华南理工大学高频开关电源实验报告
- 格式:doc
- 大小:859.00 KB
- 文档页数:6
武汉理工大学开放性实验报告开关稳压电源实验室: 606 组别: 9组摘要:开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。
开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。
线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。
随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。
开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。
另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。
关键词:开关稳压电源,Boost电路,短路保护,msp4301.功能介绍本实验设计的电源为升压型开关稳压电源,开关稳压电源设计输入8V,输出实现10V到30V输出可调。
设计输出电流为1A。
本系统由msp430控制,电压步进式调节,由键盘设置输出值,电源自动调节到设置值后,恒压输出。
2. 方案选择2.1 方案一:降压型开关电源,Q?ITOR+-本方案如图所示,采用单片机发出占空比可调的方波,控制开关管通断,通过改变控制信号的占空比,实现输出电压可调。
本方案设计思路简单,但单片机抗干扰能力不强,容易被开关电源影响,可靠性不强。
且本电路以多次使用,创新点不多,故不选择。
2.2 方案二:采用2110控制的降压型开关电源。
333/3W本方案采用IR2110控制上线管90V供电,输出0到50v,通过单片机输出两路PWM波,控制2110,由2110驱动mos管轮流到同,加后级电感电容滤波,实现直流稳压输出。
本方案非常规开关电源方案,输出功率有限。
加之无大功率负载测试,设计难以实现,故不选择。
开关电源实验报告一开关电源原理如下图30W开关电源电路图所示,市电先经过由电容CX1和滤波电感LF1A组成的滤波电路后,再经过型号为KBP210的整流桥BD1和C1组成的整流电路,输出直流电。
直流电又经过由UC3842和2N60等元器件组成的高频逆变电路后,变成高频的交流电,经高频变压器输出为低电压的高频交流电。
高频交流经肖基特二极管SR1060后变为脉动的直流电,最后经滤波电容和滤波电感变为我们想要的直流电输出。
MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
(2)输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
(3)整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
1.2功率变换电路(1)MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。
也称为表面场效应器件。
由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。
(2)常见的原理图:(3)工作原理R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。
在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。
预习报告一、实验目的1掌握调频发射机电路的设计与调试方法2高频电路的调试中常见故障的分析与排除二、实验内容调频发射机的设计与实现,要求如下:(1)载波频率:6MHz ;(2)功率放大器:发射功率P O≥10mW(在50欧假负载电阻上测量),效率≥25% ;(3)在50欧假负载电阻上测量,输出无明显失真调频信号。
三、实验原理频率调制电路如下:其中主要芯片MC1648的内部结构如下:BB910变容二极管特性曲线如下:低通滤波器如下:功率放大器如下:功率放大器根据放大器电流导通角的范围,可以分为甲类、乙类、丙类和丁类等功率放大器。
甲类放大器的效率最高为50%,丙类放大器的效率最高为76.8%高频匹配电路如下:有如下两种电路形式可供选择:四、实验电路调试调试步骤:调试频率调制电路和低通滤波器,在不输入调制信号时,调节滑动变阻器RP2,使输出载波频率为6MHz,输出波形无明显失真;使用高频信号源加入调制信号,观看调频信号;调试功率放大器,要求采用丙类功率放大器,测试效率;系统联调。
单级调谐,可以采用扫频仪,也可以采用输入容抗小的示波器探头(×10档),或者在探头上串联一个pF级小电容(根据工作频率和示波器输入电容考虑);多级调谐,如变压器结构调谐,先调后级,再调前级。
实验报告一、实验数据记录电源电压:5.0V ; 仪器:DW2011直流稳压电源 载波频率:6.000756MHz ; 仪器:YZ -4345示波器信号源电压峰峰值:0.8V ; 仪器:YZ -4345示波器输出信号电压峰峰值:5.4V ; 仪器:YZ -4345示波器电源输入直流电流为:52.0mV; 仪器:VC9807A 电压表二、实验数据分析电源供给的输入直流功率为WW V I P 26.0052.00.5CC C0=⨯=== W R V R I I V P 0729.021212102C1m 02Clm Clm Clm o =⋅===其中0R 为50欧姆,则集电极效率如下 %03.28CCC0L 2L C ====V I R V P P η 整机调试(不加调制信号)电源输出直流电流为66.2mV电源供给的输入直流功率为W W V I P 331.00662.00.5CC C0=⨯===集电极效率为%02.22CCC0L 2L C ====V I R V P P η 由于输入级与输出级相互影响,整机联调后系统效率减小,这是在实验设计所分析出来的,效率的大小和功率放大模块输入阻抗变化有关,整体上实验数据基本满足要求,发射功率P O =0.0729W≥10mW (在50欧假负载电阻上测量),效率η=28.03%≥25% 。
