第29课时图形变换(中心对称专题)
- 格式:doc
- 大小:284.01 KB
- 文档页数:6
中考数学一轮复习第29课图形变换导学案【考点梳理】:(一)对称:1、轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。
(2)圆有无数条对称轴。
3)对称点到对称轴的距离相等。
2、轴对称图形的特征和性质:(1)、对应点到对称轴的距离相等;(2)、对应点的连线与对称轴垂直;(3)、对称轴两边的图形大小、形状完全相同。
3、对称图形包括轴对称图形和中心对称图形。
(二)旋转1、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。
(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。
等边三角形绕中点旋转120度与原来重合。
2、旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数【思想方法】抓住变与不变的量【考点一】:轴对称和中心对称【例题赏析】(1)(2015,福建南平,3,4分)下列图形中,不是中心对称图形的为()A.圆B.正六边形C.正方形D.等边三角形考点:中心对称图形.分析:根据中心对称的定义,结合选项进行判断即可.解答:解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确;故选D.点评:本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.(2)(2015,广西钦州,1,3分)下列图形中,是轴对称图形的是()A.B.C. D.考点:轴对称图形.分析:根据轴对称图形的概念对各图形分析判断即可得解.解答:解:A、该图形不是轴对称图形,故本选项错误;B、该图形是中心对称图形,故本选项错误;C、该图形是轴对称图形,故本选项正确;D、该图形既不是轴对称图形也不是中心对称图形,故本选项错误;故选:C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,后可重合.【考点二】:平移、旋转与轴对称性质的应用【例题赏析】(2015•天津,第11题3分)(2015•天津)如图,已知▱ABCD中,AE⊥BC于点E 以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160°D.170°考点:旋转的性质;平行四边形的性质.分析:根据平行四边形对角相等、邻角互补,得∠ABC=60°,∠DCB=120°,再由∠A DC=10°,可运用三角形外角求出∠DA′B=130°,再根据旋转的性质得到∠BA′E′= BAE=30°,从而得到答案.解答:解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.故选:C.点评:本题主要考查了平行四边形的性质,三角形内角和定理及推论,旋转的性质,此题难度不大,关键是能综合运用以上知识点求出∠DA′B和∠BA′E′.【考点三】:图形的变化与点的坐标【例题赏析】(2015•贵州省黔东南州,第9题4分))如图,在△ABO中,AB⊥OB,OB=AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(1,﹣)C.(﹣1,﹣)D.(﹣1,﹣)或(﹣,﹣1)考点:坐标与图形变化-旋转.分析:需要分类讨论:在把△ABO绕点O顺时针旋转90°和逆时针旋转90°后得到△A1B1时点A1的坐标.解答:解:∵△ABO中,AB⊥OB,OB=,AB=1,∴∠AOB=30°,当△ABO绕点O顺时针旋转90°后得到△A1B1O,则易求A1(1,﹣);当△ABO绕点O逆时针旋转90°后得到△A1B1O,则易求A1(﹣1,).故选B.点评:本题考查了坐标与图形变化﹣旋转.解题时,注意分类讨论,以防错解.【考点四】:图形变换的综合运用【例题赏析】(2015•辽宁省朝阳,第题3分)如图,在矩形ABCD中,AB=5,BC=7,点E BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B 到BC的距离为()A.1或2 B. 2或3 C. 3或4 D. 4或5考点:翻折变换(折叠问题).分析:如图,连接B′D,过点B′作B′M⊥AD于M.设DM=B′M=x,则AM=7﹣x腰直角三角形的性质和折叠的性质得到:(7﹣x)2=25﹣x2,通过解方程求得xB ′到BC 的距离.解答: 解:如图,连接B ′D ,过点B ′作B ′M ⊥AD 于M .∵点B 的对应点B ′落在∠ADC 的角平分线上,∴设DM=B ′M=x ,则AM=7﹣x ,又由折叠的性质知AB=AB ′=5,∴在直角△AMB ′中,由勾股定理得到:AM 2=AB ′2﹣B ′M 2即(7﹣x )2=25﹣x 2,解得x=3或x=4,则点B ′到BC 的距离为2或1.