《因式分解-分组分解与十字相乘法》知识点归纳
- 格式:docx
- 大小:58.17 KB
- 文档页数:7
课题因式分解十字相乘法1、认识因式分解的意义。
教课目的2、娴熟运用适合的方法进行因式分解。
要点:因式分解的观点以及运用提取公因式法和公式法分解因式。
要点、难点难点:运用因式分解进行多项式的除法以及解简单的一元二次方程。
教课内容一、概括定义:把一个多项式化为几个整式的积的形式,这类变形叫做把这个多项式因式分解,也叫作分解因式。
意义:它是中学数学中最重要的恒等变形之一,它被宽泛地应用于初等数学之中,是我们解决很多半学问题的有力工具。
因式分解方法灵巧,技巧性强,学习这些方法与技巧,不单是掌握因式分解内容所必要的,并且对于培育学生的解题技术,发展学生的思想能力,都有着十分独到的作用。
学习它,既能够复习的整式四则运算,又为学习分式打好基础;学好它,既能够培育学生的察看、注意、运算能力,又能够提升学生综合剖析和解决问题的能力。
分解因式与整式乘法互为逆变形。
二、因式分解的方法因式分解没有广泛的方法,初中数学教材中主要介绍了提公因式法、公式法。
而在比赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。
注意三原则1分解要完全2最后结果只有小括号3 最后结果中多项式首项系数为正(比如:-3 x2+x=-x(3x-1))十字相乘法分解因式1.二次三项式( 1)多项式ax2bx c ,称为字母的二次三项式,此中称为二次项,为一次项,为常数项.比如: x22x 3 和 x25x 6 都是对于x的二次三项式.( 2)在多项式x26xy 8y2中,假如把看作常数,就是对于的二次三项式;假如把看作常数,就是对于的二次三项式.( 3)在多项式2a2b27ab3中,把看作一个整体,即,就是对于的二次三项式.同样,多项式 (x ) 27()12,把看作一个整体,就是对于的二次三项式.y x y2.十字相乘法的依照和详细内容(1) 对于二次项系数为 1 的二次三项式x2(a b)x ab (x a)(x b)方法的特点是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号同样;当常数项为负数时,把它分解为两个异号因数的积,此中绝对值较大的因数的符号与一次项系数的符号同样.(2) 对于二次项系数不是 1 的二次三项式ax 2bx c a1 a2 x2( a1c2a2c1 ) x c1c2(a1x c1 )(a2 x c2 )它的特点是“ 拆两端,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,而后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号同样;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号同样注意:用十字相乘法分解因式,还要注意防止以下两种错误出现:一是没有仔细地考证交错相乘的两个积的和能否等于一次项系数;二是由十字相乘写出的因式漏写字母.二、典型例题例 1把以下各式分解因式:(1) x22x 15 ;(2) x25xy 6y 2.例 2把以下各式分解因式:(1) 2x25x 3;(2) 3x28x 3 .例 3把以下各式分解因式:1)x410x29 ;(2) 7( x y) 35( x y) 22( x y) ;(3) ( a28a) 222(a28a)120 .例 4分解因式:(x22x 3)( x22x 24)90 .例 5分解因式6x45x338 x25x6.例 6分解因式x22xy y25x 5y 6.例 7 分解因式: ca(c-a)+bc(b-c)+ab(a- b).试一试:把以下各式分解因式:(1) 2x215x 7(2)3a28a 4(3)5x27x 6(4) 6 y211y 10 (5)5a2b223ab 10(6)3a2 b217abxy 10 x2 y2(7)x27xy12 y2 (8)x47x218(9)4m28mn 3n2(10)5x515x3 y20xy2课后练习一、选择题1.假如x2px q( x a)( x b),那么p 等于()A . ab B. a+ b C.- ab D .- (a+ b)2.假如x2(a b) x 5b x2x 30 ,则b为( )A . 5B.- 6C.- 5 D . 63.多项式x23x a 可分解为(x-5)(x-b),则a,b的值分别为( ) A.10和-2B.-10和2C.10 和 2D.-10 和- 24.不可以用十字相乘法分解的是()A .x2x2B .3x210x23x C. 4x 2x 2D.5x26xy 8y2 5.分解结果等于 (x+ y- 4)(2x+ 2y- 5)的多项式是()A .2( x y)213(x y)20B.( 2x 2 y)213(x y)20C.2( x y)213( x y)20D.2( x y) 29( x y)206.将下述多项式分解后,有同样因式x-1 的多项式有()① x27x 6 ;② 3x22x 1 ;③ x 25x 6 ;④ 4x25x9;⑤ 15x223x 8;⑥ x 411x212A.2个B.3 个C.4 个D.5 个二、填空题7.x23x 10 8.m25m6__________.(m+ a)(m+b). a= __________,b= __________ .9.2x25x 3(x- 3)(__________) .10. x2____2y2(x- y)(__________) .11.a2n a(_____)(________) 2.m12.当 k= ______时,多项式3x27x k 有一个因式为(__________).13.若 x- y= 6,xy17,则代数式 x3 y2x2 y2xy3的值为__________.36三、解答题14.把以下各式分解因式:(1) x47x2 6 ;(2) x45x236 ;(3) 4x465x 2 y 216 y 4;(4) a67a3b38b6;(5) 6a45a34a2;(6) 4a637a4 b29a2 b4.15.把以下各式分解因式:(1) ( x23)24x2;(2) x2( x 2)29 ;(3) (3x22x 1)2(2x 23x 3)2;(4) ( x2x)217( x2x) 60 ;(5) ( x22x) 27( x22x) 8 ;.16.已知 x+ y= 2, xy= a+4,x3y326 ,求a的值.。
