高考数学一轮复习第2章函数、导数及其应用第11节导数与函数的单调性课时分层训练文北师大版
- 格式:doc
- 大小:62.54 KB
- 文档页数:5
第11课时 导数与函数的单调性、极值1.函数的单调性与导数在区间(a ,b )内,函数的单调性与其导数的正负有如下的关系: (1)如果f ′(x )>0,那么函数y =f (x )在这个区间单调递增; (2)如果f ′(x )<0,那么函数y =f (x )在这个区间单调递减; (3)如果f ′(x )=0,那么函数y =f (x )在这个区间为常数. 注:f (x )在(a ,b )内可导为此规律成立的一个前提条件. 2.函数极值的概念设函数f (x )在点x 0附近有定义且在点x 0处连续.(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值. (2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (3)如果在x 0附近的左、右两侧导数值同号,那么f (x 0)不是极值. (4)极大值点、极小值点统称为极值点,极大值、极小值统称为极值.注:(1)在函数的整个定义域内,函数的极值不一定唯一,在整个定义域内可能有多个极大值和极小值.(2)极大值与极小值没有必然关系,极大值可能比极小值还小. [做一做]1.(1)下列函数存在极值的是( )A .y =1x B .y =x 2-3 C .y =x 3+x 2+2x -3 D .y =x 3(2)函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则实数a 等于( ) A .2 B .3 C .4 D .5解析:(1)选B.判断四个选项可知存在极值的为B 项.(2)选D.将x =-3代入f ′(x )=3x 2+2ax +3=0中可得实数a =5.1.必明辨的2个易错点(1)若f ′(x 0)=0,则x 0未必是极值点.但x 0是极值点,则f ′(x 0)=0一定成立.(2)对于在(a ,b )内可导的函数f (x )来说,f ′(x )>0是f (x )在(a ,b )上为递增函数的充分不必要条件;f ′(x )<0是f (x )在(a ,b )上为递减函数的充分不必要条件.例如:f (x )=x 3在整个定义域R 上为增函数,但f ′(x )=3x 2,f ′(0)=0,所以在x =0处并不满足f ′(x )>0,即并不是在定义域中的任意一点都满足f ′(x )>0.[练一练]1.(1)函数y =12x 2-ln x 的单调递减区间为________.(2)已知a >0,函数f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的取值范围是________.解析:(1)由题意知,函数的定义域为(0,+∞).又由y ′=x -1x =x 2-1x<0,解得0<x<1,所以函数y =12x 2-ln x 的单调递减区间为(0,1).(2)因为f ′(x )=3x 2-a ,f (x )在[1,+∞)上是单调增函数,所以f ′(x )≥0,所以a ≤3x 2,所以a ≤3.又a >0,可知0<a ≤3.答案:(1)(0,1) (2)(0,3]2.牢记导数应用的2类题型(1)求函数单调性的基本步骤; (2)求函数极值的基本步骤. [练一练]2.(1)函数f (x )=13x 3-x 的单调递减区间为________.(2)函数f (x )=x 3-3x 的极大值为________.解析:(1)由于f ′(x )=x 2-1=(x -1)(x +1)<0,得-1<x <1,即函数f (x )的单调递减区间为(-1,1).(2)由f ′(x )=3x 2-3=3(x -1)(x +1),由于当x <-1时,f ′(x )>0,当-1<x <0时,f ′(x )<0,则当x =-1时,有极大值,其值为2.答案:(1)(-1,1) (2)2考点一 导数与函数的单调性(高频考点)已知函数f (x )=13x 3+1-a 2x 2-ax -a ,x ∈R ,其中a >0.(1)求函数f (x )的单调区间;(2)若函数f (x )在区间(-2,0)内恰有两个零点,求a 的取值范围. [解] (1)f ′(x )=x 2+(1-a )x -a =(x +1)(x -a ). 由f ′(x )=0,得x 1=-1,x 2=a >0.当x x (-∞,-1) (-1,a ) (a ,+∞) f ′(x ) + - + f (x ) ↗ ↘ ↗故函数f (x )的单调递增区间是(-∞,-1),(a ,+∞);单调递减区间是(-1,a ). (2)由(1)知f (x )在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数f (x )在区间(-2,0)内恰有两个零点当且仅当⎩⎪⎨⎪⎧f (-2)<0,f (-1)>0,f (0)<0,解得0<a <13.所以a 的取值范围是⎝⎛⎭⎫0,13. [方法归纳] 利用导数求函数f (x )的单调区间的一般步骤为: (1)确定函数f (x )的定义域;(2)求导数f ′(x ),求出f ′(x )=0时的解;(3)在函数f (x )的定义域内列出x ,f ′(x ),f (x )的变化表; (4)根据(3)的变化表确定f (x )的单调区间.1.(1)(原创题)函数f (x )=ln xx的单调递减区间是( )A .[e ,+∞)B .[1,+∞)C .(0,e]D .(0,1](2)若关于x 的不等式x 2+ax -c <0的解集为{x |-2<x <1},且函数y =ax 3+mx 2+x +c 2在区间⎝⎛⎭⎫12,1上不是单调函数,则实数m 的取值范围为( ) A .(-2,-3] B .[-3,-3]C .(-∞,-2)∪(3,+∞)D .(-∞,-2)∪(-3,+∞) (3)(2015·佛山模拟)设函数f (x )=2x 3-3(a +1)x 2+6ax +8,a ∈R.①若f (x )在x =3处取得极值,求常数a 的值;②若f (x )在(-∞,0)上为增函数,求a 的取值范围. 解:(1)选A.函数f (x )的定义域为(0,+∞),且f ′(x )=1-ln x x 2,由f ′(x )=1-ln xx 2≤0,得x ≥e.(2)选A.由不等式x 2+ax -c <0的解集为{x |-2<x <1}可得x 2+ax -c =0的两根为-2,1,可求得a =1,c =2,所以由函数y =x 3+mx 2+x +1在⎝⎛⎭⎫12,1上不是单调函数,可知y ′=3x 2+2mx +1=0在⎝⎛⎭⎫12,1上有解,即2m =-(3x +1x )(x ∈(12,1)),设g (x )=3x +1x,当x ∈⎝⎛⎦⎤12,33时,g (x )=3x +1x 为减函数,当x ∈⎝⎛⎭⎫33,1时,g (x )=3x +1x 为增函数,则23≤g (x )<4,故-2<m ≤-3,故选A.(3)①由f ′(x )=6x 2-6(a +1)x +6a , 令f ′(3)=6(3-a )(3-1)=0得a =3.②令f ′(x )=6x 2-6(a +1)x +6a =6(x -a )(x -1)=0,得x 1=a ,x 2=1.当a <1时,f (x )在(-∞,a )和(1,+∞)上为增函数,故当0≤a <1时,f (x )在(-∞,0)上为增函数.当a ≥1时,f (x )在(-∞,1)和(a ,+∞)上为增函数,从而f (x )在(-∞,0)上也为增函数; 综上所述,当a ∈[0,+∞)时,f (x )在(-∞,0)上为增函数.考点二 导数与函数的极值(高频考点)(2014·高考天津卷节选)已知函数f (x )=x 2-23ax 3(a >0),x ∈R.求f (x )的单调区间和极值.[解] 由已知,有f ′(x )=2x -2ax 2(a >0).令f ′(x )=0,解得x =0或x =1a.当x 所以f (x )的单调递增区间是⎝⎭⎫0,1a ;单调递减区间是(-∞,0),⎝⎛⎭1a ,+∞. 当x =0时,f (x )有极小值,且极小值f (0)=0;当x =1a时,f (x )有极大值,且极大值f ⎝⎛⎭⎫1a =13a 2. [方法归纳] 求可导函数f (x )极值的步骤 (1)确定函数的定义域; (2)求导数f ′(x );(3)求方程f ′(x )=0的根;(4)检验f ′(x )在方程f ′(x )=0的根的左、右两侧的符号,如果在根的左侧附近f ′(x )>0,右侧附近f ′(x )<0,那么函数y =f (x )在这个根处取得极大值;如果在根的左侧附近f ′(x )<0,右侧附近f ′(x )>0,那么函数y =f (x )在这个根处取得极小值.2.(1)函数f (x )=x 3-ax 2-bx +a 2在x =1处有极值10,则a ,b 的值分别是( )A .-4,11B .-4,1或-4,11C .-1,5D .以上都不对(2)直线y =a 与函数y =x 3-3x 的图象有三个相异的交点,则a 的取值范围是( )A .(-2,2)B .(-∞,-2)∪(2,+∞)C .[-2,2]D .(-∞,-2)(3)已知函数f (x )和g (x )的定义域都是实数集R ,f (x )是奇函数,g (x )是偶函数,且当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,g (-2)=0,则不等式f (x )g (x )>0的解集为________.(4)若函数y =f (x )在x =x 0处取得极大值或极小值,则称x 0为函数y =f (x )的极值点.已知a ,b 是实数,1和-1是函数f (x )=x 3+ax 2+bx 的两个极值点.①求a 和b 的值;②设函数g (x )的导函数g ′(x )=f (x )+2,求g (x )的极值点.解:(1)选A.因为f ′(x )=3x 2-2ax -b ,所以⎩⎪⎨⎪⎧ f ′(1)=3-2a -b =0,f (1)=1-a -b +a 2=10,解得⎩⎪⎨⎪⎧a =-4,b =11或⎩⎪⎨⎪⎧ a =3,b =-3,由于⎩⎪⎨⎪⎧a =3,b =-3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0无极值,舍去. (2)选A.y ′=3x 2-3=0,x =±1,y 极大值=f (-1)=2,y 极小值=f (1)=-2,所以-2<a <2. (3)设h (x )=f (x )g (x ),又f (x )是奇函数,g (x )是偶函数,所以函数h (x )为奇函数,h (0)=0,当x <0时,h ′(x )=f ′(x )g (x )+f (x )g ′(x )>0,所以函数h (x )为(-∞,0),(0,+∞)内的增函数,由g (-2)=0得h (-2)=0,从而当x >0时,函数h (x )也为增函数且h (2)=0,于是h (x )=f (x )g (x )>0的解集为(-2,0)∪(2,+∞),故填(-2,0)∪(2,+∞).(4)①由题设知f ′(x )=3x 2+2ax +b ,且f ′(-1)=3-2a +b =0,f ′(1)=3+2a +b =0, 解得a =0,b =-3. ②由①知,f (x )=x 3-3x .因为f (x )+2=(x -1)2(x +2),所以g ′(x )=0的根为x 1=x 2=1,x 3=-2, 于是函数g (x )的极值点只可能是1或-2. 当x <-2时,g ′(x )<0,当-2<x <1时,g ′(x )>0,故-2是g (x )的极值点.当-2<x <1或x >1时,g ′(x )>0,故1不是g (x )的极值点. 所以g (x )的极值点为-2.考点三 由函数的单调性和极值求参数的取值范围3.已知向量a =(x 2,x +1),b =(1-x ,t ),若函数f (x )=a ·b 在区间(-1,1)上是增函数,求t 的范围.解:由于a ·b =(x 2,x +1)·(1-x ,t )=x 2(1-x )+t ·(x +1)=-x 3+x 2+tx +t ,所以f (x )=-x 3+x 2+tx +t .由f ′(x )=-3x 2+2x +t ,若f (x )在区间(-1,1)上是增函数,则当x ∈(-1,1)时,f ′(x )≥0,即-3x 2+2x +t ≥0,得t ≥3x 2-2x 在区间(-1,1)上恒成立.又g (x )=3x 2-2x 是对称轴为x =13且开口向上的抛物线,因此,当x ∈(-1,1)时,g (x )的最大值为g (-1)=5.因此,所求t 的范围为t ≥5.方法思想——分类讨论思想在求解函数单调性中的应用1.若F (x )=f (x )g (x ),且f ′(x )g (x )<f (x )g ′(x ),则下列判断正确的是( )A .F (x )是增函数B .F (x )是减函数C .F (x )的增、减性无法判断D .F (x )有最大值解析:选B.由F ′(x )=f ′(x )g (x )-f (x )g ′(x )g 2(x )<0知,F (x )是减函数.2.设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =x ·f ′(x )的图象的一部分,则f (x )的极大值与极小值分别是( )A .f (1)与f (-1)B .f (-1)与f (1)C .f (-2)与f (2)D .f (2)与f (-2) 解析:选C.由图象知f ′(2)=f ′(-2)=0. 因为x >2时,y =x ·f ′(x )>0, 所以f ′(x )>0,所以y =f (x )在(2,+∞)上单调递增;同理,f (x )在(-∞,-2)上单调递增,在(-2,2)上单调递减, 所以y =f (x )的极大值为f (-2), 极小值为f (2),故选C.3.设函数f (x )=x e x ,则( ) A .x =1为f (x )的极大值点 B .x =1为f (x )的极小值点 C .x =-1为f (x )的极大值点 D .x =-1为f (x )的极小值点解析:选D.因为f (x )=x e x ,所以f ′(x )=e x +x e x =e x (1+x ). 所以当f ′(x )≥0时,即e x (1+x )≥0,即x ≥-1,所以x ≥-1时函数y =f (x )为增函数.同理可求,x <-1时函数f (x )为减函数,所以x =-1时,函数f (x )取得极小值.4.(2015·佛山模拟)设曲线y =x 2+1在点(x ,f (x ))处的切线的斜率为g (x ),则函数y =g (x )cos x 的部分图象可以为( )解析:选A.因为y ′=g (x )=2x ,所以y =g (x )cos x =2x ·cos x ,是奇函数,当x ∈⎝⎛⎭⎫-π2,0时,y =2x ·cos x <0,当x ∈⎝⎛⎭⎫0,π2时,y =2x ·cos x >0,所以选A.5.已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .(-∞,-3]∪[3,+∞)B .[-3,3]C .(-∞,-3)∪(3,+∞)D .(-3,3)解析:选B.由f ′(x )=-3x 2+2ax -1≤0在(-∞,+∞)上恒成立,得Δ=4a 2-12≤0⇒-3≤a ≤ 3.6.函数f (x )=x +9x的单调减区间为________.解析:f ′(x )=1-9x 2=x 2-9x2,令f ′(x )<0,解得-3<x <0或0<x <3, 故单调减区间为(-3,0)和(0,3). 答案:(-3,0),(0,3)7.函数y =2x -1x 2的极大值是________.解析:y ′=2+2x3,令y ′=0,得x =-1.当x <-1时,y ′>0;当-1<x <0时,y ′<0. 所以当x =-1时,y 取极大值-3. 答案:-3 8.(2015·东莞质检)已知函数f (x )=ax 2-2x +ln x ,若f (x )无极值点,但其导函数f ′(x )有零点,则a =________.解:由题意x >0,f ′(x )=2ax -2+1x =2ax 2-2x +1x.f ′(x )有零点而f (x )无极值点,表明该零点左右f ′(x )同号,故a ≠0,且2ax 2-2x +1=0的Δ=0.由此可得a =12.答案:129.已知函数f (x )=12x 2+ax -(a +1)ln x (a <-1).(1)若函数f (x )在x =2处的切线与x 轴平行,求a 的值; (2)在(1)的条件下,求出f (x )的极值. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=x +a -a +1x =x 2+ax -(a +1)x.因为f (x )在x =2处的切线与x 轴平行,则f ′(2)=0,即4+2a -(a +1)2=0,得a =-3.(2)由(1)知,f ′(x )=(x -1)(x -2)x,则f (x )在(0,1)上单调递增,在(1,2)上单调递减, 在(2,+∞)上单调递增,则当x =1时,f (x )有极大值f (1)=-52,当x =2时,f (x )有极小值f (2)=-4+2ln 2.10.已知函数f (x )=ax 2+b ln x 在x =1处有极值12.(1)求a ,b 的值;(2)判断函数y =f (x )的单调性并求出单调区间.解:(1)因为函数f (x )=ax 2+b ln x ,所以f ′(x )=2ax +bx.又函数f (x )在x =1处有极值12,所以⎩⎪⎨⎪⎧ f ′(1)=0,f (1)=12,即⎩⎪⎨⎪⎧2a +b =0,a =12. 可得a =12,b =-1.(2)由(1)可知,f (x )=12x 2-ln x ,其定义域是(0,+∞),且f ′(x )=x -1x =(x +1)(x -1)x.当x所以函数y。