高频实验报告(电子版)班级:班级:学号:学号:姓名:姓名:201年月实验一、小信号谐振放大器 1:本次实验电原理图输入信号Ui(mV P-P)50mV P-P放大管电流Ic 1 0.5mA 1mA 2mA 3mA 4mA 4.5mA 输出信号Uo(V P-P)2-1:直流工作点与对放大器影响关系得结论:输入信号Ui(mV P-P) 50mV P-P阻尼电阻R Z (1K2=1) R=∞(R11) R=100 Ω(R7) R=1K(R6) R=10K(R5) R=100K输出信号Uo(V P-P)3-1:阻尼电阻—LC 回路的特性曲线图3-2:阻尼电阻—LC 回路的特性结论4:逐点法测量放大器的幅频特性实验电原理图粘贴处特性曲线图 粘贴处输入信号幅度(mV P-P)50mV P-P输入信号(MHz )2727.52828.52929.530输出幅值(V P-P)输入信号 (MHz ) 30.53131.53232.533输出幅值(V P-P)4-1:放大器的幅频特性曲线图4-2:放大器的的特性结论5:本次实验实测波形选贴选作思考题:(任选一题)1. 单调谐放大器的电压增益K U 与哪些因素有关?双调谐放大器的有效频带宽度B 与哪些因素有关?2.改变阻尼电阻R 数值时电压增益K U 、有效频带宽度B 会如何变化?为什么?3. 用扫频仪测量电压增益输出衰减分别置10dB 和30dB 时,哪种测量结果较合理?4. 用数字频率计测量放大器的频率时,实测其输入信号和输出信号时,数字频率计均能正确显示吗?为什么?5. 调幅信号经放大器放大后其调制度m 应该变化吗?为什么?思考题( )答案如下:幅频特性曲线图粘贴处实测波形1 粘贴处 实测波形2 粘贴处实验二、高频谐振功率放大器1:本次实验电原理图2: 谐振功放电路的交流工作点统调实测值级别激励放大级器(6BG1) 末级谐振功率放大器(6BG2)测量项目注入信号U i(V6-1)激励信号U bm(V6-2)输出信号U0(V6-3)未级电流I C(mA)峰峰值V P-P有效值VU bm(V p-p)1 2 3 4 5 Uo(V p-p)Ic(mA)3-1:谐振功率放大器的激励特性U bm–U0特性曲线图3-2:谐振功率放大器的的特性结论U bm–U0特性曲线图粘贴处实验电原理图粘贴处RL(Ω) 50Ω 75Ω 100Ω 125Ω 150Ω 螺旋天线Uo(V p-p) (V6-3) Ic(mA) (V2)4-1:谐振功率放大器的负载特性RL-- Uo 特性曲线图4-2:谐振功率放大器的RL-- Uo 特性结论V2 (V) 2 V 4V 6V 8V 10V 12V U O (V p-p ) Ic (mA)5-1:谐振功率放大器的电压特性V2—Uo 特性曲线图5-2:谐振功率放大器的V2—Uo 特性结论V2—Uo 特性曲线图粘贴处RL-- Uo 特性曲线图粘贴处6:谐振放大器高频输出功率与工作效率的测量:电源输入功率P D : Ic = mA 、 V2 = V 、 P D = mW 高频输出功率P 0 : Uo = V p-p RL = Ω P 0 = mW 电路工作效率η: %5:本次实验实测波形选贴选作思考题:(任选一题)1 当调谐末级谐振回路时,会出现i C 的最小值和U 0的最大值往往不能同时出现。
华工射频实验报告射频实验是电子技术中非常重要的一个实验内容,通过实验可以了解和掌握射频信号的特性和处理方法。
下面是我对华工射频实验的报告。
华工射频实验是电子科学与技术学院的一个必修实验课程,旨在让学生了解和掌握射频电路和系统的设计、分析和测试方法。
这个实验分为多个部分,包括射频放大器的特性测试、带通滤波器的设计和测量、频率合成器的设计和实现等。
在射频放大器的特性测试部分,我们学习了射频信号的放大特性,包括增益、带宽和稳定性等。
通过实验,我们可以利用半导体器件和电路设计方法,搭建射频放大器的电路,并通过测量和分析,了解其在不同频率和输入功率下的放大性能和线性度,并通过参数调节来实现最佳性能。
在带通滤波器的设计和测量部分,我们学习了如何设计射频带通滤波器,使其具有所需的中心频率和带宽。
通过实验调节电路中的元件数值和结构,例如电感、电容和电阻等元件的数值和连接方式,我们可以实现所需的滤波器特性,并通过测试和测量来验证其性能。
在频率合成器的设计和实现部分,我们学习了如何使用计算机辅助设计软件和射频器件来设计和实现频率合成器。
通过实验,我们可以了解和掌握使用PLL(锁相环)电路和VCO(电压控制振荡器)电路来实现频率的合成和改变,并通过测试和测量来验证其性能。
通过这个射频实验,我们学到了很多关于射频信号的特性和处理方法的知识。
通过实际动手操作和实验数据的分析,我们不仅加深了对课堂知识的理解,而且提高了实际问题的解决能力和实验技巧。
在实验中遇到问题时,我们也互相交流和协助解决,通过团队合作的方式提高了实验效率和成果。
