterySW119O Output of CH1.The terminal should be connected to the external inductor.PGND120G GND for CH1low-side FETOutput voltage feedback for CH1.The external resistors should be connected as close as possible FB121Ito the terminal.Output voltage feedback for CH3.The external resistors should be connected as close as possible FB322Ito the terminal.V CC323P Power supply at CH3high-side FET from batterySW324O Output of CH3.The terminal should be connected to the external inductor.PGND325G GND for CH3low-side FETOutput for CH8external low-side FET drive.The terminal is connected to the gate of the low-side SW8LD26Oexternal FET.Switching output for CH8at wake mode.The terminal is switched when the output voltage of CH8 LL827Ois less than2.5V.Output for CH8external high-side FET drive.The terminal is connected to the gate of theSW8HD28Ohigh-side external FET.PS29I Power input for IC inside.The terminal should be connected to CH8output voltage.Output voltage feedback for CH8.The external resistors should be connected as close as possible FB830Ito the terminal.FBG7/831I GND for CH7and CH8feedback resistorsB-ADJ32I Brightness adjustment for W-LEDFBC33I Output current feedback for CH7CIN34I Input current at CH7load switchOutput voltage feedback for CH7.The external resistors should be connected as close as possible FBV35Ito the terminal.SW736O Output of CH7.The terminal should be connected to the external inductor.Power GND for CH5/7.The terminal should be connected by power ground layer at PCB via a PGND5/737Gthrough hole.SW538O Low-side terminal of coil for CH5(1)I=input,O=output,I/O=input/output,P=power supply,G=GNDCopyright©2007,Texas Instruments Incorporated Submit Documentation Feedback3Product Folder Link(s):TPS65530TPS65530SLVS744B–OCTOBER 2007–REVISED NOVEMBER 2007TERMINAL FUNCTIONS (continued)TERMINAL I/O (1)DESCRIPTIONNAME NO.SWOUT 39O High-side terminal of coil for CH5V CC540P Power supply at CH5high-side FET from batteryOutput voltage feedback for CH5.The external resistors should be connected as close as possible FB541I to the terminal.V CC642P Power supply at CH6load switch from batterySW643O Output of CH6.The terminal should be connected to the external inductor.Output voltage feedback for CH6.The external resistors should be connected as close as possible FB644I to the terminal.Soft start-time adjustment terminal for CH5and CH6.The time is programmable by external S/S5645I/O capacitor.See the soft-start description.EN5646I Enable for CH5and CH6(L:Disable,H:Enable)SEQ5647I Sequence select for CH5and CH6.See the power sequence description.V CC448P Power supply at CH4high-side FET from batteryMust be soldered to achieve appropriate power dissipation.Should be connected to PGND to use PowerPAD™Back sideGa Φ0.3mm through hole.See the recommended foot pattern description.4Submit Documentation FeedbackCopyright ©2007,Texas Instruments IncorporatedProduct Folder Link(s):TPS65530ABSOLUTE MAXIMUM RATINGS(1)DISSIPATION RATINGSRECOMMENDED OPERATING CONDITIONSTPS65530 SLVS744B–OCTOBER2007–REVISED NOVEMBER2007over operating free-air temperature range(unless otherwise noted)UNITV CC1,V CC2,V CC3,V CC4,V CC5,V CC6,SWOUT,FB2,FB4,FB5,FB8,FBC,FBV.PS,XSLEEP,ENAFE,SEQ56,EN56,EN7,SW4S,SW4I,V OUT4,–0.3to6SW2S,SW2I,V OUT2,SW1,SW3,SW8LD,SW8HD,FBG78(based on PGND or AGND)BADJ,SS,FB1,FB3,FB6,SS56–0.3to3LL8–0.3to7 Input voltage VREF–0.3to3.6SW5–0.3to22SW7,CIN–0.3to27SW6(based on V CC6)–20PGND1,PGND2,PGND3,PGND4,PGND57,AGND–0.3to0.3CIN0.05SW2S,SW2I 3.3SW4S,SW4I 1.65SW1 1.9SW3 1.0 Switching current ASW5 1.6SW6–1.35SW7 1.2LL8 1.0SW8LD,SW8HD0.6T J Maximum junction temperature range–30to150°CT stg Storage temperature range–40to150°CESD rating,Human-BodyJEDEC JESD22A-A1142kV Model(HBM)ESD rating,Changed-Device Model JEDEC JESD22A-C101500V (CDM)(1)Stresses beyond those listed under"absolute maximum ratings"may cause permanent damage to the device.These are stress ratingsonly,and functional operation of the device at these or any other conditions beyond those indicated under"recommended operating conditions"is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.POWER RATINGS POWER RATINGS RATE PACKAGE RθJA(1)T A<25°C T A>25°C 48-pin QFN27°C/W 2.9W0.029°C/W(1)The thermal resistance,RθJA,is based on a soldered PowerPAD package on a2S2P JEDEC board(3-in×3-in,four layers)usingthermal vias(0.3mm diameter×12vias)MIN MAX UNIT V CC1,V CC2,V CC4,V CC5 1.5 5.5Supply voltage VV CC3,V CC6 2.5 5.5High-level input voltage XSLEEP/ENAFE/EN56/EN7 1.4V Low-level input voltage XSLEEP/ENAFE/EN56/EN70.4V High-level input voltage SEQ56 1.4REF V Low-level input voltage SEQ560.4V Operating temperature–2585°CCopyright©2007,Texas Instruments Incorporated Submit Documentation Feedback5Product Folder Link(s):TPS65530ELECTRICAL CHARACTERISTICSTPS65530SLVS744B–OCTOBER 2007–REVISED NOVEMBER 20070°C ≤T J ≤125°C,1.8V ≤V CC2≤5V (unless otherwise noted)PARAMETERTEST CONDITIONSMINTYP (1)MAX UNITFor All Circuits I CC_Iq V CC2=VPS =3.6V,XSLEEP =AGND110µA I CC_sleep V CC2=3.6V,VPS =5V,XSLEEP =AGND,4070Consumption current at PS (pin 29)ENAFE =V CC2I CC_PWM V CC2=3.6V ,VPS =5V,XSLEEP =V CC2,2030mAENAFE =V CC2,EN56=V CC2,EN7=V CC2I CC_Iq2V CC2=VPS =3.6V,XSLEEP =AGND 110µA I CC_sleep2V CC2=3.6V,VPS =5V,XSLEEP =AGND,1230Consumption current at V CC2(pin 12)ENAFE =V CC2I CC_PWM2V CC2=3.6V ,VPS =5V,XSLEEP =V CC2,0.3 1.0mA ENAFE =V CC2,EN56=V CC2,EN7=V CC2TSD Thermal shutdown temperature (2)150°CV (UV_ON)UVLO detect level V CC2from 0V to 5.5V,XSLEEP =V CC2 1.25 1.4 1.55V V (UV_OFF)UVLO hysteresisV CC2from 5.5V to 0V 50100150mV OSC Internal OSC frequency V CC2=3.6V1.351.5 1.65MHz O SC_SUB CH5/6/7/8switching frequency OSC =1.5MHz,VPS =5V 750KHz REF output voltage XSLEEP =V CC22.72 2.83.03V I ssSS source currentS/S=AGND61014µA Pulldown resistance at XSLEEP,XSLEEP =ENAFE =EN56=EN7=SEQ56=3V200k ΩENAFE,EN56,EN7,SEQ56CH1V CC1Supply voltage 1.5 5.5V V OUT1Output voltage (2)0.92.5V V CC1>2.4V,V OUT1=1.2V,I OUT1Output current (2)Feedback resistance:R1=330k Ω,600mA R2=330k ΩV FB1FB1reference voltageNo load0.590.60.61V Overcurrent protection threshold 0.91.9A Overvoltage protection threshold 0.670.750.83V (sensing at FB1pin)High-side Nch FET ON resistance (3)VPS =5V 320500m ΩLow-side Nch FET ON resistance (3)VPS =5V200250m ΩTrigger voltage to start CH30.48V Trigger voltage to power off LDO0.25VCH2V CC2Supply voltage 1.5 5.5V V OUT2Output voltage (2)2.53.6V V CC2>2.4V,V OUT2=3.3V,I OUT2Output current(2)Feedback resistance:R1=180k Ω,600mA R2=820k ΩV FB2FB2reference voltageNo load0.5950.6050.615V Overcurrent protection threshold 2.63.3A Overvoltage protection threshold 0.670.750.83V(sensing at FB2pin)High-side FET VPS =5V 100210ON resistance Buck m Ωside (3)Low-side FET VPS =5V450600ON resistance(1)T A =25°C(2)Specified by design(3)The value of FET On resistance includes the resistance of bonding wire.6Submit Documentation FeedbackCopyright ©2007,Texas Instruments IncorporatedProduct Folder Link(s):TPS65530TPS65530 SLVS744B–OCTOBER2007–REVISED NOVEMBER2007ELECTRICAL CHARACTERISTICS(continued)0°C≤T J≤125°C,1.8V≤V CC2≤5V(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP(1)MAX UNITHigh-side FETVPS=5V130240 ON resistanceBoostmΩside(3)Low-side FETVPS=5V80140 ON resistanceTrigger voltage to power off CH3V OUT2=0.5V0.5VV OUT2leakage