第十一节 导数与函数的单调性函数的导数与单调性的关系 函数y =f (x )在某个区间内可导,则(1)若f ′(x )>0,则f (x )在这个区间内单调递增; (2)若f ′(x )<0,则f (x )在这个区间内单调递减; (3)若f ′(x )=0,则f (x )在这个区间内是常数函数.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若函数f (x )在区间(a ,b )上单调递增,那么在区间(a ,b )上一定有f ′(x )>0.( ) (2)如果函数在某个区间内恒有f ′(x )=0,则函数f (x )在此区间上没有单调性.( ) (3)f ′(x )>0是f (x )为增函数的充要条件.( ) [答案] (1)× (2)√ (3)×2.函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)B [函数y =12x 2-ln x 的定义域为(0,+∞),y ′=x -1x=x -1x +1x,令y ′≤0,则可得0<x ≤1.]3.(教材改编)如图2111所示是函数f (x )的导函数f ′(x )的图象,则下列判断中正确的是( )图2111A .函数f (x )在区间(-3,0)上是减函数B .函数f (x )在区间(1,3)上是减函数C .函数f (x )在区间(0,2)上是减函数D .函数f (x )在区间(3,4)上是增函数A [当x ∈(-3,0)时,f ′(x )<0,则f (x )在(-3,0)上是减函数.其他判断均不正确.] 4.设f (x )=x -sin x ,则f (x )( ) A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数B [因为f ′(x )=1-cos x ≥0,所以函数为增函数,排除选项A 和C.又因为f (0)=0-sin 0=0,所以函数存在零点,排除选项D ,故选B.]5.若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)D [由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)单调递增⇔f ′(x )=k -1x≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1,即k 的取值范围为[1,+∞).]判断或证明函数的单调性f x x 3ax 2b a b f x [解] f ′(x )=3x 2+2ax ,令f ′(x )=0, 解得x 1=0,x 2=-2a3.2分当a =0时,因为f ′(x )=3x 2≥0,所以函数f (x ) 在(-∞,+∞)上单调递增;6分当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减;10分当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0,12分所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝⎛⎭⎪⎫0,-2a 3上单调递减.15分[规律方法] 用导数证明函数f (x )在(a ,b )内的单调性的步骤 (1)一求.求f ′(x );(2)二定.确认f ′(x )在(a ,b )内的符号;(3)三结论.作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.易错警示:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.[变式训练1] 设函数f (x )=ax 2-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0. 【导学号:51062078】 [解] (1)由题意得f ′(x )=2ax -1x =2ax 2-1x(x >0).2分当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =12a ,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减;6分当x ∈⎝⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.10分(2)证明:令s (x )=e x -1-x ,则s ′(x )=ex -1-1.12分当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1ex -1>0.15分求函数的单调区间y =(e-1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. [解] (1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )ea -x+b .2分依题设,⎩⎪⎨⎪⎧f 2=2e +2,f ′2=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得⎩⎪⎨⎪⎧a =2,b =e.6分(2)由(1)知f (x )=x e2-x+e x .由f ′(x )=e2-x(1-x +ex -1)及e2-x>0知,f ′(x )与1-x +ex -1同号.10分令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增.12分 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞),故f (x )的单调递增区间为(-∞,+∞).15分[规律方法] 求函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间; (4)在定义域内解不等式f ′(x )<0,得单调递减区间.[变式训练2] 已知函数f (x )=ax +ln x ,则当a <0时,f (x )的单调递增区间是________,单调递减区间是________.⎝ ⎛⎭⎪⎫0,-1a ⎣⎢⎡⎭⎪⎫-1a ,+∞ [由已知得f (x )的定义域为(0,+∞).因为f ′(x )=a +1x=a ⎝ ⎛⎭⎪⎫x +1a x,所以当x ≥-1a时,f ′(x )≤0,当0<x <-1a时,f ′(x )>0,所以f (x )的单调递增区间为⎝⎛⎭⎪⎫0,-1a ,单调递减区间为⎢⎡⎪⎫-1a ,+∞.]已知函数的单调性求参数f x x 3ax 若f (x )在R 上为增函数,求实数a 的取值范围. 【导学号:51062079】 [解] 因为f (x )在(-∞,+∞)上是增函数, 所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立.7分 因为3x 2≥0,所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数,所以a ≤0,即实数a 的取值范围为(-∞,0].15分[迁移探究1] (变换条件)函数f (x )不变,若f (x )在区间(1,+∞)上为增函数,求a 的取值范围.[解] 因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立,7分所以a ≤3x 2在(1,+∞)上恒成立,所以a ≤3,即a 的取值范围为(-∞,3].12分[迁移探究2] (变换条件)函数f (x )不变,若f (x )的单调递减区间为(-1,1),求a 的值.[解] f ′(x )=3x 2-a . 当a ≤0时,f ′(x )≥0,4分所以f (x )在(-∞,+∞)上为增函数. 当a >0时,令3x 2-a <0,得-3a 3<x <3a 3,12分 所以f (x )的单调递减区间为⎝⎛⎭⎪⎫-3a 3,3a 3,∴3a 3=1,即a =3.15分 [迁移探究3] (变换条件)函数f (x )不变,若f (x )在区间(-1,1)上不单调,求a 的取值范围.[解] ∵f (x )=x 3-ax -1,∴f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a3(a ≥0). 7分∵f (x )在区间(-1,1)上不单调,∴0<3a3<1,得0<a <3,即a 的取值范围为(0,3).15分[规律方法] 根据函数单调性求参数的一般方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.易错警示:(1)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0,且在(a ,b )内的任一非空子区间上f ′(x )不恒为0.应注意此时式子中的等号不能省略,否则漏解.(2)函数在其区间上不具有单调性,但可在子区间上具有单调性,如迁移3中利用了3a3∈(0,1)来求解.[变式训练3] 若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13D.⎣⎢⎡⎦⎥⎤-1,-13 C [取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A ,B ,D.故选C.][思想与方法]1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意函数f (x )的定义域.2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性. 3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.[易错与防范]1.求单调区间应遵循定义域优先的原则.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要4.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是:对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.课时分层训练(十三) 导数与函数的单调性A 组 基础达标 (建议用时:30分钟)一、选择题1.函数f (x )=(x -3)e x的单调递增区间是( ) 【导学号:51062080】 A .(-∞,2) B .(0,3) C .(1,4)D .(2,+∞)D [因为f (x )=(x -3)e x ,则f ′(x )=e x(x -2),令f ′(x )>0,得x >2, 所以f (x )的单调递增区间为(2,+∞).]2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图2112所示,则下列叙述正确的是( )图2112A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )C [依题意得,当x ∈(-∞,c )时,f ′(x )>0,因此,函数f (x )在(-∞,c )上是增函数,由a <b <c ,所以f (c )>f (b )>f (a ).因此C 正确.]3.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.]4.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为A .(-∞,2)B .(-∞,2] C.⎝⎛⎭⎪⎫-∞,52 D.⎝⎛⎦⎥⎤-∞,52 D [∵f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x恒成立.令g (x )=x +1x ,g ′(x )=1-1x2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52,故选D.]5.(2017·绍兴第一中学3月模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) 【导学号:51062081】A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)B [由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B.]二、填空题6.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是________.单调递增 [在(0,2π)上有f ′(x )=1-cos x >0,所以f (x )在(0,2π)上单调递增.] 7.函数f (x )=ln x x的单调递增区间是________.(0,e) [由f ′(x )=⎝⎛⎭⎪⎫ln x x ′=1-ln x x 2>0(x >0),可得⎩⎪⎨⎪⎧1-ln x >0,x >0,解得x ∈(0,e).]8.已知函数f (x )=3x a-2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则a 的取值范围是________. 【导学号:51062082】⎝ ⎛⎦⎥⎤0,25∪[1,+∞) [f ′(x )=3a -4x +1x , 若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a ≤4x -1x在[1,2]上恒成立.令h (x )=4x -1x,则h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a≤h (1),即3a ≥152或3a≤3, 又a >0,所以0<a ≤25或a ≥1.]三、解答题9.已知函数f (x )=ln x +kex(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.[解] (1)由题意得f ′(x )=1x-ln x -kex, 又f ′(1)=1-ke =0,故k =1.6分(2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数.10分由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0. 综上可知,f (x )的单调递增区间是(0,1), 单调递减区间是(1,+∞).15分10.