故选:A .点评: 本题考查了矩形的性质,翻折变换(折叠问题).解题的关键是作出辅助线,构建直角三角形△AMB ′和等腰直角△B ′DM ,利用勾股定理将所求的线段与已知线段的数量关系联系起来.【真题专练】 1. (2015•葫芦岛)(第2题,3分)下列图形属于中心对称图形的是( )A .B .C .D .2. (2015福建龙岩3,4分)下列图形中既是轴对称图形又是中心对称图形的是( A . B . C . D .3. (2015•齐齐哈尔,第2题3是( )A. B. C. D.4.(2015•甘南州第12题 4分)将点A(2,1)向上平移3个单位长度得到点B的坐标是.5. .(2015•宁德).如图,将△ABC绕点A按顺时针方向旋转60°得△ADE,则∠BAD= 60 度.6.(2015,广西钦州,17,3分)如图,在4×4为1,将△AOB绕点O逆时针旋转90°得到△COD为.7.(2015•山东日照,第20题10分)如图,已知,在△ABC中,CA=CB,∠ACB=90°,EF分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°)△MCN,连接AM,BN.(1)求证:AM=BN;(2)当MA∥CN时,试求旋转角α的余弦值.8.(2015,广西玉林,17,3分)如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC= .9.(2015,广西玉林,18,3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ边形AEPQ的面积是.10.(2015•内蒙古赤峰25,12分)如图,四边形ABCD是边长为2,一个锐角等于菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当时,如图1小芳同学得出的结论是DE=DF.(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,若不成立,请说明理由;(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?【真题演练参考答案】1.(2015•葫芦岛)(第2题,3分)下列图形属于中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的定义即可作出判断.解答:解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是中心对称图形,故选项错误;C、是中心对称图形,故选项正确;D、是轴对称图形,不是中心对称图形,故选项错误.故选C.点评:本题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(2015福建龙岩3,4分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.点评:本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(2015•齐齐哈尔,第2题3分)下列汉字或字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2015•甘南州第12题 4分)将点A(2,1)向上平移3个单位长度得到点B的坐标是(2,4).考点:坐标与图形变化-平移.分析:直接利用平移中点的变化规律求解即可.解答:解:原来点的横坐标是2,纵坐标是1,向上平移3个单位长度得到新点的横坐标不变,纵坐标为1+3=4.即该坐标为(2,4).故答案填:(2,4).点评:本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5. .(2015•宁德).如图,将△ABC绕点A按顺时针方向旋转60°得△ADE,则∠BAD= 60 度.考点:旋转的性质.分析:根据旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角,依此即可求解.解答:解:∵将△ABC绕点A按顺时针方向旋转60°得△ADE,∴∠BAD=60度.故答案为:60.点评:本题考查了旋转的性质,主要利用了旋转角的确定,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.6.(2015,广西钦州,17,3分)如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB绕点O逆时针旋转90°得到△COD,则旋转过程中形成的阴影部分的面积为.考点:旋转的性质;扇形面积的计算.