总的来说,华工射频实验是一门非常有趣和实用的课程。
通过这个实验,我们不仅了解了射频信号的特性和处理方法,而且掌握了射频器件和电路的设计和实验技巧。
这对于我们今后从事电子工程相关的工作和研究都非常有帮助。
希望将来能有更多机会和资源去深入研究和应用射频技术。
实验一正弦波振荡器一、实验目的1了解三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2通过实验掌握晶体管静态工作点、反馈系数、负载变化对起振和振荡幅度的影响。
3研究外界条件(温度、电源电压、负载变化)对角振荡器频率稳定度的影响。
4测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。
二、实验设备TKGPZ-1型高频电子线路综合实验箱;双踪示波器;频率计繁用表。
三、实验内容1熟悉振荡器模块各元件及其作用;2进行LC振荡器波段工作研究;3研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响;4测试LC振荡器的频率稳定度。
三、基本原理将开关S2的1拨上2拨下,S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容三点式反馈振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振荡器频率。
f=振荡器频率约为4.5MHZ振荡电路反馈系数:1320560.12 470CFC==≈振荡器输出通过耦合电容C3加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
四、实验步骤1研究振荡器静态工作点对振荡幅度的影响。
2将开关S2的1拨上,构成LC振荡器。
3改变上偏置电位器RA1,并用示波器测量对应点的振荡幅度Vp-p,记下停振时的静态工作点电流值。
五、实验结果1、组成LC西勒振荡器:短接K1011-2、K1021-2、K103 1-2、K1041-2,并在C107处插入1000p的电容器,这样就组成了LC西勒振荡器电路。
用示波器(探头衰减10)在测试点TP102观测LC振荡器的输出波形,再用频率计测量其输出频率。
2、调整静态工作点:短接K104 2-3(即短接电感L102),使振荡器停振,并测量三极管BG101的发射极电压Ueq;然后调整电阻R101的值,使Ueq=0.5V,并计算出电流Ieq(=0.5V/1K=0.5mA)。
调频接收机设计与调试一设计目的通过本课程设计与调试,提高动手能力,巩固已学的理论知识,能建立无线电调频接收机的整机概念,了解调频接收机整机各单元电路之间的关系及相互影响,从而能正确设计、计算调频接收机的单各元电路:输入回路、高频放大、混频、中频放大、鉴频及低频功放级。
初步掌握调频接收机的调整及测试方法。
二调频接收机的主要技术指标1.选择性接收机从各种信号和干扰中选出所需信号(或衰减不需要的信号)的能力称为选择性,单位用dB(分贝)表示dB数越高,选择性越好。
调频收音机的中频干扰应大于50dB。
2.灵敏度接收机接收微弱信号的能力称为灵敏度,通常用输入信号电压的大小来表示,接收的输入信号越小,灵敏度越高。
调频广播收音机的灵敏度一般为5~30uV。
3.工作频率范围接收机可以接受到的无线电波的频率范围称为接收机的工作频率范围或波段覆盖。
接收机的工作频率必须与发射机的工作频率相对应。
如调频广播收音机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MHz4.频率特性接收机的频率响应范围称为频率特性或通频带。
调频机的通频带一般为200KHz。
5.输出功率接收机的负载输出的最大不失真(或非线性失真系数为给定值时)功率称为输出功率。
三基本设计原理调频接收机的组成一般调频接收机的组成框图如图所示。
其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大级放大进入混频级。
本机振荡器输出的另一高频 f2亦进入混频级,则混频级的输出为含有f1、f2、(f1+f2)、(f2-f1)等频率分量的信号。
混频级的输出接调频回路选出中频信号(f2-f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。
由于天线接收到的高频信号经过混频成为固定的中频,再加以放大,因此接收机的灵敏度较高,选择性较好,性能也比较稳定。
中放的任务,是把变频器输出的中频信号放大后,输入到检波器。
电子通信工程系《高频电子线路》实验报告专业: 电子信息工程__学号: XXXXXX .姓名: XXXX .指导教师: XXXX .2011年11月27日实验3 电容三点式LC振荡器一、实验准备1.做本实验时应具备的知识点:●三点式LC振荡器●西勒和克拉泼电路●电源电压、耦合电容、反馈系数、等效Q值对振荡器工作的影响2.做本实验时所用到的仪器:●LC振荡器模块●双踪示波器●万用表二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能;3.熟悉静态工作点、耦合电容、反馈系数、等效Q值对振荡器振荡幅度和频率的影响;4.熟悉负载变化对振荡器振荡幅度的影响。
三、实验电路基本原理1.概述LC振荡器实质上是满足振荡条件的正反馈放大器。
LC振荡器是指振荡回路是由LC元件组成的。
从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。
