第7章几个特殊类型的常微分方程
- 格式:ppt
- 大小:735.00 KB
- 文档页数:22
常微分方程特殊类型及解法的应用拓展常微分方程是数学中一种重要的方程类型,广泛应用于物理、工程、经济、生物等领域。
在解常微分方程的过程中,我们常常遇到一些特殊类型的方程,需要采用相应的解法来求解。
本文将介绍几种常见的特殊类型常微分方程及其解法,并探讨这些解法在实际问题中的应用拓展。
一、线性微分方程线性微分方程是最基本的一类常微分方程。
形如dy/dx + P(x)y =Q(x)的一阶线性微分方程,可以通过积分因子法来求解。
具体步骤如下:1. 将方程化为dy/dx + Py = Q的形式,其中P(x)和Q(x)为已知函数。
2. 根据积分因子的定义,积分因子μ(x)满足μ(x) = e^(∫P(x)dx)。
3. 两边同时乘以μ(x),得到μ(x)dy/dx + Pμ(x)y = Qμ(x)。
4. 将左边化为(μ(x)y)'的形式,并对方程两边同时积分。
5. 最后解出y(x)即可。
线性微分方程的解法能够涉及到求解常数变易法、常数变异法、待定系数法等多种方法,具体根据问题的特点选择合适的方法。
二、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程是常微分方程中的典型问题。
形如d^2y/dx^2 + ay' + by = 0的二阶常系数齐次线性微分方程,可以通过特征方程法来求解。
具体步骤如下:1. 将方程化为特征方程r^2 + ar + b = 0的形式。
2. 求解特征方程的根r1和r2。
3. 根据特征值的不同情况,得到方程的通解。
- 当特征根为实数且不相等时,通解为y(x) = C1e^(r1x) +C2e^(r2x)。
- 当特征根为实数且相等时,通解为y(x) = (C1 + C2x)e^(r1x)。
- 当特征根为复数时,通解为y(x) = e^(αx)(C1cosβx + C2sinβx),其中α为特征根的实部,β为特征根的虚部。
三、一阶可分离变量微分方程一阶可分离变量微分方程是常微分方程中的另一类特殊类型方程。
常微分方程的几何意义和解法在数学领域中,常微分方程是一类非常重要的问题之一。
这类问题包括了数学中最基本的物理问题,而且是很多实际问题的数学模型。
在这篇文章中,我们将会探究常微分方程的几何意义和解法。
首先,我们需要明确什么是常微分方程。
常微分方程,又称ODE(Ordinary Differential Equation),是数学中的一类方程,是描述一个未知函数在自变量上导数的函数关系式。
常微分方程的例子包括了以下几种:1. y' = f(x,y) (一阶常微分方程)2. y''+y = 0 (二阶齐次常微分方程)3. y''+y = cos x (二阶非齐次常微分方程)我们先来看第一种类型的常微分方程。
对于y' = f(x,y),我们可以将其看作一个二维函数图像中的切线斜率问题。
这里,y代表了这个函数的纵坐标,x代表了这个函数的横坐标,y'代表了这个函数图像在这个点的切线斜率。
而f(x,y)则代表了这个切线斜率与这个点(x,y)的坐标之间的关系。
因此,我们可以使用一系列箭头指向各个点上的切线,从而得到图像的整体特征。
对于二阶常微分方程:y''+y = 0,我们可以将其看作一个简谐振动的问题。
在这个问题中,y代表运动物体的位置,而加速度则等于y的二阶导数。
因此,方程中的y''可以被看作物体的加速度,而y相当于物体在相应时刻的位置。
当y<0时,物体向一个方向运动,而当y>0时,则向相反的方向运动。
而对于非齐次方程,比如y''+y = cos x,我们就需要通过特殊的技巧求解。
在这个方程中,cos x可以被看作外力的结构,而y代表了这个问题的解。
因此,在求解这个方程时,我们可以先求得它的齐次部分解,然后再利用特殊的技巧来求得其非齐次解。
接下来,我们需要了解一下求解常微分方程的几种方法。
1. 变量分离法:变量分离法是常微分方程求解中最常用的方法之一。
常微分方程的特殊类型及解法在数学中,微分方程是研究自变量与其导数之间关系的方程。
它们在多个学科领域都有广泛的应用,包括物理学、工程学和生物学等。