分析:根据OA=3,再根据△OAB所扫过的面积=S扇形AOC+S△DOC﹣S△AOB=S扇形AOC求解即可.解答:解:将△AOB绕点O逆时针旋转90°得到△COD,所以S△DOC=S△AOB,可得:旋转过程中形成的阴影部分的面积=S扇形AOC+S△DOC﹣S△AOB=S扇形AOC=,故答案为:点评:本题考查了利用旋转变换作图,得出扇形的面积和熟练掌握网格结构准确找出对应点的位置是解题的关键.7.(2015•山东日照,第20题10分)如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.(1)求证:AM=BN;(2)当MA∥CN时,试求旋转角α的余弦值.考点:旋转的性质;全等三角形的判定与性质.分析:(1)由CA=CB,E,F分别是CA,CB边的三等分点,得CE=CF,根据旋转的性质,CM=CE=CN=CF,∠ACM=∠BCN=α,证明△AMC≌△BNC即可;(2)当MA∥CN时,∠ACN=∠CAM,由∠ACN+∠ACM=90°,得到∠CAM+∠ACM=90°,所以cotα==13.解答:(1)∵CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,∴CE=CF,根据旋转的性质,CM=CE=CN=CF,∠ACM=∠BCN=α,在△AMC和△BNC中,,∴△AMC≌△BNC,∴AM=BN;(2)∵MA∥CN,∴∠ACN=∠CAM,∵∠ACN+∠ACM=90°,∴∠CAM+∠ACM=90°,∴∠AMC=90°,∴cosα===13.点评:本题主要考查了旋转的性质、三角形全等的判定与性质、平行线的性质以及锐角三角函数的综合运用,难度适中,掌握旋转的性质是关键.8.(2015,广西玉林,17,3分)如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC= 105°.考点:旋转的性质;等腰直角三角形.专题:计算题.分析:连接OQ,由旋转的性质可知:△AQC≌△BOC,从而推出∠OAQ=90°,∠OCQ=90°,再根据特殊直角三角形边的关系,分别求出∠AQO与∠OQC的值,可求出结果.解答:连接OQ,∵AC=BC,∠ACB=90°,∴∠BAC=∠A=45°,由旋转的性质可知:△AQC≌△BOC,∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,∴∠OQC=45°,∵BO:OA=1:,设BO=1,OA=,∴AQ=,∴∠AQO=60°,∴∠AGC=105°.点评:本题主要考查了图形旋转的性质,特殊角直角三角形的边角关系,掌握图形旋转的性质,熟记特殊直角三角形的边角关系是解决问题的关键.9.(2015,广西玉林,18,3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.2考点:轴对称-最短路线问题;正方形的性质.专题:计算题.分析:根据最短路径的求法,先确定点E关于BC的对称点E′,再确定点A关于DC的对称点A′,连接A′E′即可得出P,Q的位置;再根据相似得出相应的线段长从而可求得四边形AEPQ的面积.解答:解:如图1所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=12AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P∽△AE′A′,∴=,即=14,BP=32,CP=BC﹣BP=3﹣32=32,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣S BEP=9﹣12AD•DQ﹣12CQ•CP﹣12BE•BP=9﹣12×3×2﹣12×1×32﹣12×1×32=92,故答案为:92.点评:本题考查了轴对称,利用轴对称确定A′、E′,连接A′E′得出P、Q的位置是解题关键,又利用了相似三角形的判定与性质,图形分割法是求面积的重要方法.10.(2015•内蒙古赤峰25,12分)如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF 时,如图1小芳同学得出的结论是DE=DF.(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE 与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?考点:几何变换综合题.分析:(1)如答图1,连接BD.根据题干条件首先证明∠ADF=∠BDE,然后证明△ADF≌△BDE(ASA),得DF=DE;(2)如答图2,连接BD.根据题干条件首先证明∠ADF=∠BDE,然后证明△ADF≌△BDE(ASA),得DF=DE;(3)根据(2)中的△ADF≌△BDE得到:S△ADF=S△BDE,AF=BE.