已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,讨论g (x )的单调性.[解] (1)对f (x )求导得f ′(x )=3ax 2+2x ,2分 因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.7分(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x.12分 令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.15分B 组 能力提升 (建议用时:15分钟)1.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <aC [依题意得,当x <1时,f ′(x )>0,f (x )为增函数; 又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12, 即有f (3)<f (0)<f ⎝ ⎛⎭⎪⎫12,c <a <b .] 2.(2017·宁波镇江海中学质检(二))设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)11 =0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________.【导学号:51062083】(-2,0)∪(2,+∞) [令g (x )=f x x ,则g ′(x )=xf ′x -f x x 2>0,x ∈(0,+∞),所以函数g (x )在(0,+∞)上单调递增.又g (-x )=f -x -x =-f x -x =f x x =g (x ),则g (x )是偶函数,g (-2)=0=g (2),则f (x )=xg (x )>0⇔⎩⎪⎨⎪⎧ x >0,g x >0或⎩⎪⎨⎪⎧ x <0,g x <0,解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞).]3.已知函数f (x )=ln x ,g (x )=12ax +b . (1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=m x -1x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围. [解] (1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2. 又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.6分 (2)∵φ(x )=m x -1x +1-f (x )=m x -1x +1-ln x 在[1,+∞)上是减函数, ∴φ′(x )=-x 2+2m -2x -1x x +12≤0在[1,+∞)上恒成立, 即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立,则2m -2≤x +1x,x ∈[1,+∞).13分 ∵x +1x∈[2,+∞),∴2m -2≤2,m ≤2. 故实数m 的取值范围是(-∞,2].15分。
第11讲导数与函数的单调性,)函数的单调性在(a,b)内函数f(x)可导,f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.辨明导数与函数单调性的关系(1)f′(x)>0(或<0)是f(x)在(a,b)内单调递增(或递减)的充分不必要条件;(2)f′(x)≥0(或≤0)是f(x)在(a,b)内单调递增(或递减)的必要不充分条件.注意:由函数f(x)在区间内单调递增(或递减),可得f′(x)≥0(或≤0)在该区间恒成立,而不是f′(x)>0(或<0)恒成立,“=”不能少.1.教材习题改编函数f(x)的导函数f′(x)有下列信息:①f′(x)>0时,-1<x<2;②f′(x)<0时,x<-1或x>2;③f′(x)=0时,x=-1或x=2.则函数f(x)的大致图象是( )C 根据信息知,函数f(x)在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.2.教材习题改编函数f(x)=x3-3x+1的单调增区间是( )A.(-1,1) B.(-∞,1)C.(-1,+∞) D.(-∞,-1),(1,+∞)D f′(x)=3x2-3.由f′(x)>0得,x<-1或x>1.故单调增区间为(-∞,-1),(1,+∞),故选D.3.教材习题改编函数f(x)=cos x-x在(0,π)上的单调性是( )A.先增后减B.先减后增C.增函数D.减函数D 因为f ′(x )=-sin x -1<0. 所以f (x )在(0,π)上是减函数,故选D.4.教材习题改编函数f (x )=sin x +kx 在(0,π)上是增函数,则实数k 的取值范围为________.因为f ′(x )=cos x +k ≥0, 所以k ≥-cos x ,x ∈(0,π)恒成立. 当x ∈(0,π)时,-1<-cos x <1, 所以k ≥1.k ≥15.教材习题改编函数f (x )=x 2-ax -3在(1,+∞)上是增函数,则实数a 的取值范围是________.f ′(x )=2x -a ,因为f (x )在(1,+∞)上是增函数, 所以2x -a ≥0在(1,+∞)上恒成立. 即a ≤2x ,所以a ≤2.a ≤2利用导数判断或证明函数的单调性已知函数f (x )=ln x -ax 2+(2-a )x .讨论f (x )的单调性. 【解】 f (x )的定义域为(0,+∞).f ′(x )=1x-2ax +(2-a )=-(2x +1)(ax -1)x.①若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增. ②若a >0,则由f ′(x )=0得x =1a,且当x ∈(0,1a)时,f ′(x )>0,当x >1a时,f ′(x )<0.所以f (x )在(0,1a )上单调递增,在(1a,+∞)上单调递减.已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0,即a =22时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:(a +a 2-82,+∞)上单调递增.求函数的单调区间求函数f (x )=ln x -12x 2+x -12的单调区间.【解】 因为f (x )=ln x -12x 2+x -12,且定义域为(0,+∞),所以f ′(x )=1x -x +1=-(x -1-52)(x -1+52)x.令f ′(x )=0,所以x 1=1+52,x 2=1-52(舍去).当x ∈(0,1+52)时,f ′(x )>0;当x ∈(1+52,+∞)时,f ′(x )<0,所以函数f (x )的单调递增区间为(0,1+52),单调递减区间为(1+52,+∞).已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,讨论g (x )的单调区间. (1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x. 令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )的单调递减区间为(-∞,-4),(-1,0),单调递增区间为(-4,-1),(0,+∞).函数单调性的应用(高频考点)利用导数根据函数的单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考向,常以解答题的形式出现.高考对函数单调性的考查主要有以下两个命题角度: (1)已知函数单调性求参数的取值范围; (2)比较大小或解不等式.(1)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2]B .(-∞,-1]C . 因为函数f (x )=kx -ln x ,所以f ′(x )=k -1x,函数在区间(1,+∞)上单调递减,则f ′(x )≤0在(1,+∞)上恒成立,即k -1x≤0在区间(1,+∞)上恒成立,故k ≤1x在区间(1,+∞)上恒成立,因为在区间(1,+∞)上0<1x<1,故k ≤0.(1)利用函数的单调性求参数的取值范围的解题思路①由函数在区间上单调递增(减)可知f ′(x )≥0(f ′(x )≤0)在区间上恒成立列出不等式.②利用分离参数法或函数的性质求解恒成立问题.③对等号单独检验,检验参数的取值能否使f ′(x )在整个区间恒等于0,若f ′(x )恒等于0,则参数的这个值应舍去;若只有在个别点处有f ′(x )=0,则参数可取这个值.(2)利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.(1)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.(2)注意函数的单调区间与函数在某区间上具有单调性是不同的.角度一 已知函数单调性求参数的取值范围1.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. (2,3]角度二 比较大小或解不等式2.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .D .(0,8)B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f ≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9., )——分类讨论思想研究函数的单调性已知函数f (x )=(ax 2-x +a )e x,试讨论函数f (x )的单调性. 【解】 f ′(x )=(x +1)(ax +a -1)e x.当a =0时,f ′(x )在(-∞,-1)上时,f ′(x )>0,f (x )在(-∞,-1)上单调递增;f ′(x )在(-1,+∞)上时,f ′(x )<0,f (x )在(-1,+∞)上单调递减.当a >0时,因为-1+1a >-1,所以f (x )在(-∞,-1)和(-1+1a,+∞)上单调递增,在(-1,-1+1a)上单调递减;当a <0时,因为-1+1a <-1,所以f (x )在(-∞,-1+1a)和(-1,+∞)上单调递减,在(-1+1a,-1)上单调递增.(1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.(2)本题求解中分a >0,a =0,a <0三种情况讨论.已知函数f (x )=a ln x +12x 2-(1+a )x .求函数f (x )的单调区间.f ′(x )=a x +x -(1+a )=x 2-(1+a )x +a x =(x -1)(x -a )x.当a ≤0时,若0<x <1,则f ′(x )<0,若x >1,则f ′(x )>0,故此时函数f (x )的单调递减区间是(0,1),单调递增区间是(1,+∞);当0<a <1时,f ′(x ),f (x )的变化情况如下表:当a =1时,f ′(x )=(x -1)2x≥0,所以函数f (x )的单调递增区间是(0,+∞);当a >1时,同0<a <1时的解法,可得函数f (x )的单调递增区间是(0,1),(a ,+∞),单调递减区间是(1,a )., )1.函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)D 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1,故选D.2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )D 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项符合题意.3.若函数f (x )=x 3-tx 2+3x 在区间上单调递减,则实数t 的取值范围是( ) A .(-∞,518]B .(-∞,3]C .[518,+∞)D . f ′(x )=3x 2-2tx +3,由于f (x )在区间上单调递减,则有f ′(x )≤0在上恒成立,即3x 2-2tx +3≤0在上恒成立,则t ≥32(x +1x )在上恒成立,因为y =32(x +1x )在上单调递增,所以t ≥32(4+14)=518,故选C.4.已知函数f (x )=x sin x ,x ∈R ,则f ⎝ ⎛⎭⎪⎫π5,f (1),f ⎝ ⎛⎭⎪⎫-π3的大小关系为( )A .f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5B .f (1)>f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5C .f ⎝ ⎛⎭⎪⎫π5>f (1)>f ⎝ ⎛⎭⎪⎫-π3D .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5>f (1) A 因为f (x )=x ·sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ).所以函数f (x )是偶函数,所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3. 又x ∈⎝⎛⎭⎪⎫0,π2时,得f ′(x )=sin x +x cos x >0,所以此时函数是增函数.所以f ⎝ ⎛⎭⎪⎫π5<f (1)<f ⎝ ⎛⎭⎪⎫π3. 所以f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5,故选A. 5.(2017·郑州第一次质量预测) 已知定义在R 上的函数f (x )满足f (-3)=f (5)=1,f ′(x )为f (x )的导函数,且导函数y =f ′(x )的图象如图所示,则不等式f (x )<1的解集是( )A .(-3,0)B .(-3,5)C .(0,5)D .(-∞,-3)∪(5,+∞)B 依题意得,当x >0时,f ′(x )>0,f (x )是增函数;当x <0时,f ′(x )<0,f (x )是减函数.又f (-3)=f (5)=1,因此不等式f (x )<1的解集是(-3,5).6.已知f (x )=ax 3,g (x )=9x 2+3x -1,当x ∈时,f (x )≥g (x )恒成立,则a 的取值范围为( )A .a ≥11B .a ≤11C .a ≥418D .a ≤418A f (x )≥g (x )恒成立,即ax 3≥9x 2+3x -1.因为x ∈,所以a ≥9x +3x 2-1x 3.令1x=t ,则当t ∈⎣⎢⎡⎦⎥⎤12,1时,a ≥9t +3t 2-t 3.令h (t )=9t +3t 2-t 3,h ′(t )=9+6t -3t 2=-3(t -1)2+12.所以h ′(t )在⎣⎢⎡⎦⎥⎤12,1上是增函数.所以h ′(t )min =h ′⎝ ⎛⎭⎪⎫12=-34+12>0. 所以h (t )在⎣⎢⎡⎦⎥⎤12,1上是增函数.所以a ≥h (1)=11,故选A.7.函数y =12x 2-ln x 的单调递减区间为________.对于函数y =12x 2-ln x ,易得其定义域为{x |x >0},y ′=x -1x =x 2-1x ,令x 2-1x<0,又x >0,所以x 2-1<0,解得0<x <1,即函数y =12x 2-ln x 的单调递减区间为(0,1).(0,1)8.若函数f (x )=13x 3-32x 2+ax +4恰在上单调递减,则实数a 的值为________.因为f (x )=13x 3-32x 2+ax +4,所以f ′(x )=x 2-3x +a ,又函数f (x )恰在上单调递减, 所以-1,4是f ′(x )=0的两根, 所以a =(-1)×4=-4. -49.