ASA(AAS)练习课件
- 格式:ppt
- 大小:432.50 KB
- 文档页数:19
三角形全等的判定练习一、三角形的全等性质:1 如图:△ ABC^A A B',则有:AB= —, BC= —, CA =—/ A= ___ , / B= _ , / C= _ ,二、“SSS”判定的应用:1•完成下面的推理:如图,(1 )在厶ABC与厶A' B'中,AB A'B',2.如图:△ ADF ◎△ CBE,问AD 会平行CB吗?AE会等于CF吗?AC AC,• △ ABC^A A' B' (SSS・5 .如图,在△ ABC中,AB=AC , CD是厶ABC的中线,说明①厶ABD◎△ ACD。
②AD丄CB。
C 解: △A DF ◎△ CBE ( ____ )•I / A= __ (___••• AD// BC ( _______________ )△A DF ◎△ CBE ( ____ )•- AF=—( ____________________ )• AF-EF= B CA 2.女口图,AB=CD , AD=BC ,全等吗?AD会平行CB吗?解:在△ ADC与厶CBA中AD ,问:△ ADC与厶CBA ArB C6 .如图,△ ABD 和厶ABC , AC=AD , BC = BD , 那么△ ABD和厶ABC全等吗?即AE =—3.如图:△ ADB ◎△ ADC ,解: •/ △ ADB ADCAC AC,•=90•AD 丄CB=180问AD会垂直CB吗?4.如图:△ ABC ADE,问/ BAD= / CAE 吗?5.如图:△ ADF ◎△ CBE会等于CF吗?AE问AD会平行CB吗?A D•△ ADC ◎△ CBA( __ )•- / ____ = / _____ ( ___•AD// BC ( _______________________ )3.如图,C是BD和EF的中点,且BE=DF说明△BEC◎△ DFC。
4.女口图,在厶ADF 与厶BCE 中,AD=BC , DF=BE ,AE=CF,说明①厶ADF ◎△ CBE ,②AD // BC。
全等三角形的判定方法SAS专题练习1. 如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B. ∠B=∠CC. ∠D =∠ED. ∠BAE=∠CAD2. 能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C =∠C′第1 题B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′C第3 题D. AC=A′C′,∠C=∠C′,BC=B′C3. 如图,AB与CD交于点O,OA=O,C OD=O,B∠AOD=,根据_________可得到△AOD≌△COB,从而可以得到AD=_________.4. 如图,已知BD=C,D要根据“SAS”判定△ABD≌△ACD,第4 题需添加的条件是。
则还5. 如图,AD=BC,要根据“SAS”判定△ABD≌△BAC,需添加的条件是则还6. 如图,已知△ABC中,AB=AC,AD平分∠BAC,明△ABD≌△ACD的理由.程说请补充完整过解:∵AD平分∠BAC,第5 题∴∠________=∠_________(角平分线的定义).在△ABD和△ACD中,∵第6 题∴△ABD≌△ACD()7. 如图,AC与BD相交于点O,已知OA=O,C OB=O,D:△AOB≌△COD求证证明:在△AOB和△COD中∵第7 题∴△AOB≌△COD( )8. 已知:如图,AB=CB,∠1=∠2 △ABD和△CBD全等吗?9. 已知:如图,AB=AC,AD=AE,∠1 = ∠2 。
试说明:△ABD≌△ACE。
10. 已知:如图,△ABC中,AD⊥BC 于D,AD=BD,DC=DE,∠C=50°。
求∠EBD的度数。
习全等三角形的判定方法AAS、ASA专题练1. 已知:如图, FB=CE , AB∥ED , AC∥FD.F、C 在直线B E 上.:AB=DE , AC=DF .求证2.已知:如图, AB⊥BC 于B , EF⊥AC 于G , DF⊥BC 于D , BC=DF.:AC=EF .求证3. 已知:如图A C⊥CD 于 C , B D⊥CD 于D , M 是AB 的中点, 连结CM 并延长交BD 于点F。