所以△DEF的面积转化为:y=S △BEF+S△ABD.据此列出y关于x的二次函数,通过求二次函数的最值来求y的最小值.解答:解:(1)DF=DE.理由如下:如答图1,连接BD.∵四边形ABCD是菱形,∴AD=AB.又∵∠A=60°,∴△ABD是等边三角形,∴AD=BD,∠ADB=60°,∴∠DBE=∠A=60°∵∠EDF=60°,∴∠ADF=∠BDE.∵在△ADF与△BDE中,,∴△ADF≌△BDE(ASA),∴DF=DE;(2)DF=DE.理由如下:如答图2,连接BD.∵四边形ABCD是菱形,∴AD=AB.又∵∠A=60°,∴△ABD是等边三角形,∴AD=BD,∠ADB=60°,∴∠DBE=∠A=60°∵∠EDF=60°,∴∠ADF=∠BDE.∵在△ADF与△BDE中,,∴△ADF≌△BDE(ASA),∴DF=DE;(3)由(2)知,△ADF≌△BDE.则S△ADF=S△BDE,AF=BE=x.依题意得:y=S△BEF+S△ABD=(2+x)xsin60°+×2×2sin60°=(x+1)2+.即y=(x+1)2+.∵>0,∴该抛物线的开口方向向上,∴当x=0即点E、B重合时,y最小值=.点评:本题考查了几何变换综合题,解题过程中,利用了三角形全等的判定与性质,菱形的性质以及等边三角形的判定与性质,对于促进角与角(边与边)相互转换,将未知角转化为已知角(未知边转化为已知边)是关键.。
轴对称及中心对称变换、平移及旋转变换变换是极为重要的数学思维方法,利用几何变换解题在数学竞赛中经常用到,本文介绍几何变换中的基本变换:轴对称及中心对称变换、平移及旋转变换。
一、轴对称变换把一个图形F沿着一直线l折过来,如果它能够与另一个图形F'重合,我们就说图形F和F'关于这条直线l对称。
两个图形中的对应点叫做关于这条直线l的对称点,这条直线l叫做对称轴,如右图。
轴对称图形有以下两条性质:1.对应点的连线被对称轴垂直平分;2.对应点到对称轴上任一点的距离相等。
例1 凸四边形ABCD的对角线AC、BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:BC+AD>AB+CD。
分析:题中条件比较分散,故考虑“通过反射使条件相对集中”,注意到AC⊥BD,于是以BD(AC)为对称轴,将BC(AD)反射到BC'(AD'),把有关线段集中到△ABO内,利用三角形中两边之和大于第三边易证得结果。
证明:∵AC⊥BD,且OA>OC,OB>OD,于是以BD为对称轴,作C点关于直线BD为对称点C',以AC为对称轴作D点关于AC 的对称点D'。
连结BC',AD'相交于E点,则BC= BC',AD=AD',CD=C'D'。
∴ BE+AE>AB ①EC'+ED'>C'D' ②①+②,得BC'+AD'>AB+C'D'。
∴BC+AD>AB+CD。
注:(1)本题的结论对于凹四边形仍然成立;(2)还可将四边形推广成2n边形,也有类似结论。
其证明思路也完全相同,读者试自证。
二、中心对称变换如果平面上使任意一对对应点A,A'的连线段都通过一个点O,且被这一点所平分,则这个变换叫做中心对称变换(亦称点反射或点对称),点O叫对称中心,点A和A'叫做关于对称中心的对称点,如果一个图形F在中心对称变换下保持不变(还是自身),则这个图形F叫做中心对称图形。
几何图形的对称性与变换是几何学中的重要概念,它们在数学、艺术、工程设计等多个领域都有着广泛的应用。
对称性是指物体或图形在某种变换下保持不变的性质,而变换则是指图形在空间中的位置、形状、大小等特征的改变。
一、对称性对称性是几何图形的一种基本属性,它反映了图形在某种对称变换下的不变性。
对称性可以分为两种基本类型:轴对称和中心对称。
1. 轴对称:如果一个几何图形关于一条直线(对称轴)对称,即在直线两侧的部分能够通过这条直线对折而完全重合,那么这个图形具有轴对称性。
轴对称的图形在日常生活中非常常见,如蝴蝶、叶子等。
轴对称的性质在数学上有助于简化一些问题的求解,如计算图形的面积或周长等。
2. 中心对称:如果一个几何图形关于一个点(对称中心)对称,即图形上的每一点与对称中心连接形成的线段都被该点平分,那么这个图形具有中心对称性。
中心对称的图形如圆形、正方形等,它们在视觉上呈现出一种平衡和稳定感。
中心对称的性质在数学上也有着广泛的应用,如计算图形的旋转、平移等变换后的位置。
对称性不仅存在于二维平面图形中,还存在于三维立体图形中。
在三维空间中,几何图形的对称性可以表现为面对称、线对称和旋转对称等多种形式。
这些对称性质在工程设计、建筑设计等领域中具有重要的应用价值,可以帮助设计师创造出美观且结构稳定的作品。
二、变换变换是指几何图形在空间中的位置、形状、大小等特征的改变。
常见的变换包括平移、旋转、缩放等。
1. 平移:平移是指图形在空间中沿某一方向移动一定的距离,而形状和大小保持不变的操作。