(2017·石家庄二中开学考试)已知函数f (x )=ln x +2x,若f (x 2+2)<f (3x ),则实数x 的取值范围是________.由题可得函数定义域为(0,+∞),f ′(x )=1x+2xln 2,所以在定义域内f ′(x )>0,函数单调递增,所以由f (x 2+2)<f (3x )得x 2+2<3x ,所以1<x <2.(1,2)10.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).(-3,0)∪(0,+∞)11.设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)求函数f (x )的单调区间.(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0. (2)由(1)得,f ′(x )=x 2-ax =x (x -a ).①当a =0时,f ′(x )=x 2≥0恒成立,即函数f (x )在(-∞,+∞)内为单调增函数. ②当a >0时,由f ′(x )>0得,x >a 或x <0;由f ′(x )<0得0<x <a .即函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). ③当a <0时,由f ′(x )>0得,x >0或x <a ;由f ′(x )<0得,a <x <0.即函数f (x )的单调递增区间为(-∞,a ),(0,+∞),单调递减区间为(a ,0).12.(2017·河北省衡水中学模拟)已知函数f (x )=⎝ ⎛⎭⎪⎫x +a x e x,a ∈R . (1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当a =-1时,求证:f (x )在(0,+∞)上为增函数.函数f (x )的定义域为{x |x ≠0},f ′(x )=x 3+x 2+ax -a x 2e x . (1)当a =0时,f (x )=x ·e x ,f ′(x )=(x +1)e x,所以f (1)=e ,f ′(1)=2e.所以曲线y =f (x )在点(1,f (1))处的切线方程是y -e =2e(x -1),即2e x -y -e =0. (2)证明:当a =-1时,f ′(x )=x 3+x 2-x +1x 2e x (x >0). 设g (x )=x 3+x 2-x +1,则g ′(x )=3x 2+2x -1=(3x -1)(x +1).令g ′(x )=(3x -1)(x +1)>0,得x >13. 令g ′(x )=(3x -1)(x +1)<0,得0<x <13. 所以函数g (x )在⎝ ⎛⎭⎪⎫0,13上是减函数,在⎝ ⎛⎭⎪⎫13,+∞上是增函数, 所以函数g (x )在x =13处取得最小值, 且g ⎝ ⎛⎭⎪⎫13=2227>0. 所以g (x )在(0,+∞)上恒大于零.于是,当x ∈(0,+∞)时,f ′(x )=x 3+x 2-x +1x 2e x >0恒成立.所以当a=-1时,函数f(x)在(0,+∞)上为增函数.13.已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)函数f(x)是否为R上的单调函数?若是,求出a的取值范围;若不是,请说明理由. (1)当a=2时,f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-2<x<2,所以函数f(x)的单调递增区间是(-2,2).(2)若函数f(x)在R上单调递减,则f′(x)≤0对任意x∈R都成立.即e x≤0对任意x∈R都成立.因为e x>0,所以x2-(a-2)x-a≥0对任意x∈R都成立.所以Δ=(a-2)2+4a≤0,即a2+4≤0,这是不可能的.故函数f(x)不可能在R上单调递减.若函数f(x)在R上单调递增,则f′(x)≥0对任意x∈R都成立,即e x≥0对任意x∈R都成立.因为e x>0,所以x2-(a-2)x-a≤0对任意x∈R都成立.而Δ=(a-2)2+4a=a2+4>0,故函数f(x)不可能在R上单调递增.综上可知函数f(x)不是R上的单调函数.。
(全国通用)2018高考数学一轮复习第2章函数、导数及其应用第11节导数与函数的单调性课时分层训练文新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用)2018高考数学一轮复习第2章函数、导数及其应用第11节导数与函数的单调性课时分层训练文新人教A 版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用)2018高考数学一轮复习第2章函数、导数及其应用第11节导数与函数的单调性课时分层训练文新人教A版的全部内容。
课时分层训练(十四)导数与函数的单调性A组基础达标(建议用时:30分钟)一、选择题1.函数f(x)=x-ln x的单调递减区间为( )A.(0,1)B.(0,+∞)C.(1,+∞)D.(-∞,0)∪(1,+∞)A [函数的定义域是(0,+∞),且f′(x)=1-错误!=错误!,令f′(x)<0,解得0<x<1,所以单调递减区间是(0,1).]2.已知定义在R上的函数f(x),其导函数f′(x)的大致图象如图211.2所示,则下列叙述正确的是( )【导学号:31222083】图2.11。
2A.f(b)>f(c)>f(d)B.f(b)>f(a)>f(e)C.f(c)>f(b)>f(a)D.f(c)>f(e)>f(d)C [依题意得,当x∈(-∞,c)时,f′(x)>0,因此,函数f(x)在(-∞,c)上是增函数,由a<b<c,所以f(c)>f(b)>f(a).因此C正确.]3.已知函数f(x)=错误!x3+ax+4,则“a>0”是“f(x)在R上单调递增"的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A [f′(x)=错误!x2+a,当a≥0时,f′(x)≥0恒成立,故“a>0”是“f(x)在R上单调递增"的充分不必要条件.]4.若函数f(x)=2x3-3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围为( )【导学号:31222084】A.(-∞,2) B.(-∞,2]C。
2.11 导数在研究函数中的应用(一)[重点保分 两级优选练]A 级一、选择题1.(2017·某某模拟)函数f (x )=axx 2+1(a >0)的单调递增区间是( )A .(-∞,-1)B .(-1,1)C .(1,+∞) D.(-∞,-1)∪(1,+∞) 答案 B解析 函数f (x )的定义域为R ,f ′(x )=a 1-x 2x 2+12=a 1-x 1+xx 2+12.由于a >0,要使f ′(x )>0,只需(1-x )·(1+x )>0,解得x ∈(-1,1).故选B.2.若函数f (x )=(x 2-2x )e x在(a ,b )上单调递减,则b -a 的最大值为( ) A .2 B. 2 C .4 D .2 2 答案 D解析 f ′(x )=(2x -2)e x +(x 2-2x )e x =(x 2-2)e x,令f ′(x )<0,∴-2<x <2, 即函数f (x )的单调递减区间为(-2,2). ∴b -a 的最大值为2 2.故选D.3.函数f (x )=(x -1)(x -2)2在[0,3]上的最小值为( ) A .-8 B .-4 C .0 D.427答案 B解析 f ′(x )=(x -2)2+2(x -1)(x -2)=(x -2)(3x -4).令f ′(x )=0⇒x 1=43,x 2=2,结合单调性,只要比较f (0)与f (2)即可.f (0)=-4,f (2)=0.故f (x )在[0,3]上的最小值为f (0)=-4.故选B.4.(2017·豫南九校联考)已知f ′(x )是定义在R 上的连续函数f (x )的导函数,满足f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( )A .(-∞,-1)B .(-1,1)C .(-∞,0)D .(-1,+∞) 答案 A 解析 设g (x )=f xe2x,则g ′(x )=f ′x -2f xe2x<0在R 上恒成立,所以g (x )在R 上递减,又因为g (-1)=0,f (x )>0⇔g (x )>0,所以x <-1.故选A.5.(2017·某某某某一中期末)f (x )=x 2-a ln x 在(1,+∞)上单调递增,则实数a 的取值X 围为( )A .a <1B .a ≤1 C.a <2 D .a ≤2 答案 D解析 由f (x )=x 2-a ln x ,得f ′(x )=2x -a x, ∵f (x )在(1,+∞)上单调递增,∴2x -a x≥0在(1,+∞)上恒成立,即a ≤2x 2在(1,+∞)上恒成立, ∵x ∈(1,+∞)时,2x 2>2,∴a ≤2.故选D.6.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( ) A .a <b <c B .c <a <b C .c <b <a D .b <c <a 答案 B解析 由f (x )=f (2-x )可得对称轴为x =1,故f (3)=f (1+2)=f (1-2)=f (-1). 又x ∈(-∞,1)时,(x -1)f ′(x )<0,可知f ′(x )>0.即f (x )在(-∞,1)上单调递增,f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12,即c <a <b .故选B. 7.若函数f (x )=e -x·x ,则( ) A .仅有极小值12eB .仅有极大值12eC .有极小值0,极大值12eD .以上皆不正确答案 B解析 f ′(x )=-e -x·x +12x·e -x=e -x⎝ ⎛⎭⎪⎫-x +12x =e -x ·1-2x 2x. 令f ′(x )=0,得x =12.当x >12时,f ′(x )<0;当x <12时,f ′(x )>0.∴x =12时取极大值,f ⎝ ⎛⎭⎪⎫12=1e·12=12e.故选B. 8.已知函数f (x )=ax-1+ln x ,若存在x 0>0,使得f (x 0)≤0有解,则实数a 的取值X 围是( )A .a >2B .a <3C .a ≤1 D.a ≥3 答案 C解析 函数f (x )的定义域是(0,+∞),不等式a x-1+ln x ≤0有解,即a ≤x -x ln x 在(0,+∞)上有解,令h (x )=x -x ln x ,可得h ′(x )=1-(ln x +1)=-ln x ,令h ′(x )=0,可得x =1,当0<x <1时,h ′(x )>0,当x >1时,h ′(x )<0,可得当x =1时,函数h (x )=x -x ln x 取得最大值1,要使不等式a ≤x -x ln x 在(0,+∞)上有解,只要a 小于等于h (x )的最大值即可,即a ≤1.故选C.9.若函数f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则实数a 的取值X 围为( )A .[2,+∞) B.[4,+∞) C .{4} D .[2,4] 答案 C解析 f ′(x )=3ax 2-3,当a ≤0时,f (x )min =f (1)=a -2≥0,a ≥2,不合题意;当0<a ≤1时,f ′(x )=3ax 2-3=3a ⎝⎛⎭⎪⎫x +1a ⎝ ⎛⎭⎪⎫x -1a ,f (x )在[-1,1]上为减函数,f (x )min =f (1)=a -2≥0,a ≥2,不合题意;当a >1时,f (-1)=-a +4≥0,且 f ⎝ ⎛⎭⎪⎫1a =-2a+1≥0, 解得a =4.综上所述,a =4.故选C.10.(2018·某某一模)已知函数f (x )=m ⎝ ⎛⎭⎪⎫x -1x -2ln x (m ∈R ),g (x )=-m x,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的取值X 围是( )A.⎝⎛⎦⎥⎤-∞,2e B.⎝ ⎛⎭⎪⎫-∞,2eC .(-∞,0]D .(-∞,0) 答案 B解析 由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2ln x 在[1,e]上有解,即m 2<ln xx在[1,e]上有解,令h (x )=ln x x ,则h ′(x )=1-ln xx2,当1≤x ≤e 时,h ′(x )≥0,∴在[1,e]上,h (x )max =h (e)=1e ,∴m 2<1e ,∴m <2e .∴m 的取值X 围是⎝⎛⎭⎪⎫-∞,2e .故选B.二、填空题11.已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值X 围为________.答案 [1,+∞)解析 f ′(x )=mx +1x-2≥0对一切x >0恒成立.m ≥-⎝ ⎛⎭⎪⎫1x 2+2x ,令g (x )=-⎝ ⎛⎭⎪⎫1x 2+2x,则当1x =1时,函数g (x )取得最大值1,故m ≥1.12.(2017·西工大附中质检)已知f (x )是奇函数,且当x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值是1,则a =________.答案 1解析 由题意,得x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12有最大值-1,f ′(x )=1x -a ,由f ′(x )=0,得x =1a ∈(0,2),且x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,f (x )单调递增,x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0,f (x )单调递减,则f (x )max =f ⎝ ⎛⎭⎪⎫1a =ln 1a -1=-1,解得a =1.13.(2018·东北三校联考)已知定义在R 上的奇函数f (x )的图象为一条连续不断的曲线,f (1+x )=f (1-x ),f (1)=a ,且当0<x <1时,f (x )的导函数f ′(x )满足f ′(x )<f (x ),则f (x )在[2017,2018]上的最小值为________.答案 a解析 由f (1+x )=f (1-x )可得函数f (x )的图象关于直线x =1对称.又f (x )是定义在R 上的奇函数,则f (0)=0,且f (x )的图象关于点(0,0)对称,所以f (x )是以4为周期的周期函数,则f (x )在[2017,2018]上的图象与[1,2]上的图象形状完全相同.令g (x )=f xex,则g ′(x )=f ′x -f xex<0,函数g (x )在(0,1)上递减,则g (x )<g (0)=0,所以f ′(x )<f (x )<0,则函数f (x )在(0,1)上单调递减.又由函数的对称性质可得f (x )在(1,2)上单调递增,则f (x )在[2017,2018]上的最小值为f (2017)=f (1)=a .14.(2018·启东中学调研)已知函数f (x )=e x+a ln x 的定义域是D ,关于函数f (x )给出下列命题:①对于任意a ∈(0,+∞),函数f (x )是D 上的减函数; ②对于任意a ∈(-∞,0),函数f (x )存在最小值;③存在a ∈(0,+∞),使得对于任意的x ∈D ,都有f (x )>0成立; ④存在a ∈(-∞,0),使得函数f (x )有两个零点.其中正确命题的序号是________.(写出所有正确命题的序号) 答案 ②④解析 由f (x )=e x+a ln x ,可得f ′(x )=e x +a x,若a >0,则f ′(x )>0,得函数f (x )是D 上的增函数,存在x ∈(0,1),使得f (x )<0即得命题①③不正确;若a <0,设e x+a x=0的根为m ,则在(0,m )上f ′(x )<0,在(m ,+∞)上f ′(x )>0,所以函数f (x )存在最小值f (m ),即命题②正确;若f (m )<0,则函数f (x )有两个零点,即命题④正确.