光纤激光器简介
- 格式:docx
- 大小:1.27 MB
- 文档页数:23
光纤激光器的原理
光纤激光器是一种利用光纤作为增益介质的激光器。
它通过将激光器的增益介
质替换为光纤,实现了激光器的小型化、高功率化和高光束质量化。
光纤激光器的原理是基于光纤的增益效应和光的放大过程,下面我们来详细了解一下光纤激光器的原理。
首先,光纤激光器的核心部分是光纤增益介质。
光纤是一种能够传输光信号的
细长光导纤维,其内部材料通常为掺杂有稀土离子的玻璃材料。
当光信号通过光纤时,受到掺杂离子的激发,从而实现光信号的放大。
这种光纤增益介质的特性使得光纤激光器具有高效率、高功率和高光束质量的特点。
其次,光纤激光器的工作原理是基于光的受激辐射放大过程。
当外部能量作用
于光纤增益介质时,掺杂离子被激发并处于激发态,此时若有入射光信号通过光纤,激发态的离子会与入射光信号发生受激辐射,从而使入射光信号得到放大。
这一过程中,光纤增益介质起到了放大光信号的作用,实现了光纤激光器的放大功能。
此外,光纤激光器的原理还涉及到光的反射和共振。
在光纤激光器中,通常会
采用光纤光栅或光纤光学器件来实现光的反射和共振,从而实现激光的输出。
光纤光栅和光学器件可以使光信号在光纤中来回反射,形成光的共振,从而增强激光的输出功率和光束质量。
综上所述,光纤激光器的原理是基于光纤的增益效应和光的放大过程,通过光
纤增益介质、受激辐射放大和光的反射共振来实现激光的输出。
光纤激光器具有高效率、高功率和高光束质量的特点,广泛应用于通信、医疗、材料加工等领域。
希望本文对光纤激光器的原理有所帮助,谢谢阅读!。
光纤激光器研究报告
光纤激光器是一种利用光纤光导核心之间储存光能的光学设备,并通过半导体激光器提供光子能量来激发光核心的光子放出储存在光纤中的光的一种设备。
与传统的光学放大器相比,光纤激光器具有高功率、低杂散、高效率、小型化等优势。
由于光纤激光器有着占用空间少、无需维护等特点,因此在现代科学技术发展中广泛应用于通信、医疗、工业制造等领域。
光纤激光器采用玻璃棒来形成隐性腔,将激光器的激光照射到棒上,激发玻璃中的离子使之形成游离态激子,然后激子通过多次反射在棒杆中生成光子,这些光子随后在光纤中传播。
光线随后沿着沿光纤水平传播,并在光纤的端部被集成,这将导致光纤激光器产生具有所需波长和高功率的激光。
光纤激光器优于其他激光器的一大优点是它可以在非常小的空间内运行,因此可以用于许多高密度组装应用。
此外,尽管它的成本较高,但它在长期使用和成本效益方面往往优于多晶体或气体激光器。
在使用光纤激光器的过程中,我们需要注意防护眼睛、避免直接照射皮肤等细节问题。
另外,拥有充足的工作经验和专业知识的技术工程师应具备的能力,以便在需要时进行日常维护和紧急维修。
综上所述,光纤激光器是一种高端技术的设备,应用广泛,未来在科学技术方面的发展中有着广泛的应用前景。
高功率IPG光纤激光器应用简介一、IPG光纤激光器简介1.光纤激光器简介光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。
2.光纤激光器的优势首先是使用成本低,光纤激光器替代了不稳定或高维修成本的传统激光器。
其次,光纤激光的柔性导光系统,非常容易与机器人或多维工作台集成。
第三,光纤激光器体积小,重量轻,工作位置可移动。
第四,光纤激光器可以达到前所未有的大功率(至五万瓦级)。
第五,在工业应用上比传统激光器表现更优越。
它有适用于金属加工的最佳波长和最佳的光束质量,而且光纤激光器在每米焊接和切割上的费用最低。
第六,一器多机,即一个激光器通过光纤分光成多路多台工作。
第七,免维护,使用寿命长。
最后,由于其极高的稳定性,大大降低了运行中对激光质量监控的要求。
简单来说就是高功率下的极好光束质量,高光束质量下的极好电光效率,高功率高光束质量下的极小体积、可移动性和柔性。
3.IPG简介全球最大的光纤激光制造商IPG Photonics由Valentin Gapontsev博士于1991年创建,总部设在美国东部麻省。
IPG在德国、美国、俄罗斯和意大利设有生产、研发基地,并在全球设有销售和服务网点,覆盖美国、英国、欧洲、印度、日本、韩国、新加坡和中国,并于2006年在美国纳斯达克上市。
十八年来,IPG致力于纵向合成,所有的核心配件均为IPG研发、生产和拥有,同时也是唯一一个能为客户提供高性价比的光纤和半导体激光器的厂家。
高功率是IPG的优势。
全世界已有上千台IPG的高功率(>1KW)光纤激光器在汽车制造、船舶制造、海上平台和石油管道、航空航天和技术加工等工业领域中得以应用。
在日本,我们向丰田、三菱、住友在内的客户售出了数百台IPG的大功率光纤激光器。
光纤激光器的介绍光纤激光器的基本构成包括激光介质、激发源、光学谐振腔和输出光纤等。
其中,激发源通常是高功率半导体激光器或其他类型的激发源,通过注入高能量的光子来激发光纤介质。
介质选择不同的元素或化合物,可以获得不同波长的激光输出。
光学谐振腔的设计和构造非常关键,它可以提高激光的相干性和稳定性。
最后,通过输出光纤将激光束传输到需要的位置。
光纤激光器具有许多独特的优点。