current V OUT2=0.5V1uANch FET ON resistance for discharge XSLEEP=AGND,ENAFE=AGND12kΩCH3V CC3Supply voltage 2.5 5.5VV OUT3Output voltage(2)0.9 2.5VV CC3>2.5V,V OUT3=1.8V,I OUT3Output current(2)Feedback resistance:R1=220kΩ,300mAR2=470kΩV FB3FB3reference voltage No load0.590.60.61VOvercurrent protection threshold0.6 1.0AOvervoltage protection threshold0.670.750.83V(sensing at FB3pin)High-side Nch FET ON resistance(4)VPS=5V370750mΩLow-side Nch FET ON resistance(4)VPS=5V300600mΩNch FET ON resistance for discharge XSLEEP=AGND,ENAFE=AGND12kΩTrigger voltage to start CH20.48VTrigger voltage to power off CH10.2VCH4V CC4Supply voltage 1.5 5.5VV OUT4Output voltage(5) 2.2 3.6VV CC4>2.4V,V OUT4=3.3V,I OUT4Output current(5)Feedback resistance:R1=82kΩ,100300mAR2=330kΩV FB4FB4reference voltage No load0.5950.6050.615VOvercurrent protection threshold 1.4 1.65AOvervoltage protection threshold0.670.750.83V(sensing at FB4pin)High-side FETVPS=5V130310 ON resistanceBuckmΩside(4)Low-side FETVPS=5V600730 ON resistanceHigh-side FETVPS=5V170270 ON resistanceBoostmΩside(4)Low-side FETVPS=5V130250 ON resistanceV OUT4leakage current V OUT4=0.5V1µANch FET ON resistance for discharge XSLEEP=AGND,ENAFE=AGND12kΩCH5V CC5Supply voltage 1.5 5.5VV OUT5Output voltage(5)V CC518VV FB5FB5reference voltage No load0.981 1.02VV CC5>2.4V,V OUT5=15V,I OUT5Output current(5)Feedback resistance:R1=40kΩ,50mAR2=560kΩ(4)The value of FET On resistance includes the resistance of bonding wire.(5)Specified by designCopyright©2007,Texas Instruments Incorporated Submit Documentation Feedback7Product Folder Link(s):TPS65530TPS65530SLVS744B–OCTOBER 2007–REVISED NOVEMBER 2007ELECTRICAL CHARACTERISTICS (continued)0°C ≤T J ≤125°C,1.8V ≤V CC2≤5V (unless otherwise noted)PARAMETERTEST CONDITIONS MINTYP (1)MAX UNIT Overcurrent protection threshold 1.31.6A Overvoltage protection threshold 1.091.25 1.38V (sensing at FB5pin)Nch FET ON resistance (4)VPS =5V610900m ΩLoad switch ON resistance 1.5V <V CC5<5.5V100470m Ω(between V CC5and SW5)Load switch ramp-up time 1.5V <V CC5<5.5V,SWOUT capacitance =4.7200µS(between V CC5and SW5)(5)µFLoad switch leakage current 1µA (between V CC5and SW5)MAX DUTY cycle9698%Trigger voltage to start up CH6SEQ56=AGND0.8V CH6V CC6Supply voltage 2.5 5.5V V OUT6Output voltage (5)–10–5V V CC6>2.8V,V OUT6=–7.5V,I OUT6Output current(5)Feedback resistance:R1=136k Ω,100mA R2=820k ΩV FB6FB6reference voltageNo load –0.0200.02V Overcurrent protection threshold V CC6>2.8V1.1 1.35A Overvoltage protection threshold –0.3–0.2–0.1V (sensing at FB6pin)Pch FET ON resistance (6)V CC6=3.6V6401100m ΩMax duty cycle849198%Trigger voltage to power off CH6SEQ56=AGND 0.50.530.56V V S/S56S/S56pin voltage 1.22 1.25 1.28V I S/S56S/S56pin source current S/S56=AGND170200230µA CH7V CC7Supply voltage (7) 1.55.5V V OUT7Output voltage (8)V CC7<V OUT7320V V CC7>2.4V,V OUT7=15V,Feedback resistance:R1=47k Ω,I OUT7_LLower output current (7)3.756.3mAR2=680k Ω,Rsense =10Ω,B_ADJ pin voltage =0VV CC7>2.4V,V OUT7=15V,Feedback resistance:R1=47k Ω,I OUT7_H Higher output current (7)23.72526.3mA R2=680k Ω,Rsense =10Ω,B_ADJ pin voltage =1V V FBVFBV reference voltageNo load0.971 1.03V Overvoltage protection threshold 1.151.25 1.35V (sensing at FBV pin)Overcurrent protection threshold 0.8 1.2A Nch FET ON resistance (6)7001200m ΩMax duty cycle869199%Load switch ON resistance 24ΩLoad switch leakage current 1µA (between C-IN and FBC)R B-ADJ B-ADJ pin input impedance 1M Ω(6)The value of FET On resistance includes the resistance of bonding wire.(7)Specified by design(8)Due to constant current control for CH7,the operating condition is that Input voltage is less than LED supply voltage (Output voltage).8Submit Documentation FeedbackCopyright ©2007,Texas Instruments IncorporatedProduct Folder Link(s):TPS65530TPS65530 SLVS744B–OCTOBER2007–REVISED NOVEMBER2007ELECTRICAL CHARACTERISTICS(continued)0°C≤T J≤125°C,1.8V≤V CC2≤5V(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP(1)MAX UNIT CH8T A=25°C,1.8 5.5Start up(XSLEEP from AGND to V CC2)Supply voltage(7)VXSLEEP=V CC2 1.5 5.5VPS Output voltage(7) 3.3 5.5VXSLEEP=H,ENAFE=AGND,No load 1.23 1.25 1.27VV FB8FB8reference voltageCH8operation mode:PFM mode,No load 1.2 1.25 1.35V Fixed ON time at PFM mode V CC2=3.6V250nsMax duty cycle768592% Source impedance VPS=5V,ISW=100mA57.5 SW8LDΩdriver Sink impedance VPS=5V,ISW=–100mA1 1.5Source impedance VPS=5V,ISW=100mA1015 SW8HDΩdriver Sink impedance VPS=5V,ISW=–100mA57.5Overvoltage protection threshold1.30 1.56 1.80V(sensing at FB8pin)FBG7/8FET ON resistance VPS=5V,XSLEEP=V CC20.6kΩFBG7/8leakage current XSLEEP=AGND,ENAFE=AGND1µACopyright©2007,Texas Instruments Incorporated Submit Documentation Feedback9Product Folder Link(s):TPS65530PGND5/7CINV CC6S/S S 6W FB6F 5B SW5SWOUT V CC5SW7FBCFBV B-ADJ FB8PS SW8LD LL8SW8HD FBG7/8SEQ56EN56TPS65530SLVS744B–OCTOBER 2007–REVISED NOVEMBER 2007BLOCK DIAGRAM10Submit Documentation FeedbackCopyright ©2007,Texas Instruments IncorporatedProduct Folder Link(s):TPS65530APPLICATION INFORMATIONA.When output voltage is higher than input voltage at2AA battery models,V CC1and V CC3should be connected to theCH8output.When the2AA battery is connected,V CC6should be connected to the CH8output.B.The external FET for CH8is dependent on the load.When the motor is connected to CH8,the external FET is large.FUNCTIONAL DESCRIPTIONLogic True TablePower ON/OFFSequenceThe enable/disable of each channel is controlled by logic input signals level at XSLEEP (pin 7for all channels),ENAFE (pin 6for CH4),EN56(pin 46for CH5and CH6)and EN7(pin 8for CH7).Table 1is the summary of the enable/disable mode.Table 1.Control Pin vs Enable/DisableNO.OF XSLEEPENAFE EN56EN7CH1CH2CH3CH4CH5CH6CH7CH8(1)LDO STATE 1L L --OFF OFF OFF OFF OFF OFF OFF OFF OFF 2H L L L ON ON ON OFF OFF OFF OFF PWM ON 3H L L H ON ON ON OFF OFF OFF ON PWM ON 4H L H L ON ON ON OFF ON ON OFF PWM ON 5H L H H ON ON ON OFF ON ON ON PWM ON 6H H L L ON ON ON ON OFF OFF OFF PWM ON 7H H L H ON ON ON ON OFF OFF ON PWM ON 8H H H L ON ON ON ON ON ON OFF PWM ON 9H H H H ON ON ON ON ON ON ON PWM ON 10(2)LH--OFFOFFOFFOFFOFFOFFOFFPFMOFF(1)PWM =pulse width modulation,PFM =pulse frequency modulation (2)State 10(CH8:PFM mode)must go through State 2.This device has the power ON/OFF sequence of CH1/2/3/8/REF and CH5/6for DSC application.The CH1/2/3/8/REF sequence is shown in Figure 1.The CH5/6sequence is shown in Figure 2.CH4and CH7have individual sequences but CH4/5/6has relationship with CH1/2/3slope of soft start is the same and puts high priority of CH1/2/3to avoid the functional conflict (see the Soft Start description).Due to this,CH4/5/6should not be ON before CH1/2/3is ON.When XSLEEP is forced low,all channels turn OFF with the power OFF sequence.Figure 1.CH1/CH2/CH3/CH8/REF Power ON/OFF SequenceFigure2.CH5/CH6Power ON/OFF SequenceSoft StartUndervoltage Lockout(UVLO)ProtectionsThis function reduces the rush current from the battery at start-up.This device has two slopes,defined by S/S (pin 9)and S/S56(pin 45).The slopes of CH1/2/3/4are defined by S/S (pin 9);the slope of CH5/6depends on SEQ56(pin 47)signal level.When SEQ 56(pin 47)is low,the slope of CH5is defined by S/S (pin 9),the slope of CH6is defined by S/S56(pin 45).When SEQ 56(pin 47)is high,the slopes of CH5and CH6are defined by S/S56(pin 45).The soft-start