综上可得,正确命题的序号为②④.B 级三、解答题15.已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )的单调增区间为(0,+∞). ②当a >0时,令f ′(x )=1x -a =0,可得x =1a.当0<x <1a 时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎦⎥⎤0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a,+∞.综上得,当a ≤0时,f (x )的单调递增区间为(0,+∞),无递减区间;当a >0时,f (x )的单调递增区间为⎝⎛⎦⎥⎤0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞. (2)①当1a≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,∴f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,∴f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,∴当12<a <ln 2时,f (x )的最小值是f (1)=-a ;当ln 2≤a <1时,f (x )的最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a . 16.(2017·某某某某联考)已知函数f (x )=e x-ax ,a >0. (1)记f (x )的极小值为g (a ),求g (a )的最大值; (2)若对任意实数x 恒有f (x )≥0,求a 的取值X 围.解 (1)函数f (x )的定义域是(-∞,+∞),f ′(x )=e x-a ,令f ′(x )>0,得x >ln a , 所以f (x )的单调递增区间是(ln a ,+∞); 令f ′(x )<0,得x <ln a ,所以f (x )的单调递减区间是(-∞,ln a ), 函数f (x )在x =ln a 处取极小值,g (a )=f (x )极小值=f (ln a )=e ln a -a ln a =a -a ln a . g ′(a )=1-(1+ln a )=-ln a ,当0<a <1时,g ′(a )>0,g (a )在(0,1)上单调递增; 当a >1时,g ′(a )<0,g (a )在(1,+∞)上单调递减,所以a =1是函数g (a )在(0,+∞)上唯一的极大值点,也是最大值点,所以g (a )max =g (1)=1.(2)当x ≤0时,a >0,e x-ax ≥0恒成立, 当x >0时,f (x )≥0,即e x-ax ≥0,即a ≤e xx.令h (x )=e x x ,x ∈(0,+∞),h ′(x )=e x x -e x x2=exx -1x 2, 当0<x <1时,h ′(x )<0,当x >1时,h ′(x )>0,故h (x )的最小值为h (1)=e , 所以a ≤e,故实数a 的取值X 围是(0,e].17.(2017·某某湘中名校联考)设函数f (x )=x -1x-a ln x (a ∈R ).(1)讨论f (x )的单调性;(2)若f (x )有两个极值点x 1和x 2,记过点A (x 1,f (x 1)),B (x 2,f (x 2))的直线的斜率为k ,问:是否存在a ,使得k =2-a ?若存在,求出a 的值;若不存在,请说明理由.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1+1x 2-a x =x 2-ax +1x 2.令g (x )=x 2-ax +1,则方程x 2-ax +1=0的判别式Δ=a 2-4. ①当|a |≤2时,Δ≤0,f ′(x )≥0,故f (x )在(0,+∞)上单调递增.②当a <-2时,Δ>0,g (x )=0的两根都小于0,在(0,+∞)上恒有f ′(x )>0,故f (x )在(0,+∞)上单调递增.③当a >2时,Δ>0,g (x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42,当0<x <x 1时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0, 故f (x )在(0,x 1),(x 2,+∞)上单调递增,在(x 1,x 2)上单调递减. (2)由(1)知,a >2.因为f (x 1)-f (x 2)=(x 1-x 2)+x 1-x 2x 1x 2-a (ln x 1-ln x 2), 所以k =f x 1-f x 2x 1-x 2=1+1x 1x 2-a ·ln x 1-ln x 2x 1-x 2.又由(1)知,x 1x 2=1.于是k =2-a ·ln x 1-ln x 2x 1-x 2.若存在a ,使得k =2-a .则ln x 1-ln x 2x 1-x 2=1.即ln x1-ln x2=x1-x2.亦即x2-1x2-2ln x2=0(x2>1).(*)再由(1)知,函数h(t)=t-1t-2ln t在(0,+∞)上单调递增,而x2>1,所以x2-1x2-2ln x2>1-11-2ln 1=0.这与(*)式矛盾.故不存在a,使得k=2-a.。
学习资料第十一节导数在研究函数中的应用第十一节第一课时导数与函数的单调性授课提示:对应学生用书第41页[基础梳理]函数的单调性与导数的关系函数y=f(x)在某个区间内可导:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.导数与函数单调性的关系(1)f′(x)>0(或f′(x)<0)是f(x)在(a,b)内单调递增(或递减)的充分不必要条件;(2)若f′(x)=0不恒成立,则f′(x)≥0(或f′(x)≤0)是可导函数f(x)在(a,b)内单调递增(或递减)的充要条件.[四基自测]1.(易错点:混淆f(x)的图像)如图所示是函数f(x)的导函数f′(x)的图像,则下列判断中正确的是()A.函数f(x)在区间(-3,0)上是减函数B.函数f(x)在区间(-3,2)上是减函数C.函数f(x)在区间(0,2)上是减函数D.函数f(x)在区间(-3,2)上是单调函数答案:A2.(易错点:忽视定义域)函数f(x)=x-ln x的单调递减区间为()A.(0,1)B.(0,+∞)C.(1,+∞)D.(-∞,0)∪(1,+∞)答案:A3.(基础点:求单调区间)函数f(x)=cos x+x sin x,x∈(0,π)的递增区间为________.答案:(0,错误!)4.(基础点:导数的应用)函数f(x)=x3+ax在R上为增函数,则a的取值范围为________.答案:[0,+∞)授课提示:对应学生用书第41页考点一用导数讨论函数的单调性,求单调区间挖掘1用导数判断简单函数的单调性/ 自主练透[例1](1)(2020·邯郸模拟)已知函数f(x)=x2-5x+2ln x,则函数f(x)的单调递增区间是()A.(0,错误!)和(1,+∞)B.(0,1)和(2,+∞)C.(0,错误!)和(2,+∞) D.(1,2)[解析]函数f(x)=x2-5x+2ln x的定义域是(0,+∞),令f′(x)=2x-5+错误!=错误!=错误!>0,解得0<x<错误!或x>2,故函数f(x)的单调递增区间是(0,错误!)和(2,+∞).[答案] C(2)设函数f(x)=x(e x-1)-错误!x2,则f(x)的单调递增区间是________,单调递减区间是________.[解析]∵f(x)=x(e x-1)-错误!x2,∴f′(x)=e x-1+x e x-x=(e x-1)(x+1).当x∈(-∞,-1)时,f′(x)>0.当x∈[-1,0]时,f′(x)≤0。
第十一节导数与函数的单调性————————————————————————————————[考纲传真] 了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).函数的导数与单调性的关系函数y=f(x)在某个区间内可导,则(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若函数f(x)在区间(a,b)上单调递增,那么在区间(a,b)上一定有f′(x)>0.( )(2)如果函数在某个区间内恒有f′(x)=0,则函数f(x)在此区间上没有单调性.( )(3)f′(x)>0是f(x)为增函数的充要条件.( )[答案](1)×(2)√(3)×2.f(x)=x3-6x2的单调递减区间为( )A.(0,4) B.(0,2)C.(4,+∞)D.(-∞,0)A [f′(x)=3x2-12x=3x(x-4),由f′(x)<0,得0<x<4,∴递减区间为(0,4).]3.(教材改编)如图2111所示是函数f(x)的导函数f′(x)的图象,则下列判断中正确的是( )图2111A.函数f(x)在区间(-3,0)上是减函数B.函数f(x)在区间(1,3)上是减函数C.函数f(x)在区间(0,2)上是减函数D .函数f (x )在区间(3,4)上是增函数A [当x ∈(-3,0)时,f ′(x )<0,则f (x )在(-3,0)上是减函数.其他判断均不正确.] 4.(2015·陕西高考)设f (x )=x -sin x ,则f (x )( ) A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数B [因为f ′(x )=1-cos x ≥0,所以函数为增函数,排除选项A 和C.又因为f (0)=0-sin 0=0,所以函数存在零点,排除选项D ,故选B.]5.(2014·全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)D [由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)单调递增⇔f ′(x )=k -1x≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1,即k 的取值范围为[1,+∞).]【导学号:31222081】[解] f ′(x )=3x 2+2ax ,令f ′(x )=0, 解得x 1=0,x 2=-2a3.2分当a =0时,因为f ′(x )=3x 2≥0,所以函数f (x ) 在(-∞,+∞)上单调递增;4分当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减;7分 当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0,10分所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,-2a 3上单调递减.12分 [规律方法] 用导数证明函数f (x )在(a ,b )内的单调性的步骤 (1)一求.求f ′(x );(2)二定.确认f ′(x )在(a ,b )内的符号;(3)三结论.作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.易错警示:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.[变式训练1] (2016·四川高考节选)设函数f (x )=ax 2-a -ln x ,g (x )=1x -e ex ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0.[解] (1)由题意得f ′(x )=2ax -1x =2ax 2-1x(x >0).2分当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =12a ,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减;5分当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.7分(2)证明:令s (x )=ex -1-x ,则s ′(x )=ex -1-1.9分当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1ex -1>0.12分a ,b ∈R.求f (x )的单调区间.[解] 由f (x )=x 3-ax -b ,可得f ′(x )=3x 2-a . 下面分两种情况讨论:①当a ≤0时,有f ′(x )=3x 2-a ≥0恒成立, 所以f (x )的单调递增区间为(-∞,+∞).5分 ②当a >0时,令f ′(x )=0,解得x =3a 3或x =-3a 3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:,⎝ ⎛⎭⎪⎫3a 3,+∞.12分 [规律方法] 求函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间; (4)在定义域内解不等式f ′(x )<0,得单调递减区间.[变式训练2] 已知函数f (x )=(-x 2+2x )e x,x ∈R ,e 为自然对数的底数,则函数f (x )的单调递增区间为________.(-2,2) [因为f (x )=(-x 2+2x )e x, 所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x=(-x 2+2)e x.令f ′(x )>0,即(-x 2+2)e x>0,因为e x>0,所以-x 2+2>0,解得-2<x <2, 所以函数f (x )的单调递增区间为(-2,2).]【导学号:31222082】若f (x )在R 上为增函数,求实数a 的取值范围. [解] 因为f (x )在(-∞,+∞)上是增函数, 所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立.5分 因为3x 2≥0,所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数,所以a ≤0,即实数a 的取值范围为(-∞,0].12分[迁移探究1] (变换条件)函数f (x )不变,若f (x )在区间(1,+∞)上为增函数,求a 的取值范围.[解] 因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立,7分所以a ≤3x 2在(1,+∞)上恒成立,所以a ≤3,即a 的取值范围为(-∞,3].12分 [迁移探究2] (变换条件)函数f (x )不变,若f (x )在区间(-1,1)上为减函数,试求a 的取值范围.[解] 由f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,得a ≥3x 2在(-1,1)上恒成立.5分 因为-1<x <1,所以3x 2<3,所以a ≥3.即当a 的取值范围为[3,+∞)时,f (x )在(-1,1)上为减函数.12分[迁移探究3] (变换条件)函数f (x )不变,若f (x )在区间(-1,1)上不单调,求a 的取值范围.[解] ∵f (x )=x 3-ax -1,∴f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a3(a ≥0).5分∵f (x )在区间(-1,1)上不单调,∴0<3a3<1,得0<a <3,即a 的取值范围为(0,3).12分[规律方法] 根据函数单调性求参数的一般方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.易错警示:(1)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0,且在(a ,b )内的任一非空子区间上f ′(x )不恒为0.