因式分解训练知识点1:因式分解的概念把一个多项式化为几个整式的积的形式,叫做把多项式因式分解.注:因式分解是“和差”化“积”,整式乘法是“积”化“和差”故因式分解与整式乘法之间是互为相反的变形过程,因些常用整式乘法来检验因式分解.知识点2:提取公因式法把ma mb mc ++,分解成两个因式乘积的形式,其中一个因式是各项的公因式m ,另一个因式()a b c ++是ma mb mc ++除以m 所得的商,像这种分解因式的方法叫做提公因式法.用式子表示为:()ma mb mc m a b c ++=++注意:(i ) 多项式各项都含有的相同因式,叫做这个多项式各项的公因式.(ii ) 公因式的构成:①系数:各项系数的最大公约数;②字母:各项都含有的相同字母;③指数:相同字母的最低次幂.(iii )提取公因式的关键是从整体观察,准确找出公因式,并注意如果多项式的第一项系数是负的一般要提出“-”号,使括号内的第一项系数为正.提出公因式后得到的另一个因式必须按降幂排列. 提取公因式的步骤“一找”:就是第一步要正确找出多项式中各项的公因式;“二提”:就是第二步将所找出的公因式提出来;“三去除”:就是当提出公因式后,此时可直接观察提出公因式后剩下的另一个因式,也可以用原多项式去除以公因式,所得的商即为提出公因式后剩下的另一个因式.知识点3:运用公式法把乘法公式反过用,可以把某些多项式分解因式,这种分解因式的方法叫做运用公式法.(ⅰ)平方差公式 22()()a b a b a b -=+-注意:①条件:两个二次幂的差的形式;②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么.(ⅱ)完全平方公式 2222222(),2()a ab b a b a ab b a b ++=+-+=-注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成222)(2b a b ab a ±=+±公式原型,清楚a 、b 分别表示的量。
十字相乘法及分组分解法(基础)【学习目标】1. 熟练掌握首项系数为1的形如pq x q p x +++)(2型的二次三项式的因式分解.2. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)4. 掌握好简单的分组分解法.【要点梳理】【十字相乘法及分组分解法 知识要点】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 对于二次三项式2x bx c ++,若存在pq c p q b =⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++ 要点诠释:(1)在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号(2)若2x b x c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即12a a a =,常数项c 可以分解成两个因数之积,即12c c c =,把1212a a c c ,,,排列如下:按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数a 一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点四:添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形. 添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法.【典型例题】类型一、十字相乘法1、将下列各式分解因式:(1); (2)21016x x -+; (3)2310x x -- 【答案与解析】 解:(1)因为78x x x -=-所以:原式=()()78x x +-(2)因为2810x x x --=-所以:原式=()()28x x --(3)()()()2210331052x x x x x x --=-+-=-+- 【总结升华】常数项为正,分解的两个数同号;常数项为负,分解的两个数异号. 二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.举一反三:【 十字相乘法及分组分解法 例1】【变式1】分解因式:(1)1072++x x ; (2)822--x x ; (3)2718x x --+【答案】解:(1)()()271025x x x x ++=++ (2) ()()22842x x x x --=-+ (3) ()()22718(718)29x x x x x x --+=-+-=--+ 【变式2】(优质试题春•苏州期末)因式分解:m 2n ﹣5mn+6n.【答案】解:m 2n ﹣5mn+6n=n (m 2﹣5m+6)=n (m ﹣2)(m ﹣3).【十字相乘法及分组分解法 例1】2、将下列各式分解因式:(1)22355x x +-; (2)25166x x ++ (3)22616x xy y --; (4). 【思路点拨】(3)题216y -可看成常数项,21682,826y y y y y y -=-⨯-+=-.(4)题可将()2x +看成一个整体来分解因式.【答案与解析】解:(1)22355x x +-=()315x x ⎛⎫+- ⎪⎝⎭; (2)251116623x x x x ⎛⎫⎛⎫++=++ ⎪⎪⎝⎭⎝⎭. (3)()()2261682x xy y x y x y --=-+;(4)因为()()()25242292x x x -+-+=-+所以:原式()()225522x x =+-+-⎡⎤⎡⎤⎣⎦⎣⎦()()2158x x =-+【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.注意观察式子结构,能够看作整体的看作整体.举一反三:【变式】将下列各式分解因式:(1)21136x x -+; (2)251124a a --; (3)10722+-xy y x ; (4)()()342++-+b a b a .【答案】解: (1)22111121366332x x x x x x ⎛⎫⎛⎫-+=+-=+- ⎪⎪⎝⎭⎝⎭; (2)2513112443a a a a ⎛⎫⎛⎫--=-+ ⎪⎪⎝⎭⎝⎭; (3)()()2271025x y xy xy xy -+=--; (4)()()()()24313a b a b a b a b +-++=+-+-.3、将下列各式分解因式:(1);(2)【答案与解析】解:(1)因为 91019y y y +=所以:原式=()()2335y y ++(2)因为21183x x x -=所以:原式=()()2379x x +-【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.举一反三:【变式】分解因式:(1)2314x x +-;(2)2344x x --+;(3)2631105x x +-;【答案】解:(1)()()22314341311x x x x x x +-=-+=--;(2)()()223444432123x x x x x x --+=--=+-;(3)()()263110521537x x x x +-=+-.类型二、分组分解法4、(优质试题春•重庆校级期中)先阅读下列材料,然后回答后面问题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.能分组分解的多项式通常有四项或六项,一般的分组分解有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay )+(bx+by )=a (x+y )+b (x+y )=(x+y )(a+b )如“3+1”分法:2xy+y 2﹣1+x 2=x 2+2xy+y 2﹣1=(x+y )2﹣1=(x+y+1)(x+y ﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x 2﹣y 2﹣x ﹣y ;(2)分解因式:45am 2﹣20ax 2+20axy ﹣5ay 2;(3)分解因式:4a 2+4a ﹣4a 2b ﹣b ﹣4ab+1.【思路点拨】(1)首先利用平方差公式因式分解因式,进而提取公因式得出即可;(2)将后三项运用完全平方公式分解因式进而利用平方差公式分解因式即可;(3)重新分组利用完全平方公式分解因式得出即可.【答案与解析】解:(1)x 2﹣y 2﹣x ﹣y=(x+y )(x ﹣y )﹣(x+y )=(x+y )(x ﹣y ﹣1);(2)45am 2﹣20ax 2+20axy ﹣5ay 2=45am 2﹣5a (4x 2﹣4xy+y 2)=5a[9m 2﹣(2x ﹣y )2]=5a (3m ﹣2x+y )(3m+2x ﹣y );(3)4a 2+4a ﹣4a 2b ﹣b ﹣4ab+1=(4a 2+4a+1)﹣b (4a 2+4a+1)。
