高中数学课时分层作业1集合的含义(含解析)新人教A版必修1
- 格式:doc
- 大小:84.00 KB
- 文档页数:4
新教材高中数学新人教A 版必修第一册:集合的概念层级(一) “四基”落实练1.(多选)下列每组对象,能构成集合的是( ) A .中国各地最美的乡村B .直角坐标系中横、纵坐标相等的点C .2022年将参加北京冬奥会的优秀运动员D .清华大学2020年入学的全体学生解析:选BD 中国各地最美的乡村,无法确定集合中的元素,故A 不能;优秀运动员,无法确定集合中的元素,故C 不能.∴根据集合元素的确定性可知,B 、D 都能构成集合.2.设A 是方程2x 2+ax +2=0的解集,且2∈A ,则实数a 的值为( ) A .-5 B .-4 C .4D .5解析:选A 因为2∈A ,所以2×22+2a +2=0,解得a =-5.3.将集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ x +y =5,2x -y =1用列举法表示,正确的是( ) A .{2,3} B .{(2,3)} C .{x =2,y =3}D .(2,3)解析:选B 解方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1,得⎩⎪⎨⎪⎧x =2,y =3,所以集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ x +y =5,2x -y =1={(2,3)},故B 正确. 4.(多选)设集合A ={x |x 2-2x =0},则下列表述正确的是( ) A .{0}∈A B .2∈A C .{2}∈AD .0∈A解析:选BD ∵集合A ={x |x 2-2x =0}={0,2},∴0∈A,2∈A ,∵元素与集合是属于关系,故A 、C 不正确. 5.(多选)下列说法错误的是( )A .在直角坐标平面内,第一、三象限的点的集合为{(x ,y )|xy >0}B .方程x -2+|y +2|=0的解集为{-2,2}C .集合{(x ,y )|y =1-x }与{x |y =1-x }是相等的D .若A ={x ∈Z|-1≤x ≤1},则-1.1∈A解析:选BCD 根据集合的概念易知A 正确.B 错误,方程的根为⎩⎪⎨⎪⎧x =2,y =-2,故其解集应写成{(2,-2)}.C 错误,{(x ,y )|y =1-x }是由直线y =1-x 上的所有点组成的集合,{x |y =1-x }是由符合y =1-x 的所有x 的值构成的集合,二者不相等.D 错误,由题意可知,A ={-1,0,1},∴-1.1∉A . 故选B 、C 、D.6.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b ________A ,ab ________A .(填“∈”或“∉”)解析:因为a 是偶数,b 是奇数,所以a +b 是奇数,ab 是偶数,故a +b ∉A ,ab ∈A . 答案:∉ ∈7.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b的可能取值所组成的集合中元素的个数为________.解析:当a ,b 同正时,|a |a +|b |b =a a +bb =1+1=2.当a ,b 同负时,|a |a +|b |b =-a a+-bb=-1-1=-2.当a ,b 异号时,|a |a+|b |b=0. ∴|a |a +|b |b的可能取值所组成的集合中元素共有3个.答案:38.用适当的方法表示下列集合. (1)方程x (x 2+2x +1)=0的解集;(2)在自然数集中,小于1 000的奇数构成的集合.解:(1)因为方程x (x 2+2x +1)=0的解为0或-1,所以解集为{0,-1}.(2)在自然数集中,奇数可表示为x =2n +1,n ∈N ,故在自然数集中,小于1 000的奇数构成的集合为{x |x =2n +1,且n <500,n ∈N}.层级(二) 能力提升练1.设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素的个数为( )A .3B .4C .5D .6解析:选B 当a =1,b =4时,x =5;当a =1,b =5时,x =6;当a =2,b =4时,x =6;当a =2,b =5时,x =7;当a =3,b =4时,x =7;当a =3,b =5时,x =8.由集合元素的互异性知M 中共有4个元素.2.已知集合Ω中的三个元素l ,m ,n 分别是△ABC 的三个边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形解析:选D 因为集合中的元素是互异的,所以l ,m ,n 互不相等,即△ABC 不可能是等腰三角形.3.已知含有三个实数的集合既可表示成⎩⎨⎧⎭⎬⎫a ,b a,1,又可表示成{a 2,a +b,0},则a2 021+b2 020=________.解析:由题意,得b a=0且a ≠0,a ≠1,所以b =0,a 2=1,解得a =-1(a =1舍去),所以a2 021+b2 020=-1.答案:-14.已知数集A 满足条件:若a ∈A ,则11-a∈A (a ≠1),如果a =2,试求出A 中的所有元素.解:根据题意,由2∈A 可知,11-2=-1∈A ;由-1∈A 可知,11--1=12∈A ;由12∈A 可知,11-12=2∈A . 故集合A 中共有3个元素,它们分别是-1,12,2.5.已知集合A ={x |ax 2-3x +2=0}. (1)若集合A 中只有一个元素,求实数a 的值; (2)若集合A 中至少有一个元素,求实数a 的取值范围; (3)若集合A 中至多有一个元素,求实数a 的取值范围.解:(1)当a =0时,原方程可化为-3x +2=0,得x =23,符合题意.当a ≠0时,方程ax 2-3x +2=0为一元二次方程,由题意得,Δ=9-8a =0,得a =98.所以当a =0或a =98时,集合A 中只有一个元素.(2)由题意得,当⎩⎪⎨⎪⎧a ≠0,Δ=9-8a >0,即a <98且a ≠0时方程有两个实根,又由(1)知,当a =0或a =98时方程有一个实根.所以a 的取值范围是⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a ≤98.(3)由(1)知,当a =0或a =98时,集合A 中只有一个元素.当集合A 中没有元素,即A =∅时, 由题意得⎩⎪⎨⎪⎧a ≠0,Δ=9-8a <0,解得a >98.综上得,当a ≥98或a =0时,集合A 中至多有一个元素.层级(三) 素养培优练1.若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4,有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是________.解析:若只有①正确,则a =1,b =1,c ≠2,d =4,而a =b =1与集合中元素的互异性矛盾,所以只有①正确是不可能的;若只有②正确,则有序数组为(3,2,1,4),(2,3,1,4);若只有③正确,则有序数组为(3,1,2,4);若只有④正确,则有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2). 故符合条件的有序数组(a ,b ,c ,d )的个数是6. 答案:62.已知集合A ={x |x =3n +1,n ∈Z},B ={x |x =3n +2,n ∈Z},M ={x |x =6n +3,n ∈Z}.(1)若m ∈M ,则是否存在a ∈A ,b ∈B ,使m =a +b 成立?(2)对任意a ∈A ,b ∈B ,是否一定存在m ∈M ,使a +b =m ?证明你的结论. 解:(1)设m =6k +3=3k +1+3k +2(k ∈Z), 令a =3k +1(k ∈Z),b =3k +2(k ∈Z),则m =a +b . 故若m ∈M ,则存在a ∈A ,b ∈B ,使m =a +b 成立.(2)设a =3k +1,b =3l +2,k ,l ∈Z ,则a +b =3(k +l )+3,k ,l ∈Z.当k+l=2p(p∈Z)时,a+b=6p+3∈M,此时存在m∈M,使a+b=m成立;当k+l=2p+1(p∈Z)时,a+b=6p+6∉M,此时不存在m∈M,使a+b=m成立.故对任意a∈A,b∈B,不一定存在m∈M,使a+b=m.。
课时作业(一)集合的含义[练基础]1.(多选)下列各组对象能构成集合的是()A.拥有手机的人B.2020年高考数学难题C.所有有理数D.小于π的正整数2.用“book”中的字母构成的集合中元素个数为()A.1 B.2C.3 D.43.设不等式3-2x<0的解集为M,下列正确的是()A.0∈M,2∈M B.0∉M,2∈MC.0∈M,2∉M D.0∉M,2∉M4.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是() A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形5.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,则a为()A.2 B.2或4C.4 D.06.已知集合A中含1和a2+a+1两个元素,且3∈A,则a3的值为()A.0 B.1C.-8 D.1或-87.设集合A是由1,k2为元素组成的集合,则实数k的取值范围是________.8.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a =________.9.A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值.10.已知集合A含有三个元素2,a,b,集合B含有三个元素2,2a,b2,若A与B表示同一集合,求a,b的值.[提能力]11.(多选)由实数-a ,a ,||a ,a 2所组成的集合可以含有( )个元素.A .1B .2C .3D .412.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可13.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b的可能取值所组成的集合中元素的个数为________.14.集合M 中的元素y 满足y ∈N ,且y =1-x 2,若a ∈M ,则a 的值为________.15.数集M 满足条件:若a ∈M ,则1+a 1-a∈M (a ≠±1且a ≠0).若3∈M ,则在M 中还有三个元素是什么?[培优生]16.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?课时作业(一) 集合的含义1.解析:拥有手机的人具有确定性,能构成集合,故A 正确;数学难题定义不明确,不符合集合的定义,故B 不正确;有理数具有确定性,能构成集合,故C 正确;小于π的正整数具有确定性,能构成集合,故D 正确;故选ACD.答案:ACD2.解析:“book ”中的字母构成的集合中有b ,o ,k 3个元素.答案:C3.解析:从四个选项来看,本题是判断0和2与集合M 间的关系,因此只需判断0和2是否是不等式3-2x <0的解即可.当x =0时,3-2x =3>0,所以0不属于M ,即0∉M ;当x =2时,3-2x =-1<0,所以2属于M ,即2∈M .故选B.答案:B4.解析:根据集合的性质可知,a ≠b ≠c∴△ABC 一定不是等腰三角形.故选D.答案:D5.解析:若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ,若a =6∈A ,则6-a =0∉A .故选B.答案:B6.解析:∵3∈A ,∴a 2+a +1=3,即a 2+a -2=0,即(a +2)(a -1)=0,解得a =-2,或a =1.当a =1时,a 3=1.当a =-2时,a 3=-8.∴a 3=1,或a 3=-8.故选D.答案:D7.解析:∵1∈A ,k 2∈A ,结合集合中元素的性质可知k 2≠1,解得k ≠±1.答案:k ≠±18.解析:∵x ∈N,2<x <a ,且集合P 中恰有三个元素,∴结合数轴知a =6.答案:69.解析:∵a ∈A 且3a ∈A ,∴⎩⎪⎨⎪⎧ a <6,3a <6,解得a <2.又a ∈N , ∴a =0或1.10.解析:由题意得⎩⎪⎨⎪⎧ 2a =a ,b 2=b ,或⎩⎪⎨⎪⎧2a =b ,b 2=a , 解得⎩⎪⎨⎪⎧ a =0,b =0,或⎩⎪⎨⎪⎧ a =0,b =1,或⎩⎪⎨⎪⎧ a =0,b =0,或⎩⎨⎧ a =14,b =12.由集合中元素的互异性知,⎩⎪⎨⎪⎧ a =0,b =1,或⎩⎨⎧a =14,b =12. 11.解析:当a =0时,这四个数都是0,所组成的集合只有1个元素;当a ≠0时,a 2=|a |=⎩⎪⎨⎪⎧a ,a >0-a ,a <0,∴a 2与||a 相等且一定与a 或-a 中的一个一致, 故组成的集合可以含有1个或2个元素.故选AB.答案:AB12.解析:由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾; 若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A 的元素为0,3,2,符合题意.故选B.13.解析:当ab >0时,|a |a +|b |b =2或-2.当ab <0时,|a |a +|b |b=0,因此集合中含有-2,0,2三个元素.答案:314.解析:由y =1-x 2,且y ∈N 知,y =0或1,∴集合M 含0和1两个元素,又a ∈M ,∴a =0或1.答案:0或115.解析:∵3∈M ,∴1+31-3=-2∈M , ∴1+(-2)1-(-2)=-13∈M , ∴1+⎝⎛⎭⎫-131-⎝⎛⎭⎫-13=2343=12∈M . 又∵1+121-12=3∈M , ∴在M 中还有三个元素-2,-13,12. 16.解析:∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6; 当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11,共8个.。
1.1 集合的概念一、单选题1.已知集合{}0,1,2A =,那么( )A .0A ⊆B .0A ∈C .1AD .{}0,1,2A ⋃2.已知集合{}1,A x x x Z =≤∈,则满足条件BA 的集合B 的个数为( ) A .3 B .4C .7D .83.已知集合{}14A x Z x =∈-<<,则集合A 的非空子集个数是( )A .7B .8C .15D .16 4.集合{,,}a b c 的真子集共有( )个 A .5 B .6C .7D .8 5.下列表示正确的是 A .0∈N B .27∈NC .–3∈ND .π∈Q 6.设集合{|21,},5A x x k k Z a ==+∈=,则有( ) A .a A ∈ B .a A -∈ C .{}a A ∈ D .{}a A ⊇7.下列关于空集∅的叙述:①0∈∅;②{}∅∈∅;③{}0∅=.正确的个数为( )A .0B .1C .2D .3 85R ;②14Q ∉;③1.5Z ∈.其中正确的个数是( )A .1B .2C .3D .09.方程组2219x y x y +=-=⎧⎨⎩的解集是( ) A .()5,4B .()5,4-C .(){}5,4-D .(){}5,4-二、填空题 1.如果有一集合含有两个元素:x ,2x x -,则实数x 的取值范围是________.2.已知集合A =0, 1}, B =2{,2}a a ,其中a R ∈, 我们把集合1212{|,,}x x x x x A x B =+∈∈记作A +B ,若集合A +B 中的最大元素是21a +,则a 的取值范围是______.3.一元二次方程x 2+4x+3=0的解集为________(用列举法)4.已知集合2{|320,,}A x ax x x R a R =-+=∈∈,若集合A 中只有一个元素,则实数a 的取值为______ .5.若不等式组120161x x a-≥⎧⎨+⎩的解集中的元素有且仅有有限个数,则a =________. 三、解答题 1.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎧⎫=⎨⎨⎬+=⎩⎭⎩表示什么?集合C ,D 之间有什么关系?2.已知集合2{|210}A x ax x =∈++=R ,其中a ∈R .(1)若12A ∈,用列举法表示集合A ;(2)若集合A 中有且仅有一个元素,求a 的值组成的集合B .3.用列举法表示下列集合.(1)x|x 2-2x -8=0}.(2)x|x 为不大于10的正偶数}.(3)a|1≤a<5,a∈N}.(4)169A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭∣ (5)(x ,y)|x∈1,2},y∈1,2}}.参考答案一、单选题1.B解析:根据元素与集合的关系、集合与集合的关系判断即可.详解:由{}0,1,2A =,则0A ∈,{}1A ⊆故选:B2.C解析:先确定集合A 中元素,再由真子集个数的计算公式,即可得出结果.详解: 因为{}{}1,101A x x x Z =≤∈=-,,,所以满足条件B A 的集合B 的个数为3217-=,故选:C .3.C解析:利用列举法表示集合A ,确定集合A 中元素的个数,进而可求得集合A 的非空子集个数.详解:{}{}140,1,2,3A x Z x =∈-<<=,集合A 中共4个元素,因此,集合A 的非空子集个数是42115-=.故选:C.4.C解析:直接根据含有n 个元素的集合,其子集个数为2n ,真子集为21n -个;详解:解:因为集合{,,}a b c 含有3个元素,故其真子集为3217-=个故选:C5.A解析:根据自然数集以及有理数集的含义判断数与集合关系. 详解:N表示自然数集,在A中,0∈N,故A正确;在B中,27N∉,故B错误;在C中,–3∉N,故C错误;Q表示有理数集,在D中,π∉Q,故D错误.故选A.点睛:本题考查自然数集、有理数集的含义以及数与集合关系判断,考查基本分析判断能力,属基础题.6.A解析:5221a==⨯+,结合集合A,即可得出结果.详解:5221a A==⨯+∈.故选:A点睛:本题考查元素和集合的关系,考查学生对基本概念的理解,属于基础题.7.B解析:直接根据∅中没有任何中元素,∅是{}∅的元素,且是{}0的真子集即可判断.详解:∵∅中没有任何中元素,0∉∅,故①错误;{}∅∈∅,故②正确;{}0≠∅,故③错误.故正确的只有②.故选:B.点睛:本题考查命题真假的判断,考查元素与集合、空集和单元素集合{}0关系等基础知识,是基础题.8.A解析:根据元素和常用数集之间的关系,直接判定,即可得出结果.详解:R R,即①正确;Q 为有理数集,故14Q ∈,即②错; Z 为整数集,故1.5Z ∉,即③错;故,正确的个数为1个.故选:A.点睛:本题主要考查元素与集合之间关系的判定,属于基础题型.9.D解析:解出方程组的解,然后用集合表示.详解:因为()()229x y x y x y -==+-,将1x y +=代入得,得9x y -=.210x y x y x ++-==,解得5x =.代入得4y =-.所以方程组2219x y x y +=⎧⎨-=⎩的解集(){}5,4-. 故选:D.点睛: 本题考查集合的表示,考查用列举法表示方程组解的集合,注意解的表示形式,属于基础题.二、填空题1.0x ≠且2x ≠解析:根据集合的元素的互异性列出不等式,解之即得.详解:由集合元素的互异性可得2x x x -≠,解得0x ≠且2x ≠.故答案为:0x ≠且2x ≠.2.(0, 2)解析:只要解不等式2121a a +<+即得.详解:由题意2121a a +<+,解得02a <<,即a 的取值范围是(0,2).故答案为(0,2).点睛:本题考查集合的创新问题,解题中需要理解新概念,转化为旧知识.如本题转化为解不等式2121a a +<+.3.{}1,3--解析:求出方程的解,用列举法表示出即可.详解:由2430x x ++=解得1x =-或3-,2430x x +∴+=的解集为{}1,3--.故答案为:{}1,3--.点睛:本题考查列举法表示集合,属于基础题.4.0或98解析:由题意,集合A 中只有一个元素,转化为方程2320ax x -+=只有一个解,分类讨论,即可得到答案.详解:因为集合2A {x |ax 3x 20,x R,a R}=-+=∈∈有且只有一个元素,当a 0=时,2ax 3x 20-+=只有一个解2x 3=,当a 0≠时,一元二次方程有重根,即98a 0=-=即9a 8=.所以实数a 0=或98.点睛:本题主要考查了集合中元素个数的判定与应用,其中根据题意把集合A 中只有一个元素,转化为方程2320ax x -+=只有一个解,分类讨论求解是解答的关键,着重考查了转化思想,及分类讨论数学思想的应用.5.2018解析:若不等式组120161x x a -≥⎧⎨+⎩的解集中有且仅有有限个数,则12017a -=,进而得到答案. 详解:解12016x -≥得:2017x ≥,解1x a +≤得:1x a ≤-,若12017a -<,则不等式的解集为空集,不满足条件;若12017a -=,则不等式的解集有且只有一个元素,满足条件,此时2018a =;若12017a ->,则不等式的解集为无限集,不满足条件;综上可得:2018a =,故答案为:2018点睛:本题主要考查集合中元素的个数,同时考查了不等式组的解法,属于简单题.三、解答题1.D C解析:集合表示两条直线的交点,解得交点得到集合关系.详解:集合21(,)|45x y D x y x y ⎧-=⎧⎫=⎨⎨⎬+=⎩⎭⎩表示直线21x y -=与直线45x y +=交点的集合, 即{(1,1)}D =. D C点睛:本题考查了集合表示的意义,集合的包含关系,意在考查学生对于集合的理解和掌握.2.(1) 11,42A ⎧⎫=-⎨⎬⎩⎭(2) {0,1}B = 解析:(1)由题,将12x =代入方程中,进而得到8a =-,再解得方程,并用列举法表示解的集合即可;(2)当0a =时,解得12x =-,即为一个解,当0a ≠时,令0∆=,求解即可详解:(1)∵12A ∈, ∴12是方程2210ax x ++=的根, ∴21121022a ⎛⎫⨯+⨯+= ⎪⎝⎭,解得8a =-, ∴方程为28210x x -++=, ∴112x =,214x =-,此时11,42A ⎧⎫=-⎨⎬⎩⎭(2)若0a =,则方程为210x +=,解得12x =-,此时A 中仅有一个元素,符合题意;若0a ≠,A 中仅有一个元素,那440a ∆=-=,即1a =,方程有两个相等的实根,即121x x ==- ∴所求集合{0,1}B =点睛:本题考查列举法表示集合, 考查由元素的个数求参数,考查分类讨论的思想,考查解方程,属于中档题.3.(1){4,-2};(2){2,4,6,8,10};(3){1,2,3,4};(4){1,5,7,8};(5){(1,1),(1,2),(2,1),(2,2)}解析:根据题意,列举出集合中所有的元素,即可求得结果.详解:(1)2280x x--=,解得4x=或2-,故x|x2-2x-8=0}={4,-2};(2)x|x为不大于10的正偶数}={2,4,6,8,10};(3)a|1≤a<5,a∈N},故1,2,3,4a=,则a|1≤a<5,a∈N}={1,2,3,4};(4)169A x N Nx⎧⎫=∈∈⎨⎬-⎩⎭∣={1,5,7,8};(5)(x,y)|x∈1,2},y∈1,2}}={(1,1),(1,2),(2,1),(2,2)}点睛:本题考查用列举法表示集合,属简单题.。