常微分方程(Ordinary Differential Equations,ODEs)是指仅涉及一元函数的微分方程,相对于偏微分方程来说,常微分方程的研究较为简单。
在本文中,我们将介绍常微分方程中的一些特殊类型及其解法。
一、一阶线性常微分方程首先,让我们来讨论一阶线性常微分方程。
它可以表示为:$\frac{dy}{dx} + P(x)y = Q(x)$其中,P(x)和Q(x)是已知函数。
为了求解这类方程,我们可以采用积分因子的方法。
具体步骤如下:1. 将方程变形为标准形式:$\frac{dy}{dx} + P(x)y = Q(x)$。
2. 寻找积分因子$\mu(x)$,它满足$\mu(x) = e^{\int P(x)dx}$。
3. 将方程两边同时乘以积分因子$\mu(x)$,得到$\mu(x)\frac{dy}{dx} + \mu(x)P(x)y = \mu(x)Q(x)$。
4. 将左侧变为导数形式,即$\frac{d}{dx}[\mu(x)y] = \mu(x)Q(x)$。
5. 对上式两边同时积分,解得$\mu(x)y = \int \mu(x)Q(x)dx + C$,其中C为常数。
6. 最终求得方程的解为$y = \frac{1}{\mu(x)}\int \mu(x)Q(x)dx +\frac{C}{\mu(x)}$。
二、一阶可分离变量常微分方程接下来,我们来探讨一阶可分离变量常微分方程。
它可以写成以下形式:$\frac{dy}{dx} = f(x)g(y)$其中,f(x)和g(y)是已知函数。
这类方程的求解步骤如下:1. 将方程变形为$\frac{dy}{g(y)} = f(x)dx$。
2. 对上式两边同时积分,得到$\int \frac{dy}{g(y)} = \int f(x)dx$。
常见的微分方程类型归纳微分方程是指含有未知函数的导数的方程。
未知函数是一元函数的叫做常微分方程,未知函数是多元函数的叫做偏微分方程。
《微积分》里面的微分方程仅限于常微分方程。
咱们所讲到的微分方程归纳为以下几类:一、可分离变量的微分方程 形如:()()dy f x g y dx= 求解方式:若是()0g y ≠,方程可化为: ()()dy f x dx g y = ,两边取积分, ()()dy f x dx c g y =+⎰⎰求出积分,那么为方程的通解。
例1:2cos dy y x dx= 解:将变量分离,取得 2cos dy xdx y= 两边积分,即得 1sin x c y-=+ 那么通解为 1sin y x c =-+ 二、一阶线性微分方程形如: )()(x Q y x P dxdy =+ (1) 若0)(=x Q ,那么原方程称为一阶线性齐次方程;假设0)(≠x Q ,原方程称为一阶线性非齐次方程。
求解方式:先解原方程对应齐次方程的通解:对应齐次方程为: 0)(=+y x P dxdy (2) 分离变量,得 dx x P ydy )(-= 两边积分,得 ⎰=-dx x P ce y )( (3)(3)为一阶线性齐次方程(2)的通解。
常数变易法:令对应齐次方程的通解⎰=-dx x P ce y )(中的常数c 为 ()c u x =(常数变函数)则⎰=-dx x P e x u y )()(为非齐次方程(1)的通解;将⎰=-dx x P e x u y )()(代入(1)式,解得()u x 的具体函数表达式,即求出(1)式的通解。
例2:求微分方程x xy y =-'2的通解解:对应齐次方程为: 20y xy '-=分离变量,得 12xdx dy y= 两边取积分,得 12 xdx dy y =⎰⎰解得:22211x c c x x y e e e ce +=±=±⋅=令 ()c u x =那么 ()2x y u x e =为原方程的通解,带入原式。