如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。
在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。
2.LC振荡器的起振条件一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振平衡条件和相位平衡条件。
3.LC振荡器的频率稳定度频率稳定度表示:在一定时间或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:Δf0/f0来表示(f0为所选择的测试频率;Δf0为振荡频率的频率误差,Δf0=f02-f01;f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。
由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。
华南理工大学广州学院实验报告课程名称高频电子线路实验学院专业班姓名学号序号实验名称实验一高频小信号调谐放大器实验实验日期一、实验目的1. 掌握小信号调谐放大器的基本工作原理;2. 掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3. 了解高频小信号放大器动态范围的测试方法。
二、实验内容单调谐小信号放大器单元电路实验三、实验仪器、设备1. 高频实验箱1台2. 双踪示波器1台3. 万用表1块4. 扫频仪(可选)1台四、实验原理+121-1a图1R154.7KR16470C11104C19104C12中周内电容C1510pC13104C14中周内电容Q23DG6TH6TT3T2TP6W4100KR2315K五、实验步骤1. 单调谐小信号放大器单元电路实验1)根据电路原理图熟悉实验板电路,并在电路板上找出与原理图相对应的的各测试点及可调器件(具体指出)。
2)打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮,红灯为+12V电源指示灯,绿灯为-12V电源指示灯。
(以后实验步骤中不再强调打开实验模块电源开关步骤) 3)调整晶体管的静态工作点:用万用表(直流电压测量档)测量静态工作电压,调整可调电阻W3,使V EQ=4.8V,测量R5两端的电压(即V EQ)和电阻R4两端的电压(即V BQ),记下此时的V BQ、V EQ,并计算出此时的I EQ=V EQ /R5。
(R5=470Ω)4)按下信号源和频率计的电源开关,此时开关下方的工作指示灯点亮。
5)按下面方法搭建框图(图1-2)所示测试电路:调节信号源“RF幅度”和“频率调节”旋钮,使输出端口“RF1”和“RF2”输出频率为12MHz的高频信号。
将信号输入到2号板的J4口。
在TH1处观察信号峰-峰值约为100mV。
图1-2 高频小信号调谐放大器测试连接框图6)调谐放大器的谐振回路使其谐振在输入信号的频率点上:将示波器探头连接在调谐放大器的输出端即TH2上,调节示波器直到能观察到输出信号的波形,再微调高频信号源的“频率调节”旋钮,使输出端TH2处的信号幅度最大,此时放大器即被调谐到输入信号的频率点上,记下此时的谐振频率f0 。
高频电子线路综合实验实验报告班级:学号:姓名:指导老师:日期:目录一、三点式正弦波振荡器 (3)二、高频小信号调谐放大器 (6)三、模拟乘法混频 (11)四、非线性丙类功率放大器 (14)五、模拟乘法器调幅及同步检波实验 (17)六、半双工调频无线对讲机 (20)实验一 三点式正弦波振荡器一、实验目的1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2. 通过实验掌握晶体管静态工作点、反馈系数大小对振荡幅度的影响。
二、基本原理图1-1 正弦波振荡器(4.5MHz )将开关S3拨上S4拨下, S1、S2全部断开,由晶体管Q 3和C 13、C 20、C 10、CCI 、L 2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。
)(211020CCI C L f +=π振荡器的频率约为4.5MHz 振荡电路反馈系数: F=12.0470562013≈=C C 振荡器输出通过耦合电容C 3(10P )加到由Q 2组成的射极跟随器的输入端,因C 3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号Q 1调谐放大,再经变压器耦合从J1输出。
三、实验步骤1. 根据图在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2. 研究振荡器静态工作点对振荡幅度的影响。
1) 将开关S3拨上S4拨下,S1、S2全拨下,构成LC 振荡器。
2) 改变上偏置电位器R A1,记下发射极电流10ee V I R =,并用示波器测量对应点的振荡幅度V P-P (峰—峰值)记下对应峰峰值以及停振时的静态工作点电流值。
3. 分析输出振荡电压和振荡管静态工作点的关系,按以上调整静态工作点的方法改变I eq ,并测量相应的()P P U -,且把数据记入下表。
4. 晶体振荡器:将开关S 4拨上S3拨下,S 1、S2全部拨下,由Q3、C13、C20、晶体CRY1与C10构成晶体振荡器(皮尔斯振荡电路),在振荡频率上晶体等效为电感。