因式分解的常用方法第一部分:方法介绍提取公因式法、运用公式法、分组分解法和十字相乘法. 一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.【知识要点】1.运用公式法:如果把科法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
2.乘法公式逆变形(1)平方差公式:))((22b a b a b a -+=-(2)完全平方公式:222222)(2,)(2b a b ab a b a b ab a -=+-+=++ 3.把一个多项式分解因式,一般可按下列步骤进行: (1)如果多项式的各项有公因式,那么先提公因式;(2)如果多项式没有公因式,那么可以尝试运用公式来分解; (3)如果上述方法不能分解,那么可以尝试用。
思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况: 一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。
例1、 分解因式:(1)x 2-9 (2)9x 2-6x+1二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
例2、 分解因式:(1)x 5y 3-x 3y 5 (2)4x 3y+4x 2y 2+xy 3三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解.例3、 分解因式:(1)4x 2-25y 2 (2)4x 2-12xy 2+9y 4四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止.例4、 分解因式:(1)x 4-81y 4 (2)16x 4-72x 2y 2+81y 4五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。
n m n a a +=同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
35())a b b += 、幂的乘方法则:mnm aa ((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:幂的乘方法则可以逆用:即考点四、十字相乘法(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式a b 、的积,并且a b +等于一次项系数p 的值,那么它就可以把二次三项式2x px q ++分解成()()()b x a x ab x b a x q px x ++=+++=++22例题讲解1、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=51 2 解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5 用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例题讲解2、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习分解因式(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x2、二次项系数不为1的二次三项式——c bx ax ++2 条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题讲解1、分解因式:101132+-x x分析: 1 -2 3 -5 (-6)+(-5)= -11解:101132+-x x =)53)(2(--x x分解因式:(1)6752-+x x (2)2732+-x x。
9.6因式分解——分组分解法、十字相乘法班级________姓名________【学习目标】1、理解分组分解法、十字相乘法的概念和意义,会用分组分解法、十字相乘法进行因式分解。
2、培养学生的观察、分析、抽象、概括的能力,渗透化归数学思想和局部、整体的思想方法。
【学习过程】I.分组分解法一、分解因式:(1)ax+ay+ab+ac (2)ax+ay+bx+by二、新知探索:把下列多项式分解因式:1.按字母特征分组:(1)a+b+ab+1 (2)a²-ab+ac-bc2.按系数特征分组:(1)2x²+3y+xy+6x (2)2ac-6ad+bc-3bd3.按指数特点分组:(1)a²-b²+2a-2b (2)x²+x-4y²-2y4.按公式特点分组:(1)a²-2ab+b²-c²(2)a²-4b²+12bc-9c²小结:分组分解法的步骤:(1)________________________(2)________________________(3)________________________练习1:把下列各式分解因式:(1)x²+6y-3x-2xy (2)a²+ab-3a-3b (3)4x²-4xy-a²+y²(4)1-m²-n²+2mnII .十字相乘法一、情境创设:1.口答计算结果: (1)(x+2)(x-1) (2)(x+2)(x+1) (3)(x+3)(x+2) (4)(x+2)(x-3)(5)(x-2)(x+1) (6)(x-2)(x+3) (7)(x-2)(x-1) (8)(x-2)(x-3)2.想一想:你怎样将这类题目算得又快有准确呢?二、探索尝试:根据上面的公式将多项式写成两个一次因式相乘的形式:x ²+(2 +3)x+ 2 × 3 = x ²+(-1-2)x+(-1)×(-2)= x ²+(-1+2)x+(-1)× 2 = x ²+( 1-2)x+ 1 ×(-2)= 小结:对于二次三项式q px x ++2,若ab q b a p =+=,, 则()ab x b a x q px x +++=++22可分解为()()b x a x ++三、例题讲解:将下列各式因式分解(1)x ²+7x+6 (2)x ²-5x-6 (3)x ²-5x+6练习2:把下列各式分解因式:(1)x ²-7x+6 (2)a ²-4a-21 (3)t ²-2t-8(4)x ²+xy-12y ² (5)x 2+5x-6 (6)a ²-11ab-12b ²III.