模式识别(5)
- 格式:ppt
- 大小:491.50 KB
- 文档页数:33
作业一:试用感知器算法实现逻辑“或”的功能(初始加权值、阈值和训练速率系数可自己设定)答案:输入为k x 1、k x 2,输出为y k 。
当k x 1和k x 2均为0时,y k 为0,否则y k 为1。
设阈值θ=0.06,训练速率系数η=0.02,初始设置加权为058.0)0(1=w ,065.0)0(2=w 。
由于只有一个输出,得加权修正公式为:k k i i x n w n w ηδ+=+)()1(k k k y T -=δ第一步:w(0)=(0.058, 0.065),加入x 1=(0, 0),06.01221111-=-+=θx w x w s ,则y 1=0。
由于T 1=0,δ1= T 1- y 1=0,故w(1)=(0.058, 0.065)第二步:加入x 2=(0, 1),005.02222112=-+=θx w x w s ,则y 2=1。
由于T 2=1,δ1= T 1- y 1=0,故 w(2)=w(1)=(0.058, 0.065)第三步:加入x 3=(1, 0),002.0-3223113=-+=θx w x w s ,则y 3=0。
由于T 3=1,则δ3= T 3- y 3=1,故w(3)=w(2)+0.02(1)x 3=(0.078, 0.065)第四步:加入x 4=(1, 1),083.04224114=-+=θx w x w s ,则y 4=1。
由于T 4=1,则δ4= T 4- y 4=0,故w(4)=w(3)=(0.078, 0.065)第五步:加入x1=(0, 0),S1=-0.06,则y1=0。
由于T1=0,δ1=0,故w(5)=(0.078, 0.065)第六步:加入x2=(0, 1),S2=0.005,则y2=1。
由于T2=1,δ2=0,故w(6)=(0.078, 0.065)第七步:加入x3=(1, 0),S3=0.018,则y3=1。
由于T3=1,δ3=0,故w(7)=(0.078, 0.065)第八步:加入x4=(1, 1),S4=0.083,则y4=1。
统计模式识别的原理与⽅法1统计模式识别的原理与⽅法简介 1.1 模式识别 什么是模式和模式识别?⼴义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义地说,模式是通过对具体的个别事物进⾏观测所得到的具有时间和空间分布的信息;把模式所属的类别或同⼀类中模式的总体称为模式类(或简称为类)]。
⽽“模式识别”则是在某些⼀定量度或观测基础上把待识模式划分到各⾃的模式类中去。
模式识别的研究主要集中在两⽅⾯,即研究⽣物体(包括⼈)是如何感知对象的,以及在给定的任务下,如何⽤计算机实现模式识别的理论和⽅法。
前者是⽣理学家、⼼理学家、⽣物学家、神经⽣理学家的研究内容,属于认知科学的范畴;后者通过数学家、信息学专家和计算机科学⼯作者近⼏⼗年来的努⼒,已经取得了系统的研究成果。
⼀个计算机模式识别系统基本上是由三个相互关联⽽⼜有明显区别的过程组成的,即数据⽣成、模式分析和模式分类。
数据⽣成是将输⼊模式的原始信息转换为向量,成为计算机易于处理的形式。
模式分析是对数据进⾏加⼯,包括特征选择、特征提取、数据维数压缩和决定可能存在的类别等。
模式分类则是利⽤模式分析所获得的信息,对计算机进⾏训练,从⽽制定判别标准,以期对待识模式进⾏分类。
有两种基本的模式识别⽅法,即统计模式识别⽅法和结构(句法)模式识别⽅法。
统计模式识别是对模式的统计分类⽅法,即结合统计概率论的贝叶斯决策系统进⾏模式识别的技术,⼜称为决策理论识别⽅法。
利⽤模式与⼦模式分层结构的树状信息所完成的模式识别⼯作,就是结构模式识别或句法模式识别。
模式识别已经在天⽓预报、卫星航空图⽚解释、⼯业产品检测、字符识别、语⾳识别、指纹识别、医学图像分析等许多⽅⾯得到了成功的应⽤。
所有这些应⽤都是和问题的性质密不可分的,⾄今还没有发展成统⼀的有效的可应⽤于所有的模式识别的理论。
1.2 统计模式识别 统计模式识别的基本原理是:有相似性的样本在模式空间中互相接近,并形成“集团”,即“物以类聚”。
关于模式识别1.1.1 模式与模式识别随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们希望能用计算机来代替或扩展人类的部分脑力劳动,模式识别应运而生,并在20世纪60年代初迅速发展并成为一门新学科[1]。