河西学院物理与机电工程学院综合设计实验开关电源的设计实验报告学院:物理与机电工程学院专业:电子信息科学与技术:侯涛日期:2016年4月12日绪论开关电源是近年来应用非常广泛的一种新式电源,它具有体积小、重量轻、耗能低、使用方便等优点,在邮电通信、航空航天、仪器仪表、工业设备、医疗器械、家用电器等领域应用效果显著。
一、开关电源的概念和分类电源是将各种能源转换成为用电设备所需电能的装置,是所有靠电能工作的装置的动力源泉。
1.开关电源的概念电是工业的动力,是人类生活的源泉。
电源是产生电的装置,表示电源特性的参数有功率、电压、电流、频率等;在同一参数要求下,又有重量、体积、效率和可靠性等指标。
我们用的电,一般都需要经过转换才能适合使用的需求,例如交流转换成直流,高电压变成低电压,大功率变换为小功率等。
按照电子理论,所谓AC/DC就是交流转换为直流;AC/AC称为交流转换为交流,即为改变频率;DC/AC称为逆变;DC/DC为直流变交流后再变直流。
为了达到转换的目的,电源变换的方法是多样的。
自20世纪60年代,人们研发出了二极管、三极管半导体器件后,就用半导体器件进行转换。
所以,凡是用半导体功率器件作开关,将一种电源形态转换成另一种形态的电路,叫做开关变换电路。
在转换时,以自动控制稳定输出并有各种保护环节的电路,称为开关电源。
开关电源在转换过程中,用高频变压器隔离称之为离线式开关变换器,常用的AC/DC 变换器就是离线式变换器。
开关电源通常由六大部分组成,如图所示。
第一部分是输入电路,它包含有低通滤波和一次整流环节。
220V交流电直接经低通滤波和桥式整流后得到未稳压的直流电压Vi,此电压送到第二部分进行功率因数校正,其目的是提高功率因数,它的形式是保持输入电流与输入电压同相。
功率因数校正的方法有无源功率因数校正和有源功率因数校正两种。
所谓有源功率因数校正,是指电源在校正过程中常采用三极管和集成电路。
开关电源电路常采用有源功率因数校正。
实训报告实训名称:高频电子技术实习专业:电子信息班级:学号:姓名:指导老师:实训时间:一、实训目的1、掌握调幅、调频收音机的工作原理。
2、学习收音机的调试与装配。
3、提高读整机电路图及电路板图的能力。
4、掌握收音机生产工艺流程,提高焊接工艺水平。
5、掌握调幅、调频收音机的调试(调中频、调覆盖以及统调)。
6、仪器的使用:高频信号发生器、万用表、双踪示波器的使用。
二、实训设备中夏牌ZX—620调频、调幅收音机一套、示波器、毫伏表、稳压电源、信号产生器、万用表、失真度测试仪、烙铁、镊子等。
三、实训内容(按时间顺序写)周一老师说明了整个实训的安排和注意事项,并讲授和分析收音机整机信号的流程和有关收音机各个功能电路的工作原理。
周二发放收音机的元件材料,检查电子元器件的功能是否有损坏。
并开始焊接电路。
周三检测波形并且深入理解超外差收音机调试中中频调试回路、调试本振谐振回路和输入回路电路的原理,以便更好的调试焊接好的收音机。
周四检测电路是否有虚焊或者漏焊的引脚,进行收音调试。
周五老师检测收音机的整体电路焊接工艺和收音效果的质量。
四、实训记录一、收音机的基本工作原理1.收音机的电路结构种类有很多,早期的多为分立元件电路,目前基本上都采用了大规模集成电路为核心的电路。
集成电路收音机的特点是结构比较简单,性能指标优越,体积小等优点。
AM/FM型的收音机电路可用如图1所示的方框图来表示。
收音机通过调谐回路选出所需的电台,送到变频器与本振电路送出的本振信号进行混频,产生中频输出(我国规定的AM中频为465KHZ,FM中频为10.7MHZ),中频信号将检波器检波后输出调制信号,调制信号经低放、功放放大电压和功率,推动喇叭发出声音。
图1AM/FM型收音机电路方框图2、本实训收音机是一种50型的AM/FM二波段的收音机,收音机电路主要由索尼公司生产的专为调频、调幅收音机设计的大规模集CXA1191M/CXC1191P组成。
由于集成电路内部无法制作电感、大电容和大电阻,故外围元件多以电感、电容和电阻为主,组成各种控制、供电、滤波等电路。
开关电源测试实训报告第一篇:开关电源测试实训报告《开关电源测试》的实训报告第周,星期,第节课学生姓名学号一、实训目的:掌握彩电开关电源的关键测试点及其意义。
二、实训器材:A3彩电几台、长把带磁十字起子几把、47型万用表几块、1:1隔离变压器几台,开关电源部分电路图几张。
三、实训要求:注意安全,测量数据准确,掌握关键测试点的意义,不损坏机器。
四、实训过程:1、测试点C507正极端。
正常电压为:市电×1.4×0.95;该测试点电压正常时,表明C507以前的电路均正常。
2、测试点C561正极端。
正常电压是130V,电压正常表明开关电源电路正常。
3、测试点VD561负极端。
正常电压是6.2V。
4、测试点V581发射极。
正常电压是5V,是为遥控电路提供的工作电压。
五、实训总结:掌握关键测试点的电压值与维修开关电源有至关重要的意义。
六、实训结果:所测电压均正常。
指导教师评语:实训报告等级:指导教师签字:年月日第二篇:开关电源实训报告开关电源实验报告一、实验名称30w-12v开关电源制作二、实验目的1.掌握buck降压型反激式开关电源原理、焊接、调试。
2.熟悉uc3842主要性能参数、端子功能、工作原理及典型应用。
三、实验要求1.输入电压av220v,调节输出电压为dc12v,输出功率30w。
2.掌握电路板焊接工艺。
四、实验介绍㈠开关电源介绍开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(pwm)控制ic和mosfet构成。