自主检测:分解因式 1.1--+b a ab2.22441b ab a --- 3.by bx ay ax 3322--+4.1072+-x x 5.x x x +-232 6.2)(3)(2++-+y x y x ()pxx b a bx ax bxbxax a x =+=++课后作业姓名____________班级____________一、选择题1.如果))((2b x a x q px x ++=+-,那么p 等于 ( )A .abB .a +bC .-abD .-(a +b )2.如果305)(22--=+++⋅x x b x b a x ,则b 为 ( )A .5B .-6C .-5D .63.多项式a x x +-32可分解为(x -5)(x -b ),则a ,b 的值分别为 ( ) A .10和-2 B .-10和2 C .10和2 D .-10和-24.分解结果等于(x +y -4)(x +y -5)的多项式是 ( )A .20)(13)(2++-+y x y xB .20)(13)22(2++-+y x y xC .20)(13)(22++++y x y xD .20)(9)(2++-+y x y x 二、填空题1.=-+1032x x __________.2.=--652m m (m +a )(m +b ). a =__________,b =__________. 3.+2x ____=-22y (x -y )(__________).4.22____)(____(_____)+=++a mna . 5.若x -y =6,3617=xy ,则代数式32232xy y x y x +-的值为__________.三、解答题1.把下列各式分解因式:(1)6724+-x x ; (2)36524--x x ; (3)2287b b a a --;(4)1+--y x xy (5)315523+--x x x (6)x xy y x 21372-+-2.把下列各式分解因式:(1)2224)3(x x -- (2)9)2(22--x x(3)2222)332()123(++-++x x x x (4)60)(17)(222++-+x x x x(5)8)2(7)2(222-+-+x x x x ; (6)48)2(14)2(2++-+b a b a(7)xy y x y xy x x 22))(1(3222+++-+ (8)b a bx ax bx ax ++--+223.已知x +y =2,xy =a +4,2622=+y x ,求a 的值.5. 已知:长方形的长、宽为x 、y ,周长为16cm ,且满足02222=++-+-y xy x y x ,求长方形的面积。
因式分解知识要点因式分解在代数式的恒等变形、根式运算、分式通分与约分、一元二次方程以及三角函数的变形求解等方面均有着十分重要的应用,下面对因式分解中的有关知识要点进行归纳说明,供大家学习和参考。
1、因式分解的定义把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解(也可叫做把这个多项式分解因式)。
本定义可从以下几方面进行理解:⑴、因式分解是一种恒等变形,如22()()-=+-,无论字母a和b取何值,代数式22a b a b a ba b-与()()+-的值总是相等的;a b a b⑵、因式分解的结果必须是整式的积的形式,分解后的因式可以是单项式,也可以是多项式,但必须都是整式;⑶、由于因式分解是整式乘法运算的逆运算,故因式分解是否正确,通常可以用整式乘法进行检验,看乘得的结果是否等于原多项式;⑷、多项式的因式分解,必须进行到每个因式都不能再分解为止,但要注意是在何种数集内进行因式分解(如无特殊说明,教材一般只要求在有理数范围内进行分解)。
2、因式分解的方法⑴、提公因式法:如果一个多项式的各项都含有公因式,则可利用分配律将此多项式的公因式提出来,从而将原多项式分解成两个因式的积的形式,像这种因式分解的方法,叫做提公因式法。
如:()++=++。
ma mb mc m a b c⑵、运用公式法:利用等式的性质将乘法公式逆用从而实现多项式的因式分解,像这种因式分解的方法就称为公式法。
公式法主要有以下两种:①平方差公式:22()()-=+-;a b a b a b②完全平方公式:222±+=±。
2()a ab b a b⑶、分组分解法(教材中未给出但作业中有所涉及):将一个多项式中所含的各项分成若干组,然后再利用提公因式法或公式法等方法对多项式进行因式分解,像这种因式分解的方法就称为分组分解法。
运用分组分解法的目的和作用主要有两个——①分组后能直接提公因式;②分组后能直接运用公式(平方差公式或完全平方公式)。
本节课继续学习因式分解的另外两种方法——十字相乘法和分组分解法.理解十字相乘法和分组分解法的概念,掌握十字相乘法分解二次项系数为1的二次三项式,能够用分组分解法分解含有四项以上的多项式.重点能够灵活运用十字相乘法与分组分解方法进行分解因式,能够与前两种的方法相结合.难点能够总结归纳这两种方法所针对的多项式,可以在分解因式的时候快速确定方法.1、二次三项式:多项式2ax bx c ++,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c为常数项.2、十字相乘法的依据利用十字相乘法分解因式,实质上是逆用多项式的乘法法则. 如在多项式乘法中有:2()()()x a x b x a b x ab ++=+++, 反过来可得:2()()()x a b x ab x a x b +++=++.因式分解(二)内容分析知识结构模块一:十字相乘法知识精讲3、十字交叉法的定义一般地,22()()()x px q x a b x ab x a x b ++=+++=++可以用十字交叉线表示为:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 4、用十字相乘法分解的多项式的特征 (1)必须是一个二次三项式;(2)二次三项式的系数为1时,常数项能分解成两个因数a 和b 的积,且这两个因数的和a b +正好等于一次项系数,这种方法的特征是“拆常数项,凑一次项”;(3)对于二次项系数不是1的二次三项式,一般要借助“画十字交叉线”的办法来确定. 5、用十字相乘法因式分解的符号规律(1)当常数项是“+”号时,分解的两个一次二项式中间同号;(2)当常数项是“-”号时,分解的两个一次二项式的因式中间是异号;(3)当二次项系数为负数是,先提出负号,使二次项系数为正数,然后再看常数项.【例1】下列各式不能用十字相乘法分解因式的是().A .223x x --B .22x x -+C .22x x --D .232x x -+【例2】因式分解225148x xy y -+正确的是( ).A .()()58x y x y --B .()()58x y x y --C .()()524x y x y --D .()()542x y x y --【例3】分解因式:(1)256___________x x -+=;(2)26___________x x --=; (3)2231___________x x -+=; (4)2321__________a a --=.