首先,光纤激光器可以产生高质量的激光光束,具有较小的发散角度和高光束质量。
其次,光纤激光器具有高度可靠性和稳定性,可以长时间连续运行而不损坏。
此外,光纤激光器无需频繁调整或维护,使用寿命长,适合工业生产环境。
另外,由于光纤激光器的体积小、重量轻,可以方便地集成到各种设备和系统中,并且易于搬运和安装。
光纤激光器在通信领域有着重要的应用。
其高质量的光束和稳定的输出功率使其成为光纤通信系统中的理想光源。
在光纤通信系统中,光纤激光器可以用作发射光源,将信息传输到远距离。
在高容量光纤通信系统中,光纤激光器能够产生高功率的激光光束,实现远距离的信号传输。
光纤激光器在医疗领域也得到广泛应用。
它可以用于激光手术、皮肤美容、激光治疗等。
光纤激光器具有较小的光束尺寸和高能量密度,可以精确地用于医疗操作。
此外,光纤激光器输出的激光波长可以根据不同的医疗需求进行选择,包括可见光、红外线等。
光纤激光器在制造业中也有重要的应用。
它可以用于切割、焊接、打孔等工艺。
光纤激光器具有高功率、高精度和高可靠性的特点,可以实现快速、准确和稳定的制造过程。
在汽车制造、航空航天、电子制造等行业,光纤激光器已经取代了传统的切割和焊接设备,成为主流技术。
在科学研究领域,光纤激光器也发挥着重要作用。
由于光纤激光器输出的激光具有较小的发散角度和高亮度,它可以用于光谱分析、高精度测量以及光学实验等。
此外,光纤激光器还广泛用于激光雷达、光学透镜、光纤传感器等领域。
总之,光纤激光器作为一种先进的激光源具有广泛的应用前景。
什么是光纤激光器——激光英才网光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。
光纤激光器的类型按照光纤材料的种类,光纤激光器可分为:1.晶体光纤激光器。
工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和nd3+:YAG单晶光纤激光器等。
2.非线性光学型光纤激光器。
主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。
3.稀土类掺杂光纤激光器。
光纤的基质材料是玻璃,向光纤中掺杂稀土类元素离子使之激活,而制成光纤激光器。
4.塑料光纤激光器。
向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。
光纤激光器的优势光纤激光器作为第三代激光技术的代表,具有以下优势:(1)玻璃光纤制造成本低、技术成熟及其光纤的可饶性所带来的小型化、集约化优势。
(2)玻璃光纤对入射泵浦光不需要像晶体那样的严格的相位匹配,这是由于玻璃基质Stark 分裂引起的非均匀展宽造成吸收带较宽的缘故。
(3)玻璃材料具有极低的体积面积比,散热快、损耗低,所以上转换效率较高,激光阈值低。
(4)输出激光波长多:这是因为稀土离子能级非常丰富及其稀土离子种类之多。
(5)可调谐性:由于稀土离子能级宽和玻璃光纤的荧光谱较宽。
(6)由于光纤激光器的谐振腔内无光学镜片,具有免调节、免维护、高稳定性的优点,这是传统激光器无法比拟的。
(7)光纤导出,使得激光器能轻易胜任各种多维任意空间加工应用,使机械系统的设计变得非常简单。
(8)胜任恶劣的工作环境,对灰尘、震荡、冲击、湿度、温度具有很高的容忍度。
(9)不需热电制冷和水冷,只需简单的风冷。
(10)高的电光效率:综合电光效率高达20%以上,大幅度节约工作时的耗电,节约运行成本。
(11)高功率,目前商用化的光纤激光器是六千瓦。
光纤激光器的基本结构光纤激光器是一种利用光纤作为激光介质的激光器。
它具有高效率、高稳定性、小体积等优点,被广泛应用于通信、医疗、材料加工等领域。
其基本结构包括泵浦源、光纤增益介质、反射镜和输出窗口。
1. 泵浦源泵浦源是光纤激光器中最重要的组成部分之一,其作用是提供能量给增益介质,使其产生受激辐射。
常用的泵浦源有半导体激光器和二极管激光器两种。
半导体激光器是一种将电能转化为光能的器件,其工作原理是利用半导体材料中的电子与空穴复合时释放出能量的过程来产生激光。
半导体激光器具有小体积、高效率等特点,但其输出功率有限。
二极管激光器也是一种将电能转化为光能的器件,与半导体激光器相比,二极管激光器具有更高的输出功率和更广阔的工作范围。
因此,二极管激光器是目前光纤激光器中常用的泵浦源。
2. 光纤增益介质光纤增益介质是光纤激光器中产生受激辐射的关键部分。
常用的增益介质有掺铒、掺镱等元素的光纤。
掺铒光纤是一种将铒元素掺杂进石英玻璃中制成的光纤,其主要特点是在1.5微米波段具有较高的增益。
掺镱光纤则是将镱元素掺杂进石英玻璃中制成的光纤,其主要特点是在1.06微米波段具有较高的增益。
3. 反射镜反射镜是将激光产生并放大后反射回来形成激射束束流线的关键部分,通常由高反膜和低反膜组成。
高反膜可以使得大部分激发后发出来的能量被反射回去,而低反膜可以使得少量能量通过,从而形成激射束束流线。
4. 输出窗口输出窗口是将激射束束流线从光纤内部输出的关键部分,通常由透明的玻璃或石英制成。
输出窗口可以使得激射束束流线从光纤内部顺利输出,并保护光纤不受外界环境的影响。