1.1 集合的概念一、单选题1.设集合1|6A x x a a Z ⎧⎫==+∈⎨⎬⎩⎭,,1|23b B x x b Z ⎧⎫==-∈⎨⎬⎩⎭,,1|26c C x x c Z ⎧⎫==+∈⎨⎬⎩⎭,,则集合A 、B 、C 的关系是( )A .ABC B .A C B C .A B C =D .C A B2.集合{}13A x N x =∈-<<的真子集的个数为( ) A .3 B .4C .7D .83.方程组5346x y x y +=⎧⎨-=-⎩的解集是( )A .{}2,3x y ==B .{}2,3C .(){}2,3D .23x y =⎧⎨=⎩4.已知集合(){}22,1,,A x y x y x Z y Z =+≤∈∈,则A 中元素个数为( )A .4B .5C .8D .95.已知集合{}1,2,3A =,集合{},,B z z x y x A y A ==-∈∈,则集合B 中元素的个数为( ) A .4 B .5C .6D .76.已知集合M 是方程x 2-x +m =0的解组成的集合,若2∈M,则下列判断正确的是( )A .1∈MB .0∈MC .-1∈MD .-2∈M7.已知{}A xx x R =≤∈∣,a =b = )A .a A ∈且b A ∉B .a A ∉且b A ∈C .a A ∉且b A ∈D .a A ∉且b A ∉ 8.已知集合{1,,1}A a a =-,若2A -∈,则实数a 的值为( ) A .2-B .1-C .1-或2-D .2-或3-9.下列关系中,正确的个数为( )R ;②13Q ∈;③0{0}=;④0N ∉;⑤Q π∈;⑥3Z -∈. A .6B .5C .4D .310.已知集合{}1,0,1A =-,(),|,,x B x y x A y A y ⎧⎫=∈∈∈⎨⎬⎩⎭N ,则集合B 中所含元素的个数为( ) A .3 B .4 C .6 D .9二、填空题1.列举法表示方程()22x 2a 3x a 3a 20-++++=的解集为______.2.若{}20x N x mx *∈+<恰有三个元素,则实数m 的取值范围为___________. 3.已知集合{}1,,3,A a ={}21,2,1,B a a a =++-,若3();A B ∈⋂则实数a =________.4.用描述法表示被4除余3的正整数集合:______. 5.已知集合{}1,A x =,则x 的取值范围是________. 三、解答题1.设n 为正整数,集合A=12{|(,,,)n t t t αα=,{0,1}k t ∈,1k=,2,,}n .对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记111122221(,)[(||)(||)(||)]2n n n n M x y x y x y x y x y x y αβ=+-++-+++-+++.(Ⅰ)当n=3时,若(0,1,1)α=,(0,0,1)β=,求(,)M αα和(,)M αβ的值;(Ⅱ)当4n =时,对于A 中的任意两个不同的元素α,β,证明:(,)(,)(,)M M M αβααββ+≤. (Ⅲ)给定不小于2的正整数n ,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,(,)(,)(,)M M M αβααββ=+.写出一个集合B ,使其元素个数最多,并说明由.2.用适当的方法表示下列集合.(1)由所有小于20的既是奇数又是质数的正整数组成的集合; (2)由所有非负偶数组成的集合;(3)直角坐标系内第三象限的点组成的集合.3.选择适当的方法表示下列集合. (1)绝对值不大于3的整数组成的集合; (2)方程(35)(2)0x x -+=的实数解组成的集合; (3)一次函数6y x =+图像上所有点组成的集合; (4)满足方程||x x =,x ∈Z 的所有x 的值构成的集合.4.含有三个实数元素的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成2{,,0}a a b +,求20172018a b +的值.5.已知集合A 可表示为a,a 2,1a },求实数a 应满足的条件.参考答案一、单选题 1.C解析:将三个集合分别化简后判断集合间的关系. 详解:集合161|,66a A x x a a Z x x a Z ⎧+⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭,, 集合132|,236b b B x x b Z xb Z ⎧-⎫⎧⎫==-∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,, 集合131|,266c c C x x c Z x x c Z ⎧+⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭,,a Z ∈时,61a +表示被6除余1的数;b Z ∈时,32b -表示被3除余1的数;c Z ∈时,31c +表示被3除余1的数; 所以A B C =, 故选:C. 2.C解析:先化简集合A ,再列举出所有真子集,从而可得答案. 详解:因为{}{}130,1,2A x N x =∈-<<=,所以A 的真子集为{}{}{}{}{}{},0,1,2,0,1,0,2,1,2∅ 可得真子集的个数为7, 故选:C . 3.C解析:首先求出二元一次方程组的解,再写出其解集; 详解:解:因为5346x y x y +=⎧⎨-=-⎩,所以23x y =⎧⎨=⎩所以方程组5346x y x y +=⎧⎨-=-⎩的解集为(){}2,3故选:C 4.B解析:根据集合A ,得出表示圆221x y +=上及其内部的整数点,结合图象,即可求解. 详解:由题意,集合(){}22,1,,A x y x y x Z y Z =+≤∈∈表示如图所示的圆221x y +=上及其内部的整数点,共5个. 故选: B.点睛:本题主要考查了集合表示,其中解答中正确理解集合表示表示方法是解答的关键,着重考查了数形结合思想,属于基础题. 5.B解析:根据集合A 中的元素,集合B 中的元素特征,求出x y -,利用集合元素的互异性即可求解. 详解:{}1,2,3A =,{},,B z z x y x A y A ==-∈∈,1,2,3x ∴=,1,2,3y =,当1x =时,0,1,2x y -=--, 当2x =时,1,0,1x y -=-, 当3x =时,2,1,0x y -=即2,1,0,1,2x y -=--,即 {}2,1,0,1,2B =--共有5个元素. 故选:B 点睛:本题考查了集合元素的特征,理解集合的表示以及集合中的元素特征,考查了基本运算,属于基础题.6.C解析:首先根据2∈M,把2代入方程x 2-x +m =0即可求得m =-2,从而解方程x 2-x -2=0即可得解. 详解:由2∈M 知2为方程x 2-x +m =0的一个解, 所以22-2+m =0,解得m =-2. 所以方程为x 2-x -2=0, 解得x 1=-1,x 2=2. 故方程的另一根为-1. 故选:C . 7.B解析:根据已知中{}A xx x R =≤∈∣,判断a b ,的值与a b ,与集合A 的关系. 详解:根据题意得:a ==>b ==<a A ∉,b A ∈; 故选:B. 点睛:本题考查的知识点是元素与集合关系的判断,判断一个元素是否属于一个集合,关键是判断元素是否满足集合的条件. 8.C解析:由已知得2a =-或12a -=-,解之并代入集合中验证可得选项. 详解:因为集合{1,,1}A a a =-,且2A -∈,所以2a =-或12a -=-, 当2a =-时,{1,2,3}A =--,适合题意;当12a -=-时,1a =-,{1,1,2}A =--,也适合题意, 所以实数a 的值为1-或2-. 故选:C. 点睛:本题考查元素与集合的关系,属于基础题. 9.D解析:利用元素与集合的关系及实数集、有理数集、自然数集的性质直接求解. 详解:R ,故①正确;在②中,13Q ∈,故②正确;在③中,0{0}∈,故③错误;在④中,0∈N ,故④错误; 在⑤中,π∉Q ,故⑤错误;在⑥中,3-∈Z ,故⑥正确. 故选:D. 点睛:本题考查了元素和集合的关系,属于简单题. 10.B解析:根据几何A 中的元素,可求得集合B 中的有序数对,即可求得B 中元素个数. 详解:因为x A ∈,y A ,xy ∈N ,所以满足条件的有序实数对为()1,1--,()0,1-,()0,1,()1,1. 故选:B. 点睛:本题考查集合中元素个数的求法,属于基础题.二、填空题 1.{}a 1,a 2++解析:根据题意,求出方程的解,用集合表示即可得答案. 详解:根据题意,方程()22x 2a 3x a 3a 20-++++=变形可得()()x a 1x a 20⎡⎤⎡⎤-+-+=⎣⎦⎣⎦,有2个解:1x a 1=+,2x a 2=+, 则其解集为{}a 1,a 2++; 故答案为{}a 1,a 2++. 点睛:本题考查集合的表示方法,关键是求出方程的解,属于基础题.2.[)4,3--解析:根据题意可知34m <-≤,解出即可.详解:{}20x N x mx *∈+<恰有三个元素,{}{}{}2001,2,3x Nx mx x Nx m **∴∈+<=∈<<-=,34m ∴<-≤,即43m -≤<-.故答案为:[)4,3--. 点睛:本题考查根据集合元素个数求参数,其中涉及一元二次不等式的求解,属于基础题. 3.2-解析:由3()A B ∈⋂得13a +=或23a +=或213a -=求出a 值并根据集合元素互异性检验得解. 详解:3()A B ∈⋂,13a ∴+=或23a +=或213a -=解得2a =或1a =或2a =-,代入检验,根据集合元素互异性得2a =- 故答案为:2- 点睛:本题考查集合元素互异性,属于基础题.4.x|x =4n+3,n∈N}解析:设该数为x ,则该数x 满足x =4n+3,n∈N;再写成集合的形式. 详解:设该数为x ,则该数x 满足x =4n+3,n∈N; ∴所求的正整数集合为x|x =4n+3,n∈N}. 故答案为:x|x =4n+3,n∈N}. 点睛:本题主要考查集合的表示方法,属于基础题. 5.1x ≠解析:利用集合元素的互异性可得结果。
1.1 集合的概念1.定义集合运算:(){},,A B z z x x y x A y B ==-∈∈※︳,设集合 {}1,2A =,{}2,3B =,则集合 A B ※ 的所有元素个数为( )A .2B .3C .4D .5答案:B 解析:求出集合 A B ※ 的所有元素,即得解.详解:当1,2x y ==时,1(12)1z =⨯-=-;当1,3x y ==时,1(13)2z =⨯-=-;当2,2x y ==时,2(22)0z =⨯-=;当2,3x y ==时,2(23)2z =⨯-=-.所以集合 A B ※ 的共有3个元素.故选:B点睛:本题主要考查集合的新定义,考查集合的元素的互异性,意在考查学生对这些知识的理解掌握水平.2.设集合M=x|x 2-3x≤0},则下列关系式正确的是( )A .2⊆MB .2∉MC .2∈MD .2}∈M答案:C解析:本题已知集合M ,先将相应的不等式化简,得到集合中元素满足的条件,再看元素2是否满足条件,可得到正确选项.详解:230x x -,03x ∴, 2{|30}{|03}M x x x x x ∴=-=.又023<<,2M ∴∈.故选:C .点睛:本题考查的是集合知识,重点是判断元素与集合的关系,难点是对一元二次不等式的化简.计算量较小,属于容易题.3.已知集合{}012M =,,,则M 的子集有( ) A .3个B .4个C .7个D .8个答案:D 解析:根据集合子集的个数计算公式求解.详解:因为集合{}012M =,,共有3个元素,所以子集个数为328=个. 故选:D.4.已知集合{}1,2A =,{}2,4B =,则集合{},,M z z x y x A y B ==⋅∈∈中元素的个数为( )A .1个B .2个C .3个D .4个答案:C解析:根据集合{},,M z z x y x A y B ==⋅∈∈列举求解.详解:因为集合{}1,2A =,{}2,4B =,所以集合{}2,4,8M =,故选:C5.设全集为U ,定义集合M 与N 的运算:{()*|M N x x M N =∈⋃且()}x M N ∉⋂,则()**N N M = A .MB .NC .U MN D .U N M答案:A 解析:先由题意得出*N M 表示区域,再由题中的定义,即可得出()**N N M 表示的区域,从而可得出结果.详解:如图所示,由定义可知*N M 为图中的阴影区域,()**N N M ∴为图中阴影Ⅰ和空白的区域,即()**N N M M =.故选A.点睛:本题主要考查集合的交集与并集的应用,熟记概念即可,属于常考题型.6.对于集合{}22,,M a a x y x y ==-∈∈Z Z ,给出如下三个结论:①如果{}21,P b b n n ==+∈Z ,那么P M ⊆;②如果42,c n n =+∈Z ,那么c M ∉;③如果1a M ∈,2a M ∈,那么12a a M ∈.其中正确结论的个数是A .0B .1C .2D .3答案:D解析:①根据2221(1)n n n +=+-,得出21n M +∈,即P M ⊆;②根据42c n =+,证明42n M ,即c M ∉;③根据1a M ∈,2a M ∈,证明12a a M ∈.详解:解:集合22{|M a a x y ==-,x ∈Z ,}y Z ∈,对于①,21b n =+,n Z ∈,则恒有2221(1)n n n +=+-,21n M ∴+∈,即{|21P b b n ==+,}n Z ∈,则P M ⊆,①正确;对于②,42c n =+,n Z ∈, 若42n M ,则存在x ,y Z ∈使得2242x y n, 42()()n x y x y ∴+=+-, 又x y +和x y -同奇或同偶,若x y +和x y -都是奇数,则()()x y x y +-为奇数,而42n +是偶数;若x y +和x y -都是偶数,则()()x y x y +-能被4整除,而42n +不能被4整除,42n M ∴+∉,即c M ∉,②正确;对于③,1a M ∈,2a M ∈,可设22111a x y =-,22222a x y =-,i x 、i y Z ∈;则2222121122()()a a x y x y =--222212121221()()()()x x y y x y x y =+--2212121221()()x x y y x y x y M =+-+∈那么12a a M ∈,③正确.综上,正确的命题是①②③.故选D .点睛:本题考查了元素与集合关系的判断、以及运算求解能力和化归思想,是难题.7.已知集合 A =1,2,3, 4,5, 6},{|,,,}b T x x a b A a b a ==∈>,则集合T 中元素的个数为A .9B .10C .11D .12答案:C解析:先阅读题意,再写出集合T 即可.详解:解:由集合 A =1,2,3, 4,5, 6},{|,,,}b T x x a b A a b a ==∈>, 则11213123415,,,,,,,,,,23344555566T ⎧⎫=⎨⎬⎩⎭, 则集合T 中元素的个数为11,故选C.点睛:本题考查了元素与集合的关系,重点考查了阅读能力,属基础题.8.关于集合下列正确的是( )A .0∈∅B .0N ∉C .{}0∅∈D .0Q ∈答案:D解析:根据元素和集合的关系进行判断即可.详解:解:0∈∅,故A 错;0N ∈,故B 错,{}0∅⊆,故C 错,0Q ∈,故D 正确.故选:D点睛:本题主要考查元素和集合关系的判断,比较基础,正确理解N ,Z ,R ,集合的意义是解决本题的关键.9.下列关系中正确的个数是( )①12Q ∈ R ③*0N ∈ ④π∈ZA .1B .2C .3D .4答案:A解析:根据集合的概念、数集的表示判断.详解:120不是正整数,π是无理数,当然不是整数.只有①正确. 故选:A .点睛:本题考查元素与集合的关系,掌握常用数集的表示是解题关键.10.已知集合{}1,2,3M =,(){},,,N x y x M y M x y M =∈∈+∈,则集合N 中的元素个数为( )A .2B .3C .8D .9答案:B解析:由,,x M y M x y M ∈∈+∈即可求解满足题意的点(),x y 的坐标.详解:解:由题意,满足条件的平面内以(),x y 为坐标的点集合()()(){}1,1,1,2,2,1N =,所以集合N 的元素个数为3.故选:B.11.设集合{}12|M x x =<<,{}|3N x x =<,则集合M 和集合N 的关系是( )A .N M ∈B .M N ∈C .M N ⊆D .N M ⊆答案:C解析:由子集的概念进行判断结合选项得出答案.详解:集合{}12|M x x =<<中的每一个元素都是集合{}|3N x x =<中的元素,∴集合M 是集合N 的子集 故选:C12.对于任意两个正整数m 、n ,定义某种运算,当m 、n 都为正偶数或正奇数时,m n m n ∆=+;当m 、n 中一个为正奇数,另一个为正偶数时,m n mn ∆=.则在上述定义下,(){}**,36,,M x y x y x y =∆=∈∈N N ,集合M 中元素的个数为( ) A .40B .48C .39D .41答案:D 解析:分x 、y 都为正偶数或正奇数和x 、y 中一个为正奇数,另一个为正偶数,两种情况,根据运算列举求解.详解:当x 、y 都为正偶数或正奇数时,36x y x y ∆=+=,集合M 中的元素有()()()()()()1,35,2,34,3,33,4,32,...,34,2,35,1,共35个;当x 、y 中一个为正奇数,另一个为正偶数时,36x y x y ∆=⋅=,,集合M 中的元素有()()()()()()1,36,3,12,4,9,9,4,36,1,12,3共6个,所以集合M 中元素的个数为35641+=,故选:D点睛:本题主要考查集合的概念和表示方法,属于基础题.13.已知元素a∈0,1,2,3},且a ∉1,2,3},则a 的值为( )A .0B .1C .2D .3答案:A解析:由题意,根据集合中元素与集合的关系,即可求解,得到答案.详解:由题意,元素a∈0,1,2,3},且a ∉1,2,3}, ∴a 的值为0.故选A .点睛:本题主要考查了集合中元素与集合的关系的应用,其中解答中牢记集合的元素与集合的关系,合理应用是解答本题的关键,着重考查了推理与论证能力,属于基础题.14.已知集合1{|,Z}24k M x x k ==+∈,*1{|,N }42k N x x k ==+∈,若0x M ∈,则0x 与N 的关系是( )A .0x N ∈或0x N ∉B .0x N ∈C .0x N ∉D .不能确定答案:A解析:用列举法表示集合,M N ,最后可以选出正确答案.详解:131357{|,Z},,,,,2444444k M x x k ⎧⎫==+∈=--⎨⎬⎩⎭, *1353{|,N },1,,,42442k N x x k ⎧⎫==+∈=⎨⎬⎩⎭,当01,4x M =-∈但0x N ∉, 当03,4x M =∈有0x N ∈.故选:A点睛:本题考查了列举法表示集合,考查了元素与集合的关系,属于基础题.15.已知,,a b c 均为非零实数,集合{|}a b ab A x x a b ab ==++,则集合A 的元素的个数为. A .2B .3C .4D .5答案:A解析:当0a >,0b >时,1113a b ab x a b ab =++=++=;当0a >,0b <时,1111ab ab x a b ab =++=--=-,当0a <,0b >时,1111a b ab x a b ab=++=-+-=-,;当0,0a b <<时,1111ab ab x a b ab =++=--+=-,故x 的所有值组成的集合为{}1,3-,故选A. 16.若集合A =x|kx 2+4x +4=0,x∈R}中只有一个元素,则实数k 的值为( )A .1B .0C .0或1D .以上答案都不对答案:C解析:当k =0时,A =-1};当k≠0时,Δ=16-16k =0,k =1.故k =0或k =1.选C.17.集合M =(x ,y)|xy<0,x∈R,y∈R}是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集答案:D详解:根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.选D.点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集18.定义集合A 、B 的一种运算:{}1212|,,A B x x x x x A x B *==⨯∈∈其中,若{1,2,3,5}A =, {1,2}B =,则A B *中的所有元素之和为为 A .30B .31C .32D .34答案:B详解: 试题分析:由{}1212|,,A B x x x x x A x B *==⨯∈∈其中可知{}1,2,3,5,4,6,10A B *=,所以所有元素之和为31考点:集合运算19.设由“我和我的祖国”中的所有汉字组成集合A ,则A 中的元素个数为( )A .4B .5C .6D .7答案:B解析:列举出集合A 中的元素,由此可得出结论.详解:由题意可知,集合A 中的元素分别为:我、和、的、祖、国,共5个元素. 故选:B.20.已知集合{}21,A a =,实数a 不能取的值的集合是( ) A .{}1,1-B .{}1-C .{}1,0,1-D .{}1答案:A 解析:根据元素的互异性可得出关于实数a 的不等式,由此可求得结果. 详解:由已知条件可得21≠a ,解得1a ≠±.故选:A.。