平移是一种简单的变换,它不会改变图形的任何内在属性,只是改变了图形在空间中的位置。
平移在数学、计算机图形学等领域有着广泛的应用,如在动画制作中通过平移实现物体的运动效果。
2. 旋转:旋转是指图形在空间中以某一点为中心,沿某一方向旋转一定的角度,而形状和大小保持不变的操作。
旋转变换可以改变图形的方向,但不会改变图形的大小和形状。
在日常生活中,许多物体都具有旋转对称性,如轮子、表盘等。
课时29 轴对称与中心对称【基础知识】1. 假如一个图形沿一条直线对折,对折后的两局部能 ,那么这个图形就是 ,这条直线就是它的 .那么这两个图形成 折叠后重合的对应点就是 . 3. 把一个图形绕着某一个点旋转 °,假如旋转后的图形能够与原来的图形 ,那么这个图形叫做 图形,这个点就是它的 .4. 把一个图形绕着某一个点旋转 °,假如它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 .5. 关于中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所 .关于中心对称的两个图形是 图形.6. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为______,它是由移动的和 所决定. 7. 平移的特征是:经过平移后的图形与原图形的对应线段 ,对应 ,图形的 与 都没有发生变化,即平移前后的两个图形 ;且对应点所连的线段 .8. 图形旋转的定义:把一个图形 的图形变换,叫做旋转, 叫做旋转中心, 叫做旋转角.图形的旋转由 、 和 所决定.其中①旋转 在旋转过程中保持不动.②旋转 分为 时针和 时针. ③旋转 一般小于360º. 9. 旋转的特征是:图形中每一点都绕着 旋转了 的角度,对应点到旋转中心的 相等,对应 相等,对应 相等,图形的 都没有发生变化.也就是旋转前后的两个图形 .【知识应用】1. 以下几何图形中,一定是轴对称图形的有 ( ).A. 2个B. 3个C. 4个D. 5个2. 下面四张扑克牌中,图案属于中心对称的是图中的( )3.以下图形中,既是轴对称图形,又是中心对称图形的是( )A .等腰梯形B .平行四边形C .正三角形D .矩形4.如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( )A.①③B. ①④C.②③D.②④ 5.以下四个图案中,可能通过右图平移得到的是( )6.将左图所示的图案按顺时针方向旋转90°后能够得到的图案是( )A.. B.. C.. D.. ② ③④A .B .C .D .B. D.7.如图,OAB △绕点O 逆时针旋转80到OCD △的位置,已知45AOB ∠=,则AOD ∠等于( )A.55 B.45 C.40 D.35【例题讲解】:例1如图,方格纸中有三个点A B C ,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形; (2)在图乙中作出的四边形是轴对称图形但不是中心对称图形; (3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.例2如图,在直角坐标系xOy 中, A(一l ,5),B(一3,0), C (一4,3).(1) 在右图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′; (2) 假如ABC △中任意一点M 的坐标为()x y ,,那么它的对应点N 的坐标是 .例3以下图形中,是轴对称图形但不是中心对称图形的是( ) A .正三角形 B .菱形 C .直角梯形 D .正六边形【质疑反馈】:1.以下各图中,为轴对称图形的是( )2.如图是一个中心对称图形,A 为对称中心,若∠C = 90°, ∠B = 30°,BC =1,则BB '的长为( )A .4B .33C .332D .3343.如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转A B C A B C A B C(第9题)C 11AC30°A CB 'BC 'A .B .C .D .动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( )A .120°B .90°C .60°D .30°4.如下图是重叠的两个直角三角形.将其中一个直角三角形沿BC 方向平移得到DEF △.假如8cm AB =,4cm BE =,3cm DH =,则图中阴影局部面积为2cm .课后作业:1.如图是奥运会会旗杆标志图案,它由五个半径相同的圆组成,象征着五大洲体育健儿团结拼搏,那么这个图案( )A .是轴对称图形 B .是中心对称图形C .不是对称图形D .既是轴对称图形又是中心对称图形2.