概率论与数理统计04共52页
- 格式:ppt
- 大小:662.50 KB
- 文档页数:52
第五章 大数定律及中心极限定理1.据以往经验,某种电器元件的寿命服从均值为100h的指数分布,现随机地取16只,设它们的寿命是相互独立的.求这16只元件的寿命的总和大于1920h的概率.解以X i(i=1,2,…,16)记第i只元件的寿命,以T记16只元件寿命的总和:T=钞16i=1X i,按题设E(X i)=100,D(X i)=1002,由中心极限定理知T-16×100161002近似地服从N(0,1)分布,故所求概率为P{T>1920}=1-P{T≤1920}=1-P T-16×100161002≤1920-16×100161002≈1-Ф1920-1600400=1-Ф(0.8)=1-0畅7881=0畅2119.2.(1)一保险公司有10000个汽车投保人,每个投保人索赔金额的数学期望为280美元,标准差为800美元,求索赔总金额超过2700000美元的概率.(2)一公司有50张签约保险单,各张保险单的索赔金额为X i,i=1,2,…,50(以千美元计)服从韦布尔(Weibull)分布,均值E(X i)=5,方差D(X i)=6,求50张保险单索赔的合计金额大于300的概率(设各保险单索赔金额是相互独立的).解(1)记第i人的索赔金额为X i,则由已知条件E(X i)=280, D(X i)=8002.要计算p1=P钞10000i=1X i>2700000,因各投保人索赔金额是独立的,n=10000很大.故由中心极限定理,近似地有X —=110000钞10000i=1X i~N280,80021002,故 p1=P(X —>270)≈1-Φ270-2808=1-Φ-54=Φ54=Φ(1畅25)=0畅8944.(2)E(X i)=5,D(X i)=6,n=50.故 p=P钞50i=1X i>300≈1-Φ300-50×550×6=1-Φ50300=1-Φ(2畅89)=0畅0019.这与情况(1)相反.(1)的概率为0畅8944表明可能性很大.而(2)表明可能性太小了,大约500次索赔中出现>300的只有一次.3.计算器在进行加法时,将每个加数舍入最靠近它的整数,设所有舍入误差相互独立且在(-0畅5,0畅5)上服从均匀分布.(1)将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0畅90?解设第k个加数的舍入误差为X k(k=1,2,…,1500),已知X k在(-0畅5,0畅5)上服从均匀分布,故知E(X k)=0,D(X k)=112.(1)记X=钞1500k=1X k,由中心极限定理,当n充分大时有近似公式P 钞1500k=1X k-1500×01500112≤x≈Φ(x).于是P{X>15}=1-P{X≤15}=1-P{-15≤X≤15}=1-P-15-01500112≤X-01500112≤15-01500112≈1-Φ151500112-Φ-151500112=1-2Φ15150012-1=1-[2Φ(1畅342)-1]=2[1-0畅9099]=0畅1802.即误差总和的绝对值超过15的概率近似地为0畅1802.(2)设最多有n个数相加,使误差总和Y=钞n k=1X k符合要求,即要确定n,使P{Y<10}≥0畅90.由中心极限定理,当n充分大时有近似公式P Y-0n112≤x≈Φ(x).811概率论与数理统计习题全解指南于是 P {Y <10}=P {-10<Y <10}=P -10n 112<Yn 112<10n 112≈Φ10n 12-Φ-10n 12=2Φ10n 12-1.因而n 需满足 2Φ10n /12-1≥0.90,亦即n 需满足 Φ10n /12≥0畅95=Φ(1畅645),即n 应满足 10n /12≥1畅645,由此得 n ≤443畅45.因n 为正整数,因而所求的n 为443.故最多只能有443个数加在一起,才能使得误差总和的绝对值小于10的概率不小于0畅90.4.设各零件的重量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0畅5kg ,均方差为0畅1kg ,问5000个零件的总重量超过2510kg 的概率是多少?