广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义地说,模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类(或简称为类)。
模式识别则是在某些一定量度或观测基础上把待识模式划分到各自的模式类中去,因此模式识别又常称作模式分类。
从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类和无监督的分类两种。
二者的主要差别在于,各实验样本所属的类别是否预先已知。
一般说来,有监督的分类往往需要提供大量已知类别的样本,但在实际问题中,这是存在一定困难的,因此研究无监督的分类就变得十分有必要了。
模式还可分成抽象的和具体的两种形式。
前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。
我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。
模式识别属于人工智能范畴,人工智能就是用机器去完成过去只有人类才能做的智能活动。
在这里,“智能”指的是人类在认识和改造自然的过程中表现出来的智力活动的能力。
虽然模式识别与人工智能关系很密切,但是发展到现在,它已经形成了独立的学科,有其自身的理论和方法。
在许多领域中,模式识别已有不少比较成功的实际应用。
模式识别是一门研究对象描述和分类方法的科学。
对于比较简单的问题,可以认为识别就是分类。
如,对于识别从“0”到“9”这十个阿拉伯数字的问题。
对于比较复杂的识别问题,就往往不能用简单的分类来解决,还需要对待识别模式的描述。
如,汉字识别;景物识别。
模式识别作为一门技术学科,目的就是要研究出能自动进行模式分类和描述的机器系统,以完成人类的模式识别的功能。
《模式识别》实验报告班电子信息科学与技术13级02 班级:姓名:学号:指导老师:成绩:通信与信息工程学院二〇一六年实验一 最大最小距离算法一、实验内容1. 熟悉最大最小距离算法,并能够用程序写出。
2. 利用最大最小距离算法寻找到聚类中心,并将模式样本划分到各聚类中心对应的类别中。
二、实验原理N 个待分类的模式样本{}N X X X , 21,,分别分类到聚类中心{}N Z Z Z , 21,对应的类别之中。
最大最小距离算法描述:(1)任选一个模式样本作为第一聚类中心1Z 。
(2)选择离1Z 距离最远的模式样本作为第二聚类中心2Z 。
(3)逐个计算每个模式样本与已确定的所有聚类中心之间的距离,并选出其中的最小距离。
(4)在所有最小距离中选出一个最大的距离,如果该最大值达到了21Z Z -的一定分数比值以上,则将产生最大距离的那个模式样本定义为新增的聚类中心,并返回上一步。
否则,聚类中心的计算步骤结束。
这里的21Z Z -的一定分数比值就是阈值T ,即有:1021<<-=θθZ Z T(5)重复步骤(3)和步骤(4),直到没有新的聚类中心出现为止。
在这个过程中,当有k 个聚类中心{}N Z Z Z , 21,时,分别计算每个模式样本与所有聚类中心距离中的最小距离值,寻找到N 个最小距离中的最大距离并进行判别,结果大于阈值T 是,1+k Z 存在,并取为产生最大值的相应模式向量;否则,停止寻找聚类中心。
(6)寻找聚类中心的运算结束后,将模式样本{}N i X i ,2,1, =按最近距离划分到相应的聚类中心所代表的类别之中。
三、实验结果及分析该实验的问题是书上课后习题2.1,以下利用的matlab 中的元胞存储10个二维模式样本X{1}=[0;0];X{2}=[1;1];X{3}=[2;2];X{4}=[3;7];X{5}=[3;6]; X{6}=[4;6];X{7}=[5;7];X{8}=[6;3];X{9}=[7;3];X{10}=[7;4]; 利用最大最小距离算法,matlab 运行可以求得从matlab 运行结果可以看出,聚类中心为971,,X X X ,以1X 为聚类中心的点有321,,X X X ,以7X 为聚类中心的点有7654,,,X X X X ,以9X 为聚类中心的有1098,,X X X 。