1.1 集合的概念一、单选题1.设集合{}0,1,2,3M =,则下列关系正确的是( )A .1M ⊆B .2M ∉C .{}3M ⊆D .{}0M ∈2.有下列说法:(1)与表示同一个集合; (2)由组成的集合可表示为{}1,2,3或{}3,2,1; (3)方程2(1)(2)0x x --=的所有解的集合可表示为{}1,1,2;(4)集合{}|45x x <<是有限集.其中正确的说法是A .只有(1)和(4)B .只有(2)和(3)C .只有(2)D .以上四种说法都不对3.已知集合{}{}2|00,1x x ax +==,则实数a 的值为.A .1-B .0C .1D .2 4.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2} 5.已知集合(){}21220A x R a x x =∈+-+=,且A 中只有一个元素,则实数a 的值为A .12- B .0或12 C .1- D .1-或12- 6.把集合2|450{}x x x --=用列举法表示为( )A .{|1,5}x x x =-=B .{|15}x x x =-=或C .2{450}x x --=D .{-1,5} 7.在“①高一数学课本中的难题;②所有的正三角形; ③方程220x +=的实数解”中,能够表示成集合的是A .②B .③C .②③D .①②③8.以下各组对象不能组成集合的是( )A .中国古代四大发明B .地球上的小河流C .方程270x -=的实数解D .周长为10cm 的三角形 9.{}|10P m m =-<<,2{|440Q m R mx mx =∈+-<对于任意实数x 恒成立},则下列关系中立的是A .P Q ≠⊂B .Q P ≠⊂C .P Q =D .P Q φ=二、填空题1.下列命题正确的个数__(1)很小的实数可以构成集合;(2)集合y|y =x 2﹣1}与集合(x ,y )|y =x 2﹣1}是同一个集合;(3)1,361,,||,0.5242-,这些数组成的集合有5个元素;(4)集合(x ,y )|xy≤0,x ,y∈R}是指第二和第四象限内的点集.2.若集合{}2(,)1A x y y ax ==-,集合{}(,)33B x y y x ==-,若A B 中元素只有一个,则实数a 组成的集合为______.3.设1234,,,a a a a 是4个互不相同的实数,且{}{}|,1411,21,30,39,49i j x x a a i j =+≤<≤=,则集合{}1234,,,a a a a =____________.4.用符号“∈”或“∉”填空:0______N ;3-______N ;0.5______Z ______Z ;13______Q ;π______R.5.若{}20,2m m m ∈-则实数m 的值为_____. 三、解答题1.若集合{}2|10,A x ax bx x R =++=∈.(1)若{}1,1A =-,求,a b 的值;(2)若{}1A =-,求,a b 的值.2.用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x 2=2x 的所有实数解组成的集合;(3)直线y =2x +1与y 轴的交点所组成的集合;(4)由所有正整数构成的集合.3.用列举法表示下列集合(1)由大于3且小于10的所有整数组成的集合(2)方程290x的所有实数解组成的集合参考答案一、单选题1.C解析:根据元素与集合的关系和集合与集合的关系即可判断.详解:因为{}0,1,2,3M =,所以{}3M ⊆,故选:C.2.C详解:试题分析:(1)不正确:0是数字不是集合,但{}00∈;(2)正确:集合元素满足无序性,即{}{}1,2,33,2,1=;(3)不正确:集合元素具有互异性,方程的解集应为{}1,2;(4)不正确:满足不等式45x <<的x 有无数个,所以集合{}|45x x <<是无限集.故C 正确.考点:1元素与集合的关系;2集合元素的特性.3.A详解:依题意,有{}{}0,0,1a -=,所以,1a =-.选A.4.C解析:由题意先解出集合A,进而得到结果.详解:解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.点睛:本题主要考查交集的运算,属于基础题.解析:由条件可得方程()21220a x x +-+=只有一个实数解,对二次项系数是否为0,结合根的判别式,即可求解.详解:A 中只有一个元素,所以方程()21220a x x +-+=只有一个实数解, 当10,1a a +==-时,方程为220,1x x -+==,满足题意;当10,1a a +≠≠-时,148(1)840,2a a a ∆=-+=--==-,所以1a =-或12a =-.故选:D.点睛:本题考查集合的表示,以及对集合元素的理解,属于基础题.6.D解析:先解一元二次方程2450x x --=的根,然后直接利用列举法表示集合.详解:解方程2450x x --=得1x =-或5x =,因此集合2|450{}x x x --=用列举法表示为{1,5}-. 故选:D.点睛:本题考查了一元二次方程的求解和集合列举法的应用,属于基础题.7.C解析: 高一数学中的难题的标准不确定,因而构不成集合,而正三角形标准明确,能构成集合,方程x 2-2=0的解也是确定的,能构成集合,故选C.点睛:集合元素的特性:确定性、互异性、无序性.对于一个元素,其要么属于集合,要么不属于这个集合,二者选一,不可不选.对于集合中任意两个元素,它们必不相等.8.B解析:根据集合的元素特征,逐个判断即可得解.详解:根据集合元素的确定性,易知:B 答案中的小河流,是不确定的,故不能构成集合,而A ,C ,D 项中集合的元素均确定,故选:B.本题考查了集合的确定性,是概念题,属于基础题.9.A解析:首先化简集合Q ,2440mx mx +-<对任意实数x 恒成立,则分两种情况:(1)0m =时,易知结论成立,(2)0m <时,2440mx mx +-=无根,则由∆<0求得m 的范围. 详解:{}2|440Q m R mx mx x =∈+-<对任意实数恒成立, 对m 分类:(1)0m =时,40-<恒成立;(2)0m <时,需要2(4)160m m ∆=+<,解得10m -<<,综合(1)(2)知10m -<≤,所以{}|10Q m m =-<≤,因为{}|10P m m =-<<,所以P Q ≠⊂,故选A. 点睛:该题考查的是有关判断集合间的关系的问题,涉及到的知识点有恒成立问题对应参数的取值范围的求法,真子集的概念问题,属于简单题目.二、填空题1.0解析:利用集合元素的特征,集合中元素的含义逐一判断可得答案.详解:解:对于(1)很小的实数不满足集合中元素的确定性,所以(1)不正确.对于(2)集合y|y =x 2﹣1}表示的是函数y =x 2﹣1的值域,而集合(x ,y )|y =x 2﹣1}表示的是y =x 2﹣1图象上的点,故(2)不正确;对于(3):因为3624=,10.52-=,不满足集合中的元素是互异的,故(3)不正确; 对于(4)集合(x ,y )|xy≤0,x ,y∈R}是指第二和第四象限内的点集及两个坐标轴上的点,故(4)不正确,故答案为:0.2.90,8⎧⎫⎨⎬⎩⎭解析:将问题转化为2320ax x -+=只有一个解,分类讨论a 可求得结果.因为A B 中元素只有一个,所以2133y ax y x ⎧=-⎨=-⎩只有一组解, 所以2320ax x -+=只有一个解,当0a =时,23x =符合题意;当0a ≠时,2(3)80a ∆=--=,解得98a =,故实数a 组成的集合为90,8⎧⎫⎨⎬⎩⎭. 故答案为:90,8⎧⎫⎨⎬⎩⎭.点睛:本题考查了根据交集中元素个数求参数,考查了分类讨论思想,属于基础题.3.{}1,10,20,29解析:不妨设1234a a a a <<<,集合{}|,14i j x x a a i j =+≤<≤中至多有6个数,确定i j a a +中的最小和最大的数,再确定次小与次大的数,然后还有两个相等为中间的数,由此可得解. 详解:不妨设1234a a a a <<<,则在集合{}|,14i j x x a a i j =+≤<≤中,12a a +最小,34a a +最大,即1211a a +=,3449a a +=,第二小的数是13a a ,第二大的数是24a a +,即1321a a +=,2439a a +=,从而有142330a a a a +=+=,由1211a a +=,3449a a +=,1321a a +=,2439a a +=,142330a a a a +=+=,可解得11a =,210a =,320a =,429a =,故答案为:{}1,10,20,29点睛:本题考查求集合中的元素,解题时根据集合的定义,把i j a a +排列,再根据集合的定义得出结论后可求解.考查了逻辑推理能力,运算求解能力.4.∈∉∉∉∈∈解析:根据自然数,整数,有理数,实数的定义即可判断.详解:0是自然数,则0N ∈;3-不是自然数,则3N -∉;0.5Z Z ∉;13是有理数,则13Q ∈;π是无理数,则R π∈故答案为:(1)∈;(2)∉;(3)∉;(4)∉;(5)∈;(6)∈点睛:本题主要考查了元素与集合间的关系,属于基础题.5.2解析:由已知中若0∈m,m 2﹣2m},根据元素与集合之间的关系,可得m =0或m 2﹣2m =0,分类讨论,结合集合元素的互异性排除掉不满足条件的m 值,即可得到答案.详解:解:∵0∈m,m 2﹣2m},∴m=0或m 2﹣2m =0当m =0时,m 2﹣2m =0,这与集合元素的互异性矛盾,当m 2﹣2m =0时,m =0(舍去)或m =2故答案为:2点睛:本题考查的知识点是元素与集合关系的判断,其中根据0∈m,m 2﹣2m},得到关于m 的方程是解答本题的关键,但解答过程中易忽略集合元素的互异性,而错解为m =0或m =2三、解答题1.(1)1,0a b =-=;(2)1,2a b ==或01a b ==,解析:(1)若{}1,1A =-,则210ax bx ++=的两个根分别为1,1-,根据韦达定理求得参数值.(2)若{}1A =-,分0a =和0a ≠两种情况进行讨论,从而求得参数值.详解:(1)若{}1,1A =-,则210ax bx ++=的两个根分别为1,1-, 由韦达定理可得110a b ⎧-=⎪⎨⎪=⎩,故1,0a b =-=. (2)若{}1A =-,则01a b =⎧⎨=⎩或0112a ab a⎧⎪≠⎪⎪=⎨⎪⎪-=-⎪⎩,故1,2a b ==. 综上若{}1A =-,则1,2a b ==或0,1a b ==2.(1)0,2,4,6,8,10};(2)0,2};(3)(0,1)};(4)1,2,3,…}.解析:根据题意求得集合的元素,然后用列举法表示集合.详解:解 (1)因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是 0,2,4,6,8,10}.(2)方程x 2=2x 的解是x =0或x =2,所以方程的解组成的集合为0,2}.(3)将x =0代入y =2x +1,得y =1,即交点是(0,1),故交点组成的集合是(0,1)}.(4)正整数有1,2,3,…,所求集合为1,2,3,…}.3.(1){}4,5,6,7,8,9;(2){}3,3-.解析:(1)用列举法,直接写出结果;(2)先解方程,即可得出对应的集合.详解:(1)由大于3且小于10的所有整数组成的集合为{}4,5,6,7,8,9;(2)解方程290x 得3x =±, 所以方程290x 的所有实数解组成的集合为{}3,3-. 点睛:本题主要考查列举法表示集合,属于基础题型.。
1.1 集合的概念1.用描述法表示下列集合:①正偶数集;②被3除余2的正整数的集合;③平面直角坐标系中坐标轴上的点组成的集合.2.集合A中共有3个元素-4,2a-1,a2,集合B中也共有3个元素9,a-5,1-a,现知9∈A且集合B中再没有其他元素属于A,能否根据上述条件求出实数a的值?若能,则求出a的值,若不能,则说明理由.3.用列举法表示下列集合(1)由大于3且小于10的所有整数组成的集合(2)方程290x的所有实数解组成的集合4.用列举法表示下列集合:(1)满足-2≤x≤2且x∈Z的元素组成的集合A;(2)方程(x-2)2(x-3)=0的解组成的集合M;(3)方程组281x yx y+=⎧⎨-=⎩的解组成的集合B;(4)15的正约数组成的集合N.5.已知集合M中含有三个元素2,a,b,集合N中含有三个元素2a,2,b2,且两集合相等,求a,b的值.6.分别用列举法和描述法表示方程x 2+x –2=0的所有实数解的集合.7.已知集合4,3A xZ x N x ⎧⎫=∈∈⎨⎬-⎩⎭,试用列举法表示集合A .8.已知集合A 满足条件:①1A ∉;②若a A ∈,则11A a ∈-. (1)若2A ∈,求集合A ;(2)若a A ∈,求证:11A a -∈;(3)在集合A 中的元素能否只有一个实数?若有,求出此集合;否则,请说明理由;9.用区间表示下列的集合 {|12}x x -<≤ 1{|}6x x -≤<- {|7}x x < {}|3x x ≥ {} 5|2x x ≤≤10.由2a ,2a -,4所组成的集合记为A.(1)是否存在实数a ,使得A 中只含有一个元素?若存在,求出a 的值,若不存在,说明理由;(2)若A 中只含有两个元素,求a 的值.11.已知集合A 中含有两个元素a-3和2a-1.(1)若-3是集合A 中的元素,试求实数a 的值;(2)-5能否为集合A 中的元素?若能,试求出该集合中的所有元素;若不能,请说明理由.12.已知A=x|x 2+px+q=x},B=x|(x-1)2+p(x-1)+q=x+1},当A=2}时,求集合B .13.用列举法表示下列集合(1)x∈N*|x 是15的约数}(2)x|x 2﹣2x ﹣8=0}(3)x|x 为不大于10的正偶数}(4)a|1≤a<5,a∈N}(5)A =x∈N|169-x∈N} (6)(x ,y )|x∈1,2},y∈1,2}}.14.已知2{1,0,}x x ∈,求实数x 的值.15.已知3,⎛ ⎝⎭和都是集合{}22(,)|1A x y ax by =-=中的元素,求实数,a b 的值.16.集合论是德国数学家康托尔于19世纪末创立的,当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念,关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”,请你查阅相关资料,用简短的报告阐述你对这些评价的认识.17.已知集合M 满足:1,2}⫋M ⊆1,2,3,4,5},写出集合M 所有的可能情况.18.已知集合A =x∈R|ax 2+2x +1=0},其中a∈R.若1是集合A 中的一个元素,请用列举法表示集合A.19.用列举法表示下列集合:(1){}2|9A x x ==;(2){}|12B x N x =∈≤≤ ;(3){}2|320C x x x =-+=.20.已知集合{}22,A y y x x x ==-∈R ,{}226,B y y x x x ==-++∈R .(1)求A B ;(2)若集合A ,B 中的元素都为整数,求A B .(3)若集合A 变为{}22,A x y x x x ==-∈R ,其他条件不变,求A B ;(4)若集合A ,B 分别变为(){}2,2,A x y y x x x ==-∈R ,(){}2,26,B x y y x x x ==-++∈R ,求A B .参考答案1.①*{|2,}x x n n N =∈; ②2,{|3}x x n n N =+∈;③{(,)|0}x y xy =. 解析:描述法表示集合即为{}()x p x ,()p x 为元素的性质,根据这个概念写出集合即可. 详解:①偶数可用2,x n n Z =∈表示,当x 为正偶数时,*n N ∈,所以正偶数集可表示为*{|2,}x x n n N =∈.②设被3除余2的数为x ,则32,x n n Z =+∈,但元素为正整数,故32,x n n N =+∈,所以被3除余2的正整数集合可表示为2,{|3}x x n n N =+∈.③坐标轴上的点(,)x y 的特点是横、纵坐标中至少有一个为0,即0xy =,故坐标轴上的点的集合可表示为{(,)|0}x y xy =.点睛:本题考查描述法表示集合,数集与点集,属于基础题.2.存在,a =-3.解析:由题意知9∈A,则2a -1=9或a 2=9,解出a ,利用题干条件和集合的互异性逐一判断a 的取值,可求出结果.详解:∵9∈A,∴2a-1=9或a 2=9,若2a -1=9,则a =5,此时A 中的元素为-4,9,25;B 中的元素为9,0,-4, 显然-4∈A 且-4∈B,与已知矛盾,故舍去.若a 2=9,则a =±3,当a =3时,A 中的元素为-4,5,9;B 中的元素为9,-2,-2, B 中有两个-2,与集合中元素的互异性矛盾,故舍去.当a =-3时,A 中的元素为-4,-7,9;B 中的元素为9,-8,4,符合题意. 综上所述,满足条件的a 存在,且a =-3.点睛:本题考查已知集合中的元素求参数,考查集合中元素的互异性,同时也考查了分类讨论的思想,属于基础题.3.(1){}4,5,6,7,8,9;(2){}3,3-.解析:(1)用列举法,直接写出结果;(2)先解方程,即可得出对应的集合.详解:(1)由大于3且小于10的所有整数组成的集合为{}4,5,6,7,8,9;(2)解方程290x 得3x =±, 所以方程290x 的所有实数解组成的集合为{}3,3-.点睛:本题主要考查列举法表示集合,属于基础题型.4.(1) -2,-1,0,1,2}(2) M =2,3}(3) B =(x ,y)|(3,2)} (4) N =1,3,5,15}解析:(1)根据题意,得到2,1,0,1,2x =--,即可表示集合A ;(2)求解出方程的根,即可表示集合M ;(3)求解方程组的解(3,2),即可表示集合B ;(4)找到15的正约数,即可表示集合N .详解:(1)22,x x ≤≤∈Z -,2,1,0,1,2x ∴=--, {}2,1,0,1,2A =--;(2)解方程()()2230x x --=2∴和3是方程的根, {}2,3M ∴=;(3)解方程组281x y x y +=⎧⎨-=⎩得32x y =⎧⎨=⎩()(){},3,2B x y ∴=;(4)15的正约数有1,3,5,15四个数字,{}1,3,5,15N ∴=.点睛:本题考查集合的列举法,区分点集和数集,属于简单题.5.a =0,b =1或a =14 ,b =12详解:试题分析:根据集合相等的条件:元素完全相同,建立方程即可得到a ,b 的值,要注意检验是否符合集合元素的互异性.试题解析:由题意,得或 解得或或经检验,a =0,b =0不合题意;a =0,b =1或a =,b =合题意.所以,a =0,b =1或a =,b =.6.1,–2},x|x=1或x=–2}解析:根据列举法和描述法的定义分别进行表示即可.详解:由220x x +-= 得1x = 或2x =- ,所以用列举法表示解集为}{1,2- ,用描述法表示为}{{}22012.x x x x x x +-===-=-或点睛:本题主要考查集合表示的两种方法:列举法和描述法,比较基础,要注意两者之间的区别.7.{}1,2,4,5,7解析:根据Z 和N 的含义,可采用列举法,列举出所有方程求得结果.详解: 43Z x ∈-且x ∈N ∴32x -=-或31x -=-或31x -=或32x -=或34x -= x ∴=1或2或4或5或7 {}1,2,4,5,7A ∴=本题正确结果:{}1,2,4,5,7点睛:本题考查集合元素的求解,关键是能够熟练掌握常用数集的表示法.8.(1)11,,22⎧⎫-⎨⎬⎩⎭;(2)略;(3)否,理由见解析 解析:(1)利用a A ∈则11A a∈-,依次代入2a =和1a =-即可求得全部元素,从而得到集合A ;(2)由a A ∈得11A a ∈-,进而得到1111A a∈--,整理可得结果;(3)假设集合A 中只有一个元素,则11a a=-,方程无解,可知假设错误,得到结论. 详解:(1)2A ∈ 1112A ∴=-∈- 11112A ∴=∈+ 又12112=- 11,,22A ⎧⎫∴=-⎨⎬⎩⎭ (2)由a A ∈得:11A a ∈-,则1111A a∈-- 又1111111111a a a a a a a a--====------ 11A a ∴-∈ (3)假设集合A 中只有一个元素 a A ∈,则11A a ∈- 11a a ∴=-,方程无解 ∴假设错误,即集合A 中的元素不能只有一个实数点睛:本题考查集合与元素关系的应用,对于元素的求解,可采用循环代入的方式求得全部元素.9.(12]-,;[61)-,;(7)-∞,;[3)+∞,;[2]5, 解析:由集合的意义及区间的定义直接写出每个集合的区间表达形式.详解:{|12}x x -<≤的区间表达为(12]-,; 1{|}6x x -≤<-的区间表达为[61)-,; {|7}x x <的区间表达为(7)-∞,; {}|3x x ≥的区间表达为[3)+∞, ; {} 5|2x x ≤≤的区间表达为[2]5,. 点睛:本题考查集合与区间的转换,属于基础题.10.(1)存在,2a =-(2)2a =或1a =解析:(1)由题意可利用224a a =-=即可求得满足条件的实数a ;(2)由题意可得224a a =-≠,或242a a =≠-,或224a a -=≠,分别解得即可得出答案. 