time is calculated by Equation 1and Equation 2.T S/S =C S/S ×60(1)T S/S56=C S/S56×6.25(2)C S/S :Capacitance at S/S pin [µF],T S/S :soft start duration defined by S/S pin [ms]C S/S56:Capacitance at S/S56pin [µF],T S/S56:soft start duration defined by S/S56pin [ms]The recommended capacitances are:C S/S :0.1[µF],or T S/S :6.0[ms](3)C S/S56:1.0[µF],or T S/S56:6.25[ms](4)This device monitors the battery voltage level at V CC2(pin 12).When XSLEEP is high and V CC2(pin 12)is less than the threshold (defined in Electrical Characteristics as UVLO detect level),the operation shuts down immediately without the power OFF sequence.UVLO has a hysteresis as shown in Figure 3.This factor is defined in Electrical Characteristics as UVLO hysteresis.Figure 3.UVLO HysteresisThe TPS65530has protections:overcurrent protection (OCP),overvoltage protection (OVP),and thermal shutdown (TSD)(see Table 2).CHANNEL DESCRIPTIONSCH1/3DescriptionTable 2.Protection ConditionsPROTECTIONCH1–CH6CH7CH8REF (LDO)All CH shutdown All CH shutdown (latch-off)Change All CH shutdown (latch-off)Forced OFF at MOSFET (latch-off)(without power (without power OFFmode (without power OFF sequence)OFF sequence)sequence)Current over the threshold,V OUT Detect less than 80%to compare the Current over theV OUT less than 70%to V OUT less than 80%to conditiontarget,andthresholdcompare the targetcompare the targetcount 64cycle ×1.5MHz XSLEEP:Change level from Low OCPto HighXSLEEP:Change level XSLEEP:Change level from Current less than the ENAFE:Change level from Low from Low to HighLow to Highthreshold (automatic to High (for CH4)ENAFE:Change level ENAFE:Change level from restoration)Comeback EN56:Change level from Low to from Low to High Low to High orconditionHigh (for CH5/6)ororV CC2:Apply more than orV CC2:Apply more than V CC2:Apply more than UVLO UVLO threshold (1.4V)V CC2:Apply more than UVLO UVLO threshold (1.4V)threshold (1.4V)after after removing V CC2threshold (1.4V)after removing after removing V CC2removing V CC2V CC2Forced OFF atChange Forced OFF at applicable CH MOSFET,load switch Forced OFF at MOSFET modeMOSFETturns ONDetect Voltage over the threshold at Voltage over theVoltage over theOVPNo OVP functioncondition feedbackthreshold at feedbackthreshold at feedback Voltage less than the Comeback Voltage less than the threshold at EN7:Change level from threshold at feedback condition feedback (auto-recovery)low to high (auto-recovery)Change All CH shutdown (without power OFF sequence)mode Detect TSDThe junction temperature is more than the threshold.condition Comeback XSLEEP:Change level from Low to High,ENAFE:Change level from Low to High (for CH4),EN56:Change level from conditionLow to High (for CH5/6),or V CC2:More than 1.4VBoth CH1and CH3are the same topology.CH1/3is the voltage-mode-controlled synchronous buck converter for engine core (CH1)or external memory (CH3).Both high-side and low-side switches are integrated into the device and consist of NMOS-FET only.The gate of the high-side switch is driven by bootstrap circuit.The capacitance of the bootstrap is included in the device.These channels are able to operate up to 100%duty cycle.This device has a discharge path to use the switch (Q_Discharge1/3)for CH1/3output capacitor via the inductor.The switch is activated after the power OFF sequence has started.Typical resistance at the discharge circuit is 1k Ω.When the device detects the threshold at FB1/3after the power OFF sequence has started,the MOSFET turns OFF and the output is fixed with high impedance.It is acceptable to connect the battery to V CC1(pin 18)/V CC3(pin 23)directly when the battery voltage is more than 2.5V.When the battery voltage is less than 2.5V,the CH8output should be connected to V CC1(pin 18)/V CC3(pin 23).The output voltage is programmed from 0.9V to 2.5V (both CH1and CH3)to use the feedback loop sensed by the external resistances.The output voltage is calculated by Equation 5.The block diagram is shown in Figure 4.V OUT =(1+R2/R1)×0.6[V](5)V OUT :Output voltage [V]R1,R2:Feedback resistance (see Figure 4)CH1/3Recommended Parts CH2/4Description Figure4.CH1/3Block DiagramTable3.Recommended Parts for Inductor(CH1and CH3)VENDOR TYPE NUMBER INDUCTANCE(µH)DCR(mΩ)SIZE(mm)TOKO DE2812C-1098AS-4R7M 4.7130 2.8×3.0×1.2Table4.Recommended Parts for Capacitor(Input,CH1and CH3) VENDOR TYPE NUMBER CAPACITANCE(µF)TOLERANCE(%)SIZE(mm)Murata GRM21BB30J226ME3822.020 2.0×1.25×1.25(EIA code:0805)Table5.Recommended Parts for Capacitor(Output,CH1and CH3) VENDOR TYPE NUMBER CAPACITANCE(µF)TOLERANCE(%)SIZE(mm) TDK C2012X5R0J106M10.020 2.0×1.25×1.25(EIA code:0805)Both CH2and CH4are the same topology.CH2/4is the average current-mode-controlled synchronous back-boost converter for engine I/O(CH2)or AFE(CH4).This converter is an adapted H-bridge circuit to use four switches.These switches are integrated into the device and consist of NMOS-FET only.The gate of the high-side switch is controlled by the bootstrap circuit.The capacitance of the bootstrap is included in the device. The device automatically switches from buck operation to boost operation or from boost operation to buck operation as required by the configuration.It always uses one active switch,one rectifying switch,one switch permanently on,and one switch permanently off.Therefore,it operates as a buck converter when the input voltage is higher than the output voltage,and as a boost converter when the input voltage is lower than the output voltage.There is no mode of operation in which all four switches are permanently switching.This device has a discharge switch(Q_Discharge2/4)for the CH2/4output capacitor.The typical ON resistance at the discharge switch is1kΩ.The discharge switch is activated when XSLEEP turns low.For CH4only,the switch is also activated when ENAFE turns low.After output voltage reaches approximately0.5V,the discharge switch turns OFF and VOUT2/4is changed into high impedance.The output voltage is programmable from2.5V to3.6V(for CH2)or from2.2V to3.6V(for CH4)to use the feedback loop sensed by the external resistances. The output voltage is calculated by Equation6.The block diagram is shown in Figure5.V OUT=(1+R2/R1)×0.6[V](6) V OUT:Output voltage[V] R1,R2:Feedback resistance(see Figure5)Figure5.CH2/4Block Diagram。
完善的产业链和个性化解决方案,满足全球客户的不同需求!人民电器集团是人民控股集团全资公司,中国500强企业之一,始创于1986年。
人民电器集团以工业电器为核心产业,拥有浙江、上海、南昌、抚州、枣庄、合肥六大制造基地、35家全资子公司150家控股成员企业、1500多家加工协作企业和5000多家销售公司。
产品畅销全球125个国家和地区,广泛应用于浦东机场、京沪高铁、三峡水电、北京地铁、奥运场馆南水北调、青藏铁路、嫦娥探月工程、越南太安水电枢纽等国内外重大工程项目,位居世界机械企业500强前列。
2023年,经世界品牌实验室测评,品牌价值788.15亿。
公司简介COMPANY PROFILE更 安 全保障人员生命及财产安全。
更 可 靠不间断供应电力,全天随时可用。
更 高 效降低能源消耗和成本,提高生产率,缩短需求供应时间。
优化机械、工厂流程,提高使用舒适性。
更 经 济更 环 保通过可再生能源提供能量,减少二氧化碳排放量。
电力与能源电力石油石化交通工业与机器矿业/建材水利/水处理汽车数据中心IT高科技互联网商业网络银行保险金融机构电信运营楼宇办公楼宇工业建筑基础设施住宅住宅建设公共建设小区设施剩余电流保护断路器逆变器直流断路器直流塑壳断路器直流框架断路器光伏箱变直流熔断器直流浪涌保护器终端新能源HS11FH系列防护型开启式刀开关B -117HD11F系列防误型开启式刀开关B -119RDM1系列塑料外壳式断路器B -001RDM10系列塑料外壳式断路器B -010DZ20系列塑料外壳式断路器B -015DZ15系列塑料外壳式断路器B -020RDM1E系列电子式塑壳断路器B -023RDM1L系列漏电断路器B -043RDL20系列漏电断路器B -057DZL25系列漏电断路器B -064DZ15LE系列漏电断路器B -060RDL18系列漏电断路器B -068RDWQ2系列双电源自动转换开关B -080RDQ6系列双电源自动转换开关B -082RDH5D系列双电源自动转换开关B -088HD 、HS系列开启式刀开关B -101RDQH系列双电源自动转换开关B -070RDQ1系列双电源自动转换开关B -077HD11FH系列防护型开启式刀开关B -121RDH5系列隔离开关B -123HR3系列熔断器式刀开关B -130HR5系列熔断器式隔离开关B -133RDH5DS系列双电源自动转换开关B -096RDM1EL系列电子式塑壳断路器B -051HR17B系列熔断器隔离开关B -141RDT16系列有填料封闭管式刀型触头熔断器B -155HH15系列隔离开关熔断器组B -146RDH5R系列隔离开关熔断器组B -143NGT系列快速熔断器B -174RS0、RS3系列快速熔断器B -171RT0系列有填料封闭管式刀型触头熔断器B -168RT14系列有填料封闭式管圆筒形帽熔断器B -165HG30熔断器式隔离器B -163RT18系列有填料封闭管式圆筒形帽熔断器B -160HR6系列熔断器式隔离开关B -136RDHG2B系列条型熔断器式隔离开关B -139全国统一客服热线: 400 898 1166 001选型指南产品概述RDM1系列塑料外壳式断路器具有体积小、分断能力高、飞弧短、抗震动的特点, 是陆地及船舶使用的理想产品。