【例4】分解因式:(1)()()21024_______________a b a b ----=; (2)22222566_______________a x a xy a y --=.例题解析【例5】对于一切x ,等式2(1)(2)x px q x x -+=+-均成立,则24p q -的值为__________.【例6】若二次三项式215x ax -+在整数范围内可以分解因式,那么整数a 的值为_________.【例7】分解因式:(1)23148x x -+;(2)21166a a --+;(3)()225()6a b c a b c ---+; (3)4224109x x y y -+;(5)()()222812x x x x +-++.【例8】分解因式:(1)220920x x --+; (2)539829x x x -+;(3)()22234x x --;(4)()()22247412x x x x ++++;(5)()()2223234x x x x ---+.【例9】用简便方法计算:2998998016++.【例10】已知()()22223540x y x y +++-=,试求22x y +的值.【例11】试判断:当k 为大于等于3的正整数时,5354k k k -+一定能被120整除.【例12】分解因式:(1)()()22323416x x x x +-++-;(2)()()()()312424x x x x --+++;(3)()22214(1)y x yx y ----.【例13】分解因式(1)2231092x xy y x y --++-; (2)222456x xy y x y +--+-.1、分组原则:(1)分组后能直接提取公因式;(2)分组后能直接运用公式. 2、分组分解法分解因式的几点注意(1)分组分解法主要应用于四项以上(包括四项)的多项式的因式分解; (2)解题时仍应首先考虑公因式的提取,公式法的应用,其次才考虑分组;(3)分组方法的不同,仅仅是因为分解的手段不同,各种手段的目的都是把原多项式进行因式分解;(4)五项式一般采用三项、两项分组;(5)六项式采用三、三分组,或三、二、一分组,或二、二、二分组;(6)原多项式中带有括号时一般不便于分组时可先将括号去掉,整理后再分组分解.【例14】把多项式2242x x y y ---用分组分解法分解因式,正确的分组方法应该是( ).A .()()2242x y x y --+B .()224(2)x y x y --+C .224(2)x x y y -++D .()()2242x x y y --+【例15】把多项式2221xy x y --+分解因式().A .()()11x y y x -+-+B .()()11x y y x ---+C .()()11x y x y ---+D .()()11x y x y -+-+【例16】将多项式2a ab ac bc -+-分解因式,分组的方法共有________种.模块二:分组分解法知识精讲例题解析【例17】(1)若3223a a b ab b --+有因式()a b -,则另外的因式是____________.(2)若多项式3233x x x m +-+有一个因式为()3x +,则m 的值为____________.【例18】分解因式:(1)221448x y xy --+; (2)2222242a x a y a xy -+-;(3)234416x x x +--; (4)3223x x y xy y +--.【例19】分解因式:(1)222ax ay x xy y --+-; (2)22222x x xy y y --+-.【例20】分解因式:(1)54321x x x x x +++++; (2)222212x y z yz x ---+-.【例21】分解因式:(1)243(34)x y x y +-+; (2)2222()()ab c d cd a b +++.【例22】请将下列多项式因式分解,并求值:(1)2214129x xy y -+-,其中1823x y ==,;(2)22446125x xy y x y -+-++,其中28x y =+.【例23】当2a c b +=时,求式子22244a c b bc --+的值.【例24】用因式分解的方法说明当n 为任意正整数时,代数式223232n n n n ++-+-的值一定是 10的整数倍.【例25】求证:无论x y 、为何值,2241293035x x y y -+++的值恒为正.【例26】如果多项式2223352kx xy y x y --+-+能分解成两个一次因式乘积, 求250.25k k ++的值.【例27】对于多项式32510x x x -++,我们把2x =代入多项式,发现2x =能使多项式 32510x x x -++的值为0,由此可以断定多项式32510x x x -++中有因式()2x -.[注:把x a =代入多项式,能使多项式的值为0,则多项式一定含有因式()x a -],于是我们可以把多项式写成:32510(2)()x x x x x mx n -++=-++,分别求出m n 、后再代入3510x x x -++=()()22x x mx n -++,就可以把多项式32510x x x -++因式分解. (1)求式子中m n 、的值.(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式32584x x x +++.【习题1】下列多项式不能用十字相乘法分解因式的是().A .22x x +-B .223103x x x -+C .232x x -+D .2267x xy y --【习题2】下列因式分解错误的是( ).A .()()2a bc ac ab a b a c -+-=-+B .5315(5)(3)ab a b b a -+-=-+C .22619(31)(31)x xy y x y x y --+=+++-D .2326(3)(2)x xy x y x y x +--=+-【习题3】分解因式:25____(___)(4)x x x x ++=++.随堂检测【习题4】若()()23x x -+是二次三项式2x mx n -+的因式分解的结果,则m 的值是_______. 【习题5】若()()215x kx x a x b --=++,则a b +的值不可能是().A .14B .16C .2D .14-【习题6】分解因式: (1)3246____________ab a b -+-+=; (2)22____________a bx a cx bx cx --+=; (3)22244_____________a a b b --+=.【习题7】分解因式:(1)21024x +-; (2)2421x x --+;(3)22383x xy y +-; (4)42109x x -+.【习题8】分解因式:(1)2365()()m n m n -+-+;(2)()229()20a b ac bc c +-++.【习题9】分解因式:(1)22444a ab b --+; (2)322x x y xy y x y -+-+-;(3)22446129x xy y x y -+-++; (4)221194n n x x y +-+.