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是 ( )A. B. C. D.3.若将图2中的每个字母都看成独立的图案,则这七个图案中是中心对称图形的有( )A.1个B.2个C.3个D.4个 4.以下图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D . 5.把一副三角板如图甲放置,其中90ACB DEC ==∠∠,45A =∠,30D =∠,斜边6cm AB =,7cm DC =.把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙).这时AB 与CD 1相交于点O ,与D 1 E 1 相交于点F . (1)求1OFE ∠的度数; (2)求线段AD 1的长;(3)若把三角形D 1 C E 1 绕着点C 顺时针再旋转30°得△D 2 C E 2 ,这时点B 在△D 2 C E 2的内部、外部、还是边上?说明理由.AD H(甲)A CE D B B(乙) AE 1C D 1O F6.在平面直角坐标系中.已知O坐标原点.点A(3.0),B(0,4).以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转转角为α.∠ABO为β.(1) 如图①,当旋转后点D恰好落在AB边上时.求点D的坐标;(2) 如图②,当旋转后满足BC∥x轴时.求α与β之闻的数量关系;7.在Rt△ABC中,AB=BC=5,∠B=90°,将一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB,BC或其延长线于E,F两点,如图(1)与(2)是旋转三角板所得图形的两种情况.(1)三角板绕点O旋转,△OFC是否能成为等腰直角三角形?若能,指出所有情况(即给出△OFC是等腰直角三角形时BF的长),若不能,请说明理由;(2)三角板绕点O旋转,线段OE和OF之间有什么数量关系?用图(1)或(2)加以证明;(3)若将三角板的直角顶点放在斜边上的点P处(如图(3)),当AP:AC=1:4时,PE和PF有怎样的数量关系?证明你发现的结论.8.如下图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.(1)当a=﹣1,b=1时,求抛物线n的解析式;(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;(3)若四边形AC1A1C为矩形,请求出a,b应满足的关系式.。
第29课时 图形变换(旋转与中心对称专题二) 【课标要求】
1、认识旋转,探索它的基本性质
2、对应点到旋转中心的距离相等,对应点
3、与旋转中心连线所成的角彼此相等的性质
4、平行四边形,圆是中心对称图形
5、按要求作出简单平面图形旋转后的图形
6、探索图形之间的变换关系(轴对称、平移、旋转及组合)
【知识要点】
1. 把一个图形绕着某一个点旋转 °,如果旋转后的图形能够与原来的图形 ,那么这个图形叫做 图形,这个点就是它的 .
2. 把一个图形绕着某一个点旋转 °,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 .
3. 关于中心对称的两个图形,对称点所连线段都经过 ,而且被对称中
所 .关于中心对称的两个图形是 图形.
4. 图形旋转的定义:把一个图形 的图形变换,叫做旋转, 叫做旋转中心, 叫做旋转角.
5. 图形的旋转由 、 和 所决定.其中①旋转 在旋转过程中保持不动.②旋转 分为 时针和 时针. ③旋转 一般小于360º.
6. 旋转的特征是:图形中每一点都绕着 旋转了 的角度,对应点到旋转中心的 相等,对应 相等,对应 相等,图形的 都没有发生变化.也就是旋转前后的两个图形 .
【典型例题】
1.如图,BAC ∠位于66⨯的方格纸中,则tan BAC ∠= .
2.如图,在平面直角坐标系中,将线段AB 绕点A 按逆时针方向旋转90°后,得到线段AB ′,则点B ′的坐标为__________.
均为76⨯的正方形网格,点A B C 、、3. 图①、图②在格点(小正方形的顶点)上.
中确定格点D ,并画出一个以
(1)在图①
A B C D 、、、为顶点的四边形,
使其为轴对称图形;
确定格点E ,并画出一个以(2)在图②中
A B C E 、、、为顶点的四边形,使其为中心对称图形.
4.(2010·汕头)已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C =∠EFB =90º,∠E =∠ABC =30º,AB =DE =4. (1)求证:△EGB 是等腰三角形;
(2)若纸片DEF 不动,问△ABC 绕点F 逆时针旋转最小_____度时,四边形ACDE 成为以ED 为底的梯形(如图(2)).求此梯形的高.