HK32F030MxxxxA/HK32F0301MxxxxA数据手册版本:1.3发布日期:2022-11-22深圳市航顺芯片技术研发有限公司前言前言编写目的本文档介绍了HK32F030MxxxxA/HK32F0301MxxxxA系列芯片的结构框图、存储器映射、外设接口、电气特性、管脚封装等,旨在帮助用户快速了解该系列芯片的特点及功能。
读者对象本文适用于以下读者:•开发工程师•芯片测试工程师•芯片选型工程师版本说明本文档对应的产品系列为HK32F030MxxxxA/HK32F0301MxxxxA系列芯片。
修订记录目录1 简介 (1)2 产品概述 (3)2.1 产品特性 (3)2.2 器件一览表 (5)3 功能介绍 (8)3.1 结构框图 (8)3.2 存储器映射 (8)3.3 存储器 (9)3.3.1 Flash (9)3.3.2 内置SRAM (9)3.3.3 EEPROM (9)3.4 CRC计算单元 (9)3.5 供电方案 (10)3.6 电源监控器 (10)3.7 低功耗模式 (10)3.8 IO保持 (10)3.9 STBAWU定时器 (10)3.10 复位 (10)3.10.1 系统复位 (11)3.10.2 电源复位 (11)3.11 时钟和时钟树 (11)3.12 SYSCFG (13)3.13 GPIO (13)3.14 引脚选择功能(IOMUX) (13)3.15 中断与事件 (14)3.15.1 NVIC (14)3.15.2 System Tick定时器 (14)3.15.3 EXTI (14)3.16 ADC (14)3.16.1 AWD唤醒功能 (15)3.17 定时器 (15)3.17.1 高级定时器 (15)3.17.2 通用定时器 (15)3.17.3 基本定时器 (16)3.18 AWUT定时器 (16)3.19 独立看门狗(IWDG) (16)3.20 窗口看门狗(WWDG) (16)3.21 I2C总线 (16)3.22 通用同步/异步收发器(USART/UART) (17)3.23 串行外设接口(SPI/I2S) (17)3.24 蜂鸣器(Beeper) (18)3.25 64位UID (18)3.26 调试接口 (18)4 电气性能指标 (19)4.1 最大绝对额定值 (19)4.1.1 极限电压特性 (19)4.1.2 极限电流特性 (19)4.1.3 极限温度特性 (19)4.2 工作参数 (20)4.2.1 推荐工作条件 (20)4.2.2 上/下电复位特性 (20)4.2.3 内部参考电压 (21)4.2.4 工作电流特性 (21)4.2.5 内部高速(HSI)时钟特性 (21)4.2.6 内部低速(LSI)时钟特性 (22)4.2.7 外部时钟输入特性 (22)4.2.8 EEPROM存储器特性 (22)4.2.9 Flash存储器特性 (23)4.2.10 IO输入引脚特性 (23)4.2.11 IO输出引脚特性 (23)4.2.12 NRST复位管脚特性 (24)4.2.13 TIM计数器特性 (24)4.2.14 ADC特性 (24)5 典型电路 (27)5.1 电源供电 (27)6 管脚定义 (28)6.1 SOP8封装 (28)6.2 TSSOP16封装 (29)6.3 TSSOP20封装 (30)6.4 TSSOP24封装 (31)6.5 TSSOP28封装 (32)6.6 QFN20封装 (33)6.7 QFN24封装 (34)6.8 QFN28封装 (35)6.9 各封装的管脚定义 (35)6.10 多引脚选择(IOMUX) (40)6.10.1 SOP8封装的IOMUX映射 (40)6.10.2 TSSOP16封装的IOMUX映射 (43)6.11 引脚复用(AF)功能表 (45)7 封装参数 (47)7.1 SOP8封装 (47)7.2 TSSOP16封装 (48)7.3 TSSOP20封装 (49)7.4 TSSOP24封装 (50)7.5 TSSOP28封装 (52)7.6 QFN20封装 (53)7.7 QFN24封装 (56)7.8 QFN28封装 (56)8 订货信息 (59)9 缩略语 (61)10 重要提示 (63)1简介本文档为HK32F030MxxxxA及HK32F0301MxxxxA系列芯片的数据手册。
常用开关电源芯片大全第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A10.1.5A降压式开关稳压器L497111.2A高效率单片开关稳压器L497812.1A高效率升压/降压式DC-DC电源转换器L597013.1.5A降压式DC-DC电源转换器LM157214.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV15.3A降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM257717.3A降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT195631.1.5A升压式电源转换器LT196132.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT346436.1.1A升压式DC-DC电源转换器LT346737.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC175439.1.5A单片同步降压式稳压器LTC187540.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC342650.2A两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC344253.1.4A同步升压式DC-DC电源转换器LTC345854.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX164366.2A降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX180076.3A同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX62983.PWM升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A90.5A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009 104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A 106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x111.28V恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x 113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422116.PWM控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116118.500mA同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB16001.2 线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693128.输入电压从12V到450V的可调线性稳压器LR8129.300mA非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610131.200mA负输出低压差线性稳压器MAX1735132.150mA低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998135.1.0A低压差固定及可调正稳压器NCP1117136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B139.400mA低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC64011.3 基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293 151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗1.2V基准电压源MAX6120153.2.5V精密基准电压源MC1403154.2.5V/4.096V基准电压源MCP1525/MCP1541155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P3.DPA-Switch系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA53116.PWM开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN76018.FPS型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS0112.PWM电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx15.FPS型开关电源功率转换器KA5H0165R16.FPS型开关电源功率转换器KA5Qxx17.FPS型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L659021.LINK SWITCH TN系列电源功率转换器LNK304/LNK305/LNK30622.LINK SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A24.PWM电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP123036.STR系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB375950.Tiny SwitchⅠ系列功率转换器TNY253、TNY254、TNY25551.Tiny SwitchⅡ系列功率转换器TNY264P~TNY268G52.TOP Switch(Ⅱ)系列离线式功率转换器TOP209~TOP22753.TOP Switch-FX系列功率转换器TOP232/TOP233/TOP23454.TOP Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV8265.EL场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP165320.EL场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400x5.单片锂电池线性充电控制器BQ2401xB接口单节锂电池充电控制器BQ2402x7.2A同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN756411.2A线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V13.1.5A通用充电控制器LT157114.2A恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC400220.4A锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC400822.4.2V锂离子/锂聚合物电池充电控制器LTC405223.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736B接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187437.单节锂电池线性充电控制器MAX189838.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205。
Catalog Symbol: TPS DC Power Distribution Fuses Ampere Rating: 1 to 70A Voltage Rating: 170VdcInterrupting Rating: 100,000A Agency Information:UL Recognized, File E56412, Guide JFHR2Catalog NumbersTPS-1TPS-6TPS-25L TPS-50TPS-1L TPS-6L TPS-25V TPS-50L TPS-1LB TPS-10TPS-30TPS-50V TPS-2TPS-10L TPS-30L TPS-60TPS-2L TPS-15TPS-35TPS-60L TPS-3TPS-15L TPS-35L TPS-70TPS-3L TPS-20TPS-40TPS-70L TPS-5TPS-20L TPS-40L TPS-70LBTPS-5LTPS-25TPS-40V—1 to 70 Amps,170 Volts DCGeneral Information:•TELPOWER ®fuses bring modern power fuse design to the telecommunications industry.•TELPOWER ®fuse line is the first to be specifically designed to meet the unique needs of DC Power Distribution Systems.•The U.L. Recognized ratings of 170Vdc and 100,000A interrupting rating along with the fuse’s current-limiting capability make this fuse ideal for overcurrent protection on existing DC Distribution Systems.• A unique BLUE label is used on all TELPOWER ®fuses to designate their DC capability.•Circuit board applications available.•Silver-plated brass ferrules.•Glass melamine tube.•For use with Bussmann Fused Disconnect Switch 15800.•Spare Fuseholder: TPSFH-AS.88• (± .015).56• (± .002)Dimensional Data TPS-(AMP)Custom Designs•Printed circuit board variations available.Form No. TPS Page 1 of 2Data Sheet: 50094-23-03SB03090芯天下--/1 to 70 Amps,170 V olts DCTime-Current Characteristic CurveThe only controlled copy of this Data Sheet is the electronic read-only version located on the Bussmann Network Drive. All other copies of this Data Sheet are by definition uncontrolled. This bulletin is intended to clearly present comprehensive product data and provide technical information that will help the end user with design applications. Bussmann reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Bussmann also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.Form No. TPSPage 2 of 2Data Sheet: 5009 4-23-03SB03090芯天下--/。