随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。
目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。
开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。
高频电子线路实验报告高频电子电路实验报告实验1、调谐放大器1、实验目的1。
熟悉电子元件和高频电路实验箱2.练习使用示波器、信号发生器和万用表3。
熟悉谐振电路的幅频特性分析——通带和选择性4。
熟悉信号源内阻和负载对谐振电路的影响,从而了解频带扩展。
5.熟悉并理解放大器的动态范围及其测试方法。
2.实验仪器1。
双线示波器2。
高频信号发生器3。
万用表4。
实验板G1 3。
实验电路L1+12V C4 CTR 1C RLC 3A = 10K,2K,470RE = 1K,500。
2kc 5 utinc1r 2c 2re图1-1单调谐回路谐振放大器原理图4,实验内容和步骤1,(1)连接电路如图1-1所示,接线尽量短(接线前注意测量+12V电源电压,正确后关闭电源2.在静态测量实验电路中,Re=1K,选择测量每个静态工作点,计算表1-1表1-1测量Vb Ve,确定Ic Vce是否为3.34±2.64±2.64ma±9.36 * Vb,Ve为三极管的基极和发射极对地电压3.动态研究(1)测量放大器a的动态范围Vi ~ V o(谐振点)。
选择R=10K,Re=1K将高频信号发生器连接到电路输入端,将电路输出端连接到示波器。
选择正常放大区域的输入电压Vi,将频率f调整到10.7MHz,将ct调整到“谐振”环路。
此时,将Vi从0.02伏调整到0.8伏,逐点记录V o电压,完成表1-2的第二行(Vi各点的测量值也可根据情况选择)b。
当re分别为500ω和2Kω时,重复上述过程,完成表1-2的第三和第四行在同一张坐标纸上画出不同ic的动态范围曲线VO-VI,并进行比较分析。
表1-26 Vi(V)Re = 1 kvo(V)Re = 500 Re = 2k 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 320mv 940mv 1.44V 1.69 1.84 1.92失真失真失真失真失真失真失真400mv 1.12v 1.72失真失真失真失真失真失真失真当环路电阻R=10k时,选择正常放大区域的输入电压Vi,将高频信号发生器的输出端连接到电路的输入端,将频率f调整到10.7MHz,调整ct使环路谐振,以使输出电压的幅度最大化,此时,环路谐振频率f0=10.7MHz为中心频率。
设 计 报 告一、实验目的学习调频发射机的电路组成,结构原理,掌握仪器的使用方法。
结合理论知识掌握调试方法,理解各部分调谐与系统调试的关系以及完成系统调频发射的功能,完成实验要求。
二、实验内容1.分析了解调频发射电路各部分结构,功能,根据相关理论设计并计算电路中所需元器件参数,并按照电路图焊接电路,并检查电路焊接的正确性。
2.调试电路中的静态工作点,再根据信号的流向逐级调试,观察各级输出情况,根据理论知识进行元器件参数调整和系统的调试。
3、完成主要技术指标的测试:载频6MHZ 、功率放大器输出功率%25,10≥≥ηmW p o 、在终端50Ω假负载电阻上测量,输出波形无失真。
三、实验原理1.1648压控振荡器芯片的1、14管脚接电源VCC ,7、 8管脚接地,5脚外接滤波电容,用来滤 除高频分量。
10、12管脚之间接入LC 并联谐振回路则输出正弦波。
实验中将LC 震荡回路中的电容改成变容 二极管,有调制信号控制变容二极管电容 的变化,实现压控振荡器输出震荡正弦波 频率改变,可以实现调频的功能。
调频信 号从3管脚输出。
当不加入调制信号时,测得的3 脚输出即是实验中用到的载波。
通过对 3管脚的测试可以调试电路使其输出频 率为所需的6MHZ压控振荡器的内部机构如右图:2.变容二极管直接调频原理变容二极管加反向偏压时,变容二极管呈现一个较大的结电容,结电容的大小灵敏地随反向偏压而变化。
利用变容二极管的特性,将其接到振荡器的振荡回路中,作为可控电容原件,则回路的电容量会明显地随调制电压而变化,从而改变震荡频率,达到调频的目的。
变容二极管的反向电压与其结电容呈非线性关系。
其结电容Cj 与反向偏压Ur 的关系为: γ)1(0Dj U Ur C Cj +=同时根据相关计算:)/()cos 1(0Q D m j j V U U m t m C C +=Ω+=Ω 反映调制信号变化对变容二极管电容的变化。
谐振回路的频率LCf π21=则体现调制信号变化对频率改变的影响。
一、实验目的1. 了解高频电子线路的基本原理和实验方法。
2. 掌握高频电子线路中LC振荡器、高频小信号放大器等电路的原理和设计方法。
3. 培养实验操作技能和数据分析能力。
二、实验原理1. LC振荡器:利用LC谐振电路产生正弦波信号,其振荡频率由LC电路的元件参数决定。
2. 高频小信号放大器:利用晶体管等电子元件,对高频信号进行放大,提高信号的幅度。
三、实验仪器1. 高频信号发生器:产生所需频率和幅度的高频信号。
2. 示波器:观察和分析实验信号。
3. 万用表:测量电压、电流等参数。
4. 高频电路实验板:进行实验操作。
四、实验步骤1. LC振荡器实验:(1)搭建LC振荡电路,根据元件参数计算振荡频率。
(2)用示波器观察振荡波形,分析波形特点。