第7章 微分方程一、本章提要1. 基本概念微分方程,常微分方程(未知函数为一元函数),偏微分方程(未知函数为多元函数),微分方程的阶数(填空题).齐次方程 :()dy y dxx ϕ=或者()dxxdy yϕ=(计算) 一阶线性微分方程:()()y P x y Q x '+=或者()()x P y x Q y '+=通解公式()d ()d ()e d e P x x P x x y Q x x C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 或者用常数变异法求解.(计算或者填空) 线性相关,线性无关(选择) 可降解(不显含x 或y )的(计算)齐次常系数线性微分方程:特征根法(填空)非齐次常系数线性微分方程:特接用待定系数法. (计算) 微分方程解的结构定理(选择或填空). 换元法也是求解微分方程的重要方法之一. 二、要点解析问题1 常微分方程有通用的解法吗?对本章的学习应特别注意些什么?解析 常微分方程没有通用的求解方法.每一种方法一般只适用于某类方程.在本章 我们只学习了常微分方程的几种常用方法.因此,学习本章时应特别注意每一种求解方法所适用的微分方程的类型.当然,有时一个方程可能有几种求解方法,在求解时,要选取最简单的那种方法以提高求解效率.要特别注意:并不是每一个微分方程都能求出其解析解,大多数方程只能求其数值解.例1 求微分方程 '+=y y 0 的通解.解一 因为 0y y '+= 所对应的特征方程为10r +=,特征根1r =-,所以e xy C -=(C 为任意常数)为所求通解.解二 因为0=+'y y ,所以)0(d d ≠-=y y xy ,分离变量x y y d d -=,两边积分⎰⎰-=x yy d d ,1ln ln y x C =-+, 所以exy C -= (C 为任意常数)三、例题精解例3 求''=y y 4满足初始条件01,2x x yy =='== 的特解.解一 令'=y p ,则d d d d d d d d p p y py pxy x y''==⋅=.将其代入原方程''=y y 4得 y yp p4d d =,分离变量 y y p p d 4d =, 两边积分⎰⎰=y y p p d 4d ,22111422p y C =⋅+, 2224p y C =+,因为001,2x x yp y =='===,所以222241C =⨯+,可得C 2=0.故224p y =,即 p y =±2.这里'=-y y 2 应舍去,因为此时'y 与y 异号,不能够满足初始条件.将2y y '=分离变量便得其解y =23exC +.再由y x ==01,得30C =,于是所求解为2e xy =.上面解法中,由于及时地利用初始条件确定出了任意常数C 1的值,使得后续步骤变得简单,这种技巧经常用到.解二 因为''=y y 4,所以40y y ''-=,特征方程 240r -=, 特征根 122,2r r =-=, 于是其通解为2212e e x x y C C -=+, 由初始条件可得C 1=0 ,C 2=1 ,所求特解为 2e x y =.例4 求方程''+=y y x sin 的通解.解一 该方程为二阶常系数非齐次线性方程,其对应的齐次方程为 ''+=y y 0, 特征方程为 210r +=, 特征根12i,=i r r =-,齐次方程的通解为12cos sin Y C x C x =+,由于方程0sin e sin y y x x ''+==,i i αβ+=(其中0,1αβ==) 恰是特征单根,故设特解为(c o s s i n y x a xb x *=+,代入原方程,可得1,02a b =-= 所以1cos 2y x x *=-,于是所求通解为y C x C x x x =+-1212c o ss i n c o s .上述解法一般表述为:若二阶线性常系数非齐次微分方程 ''+'+=y py qy f x ()中的非齐次项[]()e()c o s ()s i nxnh f x P x x P xx αββ=+,那么该微分方程的特解可设为[]e()c o s ()s i n kxp mm y x P x x Q xx αββ=+,其中(), ()m m P x Q x 均为 m 次待定多项式 {}m h n =m ax ,.如果非齐次项中的αβ,使i αβ±不是特征方程的根,则设0k =;如果i αβ±是特征方程的单根,则取1k =. 例5 求解微分方程x xe y y y 42=+'-''。