【习题10】若一个长方形的周长为32,长为x ,宽为y ,且满足32230x x y xy y +--=. 求这个长方形的面积.【习题11】用两种不同的分组方法分解因式:54321x x x x x +----.【习题12】已知225302x x a a ++++=,求3x a +的值.【习题13】已知a b c d 、、、是整数,且7a b +=,7c d +=,判断ad bc -的值能否被7整除,并简要说明理由.【习题14】分解因式:(1)2235294x xy y x y +-++-;(2)2232453x xy y x y +++++.【习题15】分解因式:(1)()()226824x x x x +-+--;(2)()1(2)(3)(6)20x x x x +---+.【作业1】分解因式:(1)22524__________x xy y --=;(2)2236_______________x ax bx ab +++=;(3)22993______________x x y y +--=.【作业2】分解因式:(1)21220x x ++;(2)212x x +-;(3)2121115x x --.课后作业【作业3】把下列各式因式分解:(1)222422x x y ++-;(2)22ax bx ax bx a b +--++.【作业4】请将下列多项式因式分解,并求值:2233a b a b ab -+-,其中83a =,2b =.【作业5】已知221547280x xy y -+=,求x y 的值.【作业6】在因式分解多项式2x ax b ++时,小明看错了一次项系数后,分解得()()53x x ++,小华看错了常数项后,分解得()()42x x -+,求原多项式以及正确的因式分解的结果.【作业7】已知多项式2212x xy y --.(1)将此多项式因式分解;(2)若多项式2212x xy y --的值等于6-,且x y 、都是正整数,求满足条件的x y 、的 值.【作业8】分解因式:(1)()2222()()()a b a c c d b d +++-+-+; (2)42222222()()x a b x a b -++-.【作业9】分解因式:(1)22268x y x y -++-; (2)432433x x x x ++++.【作业10】分解因式:(1)()22214()24x x x x +-++; (2)()2(1)1a b ab +-+;(3)(1)(1)(1)xy x y xy ++++; (4)()()22114x y xy --+.【作业11】已知正有理数a b c 、、满足方程组222229217226a b ac b c ab c a bc ⎧++=⎪++=⎨⎪++=⎩,求a b c ++的值.。
十字相乘法及分组分解法(提高)【学习目标】1. 熟练掌握首项系数为1的形如pq x q p x +++)(2型的二次三项式的因式分解.2. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)4. 掌握好简单的分组分解法.【要点梳理】【 十字相乘法及分组分解法 知识要点】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 对于二次三项式2x bx c ++,若存在pq c p q b =⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++ 要点诠释:(1)在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号(2)若2x b x c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即12a a a =,常数项c 可以分解成两个因数之积,即12c c c =,把1212a a c c ,,,排列如下:按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数a 一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:要点四、添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形. 添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法.【典型例题】类型一、十字相乘法1、分解因式: 22(1)(6136)x a x a a ++--+【答案与解析】解:原式=()()()212332x a x a a ++--- ()()()()23322332x a x a x a x a =--+-⎡⎤⎡⎤⎣⎦⎣⎦=-++-【总结升华】将a 视作常数,就以x 为主元十字相乘可解决.举一反三:【变式】分解因式:23345xy y x y ++--【答案】解:原式2(34)35(35)(1)y x y x y x y =+-+-=+-+2、分解因式:【思路点拨】该题可以先将()2a a -看作一个整体进行十字相乘法分解,接着再套用一次十字相乘.【答案与解析】解: 因为()()()22221214a a a a a a ----=--所以:原式=[-2][ -12]=22(2)(12)a a a a ----=()()()()1234a a a a +-+-【总结升华】十字相乘法对于二次三项式的分解因式十分方便,大家一定要熟练掌握. 举一反三:【变式】分解因式:222(3)2(3)8x x x x ----;【答案】解:原式()()223432x x x x =---+()()()()4112x x x x =-+--3、分解下列因式(1)22(1)(2)12x x x x ++++- (2)22(33)(34)8x x x x +-++-【答案与解析】解:(1)令21x x t ++=,则原式222(1)1212(4)(3)(5)(2)t t t t t t x x x x =+-=+-=+-=+++- 2(2)(1)(5)x x x x =+-++(2)令23x x m +=,原式2(3)(4)820(5)(4)m m m m m m =-+-=+-=+-222(35)(34)(4)(1)(35)x x x x x x x x =+++-=+-++【总结升华】此两道小题结构都非常有特点,欲分解都必须先拆开,再仔细观察每个式子中都存在大量相同的因式→整体性想法.整体性思路又称换元法,这与我们生活中搬家有些类似,要先将一些碎东西找包,会省许多事.类型二、分组分解法4、分解因式:222332x xy y x y -++-+【思路点拨】对完全平方公式熟悉的同学,一看见该式,首先想到的肯定是式子中前三项恰好构成2()x y -,第4、5项→3()x y -.【答案与解析】解:原式2()3()2x y x y =-+-+(1)(2)x y x y =-+-+【总结升华】①熟记公式在复杂背景下识别公式架构很重要;②我们前面练习中无论公式、配方、十字相乘一般都只涉及单一字母,其实代数式学习是一个结构的学习,其中任一个字母均可被一个复杂代数式来替代,故有时要有一些整体性认识的想法. 