详解:(1)存在,理由如下:由题意知若A 中只含有一个元素,则这三个数相等,即224a a =-=, 由24a -=解得2a =-.此时24a =,所以符合条件.故当2a =-时,A 中只有一个元素.(2)由题意可知,这三个数中必有两个数相等即有224a a =-≠,或242a a =≠-,或224a a -=≠若224a a =-≠,解得1a =;若242a a =≠-,解得2a =;若224a a -=≠,无解;综上可得,当2a =或1a =时,集合A 中只含有两个元素.点睛:本题考查了集合元素性质的应用,属于一般难度的题.11.(1)实数a 的值为0或-1;(2)-5不能为集合A 中的元素;答案见解析.解析:(1)由-3是集合A 中的元素,可得所以-3=a-3或-3=2a-1,即可求得a 的值,并检验是否满足集合的互异性,即可得答案(2)假设-5是集合A 中的元素,可得a-3=-5,或2a-1=-5,解出a 的值,并检验是否满足集合的互异性,即可得答案.详解:(1)因为-3是集合A 中的元素,所以-3=a-3或-3=2a-1.解得0a =或1a =-,当a=0时,此时集合A 含有两个元素-3,-1,符合要求;当a=-1时,此时集合A 中含有两个元素-4,-3,符合要求.综上所述,满足题意的实数a 的值为0或-1.(2)若-5为集合A 中的元素,则a-3=-5,或2a-1=-5.当a-3=-5时,解得a=-2,此时2a-1=2×(-2)-1=-5,显然不满足集合中元素的互异性; 当2a-1=-5时,解得a=-2,此时a-3=-5,显然不满足集合中元素的互异性.综上,-5不能为集合A 中的元素.点睛:本题考查集合确定性、互异性的应用,考查分析理解的能力,属基础题.12.解析:先由2x =是方程2x px q x ++=的解可得34p q =-⎧⎨=⎩,故2{|(1)3(1)41}B x x x x =---+=+,从而解方程即可.详解:当{2}A =时,方程2x px q x ++=有两个相等的实根为2,所以2422(1)40p q p q ++=⎧⎨∆=--=⎩,解得34pq=-⎧⎨=⎩,所以2{|(1)3(1)41}B x x x x=---+=+,由2(1)3(1)41x x x---+=+,即2670x x-+=,得3x=所以{3B=.故答案为:{3.点睛:本题考查列举法表示集合,考查解方程,考查运算能力.属于较易题.13.解析:(1)1,3,5,15};(2)﹣2,4};(3)2,4,6,8,10};(4)1,2,3,4};(5)1,5,7,8};(6)(1,1),(1,2),(2,1),(2,2)}.(1)根据x是15的约数列举;(2)根据x2﹣2x﹣8=0的根列举;(3)根据x为不大于10的正偶数列举;(4)根据1≤a<5且a∈N列举;(5)根据x∈N且169-x∈N列举;(6)根据|x∈1,2},y∈1,2}列举;详解:(1)x∈N*|x是15的约数},列举法表示为1,3,5,15}(2)x|x2﹣2x﹣8=0},列举法表示为﹣2,4}(3)x|x为不大于10的正偶数},列举法表示为2,4,6,8,10} (4)a|1≤a<5,a∈N},列举法表示为1,2,3,4}(5)A=x∈N|169-x∈N},列举法表示为1,5,7,8}(6)(x,y)|x∈1,2},y∈1,2}}.列举法表示为(1,1),(1,2),(2,1),(2,2)}点睛:本题主要考查集合的表示方法,属于基础题.14.1-解析:由元素与集合的关系,分类讨论21x=、20=x、2x x=三种情况,得出x的值,再由集合中元素的性质去验证,进行取舍,得出结果.详解:因为2{1,0,}x x ∈所以21x =或20=x 或2x x =解得1x =±或0x =由集合元素的互异性可知0x ≠且1x ≠所以,1x =-点睛:本题考查了元素与集合之间的关系,集合的性质等基本知识,考查了理解辨析能力和逻辑推理能力,属于一般题目.15.1,14a b ==解析:把3,⎛ ⎝⎭和代入方程221ax by -=列出方程组,即可求出实数,a b 的值. 详解:由题:3,⎛ ⎝⎭和都是集合{}22(,)|1A x y ax by =-=中的元素,所以3,⎛ ⎝⎭和满足方程221ax by -=, 59141631a b a b ⎧-=⎪⎨⎪-=⎩,解得:141a b ⎧=⎪⎨⎪=⎩, 所以1,14a b ==.点睛:此题考查根据集合中的元素求参数的值,关键在于准确代值列出方程组,解方程组即可得解.16.见解析解析:集合论是现代数学的基础,已渗透到数学的所有领域.详解:集合论,是数学的一个基本的分支学科,研究对象是一般集合.集合论在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域.按现代数学观点,数学各分支的研究对象或者本身是带有某种特定结构的集合如群、环、拓扑空间,或者是可以通过集合来定义的(如自然数、实数、函数).从这个意义上说,集合论可以说是整个现代数学的基础.点睛:本题考查了对于集合论的一些认识,意在考查学生的理解应用能力.17.1,2,3},1,2,4},1,2,5},1,2,3,4},1,2,3,5},1,2,4,5},1,2,3,4,5}解析:根据子集与真子集的定义,即可求解.详解:由题意可以确定集合M 必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M 的元素个数分类如下:含有3个元素:1,2,3},1,2,4},1,2,5};含有4个元素:1,2,3,4},1,2,3,5},1,2,4,5};含有5个元素:1,2,3,4,5}.故满足条件的集合M 为1,2,3},1,2,4},1,2,5},1,2,3,4},1,2,3,5},1,2,4,5},1,2,3,4,5}.点睛:本题考查集合间的关系,属于基础题.18.1,13A ⎧⎫=-⎨⎬⎩⎭解析:把1代入方程求得a ,然后再解方程得解集.详解:∵1是集合A 中的一个元素,∴1是关于x 的方程ax 2+2x +1=0的一个根,∴a×12+2×1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∴集合A =-13,1}. 故答案为:1,13⎧⎫-⎨⎬⎩⎭. 点睛:本题考查集合的概念,属于简单题.19.(1){}3,3- ;(2) {}1,2;(3){}1,2.解析:(1)解方程29x =即可;(2)根据x ∈N 求解;.(3)接方程2320x x -+=即可;详解:(1)由29x =得3x =±,,因此{}{}2|93,3A x x ===-.(2)由x ∈N ,且12x ≤≤,,,得1,2x =,因此{}{}|121,2B x N x =∈≤≤=.(3)由2320x x -+=得1,2x =,.因此{}{}2|3201,2C x x x =-+==.点睛:本题主要考查集合的表示方法以及一元二次方程的解法,还考查了运算求解的能力,属于基础题.20.(1){}17A B y y ⋂=-≤≤(2){}1,0,1,2,3,4,5,6,7A B =-(3){}7A B y y ⋂=≤(4)()(){}3,3,1,3A B =-解析:(1)将二次函数配方,得到其二次函数的值域,从而求得A B ;(2)由于集合A ,B 中的元素都为整数,所以题意就是求(1)中所得的A B 中的整数元素,可得解;(3)集合A 表示的是二次函数22,y x x x =-∈R 的定义域,所以得A =R ,再求A B ;(4)集合A 、B 表示的是二次函数图象上的点,求A B 实际上是求这两个二次函数的交点,联立其方程可得解.详解:(1)∵()222111y x x x =-=--≥-,()2226177y x x x =-++=--+≤, ∴{}1A y y =≥-,{}7B y y =≤,∴{}17A B y y ⋂=-≤≤.(2)由已知,得{}1A y y =∈≥-Z ,{}7B y y =∈≤Z , 所以{}17A B y y ⋂=∈-≤≤Z∴{}1,0,1,2,3,4,5,6,7A B =-.(3)由已知,得A =R ,{}7B y y =≤,∴{}7A B y y ⋂=≤.(4)由22226y x x y x x ⎧=-⎨=-++⎩,得2230x x --=,解得3x =或1x =-.∴33x y =⎧⎨=⎩,或13x y =-⎧⎨=⎩, ∴()(){}3,3,1,3A B =-.故得解.点睛:本题考查集合的交集运算,求解的关键是理解集合中的元素具体含义,特别是分清集合表示的是点集还是数集,属于基础题.。
1.1 集合的概念一、单选题1.下列叙述正确的是( ).A .方程2210x x -+=的根构成的集合为{}1,1-B .{}22401030x x R x x R x ⎧⎫+>⎧∈+==∈⎨⎨⎬+<⎩⎩⎭C .集合(){,5M x y x y =+=且}20x y -=表示的集合是{}2,3D .集合{}1,2,3与集合{}3,2,1是不同的集合答案:B解析:解出2210x x -+=、520x y x y +=⎧⎨-=⎩可判断AC 的正误,由集合的无序性可得D 的正误,{}22401030x x R x x Rx ⎧⎫+>⎧∈+==∈=∅⎨⎨⎬+<⎩⎩⎭,可得B 的正误. 详解:方程2210x x -+=的根为1x =,故A 错误;{}22401030x x R x x Rx ⎧⎫+>⎧∈+==∈=∅⎨⎨⎬+<⎩⎩⎭,故B 正确; 由520x y x y +=⎧⎨-=⎩可解得53103x y ⎧=⎪⎪⎨⎪=⎪⎩,故C 错误; 集合{}1,2,3与集合{}3,2,1是相同的集合,故D 错误故选:B2.定义集合运算:{|()(),A B z z x y x y ⊗==+⨯-,}x A y B ∈∈,设A =,{1B =,则集合A B ⊗的真子集个数为A .8B .7C .16D .15答案:B详解:由题意A =,{B =,则A B ⊗有)))111,0,112,⨯=⨯==1= 四种结果,由集合中元素的互异性,则集合A B ⊗由3个元素,故集合A B ⊗的真子集个数为3217-=个,故选B3.已知M =x|x≤5,x∈R},a =b ( )A .a∈M,b∈MB .a∈M,b MC .a M ,b∈MD .a M ,b M答案:B解析:∵5a =,5b ,{|5}M x x x R =≤∈,,∴ a M b M ∈∉,,故选B. 4.设集合A={1,4,5},若a∈A,5-a∈A,那么a 的值为A .1B .4C .1或4D .0 答案:C详解:试题分析:当1a =时54a A -=∈成立;当4a =时51a A -=∈成立;当5a =时50a A -=∉,舍. 所以1a =或4a =.故C 正确.考点:元素与集合间的关系.5.已知集合A =3|,2x x Z Z x 且⎧⎫∈∈⎨⎬-⎩⎭,则集合A 中的元素个数为( ) A .2B .3C .4D .5 答案:C详解: 试题分析:32Z x ∈-,2x -的取值有3-、1-、1、3,又x Z ∈, x ∴值分别为5、3、1、1-,故集合A 中的元素个数为4,故选C.考点:数的整除性6.集合(x ,y)|y =2x -1}表示( )A .方程y =2x -1B .点(x ,y)C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图像上的所有点组成的集合答案:D解析:由集合中的元素的表示法可知集合(x ,y )|y=2x ﹣1}表示函数y=2x ﹣1图象上的所有点组成的集合.详解:集合(x ,y )|y=2x ﹣1}中的元素为有序实数对(x ,y ),表示点,所以集合(x ,y )|y=2x ﹣1}表示函数y=2x ﹣1图象上的所有点组成的集合.故选D .点睛:本题考查了集合的分类,考查了集合中的元素,解答的关键是明确(x ,y )表示点,是基础题.7.已知集合{}1,2,3A =,则下列说法正确的是( )A .2A ∈B .2A ⊆C .2A ∉D .∅=A答案:A解析:根据元素与集合之间关系,可直接得出结果.详解:因为集合{}1,2,3A =,所以2A ∈.故选:A点睛:本题主要考查元素与集合之间关系的判断,熟记元素与集合之间的关系即可,属于基础题型.8.集合8,,3M y y x N y N x ⎧⎫==∈∈⎨⎬+⎩⎭的元素个数是 A .2B .4C .6D .8答案:A 解析:根据题中给出的条件,x y N ∈,分别从最小的自然数0开始给x 代值,求出相应的y 的值,直到得出的1y <为止,求出y N ∈的个数.详解: 因为8|,,3M y y x y N x ⎧⎫==∈⎨⎬+⎩⎭, 所以:当0x =时,83y N =∈/; 当x 1=时,8213y N ==∈+; 当x 2=时,88235y N ==∈/+; 当3x =时,84333y N ==∈/+; 当x 4=时,88437y N ==∈/+;当5x =时,8153y N ==∈+; 当6x ≥时,813y x =<+,且0y ≠,所以y N ∉. 综上,8|,,{2,1}3M y y x y N x ⎧⎫==∈=⎨⎬+⎩⎭,元素个数是2个. 故选A.点睛:本题考查了集合中元素的个数,关键根据,x y N ∈用赋值法分析和解决问题,属于基础题.9.下面对集合1,5,9,13,17}用描述法表示,其中正确的是( )A .x|x 是小于18的正奇数}B .x|x =4s +1,s∈N,且s <5}C .x|x =4t -3,t∈N,且t<5}D .x|x =4s -3,s∈N ,且s<6}答案:B解析:根据描述法的定义,依次判断选项即可.详解:A :集合含有元素3,故A 错误;B :当s 01234=、、、、时,1591317x =、、、、,故B 正确; C :当0t =时,3x =-,故C 错误;D :当0s =时,3x =-,故D 错误.故选:B二、填空题1.已知{}20,,A a a =,若1A ∈,则实数a 的值是______.答案:1-解析:利用元素和集合的关系,以及集合的互异性可求解.详解:1A ∈,1a 或21a =,当1a =时,21a =,则{0,1,1}A =,不满足集合的互异性,舍去.当21a =时,解得:1a =-,1a =(舍去),此时{0,1,1}A =-符合题意.故答案为:1-2.已知集合123A x N y Z x ⎧⎫=∈=∈⎨⎬+⎩⎭,则集合A 用列举法表示为__________________答案:{}0,1,3,9解析:由y Z ∈,x ∈N ,可得3x +是12不小于3的因数,列出因数,求解即可详解:由x ∈N ,y Z ∈,则3x +是12不小于3的因数,则3x +可为3,4,6,12,即x 为0,1,3,9, 则集合A 用列举法表示为{}0,1,3,9点睛:本题考查描述法与列举法的转换,列举法表示集合,数集的应用3.设集合{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9,则实数a 的值为______.答案:3-解析:先通过已知可得219a -=或29a =,解方程求出a ,然后带入集合验证,满足互异性即可.详解:∵{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9, ∴219a -=或29a =.当219a -=时,5a =,此时{}4,9,25A =-,{}9,0,4B =-,A ,B 中还有公共元素4-,不符合题意;当29a =时,3a =±,若3a =,{}9,2,2B =--,集合B 违背互异性.若3,{4,7,9},{9,8,4},{9}a A B A B =-=--=-=,∴3a =-.故答案为:3-.点睛:本题考查元素与集合的关系,以及集合中元素的互异性,是基础题.4.集合[]{}cos(cos )0,0,x x x ππ=∈= _____.(用列举法表示)答案:2,33ππ⎧⎫⎨⎬⎩⎭ 解析:由已知得cos 2x ππ=,或cos 2x ππ=-,由此能得出结果. 详解: 集合[]{}cos(cos )0,0,x x x ππ=∈,cos 2x ππ∴=,或cos 2x ππ=-, 1cos 2x ∴=或1cos 2x =-, 3x π∴=或23x π=. []{}2cos(cos )0,0,,33x x x ππππ⎧⎫∴=∈=⎨⎬⎩⎭. 故答案为:2,33ππ⎧⎫⎨⎬⎩⎭. 点睛:本题主要考查的是三角函数以及列举法表示集合,是基础题.5.用描述法表示图中的阴影部分(包括边界)___________.答案:(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭ 解析:根据阴影部分所在象限,确定xy 的范围,再结合图像,判断出,x y 的取值范围,由此求得可以表示出阴影部分的集合.详解:由于阴影部分所在象限为第一、三象限,且在,x y 轴上都有点,故0xy ≥;根据图像可知211,132x y -≤≤-≤≤,所以描述法表示图中的阴影部分(包括边界)为(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭. 故填:(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭. 点睛:本小题主要考查用集合表示区域,考查数形结合的数学思想方法,属于基础题.三、解答题1.已知53,⎛ ⎝⎭和3)都是集合{}22(,)|1A x y ax by =-=中的元素,求实数,a b 的值.答案:1,14a b ==解析:把3,⎛ ⎝⎭和代入方程221ax by -=列出方程组,即可求出实数,a b 的值. 详解:由题:3,⎛ ⎝⎭和都是集合{}22(,)|1A x y ax by =-=中的元素,所以3,⎛ ⎝⎭和满足方程221ax by -=, 59141631a b a b ⎧-=⎪⎨⎪-=⎩,解得:141a b ⎧=⎪⎨⎪=⎩, 所以1,14a b ==.点睛:此题考查根据集合中的元素求参数的值,关键在于准确代值列出方程组,解方程组即可得解.2.若a ,b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭. 求:(1)a b +;(2)20222019a b +.答案:(1) 0; (2) 2;解析:(1)根据{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭可得出0a b +=, (2)由(1)得=-a b ,即1b a=-,根据元素的互异性可得1a =-, 1b =,代入20222019a b +计算即可. 详解: (1)根据元素的互异性,得0a b +=或0a =,若0a =,则b a无意义,故0a b +=; (2) 由(1)得=-a b ,即1b a =-,据元素的互异性可得:1b a a ==-,1b =, ∴()2022202220192019112a b +=-+=.点睛:本题考查集合中元素的互异性,属于基础题.3.在平面直角坐标系中,O 为坐标原点,对任意的点(),P x y ,定义OP x y =+,任取点()()1122,,,A x y B x y ,记()()''1221,,,A x y B x y ,若此时2222''OA OB OA OB +≥+成立,则称点,A B 相关.(1)分别判断下面各组中两点是否相关,并说明理由.①()()2,1,3,2A B -;②()()4,3,2,4C D -.(2)给定*N ,3n n ∈≥,点集(){},,,,n x y n x n n y n x y Z Ω=-≤≤-≤≤∈,求集合n Ω中与点()1,1A 相关的点的个数.答案:(1)见解析(2)245n +解析:(1)根据所给定义,代入不等式化简变形可得对应坐标满足的关系,即可判断所给两个点的坐标是否符合定义要求.(2)根据所给点集,依次判断在四个象限内满足的点个数,坐标轴上及原点的个数,即可求得集合n Ω中与点(1,1)A 相关的点的个数;详解:若点()11,A x y ,()22,B x y 相关,则()12,A x y ',()21,B x y ,而OP x y =+不妨设11220,0,0,0x y x y ≥≥≥≥ 则由定义2222OA OB OA OB ''+≥+可知()()()()222211221221x y x y x y x y +++≥+++ 化简变形可得()()12120x x y y --≥(1)对于①(2,1)A -,(3,2)B ;对应坐标取绝对值,代入可知(23)(12)0--≥成立,因此相关;②对应坐标取绝对值,代入可知(42)(34)0--<,因此不相关.(2)在第一象限内,(1)(1)0x y --≥,可知1x n ≤≤且1y n ≤≤,有2n 个点;同理可知,在第二象限、第三象限、第四象限也各有2n 个点.在x 轴正半轴上,点()1,0满足条件;在x 轴负半轴上,点1,0满足条件;在y 轴正半轴上,点0,1满足条件;在y 轴负半轴上,点0,1满足条件;原点()0,0满足条件;因此集合n Ω中共有245n +个点与点(1,1)A 相关.点睛:本题考查了集合中新定义的应用,对题意的理解与分析能力的要求较高,属于难题.。