【课堂检测】
1.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )
A .点M
B .格点N
C .格点P
D .格点Q 原点,每个小方格的边长为1个单位长2.如图,在平面直角坐标系中,O 为度,在第一象限内有横、纵坐标均为整学的A 、B 两点,且10==OB OA .(1)写出A 、B 的坐标;
(2)画出线段AB 绕点O 旋转一周所形成的图形,并求其面积(结果保留π).
3.(2010 江苏镇江)动手操作(本小题满分6分) 在如图所示的方格纸中,△ABC 的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.
(1)作出△ABC 关于y 轴对称的△A 1B 1C 1,其中A ,B ,C 分别和A 1,B 1,C 1对应; (2)平移△ABC ,使得A 点在x 轴上,B 点在y 轴上,平移后的三角形记为△A 2B 2C 2,作出平移后的△A 2B 2C 2,其中A ,B ,C 分别和A 2,B 2,C 2对应;
(3题)
图①
图②
(3)填空:在(2)中,设原△ABC 的外心为M ,△A 2B 2C 2
的外心为M ,则M 与M 2之间的距离为 .
5.(本题满分10分)图中的小方格都是边长为1的正方形,△ABC 的顶点和O 点都在正方形的顶点上.
(1)以点O 为位似中心,在方格图中将△ABC 放大为原来的2倍,得到△A ′B ′C ′; 绕点B ′顺时针旋转
90,画出旋转后
(2)△A ′B ′C ′
得到的△A ″B ′C ″,并求边A ′B ′在旋转过程中扫过的图形面积.
6.(本题满分10分)如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD 的四个顶点都在格点上,O 为AD 边的中点,若把四边形ABCD 绕着点O 顺时针旋转180°.试解决下列问题:
(1)画出四边形ABCD 旋转后的图形; (2)求点C 旋转过程中所经过的路径长;
(3)设点B 旋转后的对应点为B ’,求tan ∠DAB ’的值.
【课后作业】
1.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45°后得到正方形
AB 1C 1D 1,边B 1C 1与CD 交于点O ,
则四边形AB 1OD 的周长..
是( )
A .2 2
B .3
C . 2
D .1+ 2
2.用两个全等的正方形ABCD 和CDFE 拼成一个矩形ABEF ,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF 的中点D 重合,且将直角三角尺绕点D 按逆时针方向旋转.
(1)当直角三角尺的两直角边分别与矩形ABEF 的两边BE EF ,相交于点G H ,时,如图甲,通过观察或测量BG 与EH 的长度,你能得到什么结论?并证明你的结论. (2)当直角三角尺的两直角边分别与BE 的延长线,EF 的延长线相交于点G H ,时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.
3.如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM.⑴ 求证:△AMB ≌△ENB ; ⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;
⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.
4.如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =
2
1
BD ,EN =2
1
CE ,得到图③,请解答下列问题: (1)若AB =AC ,请探究下列数量关系:
①在图②中,BD 与CE 的数量关系是________________;
②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想; (2)若AB =k ·AC(k >1),按上述操作方法,得到图④,请继续探究:AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,直接写出你的猜想,不必证明.
5.在△ABC 中,AB=AC=2,∠A=90°,取一块含45°角的直角三角形尺,将直角顶点放在斜边BC 边的中点O 处,顺时针方向旋转(如图1);使90°角的两边与Rt △ABC 的两边AB ,AC 分别相交于点E ,F (如图2),设BE=x ,CF=y 。
(1)求y 与x 的函数解析式,并写出x 的取值范围;
(2)将三角尺绕O 点旋转的过程中,△OEF 是否能成为等腰直角三角形?若能,请证明你的结论; (3)若将直角三角形尺45°角的顶点放在斜边BC 边的中点O 处,顺时针方向旋转(如图3),其它条件不变。
①试直接写出y 与x 的函数解析式,及x 的取值范围;
②将三角尺绕O 点旋转(图4)的过程中,△OEF 是否能成为等腰三角形?若能,求出△OEF 为等腰三角形时x 的值;若不能,请说明理由。
6.如图甲,在△ABC中,∠ACB为锐角.点
D为射线BC上一动点,连接AD,以AD
为一边且在AD的右侧作正方形ADEF.
解答下列问题:(1)如果AB=AC,∠BAC=90º.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90º,点D在
线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)
(3)若AC=BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.。