总之,光纤激光器的基本结构包括泵浦源、光纤增益介质、反射镜和输出窗口。
这些组成部分相互配合,共同完成了将泵浦能量转化为激射束束流线的过程。
随着科技的不断发展,光纤激光器在各个领域中的应用前景也越来越广阔。
光纤激光器是一种利用光学元件将电能转换为光能,并实现高精度光
束成像的一种高科技激光光源。
光纤激光器是一种具有高效率、高稳
定性、可靠性以及长期可靠性的激光光源,可广泛应用于仪器仪表、
光源测试、显示屏、临床仪器、生命科学研究、激光通信等领域。
光纤激光器的原理主要分为三部分:光纤放大器、光强隔离器和镜头
系统。
首先,一定功率的激光管在光纤放大器的作用下将原始输入的
小功率能量肃化输入,放大器会产生一种高质量的激光,而这种激光
则被输入光纤光栅,并由其穿过。
其次,光纤光栅将激光分散成多个
波长,而光强隔离器的作用则是过滤掉其他不相容的频率激光。
最后,激光通过镜头系统的作用,被凝聚成一束微小的光柱,再被聚焦到目
标区域,以实现质量较高的高精度图象输出。
光纤激光器的特点在于其具有良好的耦合效率、良好的耦合效率和比
较低的原理功耗。
相比传统激光源,光纤激光器可节省测量空间,可
运行在任何环境,因此成为众多激光应用领域中使用最广泛的光源之一。
此外,光纤激光器具有易于调节、无公害等优点,使用十分方便,而且其维护成本也比传统激光源低。
总而言之,光纤激光器具有高性能、可靠性、经济性和环境友好等优点,因此应用在各种领域,逐渐成为新时代激光产品的新宠。
它的出
现使传统的激光源得到有效的取代,使激光行业及其应用的技术越来
越发展壮大。
光纤激光器的基本结构和工作原理一、光纤激光器的基本结构光纤激光器是一种利用光纤作为光学谐振腔的激光器。
它由光纤、泵浦光源、谐振腔和输出耦合器件组成。
1. 光纤:光纤作为光传输的介质,具有较高的光学质量和较低的损耗。
它通常由二氧化硅或氟化物等材料制成。
2. 泵浦光源:泵浦光源是提供激发能量的装置,常见的泵浦光源有半导体激光器、氘灯等。
泵浦光源通过能级跃迁将电能转化为光能,将光纤中的掺杂物激发至激发态。
3. 谐振腔:谐振腔是产生激光放大的空间,由两个反射镜构成,其中一个是部分透射的输出耦合镜。
谐振腔中的光纤被反射镜反射多次,形成光学谐振,增强光的幅度。
4. 输出耦合器件:输出耦合器件是将放大的激光从谐振腔中输出的装置,常见的输出耦合器件有反射镜、光栅等。
它通过调节输出耦合器件的透射率,实现激光的输出。
二、光纤激光器的工作原理光纤激光器的工作原理是基于激光的受激辐射过程。
其工作过程主要可以分为三个步骤:泵浦、光放大和激射。
1. 泵浦:泵浦光源产生的高能量光通过耦合装置输入光纤,激发光纤中的掺杂物(如铥、镱、铍等)的原子或离子跃迁到激发态,形成一个能级反转。
2. 光放大:光纤中的激发态粒子通过受激辐射过程,发射出与泵浦光源相同频率和相干相位的光子。
这些光子经过多次反射,在谐振腔中不断放大,形成光的增强。
3. 激射:当光的增益超过谐振腔的损耗时,光纤激光器开始产生激射。
激射的激光经过输出耦合器件,部分透射出光纤,形成激光输出。
光纤激光器的工作原理可以通过能级图来解释。
在泵浦过程中,泵浦光源提供的能量使得光纤中的掺杂物原子或离子跃迁到激发态。
在光放大过程中,激发态粒子通过受激辐射过程,发射出与泵浦光源相同频率和相干相位的光子。
这些光子通过多次反射,在谐振腔中不断受到增益介质的放大。
当光的增益超过谐振腔的损耗时,光纤激光器开始产生激射,形成激光输出。
光纤激光器具有很多优点,如小型化、高效率、高质量光束、稳定性好等。
光纤激光器的原理与结构光纤激光器是一种利用光纤作为激光器介质的激光器。
它以光纤的光导特性为基础,具有小巧、灵活、高效等优点,被广泛应用于通信、医疗、材料加工等领域。
光纤激光器的基本原理可以归纳为激光放大、光反馈和能量转换三个方面,下面将对其进行详细介绍。
第一,激光放大。
光纤激光器一般采用掺杂有特定材料的光纤作为放大介质。
其中,掺杂的材料可为稀土离子如铒、钕等,其主要作用是提供能级,实现电能到光能的转换。
当外界的能量供给(如光能、电能等)作用于掺杂材料时,稀土离子吸收入射光并转化为激活态,激活态颗粒与基底发生碰撞而迅速跃迁到较低能级并释放出辐射能,形成激光。
由于掺杂材料分布于光纤核心区域,使得光能在光纤中的驻留时间增加,从而增加放大系数,提高激光功率。
第二,光反馈。
为了获得高质量的激光输出,光纤激光器需要实现光的随轴反馈。
它一般采用光纤光栅和光耦合器等装置来实现。
光纤光栅是一种通过改变光纤折射率分布而形成的光波束反射镜,起到光反馈的作用。
光耦合器则是将输入光和输出光分别通过两根相互独立的光纤引入和引出,用以将反射的激光光束分离出来。
通过调整光栅结构和光耦合器的参数,可以实现激光的特定波长选择和功率调节,进而实现激光器的稳定输出。
第三,能量转换。
光纤激光器需要将外部能源(如电能)转化为激光输出。
一般情况下,光纤激光器采用半导体激光器作为光纤激励源。
通过将电能输入到半导体器件中,形成电子与空穴的复合,产生光子并通过光纤输送到激光器中进行放大和反馈,最终实现激光输出。