1.1 集合的概念一、单选题1.设集合2{|2}M x R x =∈,1a =,则下列关系正确的是( )A .a MB .a M ∉C .{}a M ∈D .{}a M2.以下六个命题中:0{0}∈;{0}⊇∅;0.3Q ∉;0N ∈;{,}{,}a b b a ⊆;{}220,xx x Z -=∈∣是空集.正确的个数是( )A .4B .3C .5D .2 3.已知集合{(2)(2)0}M x x x x =+-=∣,则M =( ) A .{0,2}-B .{0,2}C .{0,2,2}-D .{2,2}- 4.下列集合表示正确的是A .2,4}B .2,4,4}C .1,3,3}D .漂亮女生} 5.已知集合{}1,2A =,{}1,1,1B a =-+且A B ⊆,则a =A .1B .0C .1-D .2 6.设集合A =(x ,y )|x 2+y 2=1},B =(x ,y )|x+y =1},则A∩B 中元素的个数是( )A .0B .1C .2D .37.方程组31x y x y +=⎧⎨-=-⎩的解集不能表示为. A .()3,1x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=-⎩⎪⎪⎩⎭ B .()1,2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=⎩⎪⎪⎩⎭ C .{}1,2 D .(){},1,2x y x y ==8.下列对象能确定为一个集合的是( )A .第一象限内的所有点B .某班所有成绩较好的学生C .高一数学课本中的所有难题D .所有接近1的数9.给出下列关系,其中正确的个数为( )①0N ∈Q ⊄;③{}0=∅;④(),R =-∞+∞A .1B .0C .2D .3二、填空题1.已知集合{}2,1,0,1A =--,集合{},B y y x x A ==∈,则B =_______________.2.由||||(,)a b a b R a b +∈所确定的实数集合是________.3.给出下列关系:①12R ∈Q ;③3N *∈;④0Z ∈.其中正确的序号是______.4.若a∈1,a 2﹣2a+2},则实数a 的值为___________.5.已知集合A=1,2,a 2-2a},若3∈A,则实数a=______.三、解答题1.(1)已知{}221,251,1A a a a a =-+++,2A -∈,求实数a 的值; (2)已知集合{}2340A x R ax x =∈--=,若A 中有两个元素,求实数a 的取值范围.2.集合{|12}A x x =-≤≤,{|}B x x a =<.(1)若A B A =,求实数a 的取值范围;(2)若A B =∅,求实数a 的取值范围.3.已知集合A 的元素全为实数,且满足:若a A ∈,则11a A a+∈-.若2a =,求出A 中其他所有元素.参考答案一、单选题1.D解析:先求解集合M ,即可确定a 与M 的关系.详解:解:22x ,22x,{|22}M x R x ∴=∈, 又1a =,a M ∴∈,{}a M .故选:D.2.C解析:根据元素与集合间的关系、集合与集合间的关系可判定排除得到答案.详解:根据元素与集合间的关系可判定0{0}∈、0N ∈正确,0.3Q ∉不正确,根据集合与集合之间的关系可判定{0}⊇∅、{,}{,}a b b a ⊆、{}220,x x x Z -=∈∣是空集正确. 故选:C .3.C解析:直接利用方程的解法化简求解.详解:因为集合{(2)(2)0}{2,0,2}M xx x x =+-==-∣, 故选:C4.A解析:集合中的元素具有确定性、互异性、无序性,利用元素的三个特性对四个命题逐一的进行判断,能够得到答案.详解:对于选项A ,由集合的定义可知,一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合,显然A 项符合定义.故A 项正确.对于B 项和C 项,根据集合中元素的互异性可知,对于一个给定的集合,集合中的元素一定是不同的,故B 项和C 项错误.对于D 项,根据集合中元素的确定性可知,作为一个集合中的元素,必须是确定的,而D项中的元素显然不是确定的.故D项错误.点睛:本题主要考查集合的含义与表示,以及集合中元素的特性.5.A解析:由题知:12a+=,解得:1a=.详解:因为A B⊆,所以,解得:1a=.故选:A点睛:本题考查集合的子集关系,理解子集的概念是关键,属于简单题.6.C解析:可画出圆x2+y2=1和直线x+y=1的图象,从而可看出它们交点的个数,从而得出A∩B中的元素个数.详解:画出x2+y2=1和x+y=1的图象如下:可看出圆x2+y2=1和直线x+y=1有两个交点,∴A∩B的元素个数为2.故选:C.点睛:考查了描述法的定义,交集的定义及运算,数形结合解题的方法,考查了计算能力,属于容易题.7.C解析:由方程组31x yx y+=⎧⎨-=-⎩,解得12xy=⎧⎨=⎩,得到解集中只含有一个元素,根据集合的表示方法,逐项判定,即可求解.详解:由题意,方程组31x yx y+=⎧⎨-=-⎩,解得12xy=⎧⎨=⎩,其解集中只含有一个元素,根据集合的表示方法,其中A,B.D项表示都是正确的,其中选项C是表示由两个元素组成的熟记,不符合要求,所以不能表示为{}1,2.故选C.点睛:本题主要考查了集合的表示方法,其中解答中正确理解集合的表示方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.A解析:根据元素是否具备确定性逐项分析即可.详解:A .具备集合中元素的确定性,可以构成一个集合,故正确;B.“较好”不满足集合中元素的确定性,故错误;C.“难题”不满足集合中元素的确定性,故错误;D.“接近”不满足集合中元素的确定性,故错误.故选:A.点睛:本题考查集合中元素的特征,着重考查了集合中元素的确定性,难度较易.集合中元素的特征:确定性、无序性、互异性.9.C解析:根据元素与集合的关系,逐一分析①②③④,即可得答案.详解:对于①:0为自然数,所以0N∈,故①正确;Q,故②错误;对于③:0含有元素0,不是空集,故③错误;对于④:R为实数集,所以④正确;故选:C二、填空题1.{}0,1,2解析:根据题意,由列举法,即可得出结果.详解:因为{}2,1,0,1A =--, 所以{}{},0,1,2B y y x x A ==∈=. 故答案为:{}0,1,2.点睛:本题主要考查列举法表示集合,属于基础题型.2.{}202-,, 解析:根据a b 、的正负性分类讨论进行求解即可.详解:当0,0a b >>时,||||2a b a b a b a b +=+=; 当0,0a b ><时,||||0a b a b a b a b +=-=; 当0,0a b <>时,||||0a b a b a b a b +=-+=; 当0,0a b <<时,||||2a b a b a b a b+=--=-, 故答案为:{}202-,,3.①③④解析:根据元素与集合间的关系和特殊集合:有理数集,自然数集,整数集,实数集所含的元素可得选项.详解: 对于①: 12是分数,所有的分数都是实数,故①正确;对于③:3是自然数,故③正确;对于④:0是整数,故④正确;所以①③④正确,故选①③④.点睛:本题考查特殊集合:有理数集,自然数集,整数集,实数集所含的元素和元素与集合的关系,属于基础题.4.2解析:利用集合的互异性,分类讨论即可求解详解:因为a∈1,a 2﹣2a+2},则:a=1或a=a 2﹣2a+2,当a=1时:a 2﹣2a+2=1,与集合元素的互异性矛盾,舍去;当a≠1时:a=a 2﹣2a+2,解得:a=1(舍去)或a=2;故答案为:2点睛:本题考查集合的互异性问题,主要考查学生的分类讨论思想,属于基础题5.3或-1解析:根据3∈A 即可得出a 2-2a=3,解方程得到a 即可.详解:∵3∈A,A=1,2,a 2-2a},∴a 2-2a=3,解得a=-1或3故答案为-1或3.点睛:本题考查了列举法的定义,元素与集合的关系,考查了推理和计算能力,属于基础题.三、解答题1.(1)32a =-;(2)9016a a ⎧-<<⎨⎩或}0a >. 解析:(1)分析可得12a -=-或22512a a ++=-,结合集合中元素的互异性可求得实数a 的值;(2)根据已知条件得出09160a a ≠⎧⎨∆=+>⎩,即可解得实数a 的取值范围. 详解:(1)因为210a +>,故212a +≠-,因为2A -∈,则12a -=-或22512a a ++=-.①当12a -=-时,即当1a =-时,此时212512a a a -=++=-,集合A 中的元素不满足互异性;②当22512a a ++=-时,即22530a a ++=,解得32a =-或1a =-(舍), 此时512a -=-,21314a +=,集合A 中的元素满足互异性. 综上所述,32a =-;(2)因为集合{}2340A x R ax x =∈--=中有两个元素,则09160a a ≠⎧⎨∆=+>⎩, 解得916a 且0a ≠, 因此,实数a 的取值范围是9016a a ⎧-<<⎨⎩或}0a >.2.(1)2a >;(2)1a ≤-解析:(1)由A B A =,可得A B ⊆,即可列出不等关系,求出a 的取值范围;(2)由A B =∅,且B ≠∅,可列出不等关系,求出a 的取值范围.详解:(1)由集合{|12}A x x =-≤≤,{|}B x x a =<,因为A B A =,所以A B ⊆,则2a >,即实数a 的取值范围为2a >.(2)因为A B =∅,且B ≠∅,所以1a ≤-,故实数a 的取值范围为1a ≤-. 3.113,,23-- 解析:根据定义依次计算即可得答案.详解:解:因为若a A ∈,则11a A a +∈-, 所以当2a =时,11a a +=-12312A +=-∈-; 当3a =-时,11a a +=-131132A -=-∈+, 当12a =-时,11a a +=-11121312A -=∈+,当13a=时,11aa+=-1132113A+=∈-,综上A中其他所有元素为:11 3,,23 --.点睛:本题考查集合的元素的求解,是基础题.。
- 1 - 课时分层作业(一) 集合的含义(建议用时:60分钟)[合格基础练]一、填空题1.若1∈A ,且集合A 与集合B 相等,则1________B (填“∈”或“”).∈ [由集合相等的定义可知,1∈B .]2.设集合A 是由1,k 2为元素构成的集合,则实数k 的取值范围是________. k ≠±1 [∵1∈A ,k 2∈A ,结合集合中元素的互异性可知k 2≠1,解得k ≠±1.]3.用符号“∈”或“”填空:(1)设集合B 是小于11的所有实数的集合,则23________B ,1+2________B ;(2)设集合C 是满足方程x =n 2+1(其中n 为正整数)的实数x 的集合,则3________C ,5________C ;(3)设集合D 是满足方程y =x 2的有序实数对为(x ,y )的集合,则-1________D ,(-1,1)________D .(1)∈ (2)∈ (3)∈ [(1)∵23=12>11,∴23B ;∵(1+2)2=3+22<3+2×4=11,∴1+2<11,∴1+2∈B .(2)∵n 是正整数,∴n 2+1≠3,∴3C ;当n =2时,n 2+1=5,∴5∈C .(3)∵集合D 中的元素是有序实数对(x ,y ),则-1是数,∴-1D ;又(-1)2=1,∴(-1,1)∈D .]二、选择题4.下列各组对象不能构成集合的是( )A .拥有手机的人B .2019年高考数学难题C .所有有理数D .小于π的正整数 B [B 选项中“难题”的标准不明确,不符合确定性,所以选B.]5.集合M 是由大于-2且小于1的实数构成的,则下列关系式正确的是( ) A.5∈MB .0M C .1∈M D .-π2∈M D [5>1,故A 错;-2<0<1,故B 错;1不小于1,故C 错;-2<-π2<1,故D 正确.] 6.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )A .3.14B .-5。
1.1 集合的概念一、单选题1.下列四个集合中,是空集的是( )A .{}0B .{8x x >∣,且}5x <C .{}210x x ∈-=N ∣D .{}4x x >答案:B解析:根据空集的定义判断.详解:A 中有元素0,B 中集合没有任何元素,为空集,C 中有元素1,D 中集合,大于4的实数都是其中的元素.故选:B .2.下列常数集表示正确的是( )A .实数集RB .整数集QC .有理数集ND .自然数集Z答案:A解析:因为Z 表示整数集,Q 表示有理数集,R 表示实数集,N 表示自然数数集,所以A 正确,故选A.3.已知A 中元素x 满足x =3k -1,k∈Z,则下列表示正确的是( )A .-1∉AB .-11∈AC .3k 2-1∈AD .-34∉A答案:C解析:判断一个元素是不是集合A 的元素,只要看这个元素是否满足条件31,x k k Z =-∈;判断一个元素是集合A 的元素,只需令这个数等于31k -,解出k ,判断k 是否满足k Z ∈,据此可完成解答.详解:当0k =时,311k -=-,故1A -∈,故选项A 错误;若11A -∈,则1131k -=-,解得103k Z =-∉,故选项B 错误; 令23131k k -=-,得0k =或1k =,即231k A -∈,故选项C 正确;当11k =-时,3134k -=-,故34A -∈,故选项D 错误;故选C.点睛:该题是一道关于元素与集合关系的题目,解题的关键是掌握集合的含义.4.若集合{}1,3A =,{}0,2B =-,则集合{}|,,z z x y x A y B =+∈∈中的元素的个数为( )A .5B .4C .3D .2答案:C解析:根据题意求出{}{}|,,1,1,3z z x y x A y B =+∈∈=-即可得解.详解:集合{}1,3A =,{}0,2B =-,则集合{}{}|,,1,1,3z z x y x A y B =+∈∈=-共三个元素.故选:C点睛:此题考查求集合中的元素个数,关键在于读懂集合的新定义,根据题意求出集合中的元素.5.集合(){},0,,x y xy x y ≤∈∈R R 是指( )A .第二象限内的所有点B .第四象限内的所有点C .第二象限和第四象限内的所有点D .不在第一、第三象限内的所有点答案:D解析:由0xy ≤,可知00x y ≤⎧⎨≥⎩或00x y ≥⎧⎨≤⎩,进而可选出答案. 详解:因为0xy ≤,所以00x y ≤⎧⎨≥⎩或00x y ≥⎧⎨≤⎩, 故集合(){},0,,x y xy x y ≤∈∈R R 是指第二象限和第四象限内的所有点,以及在,x y 轴上的点,即不在第一、第三象限内的所有点.故选:D.点睛:本题考查集合的表示方法,属于基础题.6.在直角坐标系内,坐标轴上的点构成的集合可表示为( )A .(x ,y )|x =0,y≠0或x≠0,y =0}B .(x ,y )|x =0且y =0}C .(x ,y )|xy =0}D .(x ,y )|x ,y 不同时为零}答案:C解析:根据坐标轴上的点特征判断选项.详解:A.表示x 轴和y 轴上的点,但不包含原点,故A 错误;B.集合中只有一个元素,就是原点,故错误;C.00xy x =⇔=或0y =,即表示坐标轴上点的集合,故C 正确;D.表示平面中的点,但不包含原点,故错误.故选:C.7.用描述法表示奇数集合:①A=a|a =2k+1,k∈Z}②B=a|a =2k ﹣1,k∈Z}③C=2b+1|b∈Z}④D=d|d =4k±1,k∈Z}.上述表示方法正确的个数是( )A .1B .2C .3D .4答案:C解析:由整数的整除性,可得A 、B 都表示奇数集,D 表示除以4余1的整数或表示除以4余3的整数.由此不难得到本题的答案.详解:由题意得:①②表示奇数集合,③的表示方法错误,④D=x|x =4k±1,k∈z},表示除以4余1的整数或除以4余3的整数,∵一个奇数除以4之后,余数不是1就是3,故④表示奇数集合;故选:C .8.已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( ) A .{1}B .{0}C .{0,1,1}-D .{0,1}答案:D 解析:对参数分类讨论,结合判别式法得到结果.详解:解:①当0a =时,1{}2A =-,此时满足条件;②当0a ≠时,A 中只有一个元素的话,440a =-=,解得1a =,综上,a 的取值集合为{0,1}.故选:D .9.下列关系中正确的个数是( ) ①12Q ∈ R ③*0N ∈ ④π∈ZA .1B .2C .3D .4答案:A解析:根据集合的概念、数集的表示判断.详解:120不是正整数,π是无理数,当然不是整数.只有①正确. 故选:A .点睛:本题考查元素与集合的关系,掌握常用数集的表示是解题关键.二、多选题1.(多选题)大于4的所有奇数构成的集合可用描述法表示为( )A .x|x =2k -1,k∈N}B .x|x =2k +1,k∈N,k≥2}C .x|x =2k +3,k∈N}D .x|x =2k +5,k∈N}答案:BD解析:用列举法把四个选项对应的集合表示出来,即可验证.详解:对于A :{}{|}1,1,321x x k k ∈=-N =-,对于B :{}{|212}5,7,9x x k k k +∈≥=N =,, 对于C :{}{|23}3,5,7x x k k +∈=N =, 对于D :{}{|25}5,7,9x x k k +∈=N =,故选:BD 2.(多选题)已知集合A 中元素满足x =3k -1,k∈Z,则下列表示正确的是( )A .-2∈AB .-11∉AC .3k 2-1∈AD .-34∉A答案:BC解析:直接对四个选项代入x =3k -1进行计算,即可得到正确答案.详解:令3k-1=-2,解得k=-13,-13∉Z,∴-2∉A;令3k-1=-11,解得k=-103,-103∉Z,∴-11∉A;∵k2∈Z,∴3k2-1∈A;令3k-1=-34,解得k=-11,-11∈Z,∴-34∈A.故选:BC3.下列每组对象,能构成集合的是()A.中国各地最美的乡村B.直角坐标系中横、纵坐标相等的点C.一切很大的数D.清华大学2020年入学的全体学生答案:BD解析:根据集合中的元素具有确定性逐个判断即可详解:解:对于A,最美标准不明确,不具有确定性,所以不能构成集合;对于B,直角坐标系中横、纵坐标相等的点就在一、三象限的平分线上,是确定的,所以可以构成集合;对于C,一切很大的数不具有确定性,所以不能构成集合;对于D,清华大学2020年入学的全体学生是确定的,能构成集合,故选:BD4.设P是一个数集,且至少含有两个元素.若对任意的a,b∈P,都有a+b,a-b,ab,ab∈P(除数b≠0),则称P是一个数域,例如有理数集Q是一个数域,有下列说法正确的是()A.数域必含有0,1两个数;B.整数集是数域;C.若有理数集Q M⊆,则数集M必为数域;D.数域必为无限集.答案:AD解析:根据数域的定义逐项进行分析即可.详解:数集P有两个元素m,N,则一定有m-m=0,mm=1(设m≠0),A正确;因为1∈Z,2∈Z,12Z∉,所以整数集不是数域,B不正确;令数集M Q =⋃,则1M ∈,但1M ,所以C 不正确;数域中有1,一定有1+1=2,1+2=3,递推下去,可知数域必为无限集,D 正确. 故选:AD5.(多选)已知集合{}220A x ax x a =-+=中至多含有一个元素,则实数a 可以取( )A .1a ≥B .0a =C .1a ≤-D .11a -≤≤答案:ABC 解析:根据集合至多含有一个元素,得到方程220ax x a -+=至多有一个根,讨论0a =,0a ≠两种情况,分别求出对应的a 的范围,即可得出结果.详解: 因为集合{}220A x ax x a =-+=中至多含有一个元素,即方程220ax x a -+=至多有一个根,当0a =时,方程可化为方程20x -=,解得0x =,满足题意;当0a ≠时,若方程无解,则()22224440a a ∆=--=-<,解得1a >或1a <-;若方程220ax x a -+=只有一个根,则()22224440a a ∆=--=-=,解得1a =±,综上实数a 的范围为1a ≥或0a =或1a ≤-;即ABC 都正确,D 错误.故选:ABC.点睛:本题主要考查集合中元素个数求参数的问题,属于基础题型.三、填空题1.下列说法中,正确的有________.(填序号)①单词book 的所有字母组成的集合的元素共有4个;②集合M 中有3个元素a ,b ,c ,其中a ,b ,c 是△ABC 的三边长,则△ABC 不可能是等腰三角形;③将小于10的自然数按从小到大的顺序排列和按从大到小的顺序排列分别得到不同的两个集合.答案:②解析:根据集合的元素的互异性判定①错误;根据集合的元素的互异性判定②正确;根据集合的元素的无序性可判定③错误.详解:①不正确. book 的字母o 有重复,共有3个不同字母,元素个数是3.②正确. 集合M 中有3个元素a ,b ,c ,所以a ,b ,c 都不相等,它们构成的三角形三边不相等,故不可能是等腰三角形.③不正确. 小于10的自然数不管按哪种顺序排列,里面的元素都是0,1,2,3,4,5,6,7,8,9这10个数,集合是相同的,和元素的排列顺序无关.故答案为:②.2.已知集合[][],14,9A t t t t =+⋃++,0A ∉,存在正数λ,使得对任意a A ∈,都有A a λ∈,则t 的值是____________答案:1或3-解析:根据t 所处的不同范围,得到[],1a t t ∈+和[]4,9a t t ∈++时,aλ所处的范围;再利用集合A 的上下限,得到λ与t 的等量关系,从而构造出方程,求得t 的值. 详解:0A ∉,则只需考虑下列三种情况:①当0t >时,[][],14,9a t t t t ∈+++ 11111,,941a t t t t ⎡⎤⎡⎤∴∈⎢⎥⎢⎥+++⎣⎦⎣⎦又0λ> ,,941a t t t t λλλλλ⎡⎤⎡⎤⇒∈⎢⎥⎢⎥+++⎣⎦⎣⎦A a λ∈ 914t t t t λλ⎧≥⎪⎪+∴⎨⎪≤+⎪+⎩且419t t t t λλ⎧≥+⎪⎪+⎨⎪≤+⎪⎩ 可得:()()()()()()991414t t t t t t t t λλ⎧+≤≤+⎪⎨++≤≤++⎪⎩ ()()()914t t t t λ∴=+=++ 1t ⇒=②当90t +<即9t <-时,与①构造方程相同,即1t =,不合题意,舍去③当1040t t +<⎧⎨+>⎩即41t -<<-时 可得:11t t t t λλ⎧≥⎪⎪+⎨⎪≤+⎪⎩且4994t t t t λλ⎧≥+⎪⎪+⎨⎪≤+⎪+⎩()()()149t t t t λ∴=+=++ 3t ⇒=-综上所述:1t =或3-点睛:本题考查利用集合与元素的关系求解参数的取值问题,关键在于能够通过t 的不同取值范围,得到a 与a λ所处的范围,从而能够利用集合的上下限得到关于λ的等量关系,从而构造出关于t 的方程;难点在于能够准确地对t 的范围进行分类,对于学生的分析和归纳能力有较高的要求,属于难题.3.如果集合A =x|ax 2-2x -1=0}只有一个元素则a 的值是_____________答案:0或-1解析:当0a =时,12A ⎧⎫=-⎨⎬⎩⎭符合题意;当0a ≠时,一元二次方程判别式440,1a a ∆=+==-.4.集合{}28160A x kx x =-+=∣,若集合A 中只有一个元素,则由实数k 的值组成的集合为________.答案:{}0,1解析:分0k =和0k ≠两种情况,分别讨论集合A ,进而可求出答案.详解:当0k =时,方程28160kx x -+=可化为8160x -+=,解得2x =,满足题意;当0k ≠时,要使集合{}28160A xkx x =-+=∣中只有一个元素, 则方程28160kx x -+=有两个相等的实数根,所以64640k ∆=-=,解得1k =,此时集合{4}A =,满足题意.