(3)调整元件参数,观察振荡频率和波形的变化。
2. 高频小信号放大器实验:(1)搭建高频小信号放大电路,根据元件参数计算放大倍数。
(2)用示波器观察输入、输出信号波形,分析放大效果。
(3)调整元件参数,观察放大倍数和波形的变化。
五、实验数据与分析1. LC振荡器实验:(1)根据元件参数计算振荡频率,实际测量值与理论计算值基本一致。
(2)观察振荡波形,为正弦波,波形稳定。
2. 高频小信号放大器实验:(1)根据元件参数计算放大倍数,实际测量值与理论计算值基本一致。
(2)观察输入、输出信号波形,放大效果良好。
六、实验结论1. 通过实验,掌握了高频电子线路的基本原理和实验方法。
2. 培养了实验操作技能和数据分析能力。
3. 熟悉了LC振荡器、高频小信号放大器等电路的设计方法。
七、注意事项1. 实验过程中,注意安全操作,防止触电和火灾。
2. 实验数据要准确记录,便于分析。
3. 实验过程中,发现问题要及时解决,确保实验顺利进行。
八、实验报告评分标准1. 实验原理理解(20分)2. 实验步骤操作(20分)3. 实验数据与分析(40分)4. 实验结论与总结(20分)本实验报告得分:______分。
四、实验记录及处理1、设定输出电流,当负载变化时,测量输出的电压、电流如表1所示外特性曲线图如下:图4 变极性TIG焊接电源外特性曲线分析:在输出功率P一定的情况下,由于P=I2 R,随着负载R的增加,输出电流I 只能下降,又因为P=UI,输出电压U上升,曲线无法继续保持恒流特性,这一特性在大电流输出时更加明显。
2、测试不同的输出电压电流波形(1)输出波形为直流输出I=80A / U=14V(2)TIG焊接电流,直流I MAX=85A U MAX=14V ,电流的上升时间t=500ms(3)TIG焊接电流上叠加脉冲电流叠加的电流直流偏移量为+42A(即脉冲电流的最小值),电压为偏移量为+8V,上升时间t=500ms(4)占空比可调的脉冲直流a. 叠加的脉冲电流最大值为I=150A; U = 20V 此时占空比q=75%b. 叠加的脉冲电流最大值为I=80A; U = 15V 此时占空比q=50%c. 叠加的脉冲电流最大值为I=80A; U = 15V 此时占空比q=75%d. 叠加的脉冲交流电I=80A; U = 13V 占空比q=50%此时叠加的脉冲电流偏移量为-40A,此时叠加的脉冲电压偏移量为-8V(4)第一次逆变的PWM控制波形,工作原理如前所述。
T1,T4同时打开或者关断、T2,T3同时打开或关断,两组功率管在PWM控制下交替打开或关断。
为了防止直通,两者占空比之和小于1.(5)二次逆变的PWM控制波形。
T2,T4功率开关管门极受负向电压(分别为,)处于截止状态,T1,T3功率开关管门极受正向电压(分别为+ ,+)处于导通状态。
(6)变极性工作状态下输出方波脉冲波形,电压幅值U = 600V 此时占空比q=50%(7)变极性工作状态下输出方波脉冲波形,电压幅值U = 80V 此时占空比q=50%。
开关电源系统热分析与热测量实验报告1 实验目的通过对一个典型的开关电源系统的设计、热分析与热测量,使学生掌握典型电子系统的工作原理、设计方法,学会利用现代热分析软件及热测量手段(红外热像仪、多点测温系统)对电子设备进行热分析与热测量,了解元器件的工作温度要求及环境温度对系统可靠性的影响。
2 实验设备及工具3 实验原理3.1 开关电源系统的组成及工作原理传统的晶体管串联调整稳压电源是连续控制的线性稳压电源,这种电源技术成熟,有大量的集成化模块,具有稳定性好,输出纹波电压小,使用可靠等优点。
但其体积大,重量沉,尤其是效率极低,仅为45%左右。
而开关型稳压电源采用功率半导体器件作为开关元器件,通过控制开关信号的占空比调整输出电压,效率可高达70%—95%。
开关电源是指通过开关三极管的导通—截止—导通过程,给负载提供能量的一类电源。
开关电源主要由取样电路、基准电压电路、误差放大器、三角波发生器(振荡器)、电压比较器、开关功率管、变压器和整流、滤波电路组成。
其原理方框图如图1所示。
图1 开关电源原理图取样电路通过R1 、R2对输出电压U分压得到反馈电压UF,基准电压电路输出稳定的电压VREF,两个信号之差经误差放大器A1 放大后,作为电压比较器A2 的阈值电压V P 。
将三角波发生器的输出U s 与V P 比较,得到开关管的控制信号,驱动开关管工作,开关管输出的矩形脉冲信号经变压、整流和滤波后得到输出电压U0 。
当U升高时,反馈电压UF随之增大,与基准电压VREF之间的差值减小,因而误差放大器A1 的输出电压VP减小,经电压比较器A2 后,开关控制信号的占空比变小,开关管导通时间缩短,引起电容的充电时间缩短,因此输出电压随之减小;反之,当U0 降低时,反馈电压UF随之减小,与基准电压VREF之间的差值增大,因而误差放大器A1 的输出电压VP增大,经电压比较器A2 后,开关控制信号的占空比变大,开关管导通时间增长,引起电容的充电时间增长,因此输出电压随之变大。
高频电子线路实验注意事项1、本实验系统接通电源前,请确保电源插座接地良好。
2、每次安装实验模块之前,应确保主机箱右侧的交流开关处于断开状态。
为保险起见,建议拔下电源线后再安装实验模块。
3、安装实验模块时,模块右边的电源开关要拨置上方,将模块四角的螺孔和母板上的铜支柱对齐,然后用螺钉固定。
确保四个螺钉拧紧,以免造成实验模块与电源或者地接触不良。
经仔细检查后方可通电实验。
4、各实验模块上的电源开关、拨码开关、复位开关、自锁开关、手调电位器和旋转编码器均为磨损件,请不要频繁按动或旋转。