液晶背光块去保护的方法:本帖最后由南召修电视于2015-3-18 21:06 编辑TL494 1和16 对地短路TL5001 5 对地短路TL1451 15 对地短路TL5451 15 对地短路TA9687CN 1脚吸空Ta9687gn 12脚对地MB3775 15 对地短路INL837GN 14脚对地IT3713 15脚空AZ7500BM-E1 第4脚接地AT1741 15 对地短路AT1380 2 对地短路KA7500 1和16 对地短路FA3629 15和16 将外接电容短路FA3630 7和10 对地短路FAN7318 1脚对地FAN7311 1脚接地MP1008ES 4 对地短路MP1009ES 5脚对地MP1038EY 6脚对地..取消保护,灯管老化造成保护,MP1038EY 用导线11脚连接2脚MP1048EY 1、5接地mps1012 5脚接地ozl68gn 8去保护OZ960gn 4、7脚短接或2脚对地OZ960 OZ962 2 对地短路OZ965 4 对地短路OZ9RR 8 对地短路OZ9933gn 12脚接地OZ9937 14接地OZ9938去掉保护电路方法:1.把3脚直接对地短路, 2.把6脚直接对地短路3.把7脚接地电阻取下不用OZ9910GN 6脚接地OZ9976 8脚去保护对地OZT1060GN 1脚对地st 324 5脚接地BA9741 15 对地短路BA9743 15 对地短路BD9215F 23欠压保护 17过压保护 18过流保护BD9893: 10脚接地BD9893F 7脚对地BD9897FSBIT3101 2和15 吸空引脚BIT3102 5 吸空引脚BIT3105 4 吸空引脚BIT3106 4和27 吸空引脚BIT3107 4 吸空引脚BIT3193 15 吸空引脚BIT3195G 15脚吸空BIT3713 15脚吸空去保护BIT3715 12脚对地BIT7313 15 吸空BIT3501 4J脚悬空或连接4、7脚经证实1和5脚短接去保护成功OB3306QPOB3328UNQP0B3316NQP 5脚对地OB3316QP功能;1;ON/OF电压输入2;比较端电容。
硬盘盒主控芯片介绍元谷选元谷刀锋不如选元谷星钻iPD-USB 2.5寸串口SATA 移动硬盘盒元谷PD2500也可以元谷的做工没得挑,最关键得是看一下内部芯片。
一些主流硬盘盒芯片介绍IDE芯片:68300A/B/C赛普拉斯公司最出名的芯片,由原ISD公司的经典产品ISD300A 控制芯片二次开发得来,用于2.5及3.5系列IDE设备,优点是兼容性好,故障率低,缺点是偶尔会供电不足现象,元谷公司早期采用68300B的PD2500盒子就出现过此类问题,68300C得到较好改善。
经典的有:元谷PD2500、奈雷特D2/D4、瀚士威H570C、H560C等。
后期好一点的盒子USB线上都带双接头取电。
友情提示:赛普拉斯公司目前还没推出支持SATA硬盘的芯片,所以请不要开口赛普拉斯、闭口赛普拉斯。
INITIO 1511美国英尼硕公司主推的IDE控制芯片,各项技术指标都可以赛普拉斯芯片,但主要是价位较高,况且受产能限制,在市面上见的不多。
元谷刀锋2500IDE采用此款芯片。
NT68320 BE/GP图美自有芯片,图美是目前国内唯一能研发控制芯片的硬盘盒厂商,技术实力可见一斑,BE为备份型,GP为高速型。
整体评价介于PL-2506和68300之间。
NEC D720133GB这个不用多说,NEC的牛X芯片,性能速度兼容性绝对一流,但是价格也是一流。
我目前的产品线只有微星原装V3使用的是这款芯片,不过后期我估计也要换掉,因为只能支持IDE硬盘,不利于工厂控制成本,现在IDE笔记本盘比SATA盘要贵的多。
PL-2506旺玖公司的主要产品,价位中下,兼容性不错,功耗控制也较好,图美U225X就是采用这款芯片。
M110 台湾奇岩公司的得力产品,众多知名厂商选用,通用性强,1.8寸-5.25寸IDE设备通吃,性能不错。
缺陷还未发现。
蓝硕的USB易驱就是用的M110。
GL811/811E科X等杂牌用的最多的芯片,价格低廉,参数一般。
TPS5430电源应用方案一、芯片概述TPS5430有着宽输入电压,低静态功耗,转换效率高,实际应用十分广泛。
基本性能参数如下所示。
1.输入电压范围:5.5~36V2.输出电压可调节3.转换效率最高可达到95%。
4.输出持续电流达3A,峰值电流可达4A。
5.关断模式仅消耗18uA电流。
6.工作温度:-40~125℃二、电路设计电路设计参数要求(输入电压范围:10.8~19.8V;输出电压:5V;输入波纹电压:300mV;输出波纹电压:30mV;输出额定电流:3A)。
本人针对芯片资料进行电源电路部分设计,原理图如2-1所示。
芯片引脚ENA端为电源使能控制端,通过MCU来控制,在需要的时候开启电源,不需要时关闭电源,以降低系统功耗。
图2-1三、电路板设计由于电源设计关系到整个系统命脉,在设计电路板布线和元件放置时,严格按照芯片资料要求进行。
在芯片正下方应放置焊盘连接到电源地(GND),并打好过孔。
如图3-1所示。
其元件选择也要求也比较严格。
①输入电容。
TPS5430输入需要一个稍大些的退耦电容。
这里推荐100uF和0.1uF(C60、C61)的贴片铝电解电容和高性能陶瓷电容。
也可以选择小一点的电容,但要满足输入电压和额定电流波纹要求。
②输出滤波器件。
输出滤波器件,即L8、C62。
TPS5430具有内部补偿电路。
输出电感与最大输出电流有关,这里选择15uH电感。
输出电容是影响额定电压、额定波纹电流和等价阻抗(ESR)的重要设计因素。
此应用中选择100uF输出电容,此时电路中产生的RMS波纹电流为143mA, 需要最大的ESR为40MΩ。
③输出电压设置。
输出电压由反馈控制脚FB脚的精密电阻(R55、R57、R56、R54)决定。
如果输出电压5.0V,参考电压1.221V,R1为10kΩ,则确定R2为3.24kΩ。
④ BOOT (启动)电容。
BOOT电容C62选择0.01uF。
⑤捕获二极管。
TPS5430需要外部捕获二极管,选择B340A,它的反向电压为40V,正向电流3A,正向电压0.5V。
tps63070rnmr 输出电压低于2.5v的原因-回复tps63070rnmr是一种高效的降压稳压器,其输出电压低于2.5V可能有几个原因。
在本文中,我将一步一步回答这个问题,并解释每个原因。
1. 输入电压不足:tps63070rnmr是一款输入电压范围广泛的稳压器,但如果输入电压低于其工作电压范围,输出电压将低于2.5V。
这可能是由于电源问题、电池电量不足或错误的输入电压设置等引起的。
通过正确检查和调整输入电压,可以解决这个问题。
2. 输出负载过重:tps63070rnmr有一个最大负载限制,如果连接到该稳压器的负载超过其额定负载范围,输出电压可能下降到低于2.5V。
这种情况可能是由于负载本身要求更高的电流或错误连接的问题引起的。
应该根据负载的需求和稳压器的规格来选择合适的负载,并确保正确连接。
3. 温度影响:tps63070rnmr对温度敏感,高温环境可能导致输出电压低于2.5V。
在高温环境中,稳压器的效率可能降低,电子元件的性能可能受到影响。
此外,高温也可能导致过热保护触发,使稳压器停止运行。
通过提供适当的散热和确保稳压器工作在合适的温度范围内,可以避免温度影响。
4. 错误的反馈电压设置:tps63070rnmr的反馈电压设置决定了其输出电压。
如果反馈电压设置错误,输出电压可能低于2.5V。
这可能是由于电路板设计错误、误选的反馈电阻或其他反馈元件问题引起的。
通过检查和调整反馈电压设置,可以解决这个问题。
5. 其他故障:除了上述原因外,tps63070rnmr的输出电压低于2.5V可能还有其他故障导致,如元件老化、损坏或不良的电源线路等。
在这种情况下,需要对稳压器进行彻底的故障排除,检查并修复潜在的问题。
总之,tps63070rnmr输出电压低于2.5V可能是由于输入电压不足、输出负载过重、温度影响、错误的反馈电压设置或其他故障导致的。
通过仔细检查和逐一解决这些问题,可以确保稳压器正常工作并输出符合要求的电压。
FEATURES APPLICATIONSDESCRIPTION/TPS65530A SLVS835C–APRIL 2008–REVISED APRIL 2009FULLY INTEGRATED 8-CHANNEL DC/DC CONVERTER FOR DIGITAL STILL CAMERAS•Digital Still Cameras (DSCs)•8-Channel DC/DC Converter and Low Dropout (LDO)•Portable Electronics Equipment•Integrated Power MOSFET Switch Except CH8–Boost (CH5/7)ORDERING INFORMATION–Buck (CH1/3)The TPS65530A is a fully integrated 8-channel –Buck-Boost (CH2/4)switching dc/dc converter,and seven channels have –Invert (CH6)integrated power FET.•Low-Power Suspend Mode (Sleep Mode)CH2/4are configured for H bridge for buck-boost •Power ON/OFF Sequence (CH1/2/3and CH5/6)topology and single inductor supports.These •LED-Back Light Brightness Control (CH7)channels achieve higher efficiency in spite of input/output voltage conditions.•Fixed Switching Frequency (CH1–4:1.5MHz,CH5–8:750kHz)CH7has a brightness control and drives white LED by constant current.Also,CH7supports overvoltage •Fixed Max Duty Cycle Internally protection (OVP)for open load.•Soft StartCH1/2/3have a power ON/OFF sequence suitable for •Undervoltage Lockout (UVLO)a digital still camera (DSC)system.CH5/6have a •Protectionpower ON/OFF sequence,depending on the CCD.–Thermal Shutdown (TSD)Power ON/OFF for CCD block (CH5/6)is selectable by the input voltage level at the SEQ56pin.CH4and –Overvoltage Protection (OVP)CH7have individual ON/OFF sequences.–Overcurrent Protection (OCP)Except CH8The TPS65530A high switching frequency is •Supply Voltage Range:1.5V to 5.5Vachieved by an integrated power MOSFET switch.It •Operating Temperature Range:–25°C to 85°C reduces external parts dynamically.Shutdown current •6×6mm,0.4-mm Pitch,48-Pin QFN Packageconsumption is less than 1µA as a typical value.ORDERING INFORMATIONT APACKAGE (1)(2)ORDERABLE PART NUMBER TOP-SIDE MARKING Reel of 250TPS65530ARSLT –25°C to 85°C QFNTPS65530AReel of 2500TPS65530ARSLR(1)Package drawings,thermal data,and symbolization are available at /packaging .(2)For the most current package and ordering information,see the at the end of this document,or see the TI website at .Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PowerPAD is a trademark of Texas Instruments.PRODUCTION DATA information is current as of publication date.Copyright ©2008–2009,Texas Instruments IncorporatedProducts conform to specifications per the terms of the Texas Instruments standard warranty.Production processing does not necessarily include testing of all parameters.CHANNEL CONFIGURATIONSW4S PGND4SW4I V OUT4FB4ENAFE XSLEEPEN7S/S AGND REF V CC2S W 2P G N D S W 2V O U T F B V C C S W P G N D F B F B V C C S W PGND3SW8LD LL8SW8HD FB8FBG7/8B-ADJ FBC CIN FBV SW7PS P G N D 5/7S W 5S W O U TV C C 5F B 5V C C 6S W 6F B 6S /S 56E N 56S E Q 56V C C 4QFN PACKAGE (TOP VIEW)TPS65530ASLVS835C–APRIL 2008–REVISED APRIL These devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.MAXIMUM OUTPUT OPERATION RECTIFY CONTROL SUPPLY CHANNEL VOLTAGEAPPLICATION MODE MODE METHOD CURRENT (V)(mA)CH1Buck SW Synchronous Voltage 0.9to 2.5Engine core 600Engine I/O CH2Buck-boost SW Synchronous Average current2.5to3.6600(DSP I/F)CH3Buck SW Synchronous Voltage 0.9to 2.5External memory300CH4Buck-boost SW Synchronous Average current 2.2to 3.6AFE 300CH5Boost SW Nonsynchronous Peak current Up to 18CCD+50CH6Invert SW Nonsynchronous Voltage –10to –5CCD–100CH7Boost SW Nonsynchronous Voltage 3to 20Backlight LED 25Motor controller CH8Boost SW SynchronousVoltage 3.3to 5.5–and IC drive