综上所述,0k =或1k =,即实数k 的值组成的集合为{}0,1.故答案为:{}0,1.点睛:本题考查单元素的集合,注意讨论方程28160kx x -+=中k 是否为0,属于基础题.5.已知集合{}2,1,0,1P =--,集合{},Q y y x x P ==∈,则Q =______.答案:{}2,1,0解析:将2,1,0,1x =--分别代入y x =中,得到y 的值,即可求得集合Q ,得到答案. 详解:由题意,将2x =-,1-,0,1分别代入y x =中,得到2,1,0y =,所以{}2,1,0Q =.故答案为{}2,1,0.点睛:本题主要考查了集合的表示方法及应用,着重考查了推理与运算能力,属于基础题.四、解答题1.试用恰当的方法表示下列集合.(1)使函数12y x =-有意义的x 的集合; (2)不大于12的非负偶数;(3)满足不等式*(3)2x x -≤∈N 的解集;(4)由大于10小于20的所有整数组成的集合.答案:(1){|2}x x ∈≠R ;(2){0,2,4,6,8,10,12}或{|2,x x n n =∈N 且7}n <;(3){1,2,3,4,5}或{}*|5,x x x ≤∈N ;(4){|1020}x x ∈<<Z 或{11,12,13,14,15,16,17,18,19}. 解析:(1)用描述法表示;(2)、(3)、(4)既可用描述法也可用列举法.详解:(1)要使函数12y x =-有意义,必须使分母20x -≠,即2x ≠. 因此所求集合用描述法可表示为{|2}x x ∈≠R .(2)∵不大于12是小于或等于12,非负是大于或等于0,∴不大于12的非负偶数集用列举法表示为{0,2,4,6,8,10,12}.用描述法表示为{|2,x x n n =∈N 且7}n <.(3)满足()*32x x -≤∈N 的解是1,2,3,4,5. 用列举法表示为{1,2,3,4,5},用描述法表示为{}*|5,x x x ≤∈N . (4)设大于10小于20的整数为x ,则x 满足条件x ∈Z 且1020x <<.故用描述法可表示为{|1020}x x ∈<<Z ,用列举法表示为{11,12,13,14,15,16,17,18,19}.点睛:本题考查集合的表示方法,属于基础题.2.设2y x ax b =-+,{}|0A x y x =-=,{|0}B x y ax =-=,若{3,1}A =-,试用列举法表示集合B .答案:{33B =---+解析:将2y x ax b =-+带入集合A 的方程化简整理,由{3,1}A =-利用韦达定理求出参数,a b ,再利用一元二次方程的解法求解集合B.详解:将2y x ax b =-+代入集合A 中的方程并整理得2(1)0x a x b -++=.因为{3,1}A =-,所以方程2(1)0x a x b -++=的两根为-3,1,由韦达定理得311,31,a b -+=+⎧⎨-⨯=⎩ 解得3,3,a b =-⎧⎨=-⎩所以233y x x =+-.将233y x x =+-,3a =-代入集合B 中的方程并整理得2630x x +-=,解得3x =--或3x =-+{33B =---+.点睛:本题考查了集合的表示方法,准确的利用韦达定理求参数是解题的关键,属于一般难度的题.3.已知集合A 的元素全为实数,且满足:若a A ∈,则11a A a+∈-.若2a =,求出A 中其他所有元素.答案:113,,23-- 解析:根据定义依次计算即可得答案.详解:解:因为若a A ∈,则11a A a +∈-, 所以当2a =时,11a a +=-12312A +=-∈-; 当3a =-时,11a a +=-131132A -=-∈+, 当12a =-时,11a a +=-11121312A -=∈+, 当13a =时,11a a +=-1132113A +=∈-, 综上A 中其他所有元素为:113,,23--. 点睛:本题考查集合的元素的求解,是基础题.。
1.1 集合的概念一、单选题1.下列元素与集合的关系表示不正确的是()A.0N∈B.0Z∈C.32Q∈D.Qπ∈答案:D解析:根据元素与集合的关系直接判断即可. 详解:根据元素与集合的关系可得0N∈,0Z∈,32Q∈,Qπ∉,故D不正确,符合题意.故选:D.2.已知集合M=-2,3},N=-4,5,6},依次从集合M,N中各取出一个数分别作为点P的横坐标和纵坐标,则在平面直角坐标系中位于第一、二象限内的点P的个数是A.4 B.5 C.6 D.7答案:A解析:由对于集合M中的元素作为点的横坐标,N中的元素作点的纵坐标,在第一象限的点共有2个,在第二象限的点共有2个,由分类计数原理,即可求解.详解:由题意,要使得点P在平面直角坐标系中位于第一、二象限内,对于集合M中的元素作为点的横坐标,N中的元素作点的纵坐标,在第一象限的点共有122⨯=个;在第二象限的点共有122⨯=个;由分类计数原理可得点的个数为224+=个,故选A.点睛:本题主要考查了分类计数原理的应用,其中解答中解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.在某些特定问题上,也可充分考虑“正难则反”的思维方式.3.已知2{1,0,}x x∈,则实数x的值为()A.0B.1C.1-D.±1答案:C解析:根据集合元素和集合的关系确定x 的值,注意元素的互异性的应用.详解:解:{}21,0,x x ∈,21x ∴=,20x =,2x x =,由21x =得1x =±,由20x =,得0x =,由2x x =得0x =或1x =.综上1x =±,或0x =.当0x =时,集合为{}1,0,0不成立.当1x =时,集合为{}1,0,1不成立.当1x =-时,集合为{}1,0,1-,满足条件.故1x =-.故选C .点睛:本题主要考查集合元素和集合之间的关系的应用,注意要利用元素的互异性进行检验.4.设{|1},A a a =<则( )A .0A ⊆B .{0}A ∈C .{0}A ⊆D .A ∅∈答案:C解析:0A ∈,{} 0A ⊆, A ∅⊆,选C. 5.已知{}|330A x N x =∈->,则下列成立的是( )A .1A ∈B .0A ∈C .1A -∈D .0.5A ∈答案:B解析:集合{}|330A x N x =∈->=0},即可得出结论.详解:集合{}|330A x N x =∈->= x N ∈ |x <1}=0}, 则0∈A,故选:B .点睛:本题考查集合的含义与表示,考查了元素与集合的关系,比较基础.6.若用列举法表示集合26(,)|3x y A x y x y +=⎧⎧⎫=⎨⎨⎬-=⎩⎭⎩,则下列表示正确的是( ) A .{3,0}x y == B .{(3,0)} C .{3,0} D .{0,3}答案:B解析:解方程组得30x y =⎧⎨=⎩,即可得到集合. 详解:由263x y x y +=⎧⎨-=⎩解得30x y =⎧⎨=⎩所以{(3,0)}A =. 故选:B点睛:此题考查集合概念理解,关键在于准确识别描述法表示的集合,根据题意求解方程组,准确表示成所求形式.7.下列表示正确的是( )A .所有实数}R =B .整数集ZC .{}∅=∅D .1∈有理数}答案:D解析:本题可根据集合的性质得出结果.详解:A 项:因为符号“{}” 已包含“所有”的含义,所以不需要再加“所有”,A 不正确;B 项:Z 表示整数集,不能加“{}”,B 不正确;C 项:∅表示空集,不能加“{}”,C 不正确;D 项:1∈有理数},显然正确,D 正确,故选:D.8.已知集合(){}10A x x x =-=,那么下列结论正确的是( )A .0A ∈B .1A ∉C .1A -∈D .0A ∉答案:A解析:求解A 中的方程,得到集合A=0,1},进而作出判定.详解: (){}{}100,1x x x -==,,1A A ∈∈∴0,故选A .点睛:本题考查元素与集合的关系,是容易题.9.设集合A =0,1,2},B =1,2},C =x|x =ab ,a∈A,b∈B},则集合C 中元素的个数为A .3B .4C .5D .6答案:B解析:按照集合C 的定义求得它的元素.详解:∵A=0,1,2},B =1,2},C =x|x =ab ,a∈A,b∈B},∴{0,1,2,4}C =,共4个元素. 故选:B.点睛:本题考查集合的定义,考查求集合中的元素.属于基础题.二、填空题1.下列四个说法中正确的个数是___________.①集合N 中最小数为1;②若a∈N,则-a ∉N ;③若a∈N,b∈N,则a+b 的最小值为2;④所有小的正数组成一个集合.答案:0个解析:直接由元素与集合的关系逐一判断即可.详解:①集合N 中最小数为0,故①错误;②若0∈N,则-0∈N ,故②错误;③若a∈N,b∈N,则a+b 的最小值为2,错误,当0a b 时,0a b +=;④所有小的正数组成一个集合,不符合集合中元素的确定性.故答案为:0个2.已知{}20,1,x x ∈,则实数的值是________.答案:1-解析:试题分析:因,故,故应填答案. 考点:元素与集合的关系及运用.3.下列关系中 ①-433∉Q ;③|-20|∉N *2|∈Q;⑤-5∉Z ;⑥0∈N.其正确的是________.答案:①②⑥|-20|=20∈N * ,|∉Q ;-5∈Z;所以正确的是①②⑥4.若集合{}1,A a =,集合{}21,B a =,且A B =,则实数a =____________答案:0解析:根据集合相等和集合中元素的互异性,即可直接求解.详解: 解:集合{1A =,}a ,集合{1B =,2}a ,且A B =,∴21a a a ⎧=⎨≠⎩,解得:0a =. 故答案为:0.点睛:本题考查集合相等和集合中元素的互异性等基础知识,考查运算求解能力,是基础题.5.设集合{1,2,}A a a =-,若3A ∈,则实数a =_________.答案:5解析:推导出a ﹣2=3或a =3,再由集合中元素的互异性,能求出结果.详解:解:∵集合{1,2,}A a a =-,3A ∈,∴23a -=或3a =,当23a -=时,5a =,成立;当3a =时,21a -=,不满足集合中元素的互异性,不成立.∴实数5a =故答案为:5.点睛:本题考查实数值的求法,考查集合中元素的性质等基础知识,考查运算求解能力,是基础题.三、解答题1.用描述法表示下列集合:①正偶数集;②被3除余2的正整数的集合;③平面直角坐标系中坐标轴上的点组成的集合.答案:①*{|2,}x x n n N =∈; ②2,{|3}x x n n N =+∈;③{(,)|0}x y xy =. 解析:描述法表示集合即为{}()x p x ,()p x 为元素的性质,根据这个概念写出集合即可. 详解:①偶数可用2,x n n Z =∈表示,当x 为正偶数时,*n N ∈,所以正偶数集可表示为*{|2,}x x n n N =∈.②设被3除余2的数为x ,则32,x n n Z =+∈,但元素为正整数,故32,x n n N =+∈,所以被3除余2的正整数集合可表示为2,{|3}x x n n N =+∈.③坐标轴上的点(,)x y 的特点是横、纵坐标中至少有一个为0,即0xy =,故坐标轴上的点的集合可表示为{(,)|0}x y xy =.点睛:本题考查描述法表示集合,数集与点集,属于基础题.2.已知集合{}2210A x ax x =-+=.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A .答案:(1)1a >;(2)答案见解析.解析:(1)若A 是空集,则只需二次方程2210-+=ax x 无解,∆<0;(2)若A 为空集,当0a =时显然成立,当0a ≠时,只需0∆=.详解:解:(1)若A 是空集,则关于x 的方程2210-+=ax x 没有实数解.当0a =时,12x =,不满足题意,所以0a ≠,且440a ∆=-<,所以1a >. (2)若A 中只有一个元素. ①当0a =时,12x =,满足题意; ②当0a ≠时,440a ∆=-=,所以1a =.综上所述,a 的集合为{}0,1.若0a =,则有12A ⎧⎫=⎨⎬⎩⎭;若1a =,则有{}1A =. 点睛:本题考查根据集合中元素的个数求参数的取值范围,较简单,根据方程根的个数求解即可.3.用适当的方法表示下列集合.(1)小于5的自然数构成的集合;(2)直角坐标系内第三象限的点集;(3)偶数集.(4)如图,用适当的方法表示阴影部分的点(含边界上的点)组成的集合M.答案:(1){}01234,,,,;(2)(){|00}x y x y <<,,;(3){|2}x x k k Z =∈,;(4)()5302122M x y xy x y ⎧⎫=≥-≤≤-≤≤⎨⎬⎩⎭,,,.解析:(1)利用列举法表示集合;(2)利用描述法表示集合;(3)利用描述法表示集合;(4)根据图形利用描述法表示集合;详解:解:(1)小于5的自然数构成的集合,利用列举法表示为{}01234,,,,;(2)直角坐标系内第三象限的点集;利用描述法表示为(){},|00x y x y <<,;(3)偶数集.利用描述法表示为{}|2x x k k Z =∈,(4)由图形阴影部分的点(含边界上的点)组成的集合表示为()53,02122M x y xy x y ⎧⎫=≥-≤≤-≤≤⎨⎬⎩⎭,,点睛:本题考查集合的表示方法,属于基础题.。
课时作业(一) 集合的含义[学业水平层次]一、选择题1.(2014·遵义高一检测)以下各组对象不能组成集合的是( )A.中国古代四大发明B.地球上的小河流C.方程x2-1=0的实数解D.周长为10cm的三角形【解析】因为没有明确的标准确定什么样的河流称为小河流,故地球上的小河流不能组成集合.【答案】 B2.设集合A只含有一个元素a,则有( )A.0∈A B.a∉A C.a∈A D.a=A【解析】∵集合A中只含有一个元素a,故a属于集合A,∴a∈A.【答案】 C3.由实数x,-x,|x|,x2,-3x3所组成的集合,最多含( )A.2个元素B.3个元素C.4个元素D.5个元素【解析】由于|x|=±x,x2=|x|,-3x3=-x,并且x,-x,|x|之中总有两个相等,所以最多含2个元素.1【答案】 A4.集合A中含有三个元素2,4,6,若a∈A,且6-a∈A,那么a为( )A.2 B.2或4 C.4 D.0【解析】若a=2,则6-2=4∈A;若a=4,则6-4=2∈A若a=6,则6-6=0∉A,故选B【答案】 B二、填空题5.以方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合中共有________个元素.【解析】方程x2-5x+6=0的解是2,3;方程x2-x-2=0的解是-1,2.由集合元素的互异性知,以这两个方程的解为元素的集合中共有3个元素.【答案】 36.(2014·石家庄高一检测)集合P中含有两个元素分别为1和4,集合Q中含有两个元素1和a2,若P与Q相等,则a=________ 【解析】∵P与Q相等,∴a2=4,∴a=±2,经检验知a=±2满足题意,故a=±2,【答案】±27.(2014·天津高一检测)集合A中的元素y满足y∈N且y=-x2+1,若t∈A,则t的值为________.【解析】因为y=-x2+1≤1,且y∈N,所以y的值为0,1,即集合A中的元素为0,1.又t∈A,所以t=0或1.23 【答案】 0或1三、解答题8.集合A 是由形如m +3n (m ∈Z,n ∈Z)的数构成的,判断12-3是不是集合 A 中的元素.【解】 由分母有理化,得12-3=2+ 3.由题意可知m =2,n =1,均有m ∈Z,n ∈Z ,∴2+3∈A ,即12-3∈A .9.已知集合A 含有两个元素1,2,集合B 表示方程x 2+ax +b =0的解的集合,且集合A 与集合B 相等,求a ,b 的值.【解】 ∵集合A 与集合B 相等,且1∈A ,2∈A ,∴1∈B ,2∈B ,∴1,2是方程x 2+ax +b =0的两个实数根,∴⎩⎪⎨⎪⎧1+2=-a ,1×2=b ,∴⎩⎪⎨⎪⎧a =-3,b =2.[能力提升层次]1.若一个集合中的三个元素a ,b ,c 是△ABC 的三边长,则此三角形一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【解析】 △ABC 的三边长两两不等,故选D.【答案】 D2.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )4 A .2 B .3C .0或3D .0,2,3均可【解析】 由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾;若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A 的元素为0,3,2,符合题意.【答案】 B3.已知集合A 中含有两个元素1和a 2,则a 的取值范围是________.【解析】 由集合中元素的互异性,可知a 2≠1,所以a ≠±1,即a ∈R 且a ≠±1.【答案】 a ∈R 且a ≠±14.已知数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1),如果a =2,试求出A 中的所有元素.【解】 ∵2∈A ,由题意可知,11-2=-1∈A .由-1∈A 可知,11-(-1)=12∈A ;由12∈A 可知,11-12=2∈A .故集合A 中共有3个元素,它们分别是-1,12,2.。
1.1 集合的概念一、单选题1.设集合{1,2,3}A =,{2,3,4}B =,{|}M x x ab a A b B ==∈∈,,,则M 中的元素个数为( )A .5B .6C .7D .8答案:C解析:根题意求出集合M 即可得出.详解:{1,2,3}A =,{2,3,4}B =,{}{|}2,3,4,6,8,9,12M x x ab a A b B ∴==∈∈=,,, 所以M 中的元素个数为7.故选:C.2.下列语句能构成集合的是A .大于2且小于8的实数全体B .某班中性格开朗的男生全体C .所有接近1的数的全体D .某校高个子女生全体答案:A解析:根据集合元素的确定性进行判断.详解:选项A:符合集合元素的确定性,可以构成集合;选项B:确定不了什么叫性格开朗,故不能构成集合;选项C:确定不了接近1的数的标准是什么,故不能构成集合;选项D:不符合集合的确定性,因为不知道高个子女生的标准是什么,故不能构成集合,因此本题选A.点睛:本题考查了集合元素的确定性,准确理解集合元素的确定性是解题的关键.3.下列集合符号运用不正确的是( )A .2Z ∈B .}{}{1,2,31,2⊆C .{}12⋂∅=∅,D .N R R ⋃=答案:B解析:根据集合知识,逐项分析,即可求得答案.详解:对于A,由2Z ∈,故A 正确;对于B,因为}{}{1,21,2,3⊆,故B 错误;对于C,因为{}12⋂∅=∅,,故C 正确; 对于D,因为N R R ⋃=,故D 正确.故选:B.点睛:解题关键是掌握集合的基础知识,考查了分析能力,属于基础题.4.下列说法正确的有( )①NBA 联盟中所有优秀的篮球运动员可以构成集合;②*0N ∈;③集合{}2| 1 y y x =-与集合(){}2,| 1 x y y x =-是同一个集合;④空集是任何集合的真子集.A .0个B .1个C .2个D .3个答案:A解析:根据集合的定义,元素与集合的关系,列举法和描述法的定义以及空集的性质分别判断命题的真假.详解:对于①,优秀的篮球队员概念不明确,不能构成集合,错误;对于②,元素与集合的关系应为属于或不属于,即0∉N *,错误;对于③,集合{}2|1{|1}y y x y y =-=≥-是数集,集合(x ,y )|y=x 2-1}表示的是满足等式的所有点,不是同一个集合,错误;对于④,空集是任何非空集合的真子集,错误;故选A .点睛:本题考查集合的确定性,元素与集合的关系,列举法和描述法表示集合以及空集的有关性质,属于基础题.5.集合{|13}A x Z x =∈-<<的元素个数是( )A .1B .2C .3D .4答案:C解析:根据集合A 的代表元素及需满足的条件,用列举法表示出集合A ,即可得到结果. 详解:解:{}{|13}0,1,2A x Z x =∈-<<=所以集合A 中含有3个元素故选:C点睛:本题考查列举法表示集合及集合元素的个数问题,属于基础题.6.下列关系式中,正确的关系式有几个(1)2∈Q (2)0∉N (3)1,2} (4)φ=0} A .0B .1C .2D .3 答案:B详解:(1)因为2为无理数,所以错;(2)O 属于N ,错;(3)正确;(4){}0φ⊆,错.7.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为( )A .5B .4C .3D .2 答案:C详解:,,或是,,根据集合元素的互异性,集合为,共含有3个元素,故选C. 考点:元素与集合8.已知集合{A =第二象限角},{B =钝角},{C =小于180°的角},则A ,B ,C 关系正确的是( )A .B AC =⋂B .AC C .C C =B ∪D .A B C ==答案:C解析:由集合A ,B ,C ,求出B 与C 的并集,判断A 与C 的包含关系,以及A ,B ,C 三者之间的关系即可.详解:由题意得B A C ⋂,故A 错误; A 与C 互不包含,故B 错误;由{B =钝角}{小于180°的角},所以C C =B ∪,故C 正确 .由以上分析可知D 错误.故选:C .9.下列说法中正确的是( )A .联合国所有常任理事国(共5个)组成一个集合B .宜丰二中年龄较小的学生组成一个集合C .{}1,2,3与{}2,1,3是不同的集合D .由1,0,5,1,2,5组成的集合有六个元素答案:A解析:根据集合中的元素的性质逐一判断可得选项.详解:年龄较小不确定,所以B 选项错误;{1,2,3}与{2,1,3}是相同的集合,故C 错误;由1,0,5,1,2,5组成的集合有4个元素,故D 错误;故选:A.点睛:本题考查集合中的元素的性质和判断两个集合是否是同一集合,属于基础题.二、多选题1.下列与集合1(,)|30x y M x y x y ⎧+=⎧⎫=⎨⎨⎬--=⎩⎭⎩表示同一个集合的有( ) A .{(2,1)}-B .{2,1}-C .{(,)|2,1}x y x y ==-D .{2,1}x y ==- E.