5、请勿直接用手触摸芯片、电解电容等元件,以免造成损坏。
6、各模块中的贴片可调电容是出厂前调试使用的。
出厂后的各实验模块功能已调至最佳状态,无需另行调节这些电位器,否则将会对实验结果造成严重影响。
若已调动请尽快复原;若无法复原,请与指导老师或直接与我公司联系。
7、在关闭各模块电源之后,方可进行连线。
连线时在保证接触良好的前提下应尽量轻插轻放,检查无误后方可通电实验。
拆线时若遇到连线与孔连接过紧的情况,应用手捏住线端的金属外壳轻轻摇晃,直至连线与孔松脱,切勿旋转及用蛮力强行拔出。
8、按动开关或转动电位器时,切勿用力过猛,以免造成元件损坏。
目录高频电子线路实验箱简介 (2)实验一高频小信号调谐放大器实验 (6)实验二三点式正弦波振荡器 (13)实验三模拟乘法器调幅(AM、DSB、SSB) (17)实验四包络检波及同步检波实验 (22)高频电子线路实验箱简介一、产品组成该产品由2个实验仪器模块和8个实验模块及实验箱体(含电源)组成。
1、实验仪器及主要指标如下:1)频率计(模块6):频率测量范围:5Hz~2400MHz输入电平范围:100mV~2V(有效值)测量误差:≤±20ppm(频率低端≤±1Hz)输入阻抗:1MΩ/10pF2)高频信号源(模块1):输出频率范围:400KHz~45MHz(连续可调)频率稳定度:10E-4(1×10-4)输出波形:正弦波,谐波≤-30dBc输出幅度:峰峰值1mV~1V(连续可调)输出阻抗:50Ω3)低频信号源(模块1):输出频率范围:200Hz~10KHz(连续可调,方波频率可达250KHz)频率稳定度:10E-4(1×10-4)输出波形:正弦波、方波、三角波输出幅度:峰峰值10mV~5V(连续可调)输出阻抗:100Ω2、实验模块及电路组成如下:1)模块2:小信号选频放大模块包含单调谐放大电路、电容耦合双调谐放大电路、集成选频放大电路、自动增益控制电路(AGC)等四种电路。
四、实验记录及处理
1、设定输出电流,当负载变化时,测量输出的电压、电流如表1所示
表1 外特性数据记录
1 2 3 4 5 6 7 8
50A U/V 10.01 17.30 26.00 36.04 50.30 51.10 51.60 52.10 I/A 49.60 49.60 49.70 49.60 49.00 39.50 34.00 29.80
100A U/V 15.80 27.08 41.00 48.10 50.00 51.00 51.50 51.80 I/A 99.70 99.60 99.80 77.80 50.40 39.50 34.70 34.70
150A U/V 18.50 34.60 45.10 47.70 49.80 51.00 51.50 52.00 I/A 149.90 150.00 121.30 84.80 53.30 42.40 36.80 32.40
200A U/V 22.80 41.40 45.50 47.70 50.00 51.00 51.50 51.90 I/A 200.00 193.70 127.60 86.20 54.80 43.10 35.80 31.90
250A U/V 26.20 41.10 45.10 47.70 50.00 50.80 51.40 51.80 I/A 246.70 194.30 126.10 84.00 53.10 41.20 36.20 31.70
300A U/V 29.80 41.20 45.10 47.80 50.10 51.00 51.60 52.60 I/A 295.70 196.00 120.00 84.10 53.30 41.50 36.10 31.60
外特性曲线图如下:
图4 变极性TIG焊接电源外特性
曲线分析:
在输出功率P一定的情况下,由于P=I2 R,随着负载R的增加,输出电流I 只能下降,又因为P=UI,输出电压U上升,曲线无法继续保持恒流特性,这一特性在大电流输出时更加明显。
2、测试不同的输出电压电流波形
(1)输出波形为直流输出I=80A / U=14V
(2)TIG焊接电流,直流I MAX=85A U MAX=14V ,电流的上升时间t=500ms
(3)TIG焊接电流上叠加脉冲电流叠加的电流直流偏移量为+42A
(即脉冲电流的最小值),电压为偏移量为+8V,上升时间t=500ms
(4)占空比可调的脉冲直流
a.叠加的脉冲电流最大值为I=150A; U = 20V 此时占空比q=75%
b.叠加的脉冲电流最大值为I=80A; U = 15V 此时占空比q=50%
c. 叠加的脉冲电流最大值为I=80A; U = 15V 此时占空比q=75%
d. 叠加的脉冲交流电I=80A; U = 13V 占空比q=50%
此时叠加的脉冲电流偏移量为-40A,此时叠加的脉冲电压偏移量为-8V
(4)第一次逆变的PWM控制波形,工作原理如前所述。
T1,T4同时打开或者关断、
T2,T3同时打开或关断,两组功率管在PWM控制下交替打开或关断。
为了防止直通,
两者占空比之和小于1.
(5)二次逆变的PWM控制波形。
T2,T4功率开关管门极受负向电压(分别为-5.36v ,-10.5v)处于截止状态,T1,T3功率开关管门极受正向电压(分别为+16.1v ,+13.6v)处于导通状态。
(6)变极性工作状态下输出方波脉冲波形,电压幅值U = 600V 此时占空比q=50%
(7)变极性工作状态下输出方波脉冲波形,电压幅值U = 80V 此时占空比q=50%。