应注意此时式子中的等号不能省略,否则漏解.(2)函数在其区间上不具有单调性,但可在子区间上具有单调性,如迁移3中利用了3a3∈(0,1)来求解.[变式训练3] (2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-1,-13 C [取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A ,B ,D.故选C.][思想与方法]1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意函数f (x )的定义域.2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性. 3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.[易错与防范]1.求单调区间应遵循定义域优先的原则.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.4.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是:对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.课时分层训练(十四) 导数与函数的单调性A 组 基础达标 (建议用时:30分钟)一、选择题1.函数f (x )=x -ln x 的单调递减区间为( )A .(0,1)B .(0,+∞)C .(1,+∞)D .(-∞,0)∪(1,+∞)A [函数的定义域是(0,+∞),且f ′(x )=1-1x =x -1x,令f ′(x )<0,解得0<x <1,所以单调递减区间是(0,1).]2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图2112所示,则下列叙述正确的是( )【导学号:31222083】图2112A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )C [依题意得,当x ∈(-∞,c )时,f ′(x )>0,因此,函数f (x )在(-∞,c )上是增函数,由a <b <c ,所以f (c )>f (b )>f (a ).因此C 正确.]3.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.]4.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为( )【导学号:31222084】A .(-∞,2)B .(-∞,2] C.⎝⎛⎭⎪⎫-∞,52 D.⎝⎛⎦⎥⎤-∞,52D [∵f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,f ′(x )≥0恒成立,即x 2-mx +1≥0恒成立,∴m ≤x +1x恒成立.令g (x )=x +1x ,g ′(x )=1-1x2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52,故选D.]5.(2016·湖北枣阳第一中学3月模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)B [由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B.]二、填空题6.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是________.【导学号:31222085】单调递增 [在(0,2π)上有f ′(x )=1-cos x >0,所以f (x )在(0,2π)上单调递增.] 7.函数f (x )=ln x x的单调递增区间是________.(0,e) [由f ′(x )=⎝⎛⎭⎪⎫ln x x ′=1-ln x x 2>0(x >0),可得⎩⎪⎨⎪⎧1-ln x >0,x >0,解得x ∈(0,e).]8.若函数y =ax +sin x 在R 上单调递增,则a 的最小值为________.1 [函数y =ax +sin x 在R 上单调递增等价于y ′=a +cos x ≥0在R 上恒成立,即a ≥-cos x 在R 上恒成立,因为-1≤-cos x ≤1,所以a ≥1,即a 的最小值为1.]三、解答题9.已知函数f (x )=ln x +kex(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.[解] (1)由题意得f ′(x )=1x-ln x -kex, 又f ′(1)=1-ke =0,故k =1.5分(2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x -1x<0,即h (x )在(0,+∞)上是减函数.8分由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0. 综上可知,f (x )的单调递增区间是(0,1), 单调递减区间是(1,+∞).12分10.(2015·重庆高考)已知函数f (x )=ax 3+x 2(a ∈R)在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,讨论g (x )的单调性. [解] (1)对f (x )求导得f ′(x )=3ax 2+2x ,2分 因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.5分(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x.8分 令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数;当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.12分B 组 能力提升 (建议用时:15分钟)1.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( ) 【导学号:31222086】A .a <b <cB .c <b <aC .c <a <bD .b <c <aC [依题意得,当x <1时,f ′(x )>0,f (x )为增函数; 又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12, 即有f (3)<f (0)<f ⎝ ⎛⎭⎪⎫12,c <a <b .] 2.(2017·石家庄质检(二))设f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________.(-2,0)∪(2,+∞) [令g (x )=f x x ,则g ′(x )=xfx -f xx 2>0,x ∈(0,+∞),所以函数g (x )在(0,+∞)上单调递增.又g (-x )=f -x -x =-f x -x =f xx=g (x ),则g (x )是偶函数,g (-2)=0=g (2),则f (x )=xg (x )>0⇔⎩⎪⎨⎪⎧x >0,g x >0或⎩⎪⎨⎪⎧x <0,g x <0,解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞).]3.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式; (2)若φ(x )=m x -x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.[解] (1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.5分11 (2)∵φ(x )=m x -x +1-f (x )=m x -x +1-ln x 在[1,+∞)上是减函数,∴φ′(x )=-x 2+m -x -1x x +2≤0在[1,+∞)上恒成立,即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x ,x ∈[1,+∞).9分∵x +1x ∈[2,+∞),∴2m -2≤2,m ≤2.故实数m 的取值范围是(-∞,2].12分。
【2019最新】精选高考数学一轮复习第2章函数导数及其应用第11节导数与函数的单调性教师用书文新人教A版————————————————————————————————[考纲传真] 了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).函数的导数与单调性的关系函数y=f(x)在某个区间内可导,则(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若函数f(x)在区间(a,b)上单调递增,那么在区间(a,b)上一定有f′(x)>0.()(2)如果函数在某个区间内恒有f′(x)=0,则函数f(x)在此区间上没有单调性.( )(3)f′(x)>0是f(x)为增函数的充要条件.( )[答案] (1)×(2)√(3)×2.f(x)=x3-6x2的单调递减区间为( )A.(0,4) B.(0,2)C.(4,+∞)D.(-∞,0)A [f′(x)=3x2-12x=3x(x-4),由f′(x)<0,得0<x<4,∴递减区间为(0,4).]3.(教材改编)如图2111所示是函数f(x)的导函数f′(x)的图象,则下列判断中正确的是( )图2111A.函数f(x)在区间(-3,0)上是减函数B.函数f(x)在区间(1,3)上是减函数C.函数f(x)在区间(0,2)上是减函数D.函数f(x)在区间(3,4)上是增函数A [当x∈(-3,0)时,f′(x)<0,则f(x)在(-3,0)上是减函数.其他判断均不正确.]4.(2015·陕西高考)设f(x)=x-sin x,则f(x)( )A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数B [因为f′(x)=1-cos x≥0,所以函数为增函数,排除选项A和C.又因为f(0)=0-sin 0=0,所以函数存在零点,排除选项D,故选B.]5.(2014·全国卷Ⅱ)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是( )A.(-∞,-2] B.(-∞,-1]C.[2,+∞)D.[1,+∞)D [由于f′(x)=k-,f(x)=kx-ln x在区间(1,+∞)单调递增⇔f′(x)=k -≥0在(1,+∞)上恒成立.由于k≥,而0<<1,所以k≥1,即k的取值范围为[1,+∞).].【导学号:31222081】[解] f′(x)=3x2+2ax,令f′(x)=0,解得x1=0,x2=-.2分当a=0时,因为f′(x)=3x2≥0,所以函数f(x)在(-∞,+∞)上单调递增;4分当a>0时,x∈∪(0,+∞)时,f′(x)>0,x∈时,f′(x)<0,所以函数f(x)在,(0,+∞)上单调递增,在上单调递减;7分当a<0时,x∈(-∞,0)∪时,f′(x)>0,x∈时,f′(x)<0,10分所以函数f(x)在(-∞,0),上单调递增,在上单调递减.12分[规律方法] 用导数证明函数f(x)在(a,b)内的单调性的步骤(1)一求.求f′(x);(2)二定.确认f′(x)在(a,b)内的符号;(3)三结论.作出结论:f′(x)>0时为增函数;f′(x)<0时为减函数.易错警示:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.[变式训练1] (2016·四川高考节选)设函数f(x)=ax2-a-ln x,g(x)=-,其中a∈R,e=2.718…为自然对数的底数.(1)讨论f(x)的单调性;(2)证明:当x>1时,g(x)>0.[解] (1)由题意得f′(x)=2ax-=(x>0).2分当a≤0时,f′(x)<0,f(x)在(0,+∞)内单调递减.当a>0时,由f′(x)=0有x=,当x∈时,f′(x)<0,f(x)单调递减;5分当x∈时,f′(x)>0,f(x)单调递增.7分(2)证明:令s(x)=ex-1-x,则s′(x)=ex-1-1.9分当x>1时,s′(x)>0,所以ex-1>x,从而g(x)=->0.12分其中a,b∈R.求f(x)的单调区间.[解] 由f(x)=x3-ax-b,可得f′(x)=3x2-a.下面分两种情况讨论:①当a≤0时,有f′(x)=3x2-a≥0恒成立,所以f(x)的单调递增区间为(-∞,+∞).5分②当a>0时,令f′(x)=0,解得x=或x=-.当x变化时,f′(x),f(x)的变化情况如下表:[规律方法] 求函数单调区间的步骤:(1)确定函数f(x)的定义域;(2)求f′(x);(3)在定义域内解不等式f′(x)>0,得单调递增区间;(4)在定义域内解不等式f′(x)<0,得单调递减区间.[变式训练2] 已知函数f(x)=(-x2+2x)ex,x∈R,e为自然对数的底数,则函数f(x)的单调递增区间为________.(-,) [因为f(x)=(-x2+2x)ex,所以f′(x)=(-2x+2)ex+(-x2+2x)ex=(-x2+2)ex.令f′(x)>0,即(-x2+2)ex>0,因为ex>0,所以-x2+2>0,解得-<x<,所以函数f(x)的单调递增区间为(-,).]【导学号:31222082】若f(x)在R上为增函数,求实数a的取值范围.[解] 因为f(x)在(-∞,+∞)上是增函数,所以f′(x)=3x2-a≥0在(-∞,+∞)上恒成立,即a≤3x2对x∈R恒成立.5分因为3x2≥0,所以只需a≤0.又因为a=0时,f′(x)=3x2≥0,f(x)=x3-1在R上是增函数,所以a≤0,即实数a的取值范围为(-∞,0].12分[迁移探究1] (变换条件)函数f(x)不变,若f(x)在区间(1,+∞)上为增函数,求a的取值范围.[解] 因为f′(x)=3x2-a,且f(x)在区间(1,+∞)上为增函数,所以f′(x)≥0在(1,+∞)上恒成立,即3x2-a≥0在(1,+∞)上恒成立,7分所以a≤3x2在(1,+∞)上恒成立,所以a≤3,即a的取值范围为(-∞,3].12分[迁移探究2] (变换条件)函数f(x)不变,若f(x)在区间(-1,1)上为减函数,试求a的取值范围.[解] 由f′(x)=3x2-a≤0在(-1,1)上恒成立,得a≥3x2在(-1,1)上恒成立.5分因为-1<x<1,所以3x2<3,所以a≥3.即当a的取值范围为[3,+∞)时,f(x)在(-1,1)上为减函数.12分[迁移探究3] (变换条件)函数f(x)不变,若f(x)在区间(-1,1)上不单调,求a 的取值范围.[解] ∵f(x)=x3-ax-1,∴f′(x)=3x2-a.由f′(x)=0,得x=±(a≥0).5分∵f(x)在区间(-1,1)上不单调,∴0<<1,得0<a<3,即a的取值范围为(0,3).12分[规律方法] 根据函数单调性求参数的一般方法(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f′(x)≥0;若函数单调递减,则f′(x)≤0”来求解.易错警示:(1)f(x)为增函数的充要条件是对任意的x ∈(a,b)都有f ′(x)≥0,且在(a ,b)内的任一非空子区间上f′(x)不恒为0.应注意此时式子中的等号不能省略,否则漏解.(2)函数在其区间上不具有单调性,但可在子区间上具有单调性,如迁移3中利用了∈(0,1)来求解.[变式训练3] (2016·全国卷Ⅰ)若函数f(x)=x -sin 2x +asin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B.⎣⎢⎡⎦⎥⎤-1,13C.D.⎣⎢⎡⎦⎥⎤-1,-13 C [取a =-1,则f(x)=x -sin 2x -sin x ,f′(x)=1-cos 2x -cos x ,但f′(0)=1--1=-<0,不具备在(-∞,+∞)单调递增的条件,故排除A ,B ,D.