{(1,2)}-答案:AC 解析:解方程组可得集合中的元素为有序数对(2,1)-,根据集合的表示方法可得答案. 详解:由1,30x y x y +=⎧⎨--=⎩得2,1,x y =⎧⎨=-⎩即(){}2,1M =-, 所以根据集合的表示方法知A ,C 与集合M 表示的是同一个集合,故选:AC.点睛:本题考查同一集合问题,考查集合的表示方法,属于基础题.2.(多选题)设集合{}1,A x x a x R =-<∈,{}15,B x x x R =<<∈,则下列选项中,满足A B =∅的实数a 的取值范围的有( )A .[]0,6B .(][),24,-∞+∞C .(][),06,-∞+∞ D .[)8,+∞答案:CD 解析:先解集合A 得{}11A x a x a =-<<+,再根据题意求解即可.详解: 由题得{}11A x a x a =-<<+,{}15,B x x x R =<<∈,又因为A B =∅,所以11a +≤ 或15a -≥,即0a ≤或6a ≥.所以满足题意的有选项C ,D.故选:CD.点睛:本题考查绝对值不等式的解法,集合的交集运算,是中档题.3.下列是集合{(,)|1,,}M x y x y x y =+≤∈∈N N 中元素的有() A .(0,0) B .(0,1) C .(1,0) D .(2,1)-E.(1,2)-答案:ABC解析:用列举法表示集合,进而判断选项即可详解:∵{(,)|1,,}M x y x y x y =+≤∈∈N N ,∴00x y =⎧⎨=⎩或01x y =⎧⎨=⎩或10x y =⎧⎨=⎩,∴{(0,0),(0,1),(1,0)}M =故选ABC点睛:本题考查列举法表示集合,考查点集,考查元素与集合的关系4.下面表示同一个集合的是( )A .{}2|10,,P x x x R Q =+=∈=∅B .{2,5},{5,2}P Q ==C .{(2,5)},{(5,2)}P Q ==D .{|21,},{|21,}P x x m m Z Q x x m m Z ==+∈==-∈答案:ABD解析:对选项中的集合元素逐一分析判断即可.详解:A 选项中,集合P 中方程210x +=无实数根,故P Q ==∅,表示同一个集合;B 选项中,集合P 中有两个元素2,5,集合Q 中页有两个元素2,5,表示同一个集合;C 选项中,集合P 中有一个元素是点(2,5),集合 Q 中有一个元素是点(5,2),元素不同,不是同一集合;D 选项中,集合{|21,}P x x m m Z ==+∈表示所有奇数构成的集合,集合{|21,}Q x x m m Z ==-∈也表示所有奇数构成的集合,表示同一个集合.故选:ABD.5.已知非空集合M 满足:①{2,1,21,,3,4}M ⊆--,②若x M ∈,则2x M ∈,则满足上述要求的集合M 有( )A .1,1,{}2,4-B .1,2,{}2,4-C .{1,1}-D .{1}答案:CD解析:由集合M 的元素所满足的两个性质,找出集合M 的元素,从而确定集合M 有哪些可能.详解:由题意可知3M ∉且4M ∉,而-2或2与4同时出现,所以2M -∉且2M ∉,所以满足条件的非空集合M 有{1,1}-,{1}.故选:CD .点睛:本题考查满足条件的集合的求法,考查元素与集合的关系,是基础题.三、填空题1.含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭又可表示成{}2,,0a a b +,20142015a b +=______.答案:1解析:根据两个集合的相等关系,可求得,a b 的值,即可得解.详解: 由题意可知,两个集合相等,{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,由0a ≠所以只能是0ba=,即0b =,所以{}{}2,0,1,,0a a a =, 由集合互异性可知1a ≠,则21a =,解得1a =-,符合题意,所以20142015101a b +=+=,故答案为:1.本题考查了集合相等的应用,由集合互异性和相等求参数,属于基础题.2.已知集合A 中元素x 满足2x +a>0,a∈R.若1∉A ,2∈A,则实数a 的取值范围为________.答案:42a -<≤-解析:根据已知条件列不等式组,解不等式组求得a 的取值范围.详解:因为1∉A ,2∈A,所以210220a a ⨯+≤⎧⎨⨯+>⎩, 即42a -<≤-.故答案为:42a -<≤-3.用描述法表示所有偶数组成的集合__________.答案:{}2,x x n n Z =∈解析:利用描述法的定义求解即可详解: 解:所有偶数组成的集合为{}2,x x n n Z =∈, 故答案为:{}2,x x n n Z =∈4.设集合{}22,,A x x =,若1A ∈,则x 的值为___________.答案:1-解析:根据集合中元素的互异性可知,1x ≠,再根据1A ∈,可得1x =-.详解:根据集合中元素的互异性可知,2x x ≠,所以1x ≠且0x ≠,因为1A ∈,所以21x =,解得1x =-或1x =(舍),故答案为:1-点睛:本题考查了集合中元素的互异性,考查了元素与集合的关系,属于基础题.5.用描述法表示被4除余3的正整数集合:______.答案:x|x =4n+3,n∈N}解析:设该数为x ,则该数x 满足x =4n+3,n∈N;再写成集合的形式.设该数为x ,则该数x 满足x =4n+3,n∈N;∴所求的正整数集合为x|x =4n+3,n∈N}.故答案为:x|x =4n+3,n∈N}.点睛:本题主要考查集合的表示方法,属于基础题.四、解答题1.用适当的方法表示下列集合:(1)B=(x ,y )|x+y=4,x∈N*,y∈N*};(2)不等式3x-8≥7-2x 的解集;答案:(1)列举法:{}(1,3),(2,2),(3,1)B =;(2)描述法:{}|3x x ≥.解析:(1)根据代表元素的特征将元素一一列举即可.(2)根据描述法表示集合即可求解.详解:(1)B=(x ,y )|x+y=4,x∈N*,y∈N*}{}(1,3),(2,2),(3,1)=.(2)3x-8≥7-2x 解得3x ≥,所以不等式的解集为{}|3x x ≥.2.已知集合A=x|x=m 2-n 2,m∈Z,n∈Z}.求证:(1)3∈A;(2)偶数4k-2(k∈Z)不属于A .答案:(1)见解析;(2)见解析.详解:试题分析:(1)由3=22-12即可证得;(2)设4k-2∈A,则存在m ,n∈Z,使4k-2=m 2-n 2=(m+n )(m-n )成立,分当m ,n 同奇或同偶时和当m ,n 一奇,一偶时两种情况进行否定即可.试题解析:(1)∵3=22-12,3∈A;(2)设4k-2∈A,则存在m ,n∈Z,使4k-2=m 2-n 2=(m+n )(m-n )成立,1、当m ,n 同奇或同偶时,m-n ,m+n 均为偶数,∴(m-n )(m+n )为4的倍数,与4k-2不是4的倍数矛盾.2、当m ,n 一奇,一偶时,m-n ,m+n 均为奇数,∴(m-n )(m+n )为奇数,与4k-2是偶数矛盾.综上4k-2不属于A .3.由实数组成的集合A 具有如下性质:若a A ∈,b A ∈且a b <,那么1a A b+∈.(1)若集合A 恰有两个元素,且有一个元素为43,求集合A ;(2)是否存在一个含有元素0的三元素集合A ;若存在请求出集合,若不存在,请说明理由.答案:(1)4{4,}3A =或44{,}39A =或4{3A =;(2)存在,A =. 解析:(1)根据题意设集合4{,}3A x =,然后分类讨论x 与43的大小,根据集合的性质解出x ,即可得解;(2)假设存在一个含有元素0的三元素集合A {0,,}a b =,根据集合中元素的性质可知,0a <,0b <,进一步可知,1A ∈,不妨设集合{,0,1},(0A x x =>且1)x ≠,再根据集合中元素的性质可求得结果.详解:(1)集合A 恰有两个元素且43A ∈.不妨设集合4{,}3A x =, 当43x <时,由集合A 的性质可知,314x A +∈,则314x x +=或34143x +=, 解得4x =(舍)或49x =,所以集合44{,}39A = 当43x >时,由集合A 的性质可知,413A x +∈,则413x x +=或44133x +=,解得36x =或36x =(舍)或4x =所以集合4{,4}3A =或43{,}36A +=综上所述:4{4,}3A =或44{,}39A =或4{3A =. (2)假设存在一个含有元素0的三元素集合A {0,,}a b =,即0A ∈,当0a >时,则10a +无意义,当0b >时,则10b +无意义, 所以0a <,0b <,并且01A a +∈,01A b +∈,即1A ∈, 不妨设集合{,0,1},(0A x x =>且1)x ≠,当1x >时,由题意可知,11A x+∈,若11x x +=,即210x x --=,解得x =或x =(舍),此时集合A =; 若111x +=,则10x =不成立; 若110x+=,即1x =-(舍), 当01x <<时,由题意可知,1x A +∈,若10x +=,则1x =-(舍),若11x +=,则0x =(舍),若1x x +=,则10=不成立,综上所述,集合A 是存在的,A =. 点睛:本题考查了元素与集合的关系,考查了分类讨论思想,属于中档题.。
1.1 集合的概念一、单选题1.方程组5346x y x y +=⎧⎨-=-⎩的解集是( ) A .{}2,3x y ==B .{}2,3C .(){}2,3D .23x y =⎧⎨=⎩答案:C 解析:首先求出二元一次方程组的解,再写出其解集;详解:解:因为5346x y x y +=⎧⎨-=-⎩,所以23x y =⎧⎨=⎩所以方程组5346x y x y +=⎧⎨-=-⎩的解集为(){}2,3 故选:C2.下列对象中,能组成集合的是( )A .所有接近1的数的全体B .某班高个子男生的全体C .某校考试比较靠前的学生的全体D .大于2小于7的实数的全体答案:D解析:根据集合元素的特性:确定性即可排除ABC ,进而得到正确选项.详解:由集合元素的特性:ABC 不符合确定性原则,D 可表示为{|27}x x <<,故选:D3.若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =( ) A .4B .2C .0D .0或4答案:A详解: 2=40,0 4.0.A a a a a A A ∴∆-=∴==集合中只有一个元素,或又当时集合中无元素,故选考点:该题主要考查集合的概念、集合的表示以及集合与一元二次方程的联系.4.已知a=4,A=x|x≥3},则以下选项中正确的是( )A .a A ∉B .a∈AC .a}=AD .a ∉a}答案:B解析:根据元素与集合的关系求解.详解:因为4≥3,所以a∈A.故选:B点睛:本题主要考查元素与集合的关系,属于基础题.5.设集合={1,2,3}A ,B={45},,={x|x=a+b,a A,b B}M ∈∈,则M 中元素的个数为( ) A .3B .4C .5D .6答案:B详解: 由题意知x a b =+,,a A b B ∈∈,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素,故选B.【考点定位】集合的概念6.i 是虚数单位,若集合S ={}1,0,1-,则( )A .10i S ∈B .13i S ∈C .15i S ∈D .2i ∈3答案:A解析:利用虚数单位的性质化简选项中的复数,判断是否属于集合S 即可.详解:根据虚数单位的运算规律可知,10=-1i S ∈,13i i S =∉,153i =i =-i S ∉,那么22ii =-S ∉,故选A. 点睛:本题主要是考查了元素与集合关系,以及虚数单位性质的运用,属于基础题.7.下列四个集合中,不同于另外三个的是( )A .{}2y y =B .{}2x =C .{}2D .{}2440x x x -+=答案:B解析:选项A ,C ,D 中元素都是实数2,而选项B 中元素为等式2x =,即可得到答案. 详解:对选项A ,{}{}22y y ==,元素为实数2;对选项B ,{}2x =,元素为等式2x =;对选项C ,{}2,元素为实数2;对选项D ,{}{}24402x x x -+==,元素为实数2. 故选:B点睛:本题主要考查集合的概念,属于简单题.8.下列集合中是有限集的是( )③方程21x =-的所有实数解组成的集合.④15的质因数的全体构成的集合A .①②③B .②③④C .①②④D .①③④答案:B解析:根据有限集的知识进行分析,由此确定正确选项.详解:①,202x x -≥⇒≥,[)2,+∞为无限集,不符合题意,①错误,所以选B.②,30,N 0,1,2,3x x x -≥∈⇒=,{}0,1,2,3为有限集,符合题意,②正确.③,方程21x =-的所有实数解组成的集合为空集,为有限集,符合题意,③正确. ④,15的质因数的全体构成的集合为{}3,5,为有限集,符合题意,④正确.故选:B9.设集合M=x|x 2-3x≤0},则下列关系式正确的是( )A .2⊆MB .2∉MC .2∈MD .2}∈M答案:C解析:本题已知集合M ,先将相应的不等式化简,得到集合中元素满足的条件,再看元素2是否满足条件,可得到正确选项.详解:230x x -,03x ∴,2{|30}{|03}M x x x x x ∴=-=.又023<<,2M ∴∈.故选:C .点睛:本题考查的是集合知识,重点是判断元素与集合的关系,难点是对一元二次不等式的化简.计算量较小,属于容易题.二、多选题1.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5|Z k n k n =+∈,0k =,1,2,3,4,给出如下四个结论,其中,正确结论的是( )A .[]20211∈B .[]33-∈C .若整数a ,b 属于同一“类”,则[]0a b -∈D .若[]0a b -∈,则整数a ,b 属于同一“类”答案:ACD解析:根据“类”的定义逐一判断四个选项的正误即可得正确选项.详解:对于A :因为202140451=⨯+,所以[]20211∈,故选项A 正确;对于B :因为()3512-=⨯-+,所以[]32-∈,故选项B 错误;对于C :若a 与b 属于同一类,则15a n k =+,25b n k =+,()[]1250(a b n n -=-∈其中1n ,2Z)n ∈,故选项C 正确;对于D :若[]0a b -∈,设5,Z a b n n -=∈,即5,Z a n b n =+∈,不妨令5,Z b m k m =+∈,0k =,1,2,3,4,则()555a m n k m n k =++=++,m ∈Z ,Z n ∈,所以a 与b 属于同一类,故选项D 正确;故选:ACD.2.实数1是下面哪个集合的元素( )A .整数集ZB .{}|x x x =C .{}N|11x x ∈-<<D .1R |01x x x -⎧⎫∈≤⎨⎬+⎩⎭答案:ABD解析:分别求出每个选项中的集合的元素,即可判断1是否为集合中的元素,进而可得正确选项.详解:对于A :1是整数,因此实数1是整数集Z 中的元素,故选项A 正确;对于B :由x x =得0x ≥,因此实数1是集合{}|x x x =中的元素,故选项B 正确; 对于C :{}{}N|110x x ∈-<<=,因此实数1不是集合{}N|11x x ∈-<<中的元素;故选项C 不正确;对于D :()(){}1101R |0R ||11110x x x x x x x x x ⎧⎫⎧-+≤-⎪⎪⎧⎫∈≤=∈=-<≤⎨⎬⎨⎨⎬++≠⎩⎭⎪⎪⎩⎩⎭,因此实数1是集合1|01x x R x -⎧⎫∈≤⎨⎬+⎩⎭中的元素,故选项D 正确; 故选:ABD.3.集合{}2210A x a x x =++=中有且仅有一个元素,则实数a 的值为( )A .1B .-1C .0D .2答案:AC 解析:分0a =,和0a ≠两种情况讨论,可得0a =,或1a =.详解:当0a =时,可得1={}2A -,符合题意; 当0a ≠时,因为方程210ax x ++=有唯一解,所以440,1a a ∆=-=∴=.故选:AC.点睛:此题的关键是a 是否为零决定方程是一次方程还是二次方程,影响到根的个数.4.集合{},0,1,20,}1{A B == 且元素,a A b B ∈∈,则a 的取值范围为( )A . 2B .1C . 0D . 1-答案:ABC解析:根据集合与元素的关系即可得答案.详解:因为a A ∈,{0,1,2}A =所以a 的取值范围为0,1,2.故选:ABC5.已知x∈1,2,x 2},则有( )A .1x =B .2x =C .0x =D .x答案:BC解析:利用集合中元素的互异性,分三种情况讨论即可.详解:由x∈1,2,x 2},当21,1x x ==,不满足集合中元素的互异性;当22,4x x ==,满足集合中元素的互异性,符合题意;当20x x x =⇒=或1x =(舍),当0x =满足集合中元素的互异性,符合题意;故选:BC.点睛:本题主要考查了集合中元素的互异性,考查了分类讨论,属于较易题.三、填空题1.已知集合A 中有且仅有2个元素,并且实数a 满足a∈A,4-a∈A,且a∈N,4-a∈N,则A=__.答案:1,3}或0,4}解析:依题意首先确定a 的取值情况,再一一列举出来即可;详解:因为a N ∈,4a N -∈,所以0a =,1,2,3,4.当0a =时,44a N -=∈,集合{}0,4满足题意;当1a =时,43a N -=∈,集合{}1,3满足题意;当2a =时,42a N -=∈,这时不存在满足题意的集合A.当3a =时,41a N -=∈,集合{}1,3满足题意;当4a =时,40a N -=∈,集合{}0,4满足题意;综上所述{}0,4A =或{}1,3.故答案为:{}1,3或{}0,42.已知{}2,P x x a x N =<<∈,已知集合P 中恰有3个元素,则整数a = .答案:6解析:根据题意得出3、4、5P ∈,6P ∉,从而可得出实数a 的不等式,解出即可得出整数a 的值.详解:根据题意得出3、4、5P ∈,6P ∉,56a a >⎧∴⎨≤⎩,即56a <≤. 因此,整数a 的值为6.点睛:本题考查利用集合元素的个数来求参数,解题的关键就是要结合题意列出不等式组进行求解,考查分析问题和解决问题的能力,属于基础题.3.已知30ax A xx a ⎧-⎫=>⎨⎬+⎩⎭,若1A ∈,3A ∉,则实数a 的取值范围为______.答案:[)3,1--解析:由于1A ∈,3A ∉,所以30,1{330,30,3a a a a a ->+-≤+=+或,从而可求出a 的取值范围 详解:因为1A ∈,3A ∉,所以30,1{330,30,3a a a a a->+-≤+=+或解得31a -≤<-. 故答案为:[)3,1--点睛:此题考查元素和集合的关系,考查分式不等式的解法,属于基础题4.用符号“∈”或“∉”填空:①{}2|0A x x x =-=,则1_______A ,1-______A ;②(1,2)______{(,)|1}x y y x =+.答案:∈∉∈解析:利用元素与集合的关系填空即可.详解:①将1代入方程成立,将1-代入方程不成立,故1A ∈,1A -∉.②将1,2x y ==代入1y x =+成立,故填∈.故答案为:,,∈∉∈点睛:本题考查元素与集合的关系,属于基础题.5.已知集合2{1,1,4}M m m =++,如果5M ∈且2M -∉,那么m =________答案:4或1或1-解析:根据元素与集合的关系,可得关于m 的方程,解方程且满足5M ∈且2M -∉,即可求得m 的值.详解:集合2{1,1,4}M m m =++,5M ∈且2M -∉所以若15m +=,解得4m =若245m ,解得1m =±所以m 的值为4或1或1-故答案为: 4或1或1-点睛:本题考查了元素与集合的关系,根据元素属于集合求参数,属于基础题.四、解答题1.已知集合A 中含有两个元素x ,y ,集合B 中含有两个元素0,x 2,若A =B ,求实数x ,y 的值.答案:1,0x y ==解析:根据集合相等的含义,结合集合中元素的互异性,即可得出结论.详解:因为集合A ,B 相等,则x =0或y =0.①当x =0时,x 2=0,B 中元素为0,0,不满足集合中元素的互异性,故舍去.②当y =0时,x =x 2,解得x =0或x =1.由①知x =0应舍去.综上知:x =1,y =0.点睛:本题考查集合相等的含义,考查集合中元素的互异性,属于基础题.2.已知{}{},,1,2,3,5,0,2,4,8,A B A C B C ⊆⊆==求A .答案:{}2或φ解析:,A B A C ⊆⊆,则A B C ⊆,可得集合A . 详解:{}{}1,2,3,5,0,2,4,8B C ==,则{}2B C ⋂=,则{}2A =或A φ=.3.已知集合{}2|320A x R ax x =∈-+=,其中a 为常数,且a R ∈.①若A 是空集,求a 的范围;②若A 中只有一个元素,求a 的值;③若A 中至多只有一个元素,求a 的范围.答案:①98a >;②0a =或98a =;③0a =或98a ≥. 解析:①只需方程2320ax x -+=无解即可;②当0a =成立,当0a ≠时,只需0∆=;③由题意可知0a =时成立,当0a ≠时,只需0∆≤即可. 详解:①若A 是空集,则方程2320ax x -+=无解,此时980a ∆=-<,即98a >, ②若A 中只有一个元素,则方程2320ax x -+=有且只有一个实根, 当0a =时方程为一元一次方程,满足条件当0a ≠,此时980a ∆=-=,解得:98a =. ∴0a =或98a =; ③若A 中至多只有一个元素,则A 为空集,或有且只有一个元素 由①②得满足条件的a 的取值范围是:0a =或98a ≥. 点睛:本题考查根据集合中元素的个数求参,考查方程根的个数问题,较简单.。