同时,光纤激光器还需要提供稳定的电源供给和温度控制系统,以保证激光器的正常工作。
光纤激光器的结构一般包括激光介质、激光泵浦、光栅和耦合器等组成。
其中,激光介质即掺杂有稀土离子的光纤,可为单模光纤或多模光纤。
激光泵浦是提供能源的装置,一般采用半导体激光器。
光栅是实现光的反馈的装置,采用了周期性折射率变化的结构。
耦合器则是实现输入光和输出光的分离,并且可根据需要进行功率调节和波长选择。
光纤激光器计算公式【原创实用版】目录1.光纤激光器概述2.光纤激光器的计算公式a.输出功率和转换效率b.光束质量c.增益光纤长度d.系统稳定性e.损耗计算3.激光器亮度计算公式4.激光器线宽计算公式5.结论正文一、光纤激光器概述光纤激光器是一种使用掺稀土元素玻璃光纤作为增益介质的激光器。
它在光纤放大器的基础上开发出来,通过泵浦光的作用,光纤内形成高功率密度,从而实现激光工作物质的激光能级粒子数反转。
当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。
二、光纤激光器的计算公式1.输出功率和转换效率:光纤激光器的输出功率和转换效率是衡量其性能的重要指标。
提高输出功率和转换效率,需要优化光束质量、缩短增益光纤长度、提高系统稳定性并使其更加小巧紧凑。
2.光束质量:光束质量是描述激光束的集中度和分布状态的参数,通常用光束发散角或光束直径表示。
提高光束质量可以提高激光器的切割、打标和通信效果。
3.增益光纤长度:增益光纤长度是影响光纤激光器性能的关键因素。
合理的增益光纤长度可以有效提高激光器的输出功率和转换效率。
4.系统稳定性:系统稳定性是衡量光纤激光器在不同工作条件下的稳定性能。
提高系统稳定性可以保证激光器在各种应用场景下都能稳定工作。
5.损耗计算:光纤损耗是光纤传输的重要指标,对光纤通信的传输距离有决定性的影响。
实现光纤通信,一个重要的问题是尽可能地降低光纤的损耗。
光纤损耗的理论计算公式如下:单模光纤:每公里 0.25db,总公里数乘以 0.25,再加上活动链接器0.5db 乘以 n 个(n 为活动链接器数量)。
多模光纤:每公里 0.36db,总公里数乘以 0.36,再加上活动链接器0.5db 乘以 n 个(n 为活动链接器数量)。
三、激光器亮度计算公式激光器的亮度就是激光器的功率除以光斑面积。
光纤输出光斑的面积主要和光纤的数值孔径(NA)有关,NA 越大发散角度越大。
四、激光器线宽计算公式激光器线宽指的是光谱的谱线线宽。
光纤激光器特点分类光纤激光器分类特点光纤激光器是指以光纤为基质掺入某些激活离子作做成工作物质,或者是利用光纤本身的非线性效应制作成的一类激光器.Nd2o3的光纤激光器是于1963年首先研制成功。
光纤激光器是一种新颖的有源光纤器件。
它的主要特点是:(1)光纤的芯径很细(10-15um),光纤内易形成的泵浦光功率密度,且单摸状态下激光与泵浦光可充分耦合,因此光纤激光器的能量转换效率高,激光阀值低;(2)工作物质可以做的很长,因此可获得很高的总增益;(3)腔镜可直接镀在光纤端面,或采用定向耦合起方式构成谐振腔,且由于光纤具有良好的柔绕性,而可以设计成相当紧凑的激光器构型;(4)光纤基质具有很宽的荧光光谱,并且还具有相当多的可调参数和选择性,因此,光纤激光器可以获得相当宽的调谐范围和好积的单色性。
光纤激光器的类型按照光纤材料的种类,光纤激光器可分成一下几种类型:一:晶体光纤激光器工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和nd3+:YAG单晶光纤激光器等;二:非线性光学型光纤激光器主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器;三:稀土类掺杂光纤激光器光纤的基质材料是玻璃,向光纤中掺杂稀土类元素离子使之激活,而制成光纤激光器;四:塑料光纤激光器向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。
光纤激光器的迅速发展是基于近年来的光纤技术{拉晶体光纤技术、稀土掺杂光纤技术、单摸低损耗光纤和光纤耦合技术等}和大功率半导体激光技术的突破性进展。
特别是采用半导体激光二极管(ld)作为泵浦源,以其小体积和高效率为光纤激光器的实用化奠定了基础。
目前,光纤激光器已进入实用化阶段,已见有连续输出功率几千瓦,峰值功率几万千瓦。
半导体激光器半导体激光器又称激光二极管(LD)。
进入八十年代,人们吸收了半导体物理发展的最新成果,采用了量子阱(QW)和应变量子阱(SL-QW)等新颖性结构,引进了折射率调制Bragg发射器以及增强调制Bragg发射器最新技术,同时还发展了MBE、MOCVD及CBE等晶体生长技术新工艺,使得新的外延生长工艺能够精确地控制晶体生长,达到原子层厚度的精度,生长出优质量子阱以及应变量子阱材料。
光纤激光器工作原理
光纤激光器是一种将电能转化为光能的装置,主要由激光介质、泵浦源、光纤和光学元件组成。
其工作原理如下:
1. 泵浦源:光纤激光器通常使用半导体激光器作为泵浦源,通过电流激发产生激光。