举一反三:【高清课堂400150 十字相乘法及分组分解法 例4】【变式1】分解因式:(1)22a b ac bc -++(2)225533a b a b --+(3)23345xy y x y ++--【答案】解:(1)原式()()()()()a b a b c a b a b a b c =+-++=+-+;(2)原式()()()()()()()225353553a b a b a b a b a b a b a b =---=+---=-+-; (3)原式233453(1)(1)(5)(1)(35)xy x y y x y y y y x y =++--=+++-=++-.【变式2】(2014春•苏州期末)因式分解:a 2﹣b 2﹣2a+1.【答案】解:a 2﹣b 2﹣2a+1=a 2﹣2a+1﹣b 2=(a ﹣1)2﹣b 2=(a ﹣1+b )(a ﹣1﹣b ).类型三、拆项或添项分解因式5、(2015春•吉州区期末)阅读理解:对于二次三项式x 2+2ax+a 2可以直接用公式法分解为(x+a )2的形式,但对于二次三项式x 2+2ax ﹣8a 2,就不能直接用公式法了.我们可以在二次三项式x 2+2ax ﹣8a 2中先加上一项a 2,使其成为完全平方式,再减去a 2这项,使整个式子的值不变,于是又:x 2+2ax ﹣8a 2=x 2+2ax ﹣8a 2+a 2﹣a 2=(x 2+2ax+a 2)﹣8a 2﹣a 2=(x+a )2﹣9a 2=[(x+a)+3a][(x+a)﹣3]=(x+4a)(x﹣2a)像这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请认真阅读以上的添(拆)项法,并用上述方法将二次三项式:x2+2ax﹣3a2分解因式.(2)直接填空:请用上述的添项法将方程的x2﹣4xy+3y2=0化为(x﹣)•(x﹣)=0并直接写出y与x的关系式.(满足xy≠0,且x≠y)(3)先化简﹣﹣,再利用(2)中y与x的关系式求值.【答案与解析】解:(1)x2+2ax﹣3a2=x2+2ax+a2﹣4a2=(x+a)2﹣4a2=(x+a+2a)(x+a﹣2a)=(x+3a)(x﹣a);(2)x2﹣4xy+3y2=x2﹣4xy+4y2﹣y2=(x﹣2y)2﹣y2=(x﹣2y+y)(x﹣2y﹣y)=(x﹣y)(x﹣3y);x=y或x=3y;故答案为:y;3y(3)原式===﹣,若x=y,原式=﹣2;若x=3y,原式=﹣23.【总结升华】此题考查了因式分解﹣添(拆)项法,正确地添(拆)项是解本题的关键.。
1.因式分解概念:把一个多项式化成几个整式的 的形式,这就叫做把这个多项式因式分解,也可称为将这个多项式分解因式,它与整式乘法互为逆运算。
2.常用的因式分解方法:(1)提公因式法:对于ma mb mc ++, 叫做公因式, 叫做提公因式法。
①多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
②公因式的构成:系数:各项系数的 ;字母:各项都含有的相同字母; 指数:相同字母的最低次幂。
(2)公式法:①常用公式平方差: 完全平方: 立方和:3322a b (a+b)(a -ab+b )+= 立方差:②常见的两个二项式幂的变号规律: 22()()n n a b b a -=-;2121()()n n a b b a ---=--.(n 为正整数)(3)十字相乘法①二次项系数为1的二次三项式q px x ++2中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成②二次项系数不为1的二次三项式c bx ax ++2中,如果能把二次项系数a 分解成两个因数21,a a 的积,把常数项c 分解成两个因数21,c c 的积,并且1221c a c a +等于一次项系数b ,那么它就可以分解成:()=+++=++2112212212c c x c a c a x a a c bx ax ()()221c x a a x a ++。
(4)分组分解法①定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。
再提公因式或利用公式法,即可达到分解因式的目的。
例如22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。
②原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。
第十一讲因式分解(分组分解法和十字相乘法)第一部分、教学目标:1、掌握十字相乘法和分组分解法分解因式2掌握十字相乘法在实际生活中的应用第二部分、教学重点、难点本节课的重点是会利用分组分解法等方法分解因式本节课的难点是因式分解在实际问题中的应用。
第三部分、教学过程例题讲解:例1、因式分解:m2﹣my+mx﹣yx=.【分析】原式两项两项结合提取公因式即可.【解答】解:原式=(m2﹣my)+(mx﹣yx)=m(m﹣y)+x(m﹣y)=(m﹣y)(m+x),故答案为:(m﹣y)(m+x).练1.1、分解因式:6k2+9km﹣6mn﹣4kn.解:6k2+9km﹣6mn﹣4kn=3k(2k+3m)﹣2n(3m+2k)=(2k+3m)(3k﹣2n).练1.2、观察下面分解因式的过程,并完成后面的习题分解因式:am+an+bm+bn解法一:原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)解法二:原式=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)根据你发现的方法,分解因式:(1)mx﹣my+nx﹣ny(2)2a+4b﹣3ma﹣6mb.【解答】(1)解法一:原式=(mx﹣my)+(nx﹣ny)=m(x﹣y)+n(x﹣y)=(m+n)(x﹣y);解法二:原式=(mx+nx)﹣(my+ny)=x(m+n)﹣y(m+n)=(m+n)(x﹣y);(2)解法一:原式=(2a+4b)﹣(3ma+6mb)=2(a+2b)﹣3m(a+2b)=(2﹣3m)(a+2b);解法二:原式=(2a﹣3ma)+(4b﹣6mb)=a(2﹣3m)+2b(2﹣3m)=(2﹣3m)(a+2b).例2、分解因式:(1)2x2﹣18;(2)a2﹣4ab+4b2﹣9.【分析】(1)先提2,然后利用平方差公式分解因式;(2)先分组,把前面三项利用完全平方公式表示,然后利用平方差公式分解.【解答】解:(1)原式=2(x2﹣9)=2(x+3)(x﹣3);(2)原式=(a﹣2b)2﹣32=(a﹣2b+3)(a﹣2b﹣3).练2.2、分解因式:25﹣4x2+4xy﹣y2.解:25﹣4x2+4xy﹣y2,=25﹣(4x2﹣4xy+y2),=52﹣(2x﹣y)2,=(5+2x﹣y)(5﹣2x+y)例3、先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x﹣3y)+(2x﹣3y)2.(2)因式分解:(a+b)(a+b﹣4)+4;【分析】(1)将(2x﹣3y)看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b,代入后因式分解后代入即可将原式因式分解.【解答】解:(1)原式=(1+2x﹣3y)2.