1.1 集合的概念一、单选题1.已知集合{0,2}A =,则下列关系表示错误的是( ). A .0A ∈ B .{2}A ∈C .A ∅⊆D .{0,2}A ⊆2.方程组221x y x y +=⎧⎨-=-⎩的解集是( )A .{}1,1x y ==B .{}1C .()1,1D .(){},1,1x y x y ==3.已知2{1,0,}x x ∈,则实数x 的值为( ) A .0B .1C .1-D .±14.已知集合{}1,2,3A =,集合(){},,B x y x A x y A =∈-∈,则符合条件的集合B 的子集个数为( ) A .3B .4C .8D .105.若{}2213,1,1a a a -∈---,则a=( )A .1-B .0C .1D .0或16.已知x 、y 、z 为非零实数,代数式||||||||xyzxyz x y z xyz+++的值所组成的集合是M ,则下列判断正确的是( ) A .0M ∉B .2M ∈C .4M -∉D .4M7.对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x R ∀∈且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是A .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα++∈B .若12(),()f x M g x M αα∈∈且12αα>,则12()()f x g x M αα--∈C .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα⋅⋅∈D .若12(),()f x M g x M αα∈∈且()0g x ≠,则12()()f x M g x αα∈ 8.集合(x ,y )|y =3x 2-11x}表示( ) A .方程y =3x 2-11x B .(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =3x 2-11x 图象上的所有点组成的集合9{}0x x >,0.2Q ∉,3N -∈,0∈∅,其中正确的个数A .4个B .3个C .2个D .1个 10.若集合{}|1A x x =≤,则满足A B A =的集合B 可以是( )A .{}|0x x ≤B .{}2|x x ≤C .{}|0x x ≥D .{}|2x x ≥二、填空题 1.方程组240x y x +=⎧⎨-=⎩的解组成的集合为_________. 2.实数系的结构图如图所示,其中1,2,3三个方格中的内容依次是________,________,________.3.集合A=x|x=2k ,k∈Z},B=x|x=2k+1,k∈Z} ,C=x|x=4k-1,k∈Z},若m∈A, n∈B,则m+n∈ ___________(选填A 、B 、C )。
1.1 集合的概念一、单选题1.下列关系中正确的是( ) A .0∈∅B .∅ {}0C .{}(){}0,10,1⊆D .(){}(){},,a b b a ⊆2.设{}A a =,则下列各式中正确的是( ) A .0A ∈ B .a A ∈C .a A ∉D .a A =3.若以集合A 的四个元素a 、b 、c 、d 为边长构成一个四边形,则这个四边形可能是( )A .梯形B .平行四边形C .菱形D .矩形4.已知方程()()()2221236660x x b x x b x x b -+-+-+=的所有解都为自然数,其组成的解集为{}12345,,,,A x x x x x =,则123b b b ++的值不可能为( )A .13B .14C .17D .225.设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈< ,则()A C B = A .2} B .2,3} C .-1,2,3} D .1,2,3,4} 6.下列关系式正确的为( )A .R ⊆NB ⊆QC .∅=0}D .﹣2∈Z7.集合{}2|0,A x x px q x R =++=∈{}2=,则p q +=( )A .1-B .0C .1D .28.设集合{}|2A x x =≤,则下列四个关系中正确的是( ) A .1A ∈ B .1A ∉ C .{}1A ∈ D .1A ⊆ 9.已知集合{(,)|2,,}A x y x y x y N =+≤∈,则A 中元素的个数为( )A .1B .5C .6D .无数个二、填空题1.下列说法中能构成集合的是________(填序号). ①2019年参加江苏高考的所有学生; ②2019年江苏高考数学试题中的所有难题; ③美丽的花;④与无理数π无限接近的数.2.已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则非零实数m 的数值是______.3.设关于x 的不等式2()4x a -<的解集为A ,已知1A -∉,则实数a 的取值范围是________.4.集合()2,0x y x y x y ⎧⎫+=⎧⎨⎨⎬-=⎩⎩⎭用列举法表示为__________.5.设集合{}|1A x Q x =∈>-_____________A (用适当符号填空). 三、解答题1.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈-. (1)若2A ∈,则A 中至少还有几个元素? (2)集合A 是否为双元素集合?请说明理由. (3)若A 中元素个数不超过8,所有元素的和为143,且A 中有一个元素的平方等于所有元素的积,求集合A .2.设非空集合S 具有如下性质:①元素都是正整数;②若x S ∈,则10x S -∈. (1)请你写出符合条件,且分别含有一个、二个、三个元素的集合S 各一个;(2)是否存在恰有6个元素的集合S ?若存在,写出所有的集合S ;若不存在,请说明理由;(3)满足条件的集合S 总共有多少个?3.已知M 是满足下列条件的集合:①0,1M M ∈∈②若,x y M ∈,则x y M -∈,③若x M ∈且0x ≠,则1M x∈(1)判断13M ∈是否正确,说明理由 (2)证明:若,x y M ∈则x y M +∈ (3)证明:若,x y M ∈则xy M ∈参考答案一、单选题 1.B解析:根据元素与集合、集合与集合之间关系,逐项判断,即可得出结果. 详解:A 选项,空集中不含任何元素,故A 错;B 选项,空集是任一非空集合的真子集,故B 正确;C 选项,{}0,1是数集,(){}0,1是点集,故C 错;D 选项,(),a b 与(),b a 不一定表示同一点,故D 错. 故选:B. 2.B解析:根据元素和集合之间的关系作出判断即可. 详解:因为{}A a =,所以a 是集合A 的元素,用“∈”表示. 故选:B . 3.A 详解:由集合元素的互异性可得a 、b 、c 、d 互不相等, 所以四边形的四条边互不相等, 结合各选项可得该四边形可能为梯形. 选A .点睛:集合中的元素具有确定性、互异性、无序性三个特征,对于集合中的元素的这三个特征,特别是无序性和互异性在解题时经常用到;解题后要进行检验,要重视符号语言与文字语言之间的相互转化.4.A解析:当123,,b b b 分别取0,5,9时,{}0,6,1,5,3A =,12314b b b ++=,排除B , 当123,,b b b 分别取0,8,9时,{}0,6,2,4,3A =,12317b b b ++=,排除C ,当123,,b b b 分别取5,8,9时,{}1,5,2,4,3A =,12322b b b ++=,排除D ,故选A. 5.D解析:先求A C ,再求()A C B . 详解:因为{1,2}A C =, 所以(){1,2,3,4}A C B =. 故选D . 点睛:集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算. 6.D解析:根据集合的性质逐个判断即可. 详解:对A,实数包含自然数,即N R ⊆.故A 错误.对.故B 错误.对C,空集为不包含任何元素的集合,故C 错误. 对D,-2为整数,正确.故D 正确. 故选:D 点睛:本题主要考查了常见集合的符号表示.属于基础题型. 7.B解析:根据集合相等可知方程20x px q ++=有相等实根2,即可由根与系数关系求解. 详解:因为集合{}2|0,A x x px q x R =++=∈{}2=,所以方程20x px q ++=有相等实根2, 根据根与系数的关系可知,2222pq+=-⎧⎨⨯=⎩,所以440p q +=-+=, 故选:B 点睛:本题主要考查了根据集合的元素求参数,一元二次方程,属于容易题.8.A解析:根据描述法表示集合的含义,可得1是集合中的元素,即可得到结论. 详解:由题意知,集合{}|2A x x =≤表示所有不大于2的实数组成的集合, 所有,1是集合中的元素,故1A ∈. 故选:A. 点睛:本题考查元素与集合的关系,属于基础题. 9.C解析:直接列举求出A 和A 中元素的个数得解. 详解:由题得{(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)}A =, 所以A 中元素的个数为6. 故选C 点睛:本题主要考查集合的表示和化简,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题 1.①解析:利用集合的概念依次判断即可. 详解:因为未规定“难”的标准,所以②不能构成集合;同理“美丽”、“无限接近”都没有规定标准,所以③④不能构成集合; 由于①中的对象具备确定性、互异性,所以①能构成集合. 故答案为:① 点睛:本题主要考查集合的概念,属于简单题. 2.2 详解:由题,若32,m -= 则1,m = 此时B 集合不符合元素互异性,故1;m ≠若31,m -=则2,m =符合题意;若33,m -=则0,m =不符合题意. 故答案为23.(][)--31+∞⋃∞,, 解析:因为1A -∉,()21a --4≥ ,()21a +4≥ ,可得1a +2≥ 或1a + 2≤- ,即a 1≥ 或a 3≤-实数a 的取值范围是(][)--31+∞⋃∞,,,故答案为(][)--31+∞⋃∞,,. 4.{(1,1)}解析:由集合的描述得到集合元素,应用列举法写出集合即可. 详解:由集合描述有:20x y x y +=⎧⎨-=⎩,得11x y =⎧⎨=⎩,∴集合为{(1,1)}. 故答案为:{(1,1)}. 点睛:本题考查了集合的表示,由集合的描述法得到集合元素,列举法写出集合,属于简单题. 5.∉解析:根据描述法集合的表示,得到集合A 表示由大于1-的有理数构成的集合,即可求解. 详解:由题意知,集合A 表示由大于1-的有理数构成的集合,A . 故答案为∉. 点睛:本题主要考查了集合的表示方法,以及元素与集合的关系的判定,着重考查了分析问题和解答问题的能力,属于基础题.三、解答题1.(1)A 中至少还有两个元素;(2)不是双元素集合,答案见解析;(3)112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.解析:(1)由x A ∈(1x ≠且0x ≠),则11A x∈-,结合2A ∈可计算得出集合A 中的元素;(2)由x A ∈,逐项可推导出11A x ∈-,1x A x-∈,结合集合元素满足互异性可得出结论; (3)由(2)A 中有三个元素为x 、11x -、1x x-(1x ≠且0x ≠),设A 中还有一个元素m ,可得出11A m ∈-,1m A m-∈,由已知条件列方程求出x 、m 的值,即可求得集合A 中的所有元素. 详解:(1)2A ∈,1112A ∴=-∈-. 1A -∈,()11112A ∴=∈--.12A ∈,12112A ∴=∈-.A ∴中至少还有两个元素为1-,12; (2)不是双元素集合.理由如下:x A ∈,11A x∴∈-,11111x A x x-=∈--, 由于1x ≠且0x ≠,22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,则210x x -+≠,则()11x x -≠,可得11x x ≠-,由221x x x -+≠-,即()21x x -≠-,可得111x x x-≠-,故集合A 中至少有3个元素,所以,集合A 不是双元素集合. (3)由(2)知A 中有三个元素为x 、11x -、1x x-(1x ≠且0x ≠), 且1111x x x x-⋅⋅=--, 设A 中有一个元素为m ,则11A m ∈-,1m A m -∈,且1111m m m m-⋅⋅=--, 所以,1111,,,,,11x m A x m x x m m --⎧⎫=⎨⎬--⎩⎭,且集合A 中所有元素之积为1.由于A 中有一个元素的平方等于所有元素的积,设2111x ⎛⎫= ⎪-⎝⎭或211x x -⎛⎫= ⎪⎝⎭,解得0x =(舍去)或2x =或12x =.此时,2A ∈,1A -∈,12A ∈,由题意得1111421213m m m m -+-+++=-,整理得3261960m m m -++=, 即()()()621320m m m -+-=,解得12m =-或3或23,所以,112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.点睛:关键点点睛:本题考查集合中元素相关的问题,解题时要结合题中集合A 满足的定义推导出其它的元素,以及结合已知条件列方程求解,同时注意集合中元素满足互异性.2.(1)答案见详解;(2)存在,且共有4个,答案见详解;(3)31个.解析:(1)当集合S 中只有一个元素,则10x x =-,得出集合S 即可;有两个元素时,只需两个元素之和为10即可;当有三个元素时,只需其中两个元素之和为10,另外一个元素为5;(2)只需选3对和为10的正整数即可;(3)集合S 中元素的个数可以为1,2,3,4,5,6,7,8,9个,先计算出当集合S 的元素个数为偶数时S 的个数,同理可得S 中元素个数为奇数的个数,然后则可得出符合条件的S 的总个数.详解:解:(1)若集合S 中只有一个元素,则只需满足10x x =-,故5x =,则{}5S =; 若集合S 中有两个元素,则{}1,9S =符合条件; 若集合S 中有三个元素,则{}1,5,9S =符合条件. (2)存在,一共有四个:{}1,2,3,7,8,9S =或{}1,2,4,6,8,9S =或{}1,3,4,6,7,9S =或{}2,3,4,6,7,8S =.(3)由题意可知,集合S 中元素的个数可以为1,2,3,4,5,6,7,8,9个, 当集合S 中元素的个数为偶数时:S 含有2个元素时,只需在1,9,2,8,3,7,4,6这四对中任选一对,则S 共有4个; S 含有4个元素时,只需1,9,2,8,3,7,4,6这四对中任选两对,则S 共有6个; S 含有6个元素时,只需1,9,2,8,3,7,4,6这四对中任选三对,则S 共有4个; S 含有8个元素时,则S 共有1个,所以当集合S 中元素的个数为偶数时,满足条件的集合S 共有15个, 同理可知,当S 中元素个数分别为3,5,7,9时,符合条件的集合S 也为15个;由(1)可知,当S 中只有一个元素时,S 只有一个, 综上所述,符合条件的S 共有31个. 点睛:本题考查集合的新定义问题,考查学生获取新知识、应用新知识的能力,理解题意是关键.3.(1)正确,理由见解析;(2)证明见解析;(3)证明见解析.解析:(1)根据定义依次确定M 包含元素11,2,3,3-;(2)根据定义确定M 包含元素y -,即得结论;(3)根据定义依次确定M 包含元素2221111()()1,,,(1),,,,1(1)22x y x y x x x x xy x x x x x +---=---,即得结论 详解:(1)13M ∈正确.证明如下:由①知0,1M M ∈∈由②可得()()011,112,213M M M -=-∈∴--=∈--=∈ 由③得13M ∈(2)证明:由①知0M ∈由题知y M ∈, ∴由②可得0y y M -=-∈ 又()x M x y M ∈∴--∈,即x y M +∈(3)证明:,x M y M ∈∈,由②可得1x M -∈,再由③可得11,1M M x x ∈∈- 111M x x ∴-∈-即()11M x x ∈-, ()1x x M ∴-∈即2x x M -∈,2x M ∴∈即当2,x M x M ∈∈由(2)可知,当,,x y M x y M ∈+∈112M x x x ∴+=∈2M x∴∈∴当,x y M ∈,可得()22222,,,22x y x y x y M ++∈()22222x y x y xy M ++∴-=∈点睛:本题考查新定义、元素与集合关系,考查综合分析论证判断能力,属中档题.。
高中数学课时分层作业1集合的含义(含解析)新人教A 版必修1 课时分层作业(一) 集合的含义
(建议用时:60分钟)
[合格基础练]
一、选择题
1.下列各组对象不能构成集合的是( )
A .拥有手机的人
B .2019年高考数学难题
C .所有有理数
D .小于π的正整数
B [B 选项中“难题”的标准不明确,不符合确定性,所以选B.]
2.集合M 是由大于-2且小于1的实数构成的,则下列关系式正确的是( )
A.5∈M
B .0M
C .1∈M
D .-π2
∈M D [5>1,故A 错;-2<0<1,故B 错;1不小于1,故C 错;-2<-π2
<1,故D 正确.] 3.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )
A .3.14
B .-5
C .37
D .7
D [由题意知a 应为无理数,故a 可以为7.]
4.已知集合Ω中的三个元素l ,m ,n 分别是△ABC 的三边长,则△ABC 一定不是( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰三角形
D [因为集合中的元素是互异的,所以l ,m ,n 互不相等,即△ABC 不可能是等腰三角形,故选D.]
5.下列各组中集合P 与Q ,表示同一个集合的是( )
A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,|-3|构成的集合
B .P 是由π构成的集合,Q 是由3.141 59构成的集合
C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合
D .P 是满足不等式-1≤x ≤1的自然数构成的集合,Q 是方程x 2
=1的解集
A [由于A 中P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而
B ,
C ,
D 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选A.]
二、填空题
6.若1∈A ,且集合A 与集合B 相等,则1________B (填“∈”或“”).
∈ [由集合相等的定义可知,1∈B .] 7.设集合A 是由1,k 2
为元素构成的集合,则实数k 的取值范围是________. k ≠±1 [∵1∈A ,k 2∈A ,结合集合中元素的互异性可知k 2≠1,解得k ≠±1.]
8.用符号“∈”或“”填空:
(1)设集合B 是小于11的所有实数的集合,则23________B ,1+2________B ;
(2)设集合C 是满足方程x =n 2
+1(其中n 为正整数)的实数x 的集合,则3________C ,5________C ;
(3)设集合D 是满足方程y =x 2的有序实数对为(x ,y )的集合,则-1________D ,(-1,
1)________D .
(1) ∈ (2) ∈ (3) ∈ [(1)∵23=12>11,∴23B ;∵(1+2)2=3+22<3+2×4=11,∴1+2<11,∴1+2∈B .
(2)∵n 是正整数,∴n 2+1≠3,∴3C ;当n =2时,n 2+1=5,∴5∈C .
(3)∵集合D 中的元素是有序实数对(x ,y ),则-1是数,∴-1D ;又(-1)2=1,∴(-1,1)∈D .]
三、解答题
9.设A 是由满足不等式x <6的自然数构成的集合,若a ∈A 且3a ∈A ,求a 的值.
[解] ∵a ∈A 且3a ∈A ,
∴⎩⎪⎨⎪⎧a <6,3a <6,解得a <2.又a ∈N , ∴a =0或1.
10.已知集合A 中含有两个元素x ,y ,集合B 中含有两个元素0,x 2
,若A =B ,求实数x ,y 的值.
[解] 因为集合A ,B 相等,则x =0或y =0.
(1)当x =0时,x 2=0,则不满足集合中元素的互异性,故舍去.
(2)当y =0时,x =x 2,解得x =0或x =1.
由(1)知x =0应舍去.
综上知:x =1,y =0.
[等级过关练]
1.已知集合M 是方程x 2-x +m =0的解组成的集合,若2∈M ,则下列判断正确的是( )
A .1∈M
B .0∈M
C .-1∈M
D .-2∈M C [由2∈M 知2为方程x 2-x +m =0的一个解,所以22-2+m =0,解得m =-2.
所以方程为x 2
-x -2=0,
解得x 1=-1,x 2=2.
故方程的另一根为-1.选C.]
2.由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含元素( )
A .2个
B .3个
C .4个
D .5个
A [当x >0时,x =|x |=x 2,-3x 3=-x <0,此时集合共有2个元素,
当x =0时,x =|x |=x 2=-3x 3=-x =0,此时集合共有1个元素,
当x <0时,x 2=|x |=-x ,-3x 3=-x ,此时集合共有2个元素,综上,此集合最多有
2个元素,
故选A.]
3.已知集合P 中元素x 满足:x ∈N ,且2<x <a ,又集合P 中恰有三个元素,则整数a =________.
6 [∵x ∈N ,2<x <a ,且集合P 中恰有三个元素,
∴结合数轴知a =6.]
4.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b
的可能取值所组成的集合中元素的个数为________.
3 [当a ,b 同正时,|a |a +|b |b =a a +b b
=1+1=2. 当a ,b 同负时,|a |a
+|b |b =-a a +-b b =-1-1=-2. 当a ,b 异号时,|a |a +|b |b =0.
∴|a |a +|b |b
的可能取值所组成的集合中元素共有3个.] 5.已知数集A 满足条件:若a ∈A ,则
11-a
∈A (a ≠1),如果a =2,试求出A 中的所有元素. [解] 根据题意,由2∈A 可知,11-2=-1∈A ;由-1∈A 可知,11-(-1)=12
∈A ; 由12∈A 可知,11-12
=2∈A . 故集合A 中共有3个元素,它们分别是-1,12
,2.。