解以X i (i =1,2,…,5000)记第i 个零件的重量,以W 记5000个零件的总重量:W =钞5000i =1X i .按题设E (X i )=0.5,D (X i )=0畅12,由中心极限定理,可知W -5000×0畅55000×0畅1近似地服从N (0,1)分布,故所求概率为P {W >2510}=1-P {W ≤2510}=1-P W -5000×0畅55000×0畅1≤2510-5000×0畅55000×0畅1≈1-Ф2510-5000×0畅55000×0畅1=1-Ф(2)=1-0畅9213=0畅0787畅5.有一批建筑房屋用的木柱,其中80%的长度不小于3m ,现从这批木柱中随机地取100根,求其中至少有30根短于3m 的概率.解按题意,可认为100根木柱是从为数甚多的木柱中抽取得到的,因而可当作放回抽样来看待.将检查一根木柱看它是否短于3m 看成是一次试验,检查100根木柱相当于做100重伯努利试验.以X 记被抽取的100根木柱中长度短于3m 的根数,则X ~b (100,0畅2).于是由教材第五章§2定理三得P {X ≥30}=P {30≤X <∞}911第五章 大数定律及中心极限定理=P30-100×0畅2100×0畅2×0畅8≤X -100×0畅2100×0畅2×0畅8<∞-100×0畅2100×0畅2×0畅8≈Φ(∞)-Φ30-2016=1-Φ(2畅5)=1-0畅9938=0畅0062畅本题也可以这样做,引入随机变量:X k =1, 若第k 根木柱短于3m ,0, 若第k 根木柱不短于3m , k =1,2,…,100畅于是E (X k )=0.2,D (X k )=0畅2×0畅8.以X 表示100根木柱中短于3m 的根数,则X =钞100k =1X k .由中心极限定理有P {X ≥30}=P {30≤X <∞}=P 30-100×0畅21000畅2×0畅8≤钞100k =1X k -100×0畅21000畅2×0畅8 <∞-100×0畅21000畅2×0畅8≈Φ(∞)-Ф30-2016=1-Φ(2畅5)=0畅0062畅6.一工人修理一台机器需两个阶段,第一阶段所需时间(小时)服从均值为0.2的指数分布,第二阶段服从均值为0畅3的指数分布,且与第一阶段独立.现有20台机器需要修理,求他在8小时内完成的概率.解设修理第i (i =1,2,…,20)台机器,第一阶段耗时X i ,第二阶段为Y i ,则共耗时Z i =X i +Y i ,今已知E (X i )=0畅2,E (Y i )=0畅3,故E (Z i )=0畅5.D (Z i )=D (X i )+D (Y i )=0畅22+0畅32=0畅13畅20台机器需要修理的时间可认为近似服从正态分布,即有钞20i =1Z i ~N (20×0畅5,20×0畅13)=N (10,2畅6).所求概率 p =P钞20i =1Z i ≤8≈Φ8-20×0畅520×0畅13=Φ-21畅6125=Φ(-1畅24)=0畅1075,即不大可能在8小时内完成全部工作.7.一食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一只蛋糕的价格是一个随机变量,它取1元、1畅2元、1畅5元各个值的概率分别为0畅3、0畅2、0畅5畅若售出300只蛋糕.21概率论与数理统计习题全解指南(1)求收入至少400元的概率;(2)求售出价格为1畅2元的蛋糕多于60只的概率.解设第i 只蛋糕的价格为X i ,i =1,2,…,300,则X i 有分布律为X i 11畅21畅5p k0畅30畅20畅5由此得E (X i )=1×0畅3+1畅2×0畅2+1畅5×0畅5=1畅29,E (X 2i )=12×0畅3+1畅22×0畅2+1畅52×0畅5=1畅713,故D (X i )=E (X 2i )-[E (X i )]2=0畅0489畅(1)以X 表示这天的总收入,则X =钞300i =1X i ,由中心极限定理得P {X ≥400}=P {400≤X <∞}=P 400-300×1畅293000畅0489≤钞300i =1X i -300×1畅293000畅0489 <∞-300×1畅293000畅0489≈1-Φ(3畅39)=1-0畅9997=0畅0003.