2. 激光介质:光纤激光器中的激光介质是由掺杂有能级跃迁的离子或原子组成,常见的激光介质有掺铥、掺镱等。
3. 泵浦能量传递:泵浦激光器产生的高能量光束经过光纤,光能通过与光纤内部的激光介质发生相互作用而被吸收。
吸收能量使激光介质的电子能级上升到较高的激发态。
4. 能级跃迁:通过能级跃迁,激光介质中的高能量电子从激发态返回基态时会产生受激辐射。
这些辐射光子会与原子或离子中原来自发辐射的光子进行叠加,形成相干的激光光束。
5. 光纤增益:激光光束在光纤中反射多次,光纤长度决定了激光光束在光纤中传播的时间。
光纤增益主要靠光纤内部的受激辐射放出的光子与原子或离子发生叠加而达到。
6. 反射镜:光纤的两端装有反射镜,用于增强激光光束的相干性。
通过调整反射镜的位置和角度,可以获得不同波长和光强的激光输出。
通过以上的原理,光纤激光器可以实现高功率、高质量、窄谱宽的激光输出,广泛应用于通信、医疗、材料加工等领域。
光纤激光器原理
光纤激光器是一种使用半导体片作为基底,运用发光二极管材料将光转化为光束的激光器。
其原理是利用发光二极管片在外加一定偏压时,半导体片内部出现光子饱和效应而发射出强烈的尖峰光束,形成激光。
发光二极管片是由P型半导体和N型半导体组成的复合体,P 型半导体中的空穴梯度和N型半导体的电子梯度在此复合体中运动时会发生相互抵消的现象,因此可以为复合体的发光能量提供一个安全的保护环境。
当发光二极管片被施加电压时,空穴和电子就会向复合体中心汇集,复合体中心接近零偏压时会发生释放现象,导致光在复合体中心处释放出来。
光纤激光器可以分为峰值激光器、持续激光器和调制激光器三种类型。
峰值激光器是指一次发出一个单独的光脉冲来发射激光,其脉宽可调节脉冲发射频率;持续激光器是指把一条持续的常强光波束发射成一条脉冲的激光;调制激光器是指可以通过改变元件偏压来调节激光单元发射出来的光束的亮度。
光纤激光器的优点很多,它既可以用于局部加工,也可以用于远距离多模光栅传输,体积小,重量轻,不易受外界影响,持续发光能力强,能够发生脉冲激光,而且成本较低。
目录第一章、激光基础第二章、激光器第三章、光纤的特性第四章、光纤激光器第五章、实验室激光器型号及操作安全第一章激光基础1.1什么是激光激光在我国最初被称为“莱赛”,即英语“Laser”的译音,而“Laser”是“Light amplification by stimulated emission of radiation ”的缩写。
意为“辐射的受激发射光放大”,大约在1964年,根据钱学森院士的建议,改名为“激光”。
激光是通过人工方式,用光或者放电等强能量激发特定的物质而产生的光。
激光的四大特性:高亮度、高单色性、高方向性、高相干性。
具有高亮度的激光束经过透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其能够加工几乎所有材料。
由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。
1.2激光产生的基本理论1.2.1原子能级和辐射跃迁按照玻尔的氢原子理论,绕原子核高速旋转的电子具有一系列不连续的轨道,这些轨道称为能级,如图1-1。
激发态基态当电子在不同的能级时,原子系统的能量是不相同的,能量最低的能级称为基态。
当电子由于外界的作用从较低的能级跃迁到较高的能级时,原子的能量泵浦原子核图1-2电子跃迁图加,从外界吸收能量。
反之,电子从较高能级跃迁到较低能级时,向外界发出能量。
在这个过程中,若原子吸收或发出的能量是光能(辐射能),则称此过程为辐射跃迁。
发出或吸收的光的频率满足普朗克公式(hv=E2-E1)。
1.2.2受激吸收、自发辐射、和受激辐射受激吸收:处于低能级上的原子,吸收外来能量后跃迁到高能级,则称之为受激吸收。
自发辐射:由于物质有趋于最低能量的本能,处于高能级上的原子总是要自发跃迁到低能级上去,如果跃迁中发出光子,则这个过程称为自发辐射。
受激吸收自发辐射受激辐射两个能级之间的能量差越大,自发辐射过程所放出的光子频率就越高。
如同弹琴,如果用力拉紧琴弦,琴发出的音调频率就高,反之则低。
光纤激光器的详细介绍光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设,作为其他激光器的泵浦源等等。
工作原理光纤是以SiO2为基质材料拉成的玻璃实体纤维,其导光原理是利用光的全反射原理,即当光以大于临界角的角度由折射率大的光密介质入射到折射率小的光疏介质时,将发生全反射,入射光全部反射到折射率大的光密介质,折射率小的光疏介质内将没有光透过。
普通裸光纤一般由中心高折射率玻璃芯、中间低折射率硅玻璃包层和最外部的加强树脂涂层组成。
光纤按传播光波模式可分为单模光纤和多模光纤。
单模光纤的芯径较小,只能传播一种模式的光,其模间色散较小。
多模光纤的芯径较粗,可传播多种模式的光,但其模间色散较大。
按折射菲菲内部可分为阶跃折射率光纤和渐变折射率光纤。
以稀土掺杂光纤激光器为例,掺有稀土离子的光纤芯作为增益介质,掺杂光纤固定在两个反射镜间构成谐振腔,泵浦光从M1入射到光纤中,从M2输出激光。