supply Low dropout Internal supply forREF––2.815voltagelogic2Submit Documentation FeedbackCopyright ©2008–2009,Texas Instruments IncorporatedProduct Folder Link(s):TPS65530ATPS65530A SLVS835C–APRIL2008–REVISED APRIL2009TERMINAL FUNCTIONSTERMINALI/O(1)DESCRIPTION1SW4S O Buck-side terminal of coil for CH42PGND4G GND for CH4low-side FET3SW4I I Boost-side terminal of coil for CH44V OUT4O Output of CH4Output voltage feedback for CH4.The external resistors should be connected as close as possible 5FB4Ito the terminal.6ENAFE I Enable for CH4(L:Disable,H:Enable)7XSLEEP I Control for sleep mode/normal operation(L:Sleep mode,H:Normal operation)8EN7I Enable for CH7(L:Disable,H:Enable)Soft-start time adjustment.The time is programmable by an external capacitor(see the Soft Start 9S/S I/Odescription).10AGND G Analog ground11REF O Output of LDO.From2.2µF to4.7µF,capacitor should be connected to AGND.12V CC2P Power supply at CH2buck-side FET from battery13SW2S O Buck-side terminal of coil for CH214PGND2G GND for CH2low-side FET15SW2I I Boost-side terminal of coil for CH216V OUT2O Output of CH2Output voltage feedback for CH2.The external resistors should be connected as close as possible 17FB2Oto the terminal.18V CC1P Power supply at CH1high-side FET from battery19SW1O Output of CH1.The terminal should be connected to the external inductor.20PGND1G GND for CH1low-side FETOutput voltage feedback for CH1.The external resistors should be connected as close as possible 21FB1Ito the terminal.Output voltage feedback for CH3.The external resistors should be connected as close as possible 22FB3Ito the terminal.23V CC3P Power supply at CH3high-side FET from battery24SW3O Output of CH3.The terminal should be connected to the external inductor.25PGND3G GND for CH3low-side FETOutput for CH8external low-side FET drive.The terminal is connected to the gate of the low-side 26SW8LD Oexternal FET.Switching output for CH8at wake mode.The terminal is switched when the output voltage of CH8 27LL8Ois less than2.5V.Output for CH8external high-side FET drive.The terminal is connected to the gate of the 28SW8HD Ohigh-side external FET.29PS I Power input for IC inside.The terminal should be connected to CH8output voltage.Output voltage feedback for CH8.The external resistors should be connected as close as possible 30FB8Ito the terminal.31FBG7/8I GND for CH7/8feedback resistors32B-ADJ I Brightness adjustment for W-LED33FBC I Output current feedback for CH734CIN I Input current at CH7load switchOutput voltage feedback for CH7.The external resistors should be connected as close as possible 35FBV Ito the terminal.36SW7O Output of CH7.The terminal should be connected to the external inductor.Power GND for CH5/7.The terminal should be connected by power ground layer at PCB via a 37PGND5/7Gthrough hole.38SW5O Low-side terminal of coil for CH5(1)I=input,O=output,I/O=input/output,P=power supply,G=GNDCopyright©2008–2009,Texas Instruments Incorporated Submit Documentation Feedback3Product Folder Link(s):TPS65530ATPS65530ASLVS835C–APRIL2008–REVISED TERMINAL FUNCTIONS(continued)TERMINALI/O(1)DESCRIPTION39SWOUT O High-side terminal of coil for CH540V CC5P Power supply at CH5high-side FET from batteryOutput voltage feedback for CH5.The external resistors should be connected as close as possible 41FB5Ito the terminal.42V CC6P Power supply at CH6load switch from battery43SW6O Output of CH6.The terminal should be connected to the external inductor.Output voltage feedback for CH6.The external resistors should be connected as close as possible 44FB6Ito the terminal.Soft-start time adjustment for CH5/6.The time is programmable by external capacitor(see the Soft 45S/S56I/OStart description).46EN56I Enable for CH5/6(L:Disable,H:Enable)47SEQ56I Sequence select for CH5/6(see the Power ON/OFF Sequence description)48V CC4P Power supply at CH4high-side FET from batteryMust be soldered to achieve appropriate power dissipation.Should be connected to PGND to use Back side PowerPAD™GaΦ0.3-mm through hole.4Submit Documentation Feedback Copyright©2008–2009,Texas Instruments IncorporatedProduct Folder Link(s):TPS65530AABSOLUTE MAXIMUM RATINGS(1)DISSIPATION RATINGSRECOMMENDED OPERATING CONDITIONS TPS65530A SLVS835C–APRIL2008–REVISED APRIL2009over operating free-air temperature range(unless otherwise noted)UNITV CC1,V CC2,V CC3,V CC4,V CC5,V CC6,SWOUT,FB2,FB4,FB5,FB8,FBC,FBV.PS,XSLEEP,ENAFE,SEQ56,EN56,EN7,SW4S,SW4I,V OUT4,V OUT2,SW1,SW3,–0.3to6SW8LD,SW8HD,FBG78(based on PGND or AGND)SW2S,SW2I–0.3to7BADJ,SS,FB1,FB3,FB6,SS56–0.3to3 Input voltage range VLL8–0.3to7REF–0.3to3.6SW5–0.3to22SW7,CIN–0.3to27SW6(based on V CC6)–20PGND1,PGND2,PGND3,PGND4,PGND57,AGND–0.3to0.3CIN0.05SW2S,SW2I 3.3SW4S,SW4I 1.65SW1 1.9SW31 Switching current ASW5 1.6SW6–1.35SW7 1.2LL81SW8LD,SW8HD0.6T J Maximum junction temperature range–30to150°CT stg Storage temperature range–40to150°C ESD rating,Human-Body Model(HBM)JEDEC JESD22A-A1142kV ESD rating,Charged-Device Model(CDM)JEDEC JESD22A-C101500V (1)Stresses beyond those listed under"absolute maximum ratings"may cause permanent damage to the device.These are stress ratingsonly,and functional operation of the device at these or any other conditions beyond those indicated under"recommended operating conditions"is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.POWER RATINGS POWER RATINGS RATE PACKAGE RθJA(1)T A<25°C T A>25°C 48-pin QFN27°C/W 2.9W0.029°C/W(1)The thermal resistance,RθJA,is based on a soldered PowerPAD package on a2S2P JEDEC board(3-in×3-in,four layers)usingthermal vias(0.3-mm diameter×12vias)MIN MAX UNITV CC1,V CC2,V CC4,V CC5 1.5 5.5Supply voltage VV CC3,V CC6 2.5 5.5XSLEEP,ENAFE,EN56,EN7 1.4High-level input voltage VSEQ56 1.4REFLow-level input voltage XSLEEP,ENAFE,EN56,EN7,SEQ560.4V Operating temperature–2585°CCopyright©2008–2009,Texas Instruments Incorporated Submit Documentation Feedback5Product Folder Link(s):TPS65530AELECTRICAL CHARACTERISTICSTPS65530ASLVS835C–APRIL 2008–REVISED APRIL 0°C ≤T J ≤125°C,1.8V ≤V CC2≤5V (unless otherwise noted)PARAMETERTEST CONDITIONSMINTYP (1)MAX UNITFor All Circuits I CC_Iq V CC2=VPS =3.6V,XSLEEP =AGND110µA I CC_sleep V CC2=3.6V,VPS =5V,XSLEEP =AGND,4070Consumption current at PS (pin 29)ENAFE =V CC2I CC_PWM V CC2=3.6V ,VPS =5V,XSLEEP =V CC2,2030mAENAFE =V CC2,EN56=V CC2,EN7=V CC2I CC_Iq2V CC2=VPS =3.6V,XSLEEP =AGND 110µA I CC_sleep2V CC2=3.6V,VPS =5V,XSLEEP =AGND,1230Consumption current at V CC2(pin 12)ENAFE =V CC2I CC_PWM2V CC2=3.6V ,VPS =5V,XSLEEP =V CC2,0.31mA ENAFE =V CC2,EN56=V CC2,EN7=V CC2TSD Thermal shutdown temperature (2)150°CV (UV_ON)UVLO detect level V CC2from 0V to 5.5V,XSLEEP =V CC2 1.25 1.4 1.55V V (UV_OFF)UVLO hysteresisV CC2from 5.5V to 0V 50100150mV OSC Internal OSC frequency V CC2=3.6V1.351.5 1.65MHz O SC_SUB CH5–8switching frequency OSC =1.5MHz,VPS =5V 750KHz REF output voltage XSLEEP =V CC22.72 2.83.03V I ssSS source currentS/S =AGND61014µA Pulldown resistance at XSLEEP,XSLEEP =ENAFE =EN56=EN7=SEQ56=3V200k ΩENAFE,EN56,EN7,SEQ56CH1V CC1Supply voltage 1.5 5.5V V OUT1Output voltage (2)0.92.5V V CC1>2.4V,V OUT1=1.2V,I OUT1Output current (2)Feedback resistance:R1=330k Ω,600mA R2=330k ΩV FB1FB1reference voltageNo load0.590.60.61V Overcurrent protection threshold 0.91.9A Overvoltage protection threshold 0.670.750.83V (sensing at FB1pin)High-side