(2)以Y 记300只蛋糕中售价为1畅2元的蛋糕的只数,于是Y ~b (300,0畅2).E (Y )=300×0畅2,D (Y )=300×0畅2×0畅8,由棣莫弗拉普拉斯定理得P {Y >60}=1-P {Y ≤60}=1-P Y -300×0畅2300×0畅2×0畅8≤60-300×0畅2300×0畅2×0畅8≈1-Φ60-300×0畅2300×0畅2×0畅8=1-Φ(0)=0畅5.8.一复杂的系统由100个相互独立起作用的部件所组成,在整个运行期间每个部件损坏的概率为0畅10.为了使整个系统起作用,至少必须有85个部件正常工作,求整个系统起作用的概率.解将观察一个部件是否正常工作看成是一次试验,由于各部件是否正常工作是相互独立的,因而观察100个部件是否正常工作是做100重伯努利试验,以X 表示100个部件中正常工作的部件数,则X ~b (100,0畅9),按题意需求概率P {X ≥85},由棣莫弗拉普拉斯定理知X -100×0畅9100×0畅9×0畅1近似地服从标准正态分布N (0,1),故所求概率为121第五章 大数定律及中心极限定理P {X ≥85}=P {85≤X <∞}=P 85-100×0畅9100×0畅9×0畅1≤X -100×0畅9100×0畅9×0畅1≤∞-100×0畅9100×0畅9×0畅1≈1-Ф-53=0畅9525.9.已知在某十字路口,一周事故发生数的数学期望为2畅2,标准差为1畅4.(1)以X —表示一年(以52周计)此十字路口事故发生数的算术平均,试用中心极限定理求X —的近似分布,并求P {X —<2}.(2)求一年事故发生数小于100的概率.解 (1)E (X —)=E (X )=2畅2,D (X —)=D (X )52=1畅4252,由中心极限定理,可认为X —~N (2畅2,1畅42/52).P {X —<2}=Φ2-2畅21畅4/52=Φ-0畅2×521畅4=Φ(-1畅030)=1-Φ(1畅030)=1-0畅8485=0畅1515.(2)一年52周,设各周事故发生数为X 1,X 2,…,X 52.则需计算p =P钞52i =1X i <100,即P {52X —<100}.用中心极限定理可知所求概率为 p =P {52X —<100}=P {X —<10052}≈Φ10052-2畅2521畅4=Φ(-1畅426)=1-0畅9230=0畅0770.10.某种小汽车氧化氮的排放量的数学期望为0.9g /km ,标准差为1畅9g /km ,某汽车公司有这种小汽车100辆,以X —表示这些车辆氧化氮排放量的算术平均,问当L 为何值时X —>L 的概率不超过0畅01.解 设以X i (i =1,2,…,100)表示第i 辆小汽车氧化氮的排放量,则X —=1100钞100i =1X i .由已知条件E (X i )=0畅9,D (X i )=1畅92得E (X —)=0畅9, D (X —)=1畅92100.各辆汽车氧化氮的排放量相互独立,故可认为近似地有221概率论与数理统计习题全解指南X —~N 0畅9,1畅92100.需要计算的是满足P {X —>L }≤0畅01的最小值L .由中心极限定理P {X —>L }=PX —-0畅90畅19>L -0畅90畅19≤0畅01畅L 应为满足1-ΦL -0畅90畅19≤0畅01的最小值,即ΦL -0畅90畅19≥0畅99=Φ(2畅33),即L -0畅90畅19≥2畅33,故L ≥0畅9+0畅19×2畅33=1畅3427,应取L =1畅3427g /km 畅11.随机地选取两组学生,每组80人,分别在两个实验室里测量某种化合物的p H .各人测量的结果是随机变量,它们相互独立,服从同一分布,数学期望为5,方差为0畅3,以X —,Y —分别表示第一组和第二组所得结果的算术平均.(1)求P {4畅9<X —<5畅1}.(2)求P {-0畅1<X —-Y —<0畅1}.解由题设E (X —)=5,D (X —)=D (Y —)=0畅380.