当泵浦光通过光纤时,光纤中的稀土离子吸收泵浦光,其电子呗激励到较高的激发能级上,实现了离子数反转。
反转后的粒子以辐射形成从高能级转移到基态,输出激光。
类型按照光纤材料的种类,光纤激光器可分为:1、晶体光纤激光器。
工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和nd3+:YAG 单晶光纤激光器等。
2、非线性光学型光纤激光器。
主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。
3、稀土类掺杂光纤激光器。
光纤的基质材料是玻璃,向光纤中掺杂稀土类元素离子使之激活,而制成光纤激光器。
4、塑料光纤激光器。
向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。
按增益介质分类为:a)晶体光纤激光器。
工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和Nd3+:Y AG 单晶光纤激光器等。
光纤激光器的原理及应用光纤激光器是一种利用光纤传输光信号并通过激光作用的设备。
它的工作原理基于光纤的特性和激光的产生原理,广泛应用于通信、医疗、材料加工等领域。
光纤激光器的原理主要包括三个方面:光纤传输、激光产生和激光放大。
光纤传输是光纤激光器的基础。
光纤是一种由高纯度石英玻璃或塑料制成的细长柔软的光传输介质。
它具有低损耗、高带宽和抗干扰等优点,能够将光信号传输到目标位置。
激光产生是光纤激光器的核心。
光纤激光器通常采用半导体激光二极管作为激光源,通过电流注入激活半导体材料,产生激光。
激光二极管的输出波长通常在800纳米至1700纳米之间,可用于可见光和红外光的激发。
激光放大是光纤激光器的关键。
光纤激光器中通常采用光纤放大器对激光进行放大。
光纤放大器是一种利用光纤作为增益介质的器件,能够使激光功率得到显著提升。
光纤放大器通常采用掺铥光纤或掺镱光纤,利用掺杂离子的能级跃迁来实现激光的放大。
光纤激光器的应用非常广泛,主要体现在以下几个方面:光纤激光器在通信领域有着重要的地位。
由于光纤传输具有低损耗和高带宽的特点,光纤激光器可以用于长距离、高速率的光纤通信系统。
它可以实现光纤通信的信号发射、接收和放大,为现代通信技术提供了重要支持。
光纤激光器在医疗领域有广泛的应用。
激光具有高能量、高聚焦和高精度的特点,可以用于医疗器械中的切割、焊接、治疗等操作。
例如,激光手术刀可以用于精确切割组织,激光治疗仪可以用于肿瘤治疗等。
光纤激光器还可以应用于材料加工和制造领域。
激光加工技术可以用于金属切割、焊接、打孔等操作,可以实现高精度、高效率的加工过程。
光纤激光器在汽车制造、航空航天、电子设备等领域的应用越来越广泛。
光纤激光器是一种利用光纤传输光信号并通过激光作用的设备。
它的工作原理基于光纤的特性和激光的产生原理,广泛应用于通信、医疗、材料加工等领域。
随着科技的不断发展,光纤激光器在各个领域的应用将会更加广泛,为人们的生活和工作带来更多便利与创新。
光纤激光器原理光纤激光器是一种利用光纤作为增益介质的激光器。
它具有体积小、能耗低、输出光束质量好等优点,在通信、医疗、材料加工等领域有着广泛的应用。
要了解光纤激光器的原理,首先需要了解光纤激光器的基本结构和工作原理。
光纤激光器的基本结构包括泵浦光源、光纤增益介质和共振腔。
泵浦光源通常采用半导体激光器或光纤耦合的激光二极管,用来提供能量激发光纤增益介质。
光纤增益介质是光纤激光器的核心部件,它通常由掺铒或掺钬的光纤材料构成,能够实现光放大和激光发射。
共振腔由两个光学镜组成,其中一个镜具有较高的反射率,另一个镜具有较低的透射率,共同构成光学谐振腔,实现光的来回反射和放大。
光纤激光器的工作原理主要包括泵浦光源激发、光纤增益、共振腔放大和输出光束四个步骤。
首先,泵浦光源产生的泵浦光通过耦合光纤输送到光纤增益介质中,激发光纤增益介质中的掺杂离子,使其处于激发态。
随后,光纤增益介质中的激发态掺杂离子经过受激辐射过程,发射出与泵浦光频率相同的光子,实现光的放大。
放大后的光子在共振腔中来回反射,不断受到激发和放大,最终产生高质量的激光输出。
光纤激光器的原理是建立在激光放大的基础上的。
激光的放大是通过受激辐射过程实现的,即受到外部光子的激发后,原子或分子从低能级跃迁到高能级,然后再自发跃迁到较低能级,发射出与外部光子相同频率和相干相位的光子。
这种过程在光纤增益介质中不断发生,从而实现光的放大和激光输出。
总的来说,光纤激光器利用光纤增益介质实现光的放大和激光输出,其工作原理是基于受激辐射过程和光学谐振腔的。
通过合理设计泵浦光源、光纤增益介质和共振腔的结构,可以实现高效、稳定的激光输出。
光纤激光器在通信、医疗、材料加工等领域具有重要的应用价值,对于推动科技进步和社会发展具有重要意义。
目录第一章、激光基础第二章、激光器第三章、光纤的特性第四章、光纤激光器第五章、实验室激光器型号及操作安全第一章激光基础1.1什么是激光?激光在我国最初被称为“莱赛”,即英语“Laser”的译音,而“Laser”是“Light amplification by stimulated emission of radiation”的缩写。