故选C.][思想与方法]1.已知函数解析式求单调区间,实质上是求f′(x)>0,f′(x)<0的解区间,并注意函数f(x)的定义域.2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性.3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.[易错与防范]1.求单调区间应遵循定义域优先的原则.2.注意两种表述“函数f(x)在(a ,b)上为减函数”与“函数f(x)的减区间为(a ,b)”的区别.3.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.4.可导函数f(x)在(a ,b)上是增(减)函数的充要条件是:对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0),且f′(x)在(a,b)的任何子区间内都不恒为零.课时分层训练(十四) 导数与函数的单调性A组基础达标(建议用时:30分钟)一、选择题1.函数f(x)=x-ln x的单调递减区间为( )A.(0,1) B.(0,+∞)C.(1,+∞)D.(-∞,0)∪(1,+∞)A [函数的定义域是(0,+∞),且f′(x)=1-=,令f′(x)<0,解得0<x<1,所以单调递减区间是(0,1).]2.已知定义在R上的函数f(x),其导函数f′(x)的大致图象如图2112所示,则下列叙述正确的是( )【导学号:31222083】图2112A.f(b)>f(c)>f(d)B.f(b)>f(a)>f(e)C.f(c)>f(b)>f(a)D.f(c)>f(e)>f(d)C [依题意得,当x∈(-∞,c)时,f′(x)>0,因此,函数f(x)在(-∞,c)上是增函数,由a<b<c,所以f(c)>f(b)>f(a).因此C正确.]3.已知函数f(x)=x3+ax+4,则“a>0”是“f(x)在R上单调递增”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A [f′(x)=x2+a,当a≥0时,f′(x)≥0恒成立,故“a>0”是“f(x)在R上单调递增”的充分不必要条件.]4.若函数f(x)=2x3-3mx2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为( )【导学号:31222084】A .(-∞,2)B .(-∞,2] C. D.⎝ ⎛⎦⎥⎤-∞,52 D [∵f′(x)=6x2-6mx +6,当x∈(2,+∞)时,f′(x)≥0恒成立,即x2-mx +1≥0恒成立,∴m≤x+恒成立.令g(x)=x +,g′(x)=1-,∴当x >2时,g ′(x)>0,即g(x)在(2,+∞)上单调递增,∴m ≤2+=,故选D.]5.(2016·湖北枣阳第一中学3月模拟)函数f(x)的定义域为R ,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)B [由f(x)>2x +4,得f(x)-2x -4>0,设F(x)=f(x)-2x -4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R 上恒成立,所以F(x)在R 上单调递增,而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x -4>0等价于F(x)>F(-1),所以x >-1,故选B.]二、填空题6.函数f(x)=1+x -sin x 在(0,2π)上的单调情况是________.【导学号:31222085】单调递增 [在(0,2π)上有f′(x)=1-cos x >0,所以f(x)在(0,2π)上单调递增.]7.函数f(x)=的单调递增区间是________.(0,e) [由f′(x)=′=>0(x >0),可得解得x∈(0,e).]8.若函数y=ax+sin x在R上单调递增,则a的最小值为________.1 [函数y=ax+sin x在R上单调递增等价于y′=a+cos x≥0在R上恒成立,即a≥-cos x在R上恒成立,因为-1≤-cos x≤1,所以a≥1,即a的最小值为1.]三、解答题9.已知函数f(x)=(k为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间.[解] (1)由题意得f′(x)=,又f′(1)==0,故k=1.5分(2)由(1)知,f′(x)=.设h(x)=-ln x-1(x>0),则h′(x)=--<0,即h(x)在(0,+∞)上是减函数.8分由h(1)=0知,当0<x<1时,h(x)>0,从而f′(x)>0;当x>1时,h(x)<0,从而f′(x)<0.综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).12分10.(2015·重庆高考)已知函数f(x)=ax3+x2(a∈R)在x=-处取得极值.(1)确定a的值;(2)若g(x)=f(x)ex,讨论g(x)的单调性.[解] (1)对f(x)求导得f′(x)=3ax2+2x,2分因为f(x)在x=-处取得极值,所以f′=0,即3a·+2·=-=0,解得a=.5分(2)由(1)得g(x)=ex,故g′(x)=ex+ex=ex=x(x+1)(x+4)ex.8分令g′(x)=0,解得x=0或x=-1或x=-4.当x<-4时,g′(x)<0,故g(x)为减函数;当-4<x<-1时,g′(x)>0,故g(x)为增函数;当-1<x<0时,g′(x)<0,故g(x)为减函数;当x>0时,g′(x)>0,故g(x)为增函数.综上知,g(x)在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.12分B组能力提升(建议用时:15分钟)1.函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f(0),b=f,c=f(3),则( ) 【导学号:31222086】A.a<b<c B.c<b<aC.c<a<b D.b<c<aC [依题意得,当x<1时,f′(x)>0,f(x)为增函数;又f(3)=f(-1),且-1<0<<1,因此有f(-1)<f(0)<f,即有f(3)<f(0)<f,c<a<b.]2.(2017·石家庄质检(二))设f′(x)是奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,xf′(x)-f(x)>0,则使得f(x)>0成立的x的取值范围是________.(-2,0)∪(2,+∞)[令g(x)=,则g′(x)=>0,x∈(0,+∞),所以函数g(x)在(0,+∞)上单调递增.又g(-x)====g(x),则g(x)是偶函数,g(-2)=0=g(2),则f(x)=xg(x)>0⇔或解得x>2或-2<x<0,故不等式f(x)>0的解集为(-2,0)∪(2,+∞).]2019年3.已知函数f(x)=ln x,g(x)=ax+b.(1)若f(x)与g(x)在x=1处相切,求g(x)的表达式;(2)若φ(x)=-f(x)在[1,+∞)上是减函数,求实数m的取值范围.[解] (1)由已知得f′(x)=,∴f′(1)=1=a,a=2.又∵g(1)=0=a+b,∴b=-1,∴g(x)=x-1.5分(2)∵φ(x)=-f(x)=-ln x在[1,+∞)上是减函数,∴φ′(x)=≤0在[1,+∞)上恒成立,即x2-(2m-2)x+1≥0在[1,+∞)上恒成立,则2m-2≤x+,x∈[1,+∞).9分∵x+∈[2,+∞),∴2m-2≤2,m≤2.故实数m的取值范围是(-∞,2].12分。
第十一节 导数与函数的单调性函数的导数与单调性的关系 函数y =f (x )在某个区间内可导,则(1)若f ′(x )>0,则f (x )在这个区间内单调递增; (2)若f ′(x )<0,则f (x )在这个区间内单调递减; (3)若f ′(x )=0,则f (x )在这个区间内是常数函数.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若函数f (x )在区间(a ,b )上单调递增,那么在区间(a ,b )上一定有f ′(x )>0.( ) (2)如果函数在某个区间内恒有f ′(x )=0,则函数f (x )在此区间上没有单调性.( ) (3)f ′(x )>0是f (x )为增函数的充要条件.( ) [答案] (1)× (2)√ (3)×2.函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)B [函数y =12x 2-ln x 的定义域为(0,+∞),y ′=x -1x=x -x +x,令y ′≤0,则可得0<x ≤1.]3.(教材改编)如图2111所示是函数f (x )的导函数f ′(x )的图象,则下列判断中正确的是( )图2111A .函数f (x )在区间(-3,0)上是减函数B .函数f (x )在区间(1,3)上是减函数C .函数f (x )在区间(0,2)上是减函数D .函数f (x )在区间(3,4)上是增函数A [当x ∈(-3,0)时,f ′(x )<0,则f (x )在(-3,0)上是减函数.其他判断均不正确.] 4.设f (x )=x -sin x ,则f (x )( ) A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数B [因为f ′(x )=1-cos x ≥0,所以函数为增函数,排除选项A 和C.又因为f (0)=0-sin 0=0,所以函数存在零点,排除选项D ,故选B.]5.若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)D [由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)单调递增⇔f ′(x )=k -1x≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1,即k 的取值范围为[1,+∞).][解]f ′(x )=3x 2+2ax ,令f ′(x )=0, 解得x 1=0,x 2=-2a3.2分当a =0时,因为f ′(x )=3x 2≥0,所以函数f (x ) 在(-∞,+∞)上单调递增;6分当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减;10分当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0,12分所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝⎛⎭⎪⎫0,-2a 3上单调递减.15分[规律方法] 用导数证明函数f (x )在(a ,b )内的单调性的步骤 (1)一求.求f ′(x );(2)二定.确认f ′(x )在(a ,b )内的符号;(3)三结论.作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.易错警示:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.[变式训练1] 设函数f (x )=ax 2-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0. 【导学号:51062078】 [解] (1)由题意得f ′(x )=2ax -1x =2ax 2-1x(x >0).2分当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =12a ,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减;6分 当x ∈⎝⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.10分(2)证明:令s (x )=e x -1-x ,则s ′(x )=ex -1-1.12分当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1ex -1>0.15分y =(e-1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. [解] (1)因为f (x )=x e a -x+bx ,所以f ′(x )=(1-x )ea -x+b .2分依题设,⎩⎪⎨⎪⎧f=2e +2,f =e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得⎩⎪⎨⎪⎧a =2,b =e.6分(2)由(1)知f (x )=x e 2-x+e x .由f ′(x )=e2-x(1-x +ex -1)及e2-x>0知,f ′(x )与1-x +ex -1同号.10分令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增.12分 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞),故f (x )的单调递增区间为(-∞,+∞).15分[规律方法] 求函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间; (4)在定义域内解不等式f ′(x )<0,得单调递减区间.[变式训练2] 已知函数f (x )=ax +ln x ,则当a <0时,f (x )的单调递增区间是________,单调递减区间是________.⎝ ⎛⎭⎪⎫0,-1a ⎣⎢⎡⎭⎪⎫-1a ,+∞ [由已知得f (x )的定义域为(0,+∞). 因为f ′(x )=a +1x =a ⎝ ⎛⎭⎪⎫x +1a x,所以当x ≥-1a时,f ′(x )≤0,当0<x <-1a时,f ′(x )>0,所以f (x )的单调递增区间为⎝⎛⎭⎪⎫0,-1a ,单调递减区间为⎢⎡⎪⎫-1a ,+∞.]若f (x )在R 上为增函数,求实数a 的取值范围. 【导学号:51062079】 [解] 因为f (x )在(-∞,+∞)上是增函数, 所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立.7分 因为3x 2≥0,所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数,所以a ≤0,即实数a 的取值范围为(-∞,0].15分[迁移探究1] (变换条件)函数f (x )不变,若f (x )在区间(1,+∞)上为增函数,求a 的取值范围.[解] 因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立,7分所以a ≤3x 2在(1,+∞)上恒成立,所以a ≤3,即a 的取值范围为(-∞,3].12分[迁移探究2] (变换条件)函数f (x )不变,若f (x )的单调递减区间为(-1,1),求a 的值.[解]f ′(x )=3x 2-a . 当a ≤0时,f ′(x )≥0,4分所以f (x )在(-∞,+∞)上为增函数. 当a >0时,令3x 2-a <0,得-3a 3<x <3a 3,12分 所以f (x )的单调递减区间为⎝⎛⎭⎪⎫-3a 3,3a 3,∴3a 3=1,即a =3.15分 [迁移探究3] (变换条件)函数f (x )不变,若f (x )在区间(-1,1)上不单调,求a 的取值范围.[解]∵f (x )=x 3-ax -1,∴f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a3(a ≥0). 7分∵f (x )在区间(-1,1)上不单调,∴0<3a3<1,得0<a <3,即a 的取值范围为(0,3).15分[规律方法] 根据函数单调性求参数的一般方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.