第7章-3 收敛性稳定性
- 格式:ppt
- 大小:649.50 KB
- 文档页数:17
第七章非线性方程求根
一、重点内容提要 (一)问题简介 求单变量函数方程
()0f x = (7.1)
的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为
函数()f x 的零点.若()f x 可以分解为
()(*)()m
f x x x
g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有
(1)()
(*)'(*)...(*)0,(*)
m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法
设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在
(a,b)内仅有一个根.令00,a a b b ==,计算0001
()
2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若
00()()0
f a f x <,则令
10,a a b
x ==,