意为“辐射的受激发射光放大”,大约在1964年,根据钱学森院士的建议,改名为“激光”。
激光是通过人工方式,用光或者放电等强能量激发特定的物质而产生的光。
激光的四大特性:高亮度、高单色性、高方向性、高相干性。
具有高亮度的激光束经过透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其能够加工几乎所有材料。
由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。
1.2激光产生的基本理论1.2.1原子能级和辐射跃迁按照玻尔的氢原子理论,绕原子核高速旋转的电子具有一系列不连续的轨道,这些轨道称为能级,如图1-1。
图1-1 原子能级图当电子在不同的能级时,原子系统的能量是不相同的,能量最低的能级称为基态。
当电子由于外界的作用从较低的能级跃迁到较高的能级时,原子的能量增图1-2 电子跃迁图加,从外界吸收能量。
反之,电子从较高能级跃迁到较低能级时,向外界发出能量。
在这个过程中,若原子吸收或发出的能量是光能(辐射能),则称此过程为辐射跃迁。
发出或吸收的光的频率满足普朗克公式(hv=E2-E1)。
1.2.2受激吸收、自发辐射、和受激辐射受激吸收:处于低能级上的原子,吸收外来能量后跃迁到高能级,则称之为受激吸收。
自发辐射:由于物质有趋于最低能量的本能,处于高能级上的原子总是要自发跃迁到低能级上去,如果跃迁中发出光子,则这个过程称为自发辐射。
两个能级之间的能量差越大,自发辐射过程所放出的光子频率就越高。
如同弹琴,如果用力拉紧琴弦,琴发出的音调频率就高,反之则低。
自发辐射光极为常见,普通光源的发光就包含受激吸收与自发辐射过程。
前一过程是粒子由于吸收外界能量而被激发至高能态;后一过程是高能态粒子自发地跃迁回低能态并同时辐射光子。
当外界不断地提供能量时,粒子就会不断地由受激吸收到自发辐射,再受激吸收,再自发辐射……如此循环不止地进行下去。
每循环一次,放出一个光子,光就这样产生了。
以电灯为例:接通电源后,电流流经灯泡中的发光物质——钨丝,钨丝被灼热,使钨原子跃迁至高能态,然后又自发跃迁回低能态并同时辐射出光子,于是灯泡就亮了。
受激辐射:处于高能级E2上的原子,受外来频率(满足hv=E2-E1)的光子的激励,从E2跃迁到E1,发出一个和外来光子完全相同的光子,称为受激辐射。
受激辐射和自发辐射有本质的区别:前者是受激产生,跃迁时产生的光子与外来光子在频率、相位、方向、和偏振方向上完全一致,吸收一个光子,放出两个光子,产生的光子相当于加强了外来光子,即光放大作用。
而自发辐射的光子频率不同,是杂乱无章的,完全不相干的。
光放大作用简单地说,就是输入是一个外来光子,而输出的则是性质与外来光子一模一样的两个光子,因为在输出的两个光子中,一个就是外来光子本身,而另一个则是在受激辐射过程中释放出来的,即是被外来光子“激”出来的。
一个光子激发一个粒子产生受激辐射,得到两个完全相同的光子,这就是光的“放大”。
这两个光子再去激发两个粒子产生受激辐射,就可以得到完全相同的4个光子,4、8、16……如此链锁反应,完全相同的光子数目便会越来越多,可见受激辐射过程也就是光放大的过程。
在受激辐射过程中产生并被放大了的光,便是激光。
1.2.3粒子反转分布从光的放大作用可以看出,要想实现放大,则必须输入外来光子(即种子光,后面要讲的泵浦光),并且要有可供受激辐射的处在高能级的原子。
在平衡状态下,粒子(原子、分子等)在各能级的分布满足玻尔兹曼公式,即能级的能量愈高,上面的粒子数越少。
这时如果给粒子系统提供一个外来能量,使低能级上的粒子吸收能量跃迁至高能级上,使高能级上的粒子数多于低能级上的粒子数,这个过程即称为粒子集居数反转。
只有在两个形成了粒子数反转的能级之间,受激辐射的分量才能大于受激吸收,光才能得到放大。
1.2.4激光产生的三要素:激励源,工作介质,谐振腔一、激励源要想把处于低能态的粒子送到高能态去,就得借助外力工具来实现。
这个过程类似于把水位很低的河水或井水抽运到水塔上的蓄水池里,必须要有足够功率的水泵作功才成。
同理,要实现粒子数反转,首先必须消耗一定的能量把大量粒子从低能级“搬运”到高能级,这种过程在激光理论上叫做泵浦或激励。
由于其作用原理和水泵抽水相类似,所以把能使大量的粒子从低能态抽运到高能态的激励装置通称之为“光泵”。
“光泵”只是在解释粒子数反转时借用的一种形象的说法。
实际上粒子都是甘居低能态的,而且很顽固,并不是象水一样很容易地就被泵抽运走了。
即使费了很大劲把一部分抽运到了高能态,但它们很快就又自发地跃回低能态了。
怎么办呢,那就需要加大能量不停顿地来轰击。
就是说,激励不仅要快,而且要强有力。
激励作用总是通过消耗一定的能量来实现的,产生受激辐射所需要的最小激励能量定义为激光器的阈值。
阈值是描述激光器整体性能的一个重要参数。
二、工作介质在大千世界里,各种各样的物质都是由分子、原子、电子等微观粒子组成的,如果有了强大的激励是不是都能在物质中实现粒子数反转而产生激光呢?不是的,激励只是一个外部条件,激光的产生还取决于合适的工作物质,也称之为激光器的工作介质,这才是激光产生的内因。