易错警示:(1)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0,且在(a ,b )内的任一非空子区间上f ′(x )不恒为0.应注意此时式子中的等号不能省略,否则漏解.(2)函数在其区间上不具有单调性,但可在子区间上具有单调性,如迁移3中利用了3a3∈(0,1)来求解.[变式训练3] 若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13D.⎣⎢⎡⎦⎥⎤-1,-13 C [取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A ,B ,D.故选C.][思想与方法]1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意函数f (x )的定义域.2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性. 3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.[易错与防范]1.求单调区间应遵循定义域优先的原则.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要4.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是:对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.课时分层训练(十三) 导数与函数的单调性A 组 基础达标 (建议用时:30分钟)一、选择题1.函数f (x )=(x -3)e x的单调递增区间是( ) 【导学号:51062080】 A .(-∞,2) B .(0,3) C .(1,4)D .(2,+∞)D [因为f (x )=(x -3)e x ,则f ′(x )=e x(x -2),令f ′(x )>0,得x >2, 所以f (x )的单调递增区间为(2,+∞).]2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图2112所示,则下列叙述正确的是( )图2112A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )C [依题意得,当x ∈(-∞,c )时,f ′(x )>0,因此,函数f (x )在(-∞,c )上是增函数,由a <b <c ,所以f (c )>f (b )>f (a ).因此C 正确.]3.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.]4.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为A .(-∞,2)B .(-∞,2] C.⎝⎛⎭⎪⎫-∞,52 D.⎝⎛⎦⎥⎤-∞,52 D [∵f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x恒成立.令g (x )=x +1x ,g ′(x )=1-1x2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52,故选D.]5.(2017·绍兴第一中学3月模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) 【导学号:51062081】A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)B [由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B.]二、填空题6.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是________.单调递增 [在(0,2π)上有f ′(x )=1-cos x >0,所以f (x )在(0,2π)上单调递增.] 7.函数f (x )=ln x x的单调递增区间是________.(0,e) [由f ′(x )=⎝⎛⎭⎪⎫ln x x ′=1-ln x x 2>0(x >0),可得⎩⎪⎨⎪⎧1-ln x >0,x >0,解得x ∈(0,e).]8.已知函数f (x )=3x a-2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则a 的取值范围是________. 【导学号:51062082】⎝ ⎛⎦⎥⎤0,25∪[1,+∞) [f ′(x )=3a -4x +1x , 若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a ≤4x -1x在[1,2]上恒成立.令h (x )=4x -1x,则h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a≤h (1),即3a ≥152或3a≤3, 又a >0,所以0<a ≤25或a ≥1.]三、解答题9.已知函数f (x )=ln x +kex(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.[解] (1)由题意得f ′(x )=1x-ln x -kex, 又f ′(1)=1-ke =0,故k =1.6分(2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数.10分由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0. 综上可知,f (x )的单调递增区间是(0,1), 单调递减区间是(1,+∞).15分10.已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,讨论g (x )的单调性.[解] (1)对f (x )求导得f ′(x )=3ax 2+2x ,2分 因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.7分(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x.12分 令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.15分B 组 能力提升 (建议用时:15分钟)1.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <aC [依题意得,当x <1时,f ′(x )>0,f (x )为增函数; 又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12, 即有f (3)<f (0)<f ⎝ ⎛⎭⎪⎫12,c <a <b .] 2.(2017·宁波镇江海中学质检(二))设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________.【导学号:51062083】(-2,0)∪(2,+∞) [令g (x )=f x x ,则g ′(x )=xf x -f x x 2>0,x ∈(0,+∞),所以函数g (x )在(0,+∞)上单调递增.又g (-x )=f -x -x =-f x -x =f x x=g (x ),则g (x )是偶函数,g (-2)=0=g (2),则f (x )=xg (x )>0⇔⎩⎪⎨⎪⎧ x >0,g x >0或⎩⎪⎨⎪⎧ x <0,g x <0,解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞).]3.已知函数f (x )=ln x ,g (x )=12ax +b . (1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=m x -x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.[解] (1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2. 又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.6分 (2)∵φ(x )=m x -x +1-f (x )=m x -x +1-ln x 在[1,+∞)上是减函数, ∴φ′(x )=-x 2+m -x -1x x +2≤0在[1,+∞)上恒成立, 即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立,则2m -2≤x +1x,x ∈[1,+∞).13分 ∵x +1x∈[2,+∞),∴2m -2≤2,m ≤2. 故实数m 的取值范围是(-∞,2].15分。
课时分层训练(十四) 导数与函数的单调性A 组 基础达标 (建议用时:30分钟)一、选择题1.函数f (x )=x -ln x 的递减区间为( ) A .(0,1) B .(0,+∞)C .(1,+∞)D .(-∞,0)∪(1,+∞)A [函数的定义域是(0,+∞),且f ′(x )=1-1x =x -1x,令f ′(x )<0,解得0<x<1,所以递减区间是(0,1).]2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图像如图2112所示,则下列叙述正确的是( )图2112A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )C [依题意得,当x ∈(-∞,c )时,f ′(x )>0,因此,函数f (x )在(-∞,c )上是增函数,由a <b <c ,所以f (c )>f (b )>f (a ).因此C 正确.]3.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上递增”的( )【导学号:66482107】A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上递增”的充分不必要条件.]4.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为( )【导学号:66482108】A .(-∞,2)B .(-∞,2] C.⎝⎛⎭⎪⎫-∞,52 D .⎝⎛⎦⎥⎤-∞,52D [∵f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x恒成立.令g (x )=x +1x ,g ′(x )=1-1x2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上递增, ∴m ≤2+12=52,故选D.]5.(2016·湖北枣阳第一中学3月模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )【导学号:66482109】A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)B [由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B.]二、填空题6.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是________.递增 [在(0,2π)上有f ′(x )=1-cos x >0,所以f (x )在(0,2π)上递增.] 7.函数f (x )=ln x x的递增区间是________.(0,e) [由f ′(x )=⎝⎛⎭⎪⎫ln x x ′=1-ln x x 2>0(x >0),可得⎩⎪⎨⎪⎧1-ln x >0,x >0,解得x ∈(0,e).]8.若函数y =ax +sin x 在R 上递增,则a 的最小值为________.1 [函数y =ax +sin x 在R 上递增等价于y ′=a +cos x ≥0在R 上恒成立,即a ≥-cos x 在R 上恒成立,因为-1≤-cos x ≤1,所以a ≥1,即a 的最小值为1.]三、解答题9.已知函数f (x )=ln x +kex(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.【导学号:66482110】[解] (1)由题意得f ′(x )=1x-ln x -k e x, 又f ′(1)=1-ke =0,故k =1. 5分(2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数. 8分由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0. 综上可知,f (x )的递增区间是(0,1), 递减区间是(1,+∞). 12分10.(2015·重庆高考)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,讨论g (x )的单调性. [解] (1)对f (x )求导得f ′(x )=3ax 2+2x ,2分 因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12. 5分(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x. 8分令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数. 12分B 组 能力提升 (建议用时:15分钟)1.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( ) 【导学号:66482111】A .a <b <cB .c <b <aC .c <a <bD .b <c <aC [依题意得,当x <1时,f ′(x )>0,f (x )为增函数; 又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12, 即有f (3)<f (0)<f ⎝ ⎛⎭⎪⎫12,c <a <b .] 2.(2017·石家庄质检(二))设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________.(-2,0)∪(2,+∞) [令g (x )=f x x ,则g ′(x )=xfx -f xx 2>0,x∈(0,+∞),所以函数g (x )在(0,+∞)上递增.又g (-x )=f -x -x =-f x-x=f xx =g (x ),则g (x )是偶函数,g (-2)=0=g (2),则f (x )=xg (x )>0⇔⎩⎪⎨⎪⎧x >0,g x >0或⎩⎪⎨⎪⎧x <0,g x <0,解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞).]3.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=m x -x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.【导学号:66482112】[解] (1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1. 5分(2)∵φ(x )=m x -x +1-f (x )=m x -x +1-ln x 在[1,+∞)上是减函数,∴φ′(x )=-x 2+m -x -1x x +2≤0在[1,+∞)上恒成立,即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x,x ∈[1,+∞). 9分∵x +1x∈[2,+∞),∴2m -2≤2,m ≤2.故实数m 的取值范围是(-∞,2]. 12分。