Nch FET ON resistance (3)VPS =5V 320500m ΩLow-side Nch FET ON resistance (3)VPS =5V200250m ΩTrigger voltage to start CH30.48V Trigger voltage to power off LDO0.25VCH2V CC2Supply voltage 1.5 5.5V V OUT2Output voltage (2)2.53.6V V CC2>2.4V,V OUT2=3.3V,I OUT2Output current(2)Feedback resistance:R1=180k Ω,600mA R2=820k ΩV FB2FB2reference voltageNo load0.5950.6050.615V Overcurrent protection threshold 2.63.3A Overvoltage protection threshold 0.670.750.83V(sensing at FB2pin)High-side FET VPS =5V 100210ON resistance Buck m Ωside (3)Low-side FET VPS =5V450600ON resistance(1)T A =25°C(2)Specified by design(3)The value of FET ON resistance includes the resistance of bonding wire.6Submit Documentation FeedbackCopyright ©2008–2009,Texas Instruments IncorporatedProduct Folder Link(s):TPS65530ATPS65530A SLVS835C–APRIL2008–REVISED APRIL2009ELECTRICAL CHARACTERISTICS(continued)0°C≤T J≤125°C,1.8V≤V CC2≤5V(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP(1)MAX UNIT High-side FETVPS=5V130240 ON resistanceBoostmΩside(3)Low-side FETVPS=5V80140 ON resistanceTrigger voltage to power off CH3V OUT2=0.5V0.5VV OUT2leakage current V OUT2=0.5V1µANch FET ON resistance for discharge XSLEEP=AGND,ENAFE=AGND12kΩCH3V CC3Supply voltage 2.5 5.5VV OUT3Output voltage(2)0.9 2.5VV CC3>2.5V,V OUT3=1.8V,I OUT3Output current(2)Feedback resistance:R1=220kΩ,300mAR2=470kΩV FB3FB3reference voltage No load0.590.60.61V Overcurrent protection threshold0.61AOvervoltage protection threshold0.670.750.83V(sensing at FB3pin)High-side Nch FET ON resistance(4)VPS=5V370750mΩLow-side Nch FET ON resistance(4)VPS=5V300600mΩNch FET ON resistance for discharge XSLEEP=AGND,ENAFE=AGND12kΩTrigger voltage to start CH20.48VTrigger voltage to power off CH10.2VCH4V CC4Supply voltage 1.5 5.5VV OUT4Output voltage(5) 2.2 3.6VV CC4>2.4V,V OUT4=3.3V,I OUT4Output current(5)Feedback resistance:R1=82kΩ,100300mAR2=330kΩV FB4FB4reference voltage No load0.5950.6050.615V Overcurrent protection threshold 1.4 1.65AOvervoltage protection threshold0.670.750.83V(sensing at FB4pin)High-side FETVPS=5V130310 ON resistanceBuckmΩside(4)Low-side FETVPS=5V600730 ON resistanceHigh-side FETVPS=5V170270 ON resistanceBoostmΩside(4)Low-side FETVPS=5V130250 ON resistanceV OUT4leakage current V OUT4=0.5V1µANch FET ON resistance for discharge XSLEEP=AGND,ENAFE=AGND12kΩCH5V CC5Supply voltage 1.5 5.5VV OUT5Output voltage(5)V CC518VV FB5FB5reference voltage No load0.981 1.02VV CC5>2.4V,V OUT5=15V,I OUT5Output current(5)Feedback resistance:R1=40kΩ,50mAR2=560kΩ(4)The value of FET ON resistance includes the resistance of bonding wire.(5)Specified by designCopyright©2008–2009,Texas Instruments Incorporated Submit Documentation Feedback7Product Folder Link(s):TPS65530ATPS65530ASLVS835C–APRIL2008–REVISED ELECTRICAL CHARACTERISTICS(continued)0°C≤T J≤125°C,1.8V≤V CC2≤5V(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP(1)MAX UNIT Overcurrent protection threshold 1.3 1.6AOvervoltage protection threshold1.09 1.25 1.38V(sensing at FB5pin)Nch FET ON resistance(4)VPS=5V610900mΩLoad switch ON resistance1.5V<V CC5<5.5V100470mΩ(between V CC5and SW5)Load switch ramp-up time 1.5V<V CC5<5.5V,200µS (between V CC5and SW5)(5)SWOUT capacitance=4.7µFLoad switch leakage current1µA (between V CC5and SW5)Max duty cycle9698%Trigger voltage to start up CH6SEQ56=AGND0.8VCH6V CC6Supply voltage 2.5 5.5VV OUT6Output voltage(5)–10–5VV CC6>2.8V,V OUT6=–7.5V,I OUT6Output current(5)Feedback resistance:R1=136kΩ,100mAR2=820kΩV FB6FB6reference voltage No load–0.0200.02V Overcurrent protection threshold V CC6>2.8V 1.1 1.35AOvervoltage protection threshold–0.3–0.2–0.1V (sensing at FB6pin)Pch FET ON resistance(6)V CC6=3.6V6401100mΩMax duty cycle849198%Trigger voltage to power off CH6SEQ56=AGND0.50.530.56VV S/S56S/S56pin voltage 1.22 1.25 1.28VI S/S56S/S56pin source current S/S56=AGND170200230µA CH7V CC7Supply voltage(7) 1.5 5.5VV OUT7Output voltage(8)V CC7<V OUT7320VV CC7>2.4V,V OUT7=15V,Feedback resistance:R1=47kΩ,I OUT7_L Lower output current(7) 3.75 6.3mAR2=680kΩ,Rsense=10Ω,B_ADJ pin voltage=0VV CC7>2.4V,V OUT7=15V,Feedback resistance:R1=47kΩ,I OUT7_H Higher output current(7)23.72526.3mAR2=680kΩ,Rsense=10Ω,B_ADJ pin voltage=1VV FBV FBV reference voltage No load0.971 1.03VOvervoltage protection threshold1.15 1.25 1.35V(sensing at FBV pin)Overcurrent protection threshold0.8 1.2ANch FET ON resistance(6)7001200mΩMax duty cycle869199%Load switch ON resistance24ΩLoad switch leakage current1µA (between C-IN and FBC)R B-ADJ B-ADJ pin input impedance1MΩ(6)The value of FET ON resistance includes the resistance of bonding wire.(7)Specified by design(8)Due to constant current control for CH7,the operating condition is that Input voltage is less than LED supply voltage(output voltage).8Submit Documentation Feedback Copyright©2008–2009,Texas Instruments IncorporatedProduct Folder Link(s):TPS65530ATPS65530A SLVS835C–APRIL2008–REVISED APRIL2009ELECTRICAL CHARACTERISTICS(continued)0°C≤T J≤125°C,1.8V≤V CC2≤5V(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP(1)MAX UNIT CH8T A=25°C,1.8 5.5Start up(XSLEEP from AGND to V CC2)Supply voltage(7)VXSLEEP=V CC2 1.5 5.5VPS Output voltage(7) 3.3 5.5VXSLEEP=H,ENAFE=AGND,No load 1.23 1.25 1.27V FB8FB8reference voltage VCH8operation mode:PFM mode,No load 1.2 1.25 1.35 Fixed ON time at PFM mode V CC2=3.6V250nsMax duty cycle768592% Source impedance VPS=5V,ISW=100mA57.5 SW8LDΩdriver Sink impedance VPS=5V,ISW=–100mA1 1.5Source impedance VPS=5V,ISW=100mA1015 SW8HDΩdriver Sink impedance VPS=5V,ISW=–100mA57.5Overvoltage protection threshold1.3 1.56 1.8V(sensing at FB8pin)FBG7/8FET ON resistance VPS=5V,XSLEEP=V CC20.6kΩFBG7/8leakage current XSLEEP=AGND,ENAFE=AGND1µACopyright©2008–2009,Texas Instruments Incorporated Submit Documentation Feedback9Product Folder Link(s):TPS65530APGND5/7CIN V CC6S/S S 6W FB6F 5B SW5SWOUT V CC5SW7FBCFBV B-ADJ FB8PS SW8LD LL8SW8HD FBG7/8SEQ56EN56TPS65530ASLVS835C–APRIL 2008–REVISED APRIL BLOCK DIAGRAM10Submit Documentation FeedbackCopyright ©2008–2009,Texas Instruments IncorporatedProduct Folder Link(s):TPS65530AAPPLICATION INFORMATIONA.When output voltage is higher than input voltage at2AA battery models,V CC1and V CC3should be connected to theCH8output.When the2AA battery is connected,V CC6should be connected to the CH8output.B.The external FET for CH8is dependent on the load.When the motor is connected to CH8,the external FET is large.C.It is acceptable to connect directly to PS without resistor.FUNCTIONAL DESCRIPTIONLogic True TablePower ON/OFFSequenceThe enable/disable of each channel is controlled by logic input signals level at XSLEEP (pin 7for all channels),ENAFE (pin 6for CH4),EN56(pin 46for CH5/6)and EN7(pin 8for CH7).Table 1is the summary of the enable/disable mode.Table 1.Control Pin vs Enable/DisableNO.OF XSLEEPENAFE EN56EN7CH1CH2CH3CH4CH5CH6CH7CH8(1)LDO STATE 1L L ––OFF OFF OFF OFF OFF OFF OFF OFF OFF 2H L L L ON ON ON OFF OFF OFF OFF PWM ON 3H L L H ON ON ON OFF OFF OFF ON PWM ON 4H L H L ON ON ON OFF ON ON OFF PWM ON 5H L H H ON ON ON OFF ON ON ON PWM ON 6H H L L ON ON ON ON OFF OFF OFF PWM ON 7H H L H ON ON ON ON OFF OFF ON PWM ON 8H H H L ON ON ON ON ON ON OFF PWM ON 9H H H H ON ON ON ON ON ON ON PWM ON 10(2)LH––OFFOFFOFFOFFOFFOFFOFFPFMOFF(1)PWM =pulse width modulation,PFM =pulse frequency modulation (2)State 