前面我们所讲到的都是以二能级系统为例来讨论的,也就是说工作物质只有高、低两个能级。
实际上目前所有已实现的激光辐射都是三能级或四能级系统。
下图是红宝石激光器的铬离子(Cr3+)的简化能级图,这是一个典型的三能级系统。
图中所示的E1,E2,E3中,E2是亚稳态级。
外界激发作用将会把粒子从E1抽运到E3,被抽运到E3的粒子很快通过无辐射跃迁转移到E2,因为E3的寿命只有10-9秒,即10亿分之一秒,不允许粒子久留,所以此过程很快。
但E2的亚稳态,寿命较长,约为10-3秒,即千分之一秒,允许粒子久留。
随着E1上的粒子不断地被抽运到E3,又很快转移到E2,既然E2允许粒子久留,那么从E2到E1的自发辐射跃迁几率就很小,于是粒子就在E2上积聚起来,从而实现E2对E1两能级间的粒子数反转。
这个系统便能对诱发光子能量hV=E2—E1的光进行光放大。
显然,E2能级好象一个水塔上的蓄水池,能够贮存大量的粒子,只有亚稳态级才具有这种能力,但并不是所有的发光物质都具有亚稳态结构,这就是有些物质可以“激”出激光来,而有些物质却“激”不出来的道理。
所以,具备亚稳态能级结构是对产生激光的工作物质的起码要求。
三、谐振腔合适的工作物质有了,实现粒子数反转的激励源有了,这下子该“激”出激光了吧!还不行,因为人们在实验中发现这样虽然可以产生受激辐射,但非常微弱,根本形不成可供人们使用的激光。
这很自然的使人们想到了采用放大的办法来解决这个问题,于是出现了光学谐振腔。
即利用两个面对面的反射镜,使放大了的光在镜间来回被反射,反复通过镜间的介质不断再放大,即反馈放大。
两个反射镜可以是平面,也可以是球面。
其中一个要求是反射率为100%的全反射镜,图1-3谐振腔示意图另一个是部分反射镜。
比如,反射率为95%时,5%的光透射出去供人应用,从而构成光学谐振腔。
因为其侧面是敞开的,所以,又称作“开放腔”。
当把激光介质置于两反射镜之间后,即可构成激光振荡器。
当外界强光激励置于两镜间的激光介质时,就在亚稳态级与稳态级之间实现了粒子数反转。
处于亚稳态级的粒子当自发地跃迁到低能级时将自发辐射光子,但这种发射是无规律的,射向四面八方,其中一部分可以诱发激发态上的粒子产生受激辐射。
从图上可以看出,凡非腔轴方向的自发辐射,尽管它也可以诱发激发态上的粒子产生光放大,但因介质体积有限,腔侧面又是敞开的,终将逸出腔外。
所以,产生激光的作用不大。
唯独沿腔轴方向的自发辐射才起作用。
每当它碰到镜面时,便被反射沿原路折回,又重新通过介质不断诱发激发态上的粒子产生受激辐射光放大。
由于受激辐射光在腔镜间往返运行,介质被反复利用,腔轴方向受激辐射光就越来越强。
其中一部分从部分反射镜端射出,这就是激光;而其余部分留在腔内继续反馈放大以维持不断的向外辐射激光。
激光产生的流程图如下所示:图1-4 激光产生流程图第二章激光器2.1激光器的历史激光器的发展史应该追溯到1917年,爱因斯坦提出光的受激辐射的概念,预见到受激辐射光放大器诞生,也就是激光产生的可能性。
20世纪50年代美国科学家汤斯及前苏联科学家普罗科霍罗夫等人分别独立发明了一种低噪声微波放大器,即一种在微波波段的受激辐射放大器Maser(Microwave amplification by stimulated emission of radiation )。
1958年美国科学家汤斯和肖洛提出在一定条件下,可将这种微波受激辐射放大器的原理推广到光波波段,制成受激辐射光放大器Laser(Light amplification by stimulated emission of radiation)。
1960年7月美国的梅曼宣布制成了第一台红宝石激光器。
图2-1 梅曼的第一台红宝石激光器1961年我国科学家邓锡铭、王之江制成我国第一台红宝石激光器,称其为“光学量子放大器”。
随后我国科学家钱学森建议统一翻译成“激光”或“激光器”。
图2-2我国激光器发展历史图2-3我国第一台激光器2.2激光器的分类激光的历史于1960年应用3能级固体激光器的红宝石激光器的振动而拉开了帷幕。
对气体激光器、半导体激光器、染料激光、光纤激光器等新激光材料、介质的研究逐渐活跃地展开。
现在,在工业用激光器中,二氧化碳激光器、准分子激光器、Nd:YAG激光器、光纤激光器等已被广泛应用。
本节将按照增益介质的不同对激光器进行分类,对各种代表性的激光增益介质、泵浦方法、振荡形态、振荡波长进行描述。
与激光器的特征有关的项目和种类见表:图2-4 激光器分类图(a)液体激光器液体激光器是以液体作为介质的激光器。
最被广泛应用的液体激光器的介质是染料分子溶于有机溶剂中的有机染料,实用化的液体激光器基本上是以有机染料为介质的染料激光器。
(b)气体激光器气体激光器是利用气体分子作为激光介质的激光器,一般泵浦方法是对封入到玻璃管(或陶瓷管)内的气体放电。
因为放电,被加速的电子将能量转移到气体激光介质的原子(或离子和分子),原子被泵浦到激发态能级而形成反转分布。
根据激光介质的气体种类的不同,又可以细分为HeNe激光器、惰性气体激光器、准分子激光器、二氧化碳激光器。