(1)由中心极限定理知X —近似服从N (5,0畅380),故P {4畅9<X —<5畅1}=P 4畅9-50畅380<X —-50畅380<5畅1-50畅380≈Φ5畅1-50畅380-Φ4畅9-50畅380=2Φ(1畅63)-1=2×0畅9484-1=0畅8968.(2)因E (X —-Y —)=E (X —)-E (Y —)=0,D (X —-Y —)=D (X —)+D (Y —)=0畅340,由中心极限定理P {-0畅1<X —-Y —<0畅1} 321第五章 大数定律及中心极限定理=P-0畅1-00畅340<(X —-Y —)-00畅340<0畅1-00畅340≈Φ0畅1-00畅340-Φ-0畅1-00畅340=2Φ(1畅15)-1=2×0畅8749-1=0畅7498.12.一公寓有200户住户,一户住户拥有汽车辆数X 的分布律为X 012p k0畅10畅60畅3问需要多少车位,才能使每辆汽车都具有一个车位的概率至少为0畅95畅解 设需要车位数为n ,且设第i (i =1,2,…,200)户有车辆数为X i ,则由X i 的分布律知E (X i )=0×0畅1+1×0畅6+2×0畅3=1畅2,E (X 2i )=02×0畅1+12×0畅6+22×0畅3=1畅8,故D (X i )=E (X 2i )-[E (X i )]2=1畅8-1畅22=0畅36.因共有200户,各户占有车位数相互独立.从而近似地有钞200i =1X i ~N (200×1畅2, 200×0畅36).今要求车位数n 满足0畅95≤P钞200i =1X i ≤n ,由正态近似知,上式中n 应满足0畅95≤Φn -200×1畅2200×0畅36=Φn -24072,因0畅95=Φ(1畅645),从而由Φ(x )的单调性知n -24072≥1畅645,故n ≥240+1畅645×72=253畅96.由此知至少需254个车位畅13.某种电子器件的寿命(小时)具有数学期望μ(未知),方差σ2=400.为了估计μ,随机地取n 只这种器件,在时刻t =0投入测试(测试是相互独立的)直到失效,测得其寿命为X 1,X 2,…,X n ,以X —=1n钞ni =1X i 作为μ的估计,为使P {X —-μ<1}≥0畅95,问n 至少为多少?解由教材第五章§2定理一可知,当n 充分大时,421概率论与数理统计习题全解指南钞ni =1X i -n μn σ=1n钞ni =1X i -μσ/n近似地N (0,1),即X —-μσn近似地N (0,1).由题设D (X i )=400(i =1,2,…,n ),即有σ=400,于是X —-μ400n =X —-μ20n近似地服从N (0,1)分布,即有P {X —-μ<1}=P {-1<X —-μ<1}=P -120n <X —-μ20n <120n ≈Φ120n-Φ-120n =2Φ120n -1.现在要求P {X —-μ<1}≥0畅95,即要求2Ф120n -1≥0畅95,亦即要求Ф120n≥0畅975=Ф(1畅96),故需要120n≥1畅96,即 n ≥(20×1畅96)2=1536畅64畅因n 为正整数,故n 至少为1537.14.某药厂断言,该厂生产的某种药品对于医治一种疑难血液病的治愈率为0畅8,医院任意抽查100个服用此药品的病人,若其中多于75人治愈,就接受此断言,否则就拒绝此断言.(1)若实际上此药品对这种疾病的治愈率是0畅8畅问接受这一断言的概率是多少?(2)若实际上此药品对这种疾病的治愈率为0畅7,问接受这一断言的概率是多少?解由药厂断言来看100人中治愈人数X ~b (100,0畅8).(1)在治愈率与实际情况相符合条件下,接受药厂断言的概率即为P (X >521第五章 大数定律及中心极限定理75).由中心极限定理知近似地有X~N(100×0畅8, 100×0畅8×0畅2)=N(80,42),于是 p1=P(X>75)≈1-Φ75-804=1-Φ(-54)=Φ(1畅25)=0畅8944.(2)若实际上治疗率为0畅7,即X~b(100,0畅7),则治愈人数X近似地服从正态分布,即有X~N(100×0畅7, 100×0畅7×0畅3).所求概率p2=P(X>75)≈1-Φ75-100×0畅7100×0畅7×0畅3=1-Φ521=1-Φ(1畅09)=1-0畅8621=0畅1379.621概率论与数理统计习题全解指南。