10(CH8:PFM mode)must go through State 2.This device has the power ON/OFF sequence of CH1/2/3/8/REF and CH5/6for DSC application.The CH1/2/3/8/REF sequence is shown in Figure 1.The CH5/6sequence is shown in Figure 2.CH4and CH7have individual sequences but CH4–6have relationship with CH1–3slope of soft start is the same and puts high priority of CH1–3to avoid the functional conflict (see the Soft Start description).Due to this,CH4–6should not be ON before CH1–3are ON.When XSLEEP is forced low,all channels turn OFF with the power OFF sequence.Figure 1.CH1/CH2/CH3/CH8/REF Power ON/OFF SequenceSoft StartUndervoltage Lockout(UVLO)ProtectionFigure2.CH5/6Power ON/OFF SequenceThis function reduces the rush current from the battery at start-up.This device has two slopes defined by S/S (pin9)and S/S56(pin45).The slopes of CH1–4are defined by S/S;the slopes of CH5/6depend on SEQ56(pin 47)signal level.When SEQ56is low,the slope of CH5is defined by S/S;the slope of CH6is defined by S/S56. When SEQ56is high,the slopes of CH5/6are defined by S/S56.The soft-start time is calculated by Equation1 and Equation2.T S/S=C S/S×60(1) T S/S56=C S/S56×6.25(2) Where:C S/S=Capacitance at S/S[µF]T S/S=Soft-start duration defined by S/S[ms]C S/S56=Capacitance at S/S56[µF]T S/S56=Soft-start duration defined by S/S56[ms]The recommended capacitances are C S/S=0.1[µF]or T S/S=6.0[ms],C S/S56=1.0[µF]or T S/S56=6.25[ms].This device monitors the battery voltage level at V CC2(pin12)When XSLEEP is high and V CC2is less than the threshold(defined in Electrical Characteristics as UVLO detect level),the operation shuts down immediately without the power OFF sequence.UVLO has a hysteresis as shown in Figure3.This factor is defined in Electrical Characteristics as UVLO hysteresis.Figure3.UVLO HysteresisThe TPS65530A has three protection conditions:overcurrent protection(OCP),overvoltage protection(OVP), and thermal shutdown(TSD)(see Table2).CHANNEL DESCRIPTIONSCH1/3DescriptionTable 2.Protection ConditionsPROTECTIONCH1–CH6CH7CH8REF (LDO)All CH shutdown All CH shutdown (latch-off)Change All CH shutdown (latch-off)Forced OFF at MOSFET (latch-off)(without power (without power OFFmode (without power OFF sequence)OFF sequence)sequence)Current over the threshold,V OUT Detect less than 80%to compare the Current over theV OUT less than 70%to V OUT less than 80%to conditiontarget,andthresholdcompare the targetcompare the targetcount 64cycle ×1.5MHz XSLEEP:Change level from Low OCPto HighXSLEEP:Change level XSLEEP:Change level from Current less than the ENAFE:Change level from Low from Low to HighLow to Highthreshold (automatic to High (for CH4)ENAFE:Change level ENAFE:Change level from restoration)Comeback EN56:Change level from Low to from Low to High Low to High orconditionHigh (for CH5/6)ororV CC2:Apply more than orV CC2:Apply more than V CC2:Apply more than UVLO UVLO threshold (1.4V)V CC2:Apply more than UVLO UVLO threshold (1.4V)threshold (1.4V)after after removing V CC2threshold (1.4V)after removing after removing V CC2removing V CC2V CC2Forced OFF atChange Forced OFF at applicable CH MOSFET,load switch Forced OFF at MOSFET modeMOSFETturns ONDetect Voltage over the threshold at Voltage over theVoltage over theOVPNo OVP functioncondition feedbackthreshold at feedbackthreshold at feedback Voltage less than the Comeback Voltage less than the threshold at EN7:Change level from threshold at feedback condition feedback (auto-recovery)Low to High (auto-recovery)Change All CH shutdown (without power OFF sequence)mode Detect TSDThe junction temperature is more than the threshold.condition Comeback XSLEEP:Change level from Low to High,ENAFE:Change level from Low to High (for CH4),EN56:Change level from conditionLow to High (for CH5/6),or V CC2:More than 1.4VBoth CH1and CH3are the same topology.CH1/3are the voltage-mode-controlled synchronous buck converters for engine core (CH1)or external memory (CH3).Both high-side and low-side switches are integrated into the device and consist of NMOS-FET only.The gate of the high-side switch is driven by bootstrap circuit.The capacitance of the bootstrap is included in the device.These channels are able to operate up to 100%duty cycle.This device has a discharge path to use the switch (Q_Discharge1/3)for the CH1/3output capacitor via the inductor.The switch is activated after the power OFF sequence has started.Typical resistance at the discharge circuit is 1k Ω.When the device detects the threshold at FB1/3after the power OFF sequence has started,the MOSFET turns OFF and the output is fixed with high impedance.It is acceptable to connect the battery to V CC1/V CC3(pins 18/23)directly when the battery voltage is more than 2.5V.When the battery voltage is less than 2.5V,the CH8output should be connected to V CC1/V CC3.The output voltage is programmed from 0.9V to 2.5V (both CH1and CH3)to use the feedback loop sensed by the external resistances.The output voltage is calculated by Equation 3.The block diagram is shown in Figure 4.V OUT =(1+R2/R1)×0.6[V](3)Where:V OUT =Output voltage [V]R1,R2=Feedback resistance (see Figure 4)CH1/3Recommended Parts CH2/4DescriptionFigure4.CH1/3Block DiagramTable3.Recommended Parts for Inductor(CH1/3)VENDOR TYPE NO.INDUCTANCE(µH)DCR(mΩ)SIZE(mm)TOKO DE2812C-1098AS-4R7M 4.7130 2.8×3.0×1.2Table4.Recommended Parts for Capacitor(Input,CH1/3)VENDOR TYPE NO.CAPACITANCE(µF)TOLERANCE(%)SIZE(mm)Murata GRM21BB30J226ME3822.020 2.0×1.25×1.25(EIA code:0805)Table5.Recommended Parts for Capacitor(Output,CH1/3) VENDOR TYPE NO.CAPACITANCE(µF)TOLERANCE(%)SIZE(mm) TDK C2012X5R0J106M10.020 2.0×1.25×1.25(EIA code:0805)Both CH2and CH4are the same topology.CH2/4are the average current-mode-controlled synchronous back-boost converters for engine I/O(CH2)or AFE(CH4).This converter is an adapted H-bridge circuit to use four switches.These switches are integrated into the device and consist of NMOS-FET only.The gate of the high-side switch is controlled by the bootstrap circuit.The capacitance of the bootstrap is included in the device. The device automatically switches from buck operation to boost operation or from boost operation to buck operation as required by the configuration.It always uses one active switch,one rectifying switch,one switch permanently on,and one switch permanently off.Therefore,it operates as a buck converter when the input voltage is higher than the output voltage,and as a boost converter when the input voltage is lower than the output voltage.There is no mode of operation in which all four switches are permanently switching.This device has a discharge switch(Q_Discharge2/4)for the CH2/4output capacitor.The typical ON resistance at the discharge switch is1kΩ.The discharge switch is activated when XSLEEP turns low.For CH4only,the switch is also activated when ENAFE turns low.After output voltage reaches approximately0.5V,the discharge switch turns OFF and V OUT2/V OUT4is changed into high impedance.The output voltage is programmable from2.5 V to3.6V(for CH2)or from2.2V to 3.6V(for CH4)to use the feedback loop sensed by the external resistances.The output voltage is calculated by Equation4.The block diagram is shown in Figure5.V OUT=(1+R2/R1)×0.6[V](4) Where:V OUT=Output voltage[V]R1,R2=Feedback resistance(see Figure5)Figure5.CH2/4Block Diagram。