(2)令A=a+b,则原式变为A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,故(a+b)(a+b﹣4)+4=(a+b﹣2)2.练3.2、先阅读下列两段材料,再解答下列问题:(一)例题:分解因式:(a+b)2﹣2(a+b)+1解:将“a+b”看成整体,设M=a+b,则原式=M2﹣2M+1=(M﹣1)2,再将“M”还原,得原式=(a+b﹣1)2上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法;(二)常用的分解因式的方法有提取公因式法和公式法但有的多项式只用上述一种方法无法分解,例如x2﹣4y2﹣2x+4y,我们细心观察就会发现,前两项可以分解,后两项也可以分解,分别分解后会产生公因式就可以完整的分解了.过程为:x2﹣4y2﹣2x+4y=(x2﹣4y2)﹣2(x﹣2y)=(x﹣2y)(x+2y)﹣2(x ﹣2y)=(x﹣2y)(x+2y﹣2).这种方法叫分组分解法,对于超过三项的多项式往往考虑这种方法.利用上述数学思想方法解决下列问题:(1)分解因式(3a+2b)2﹣(2a+3b)2;(2)分解因式.xy2﹣2xy+2y﹣4;(3)分解因式:(a+b)(a+b﹣4)﹣c2+4.解:(1)(3a+2b)2﹣(2a+3b)2=(3a+2b﹣2a﹣3b)(3a+2b+2a+3b)=5(a﹣b)(a+b);(2)xy2﹣2xy+2y﹣4=xy(y﹣2)+2(y﹣2)=(xy+2)(y﹣2);(3)(a+b)(a+b﹣4)﹣c2+4=(a+b)2﹣4(a+b)+4﹣c2=(a+b﹣2)2﹣c2=(a+b﹣2﹣c)(a+b﹣2+c).例4、x2+(p+q)x+pq型式子是数学学习中常见的一类多项式,如何将这种类型的式子因式分解呢?因为(x+p)(x+q)=x2+(p+q)x+pq,所以,根据因式分解是与整式乘法方向相反的变形,利用这种关系可得:x2+(p+q)x+pq=(x+p)(x+q).如:x2+3x+2=x2+(1+2)x+1×2=(x+1)(x+2)上述过程还可以形象的用十字相乘的形式表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项的系数,如图.这样,我们可以得到:x2+3x+2=(x+1)(x+2)利用这种方法,将下列多项式分解因式:(1)x2+7x+10(2)﹣2x2﹣6x+36【分析】(1)仿照题中的方法将原式分解即可;(2)仿照题中的方法将原式分解即可.【解答】解:(1)x2+7x+10=(x+5)(x+2);(2)﹣2x2﹣6x+36=﹣2(x2+3x﹣18)=﹣2(x+6)(x﹣3).例5、若m+n=4,则2m2+4mn+2n2﹣5的值为()A.27B.11C.3D.0【分析】根据m+n=4和完全平方公式,将所求式子变形,即可得到所求式子的值.【解答】解:∵m+n=4,∴2m2+4mn+2n2﹣5=2(m+n)2﹣5=2×42﹣5=2×16﹣5=32﹣5=27,故选:A.练5.1、若m2+m﹣1=0,则m3+2m2+2019的值为(A)A.2020B.2019C.2021D.2018练5.2、已知a=2019x+2018,b=2019x+2019,c=2019x+2020,则代数式a2+b2+c2﹣ab﹣ac﹣bc的值为(D)A.0B.1C.2D.3例6、已知a,b,c是△ABC的三条边,且满足a2+b2+c2﹣ab﹣bc﹣ac=0,判断△ABC形状【分析】把等式两边乘以2,再利用完全平方公式得到(a﹣b)2+(b﹣c)2+(a﹣c)2=0,然后根据非负数的性质得到a=b=c,从而可判断△ABC的现状.【解答】解:∵a2+b2+c2﹣ab﹣bc﹣ac=0,∴2a2+2b2﹣2ab﹣2bc﹣2ac=0,∴(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a﹣b=0,b﹣c=0,a﹣c=0,∴a=b=c,∴△ABC为等边三角形.练6.1、已知a,b,c是三角形的三边,那么代数式(a﹣b)2﹣c2的值(B)A.大于零B.小于零C.等于零D.不能确定练6.2、已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是(C)A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形阅读并解决问题:分解因式(a+b)2+2(a+b)+1.解:设a+b=x,则原式=x2+2x+1=(x+1)2=(a+b+1)2.这样的解题方法叫做“换元法”,即当复杂的多项式中,某﹣﹣部分重复出现时,我们用字母将其替换,从而简化这个多项式换元法是一一个重要的数学方法,不少问题能用换元法解决.请用“换元法”对下列多项式进行因式分解:(1)(m+n)2﹣18(m+n)+81;(2)(x2﹣4x+2)(x2﹣4x+6)+4【解答】解:(1)设m+n=x,则原式=x2﹣18x+81=(x﹣9)2=(m+n﹣9)2;(2)设x2﹣4x+2=y,则原式=y(y+4)+4=y2+4y+4=(y+2)2=(x2﹣4x+2+2)2=[(x﹣2)2]2=(x﹣2)4第四部分、板书设计第五部分、作业布置今天是2020年月号星期天气今日所学:因式分解今日作业:新思维第页下次上课时间:下周正常上课第六部分、课后反思。
初中数学因式分解-十字相乘与分组分解考试要求:知识点汇总:一、十字相乘法十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解二、分组分解分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.例题精讲:一、十字相乘【例 1】分解因式:⑴256x x ++ ⑵256x x -+⑶276x x ++ ⑷276x x -+【解析】 ⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --【巩固】 分解因式:268x x ++【解析】268(2)(4)x x x x ++=++【巩固】 分解因式:278x x +-【解析】278(8)(1)x x x x +-=+-【例 2】分解因式:2376a a --【解析】 2376(32)(3)a a a a --=+-【巩固】 分解因式:2383x x --【解析】 2383(31)(3)x x x x --=+-【巩固】 分解因式:25129x x +-【解析】 25129(3)(53)x x x x +-=+-【巩固】 分解因式:42730x x +-【解析】 4222730(3)(10)x x x x +-=-+【巩固】 分解因式:2273320x x --【解析】 2273320(94)(35)x x x x --=+-【例 3】分解因式:212x x +-【解析】 221212(3)(4)x x x x x x +-=-++=+-+【巩固】 分解因式:2612x x -+-【解析】 22612(612)(23)(34)x x x x x x -+-=-+-=-+-【例 4】分解因式:2214425x y xy +-【解析】 2214425(16)(9)x y xy x y x y +-=--【巩固】 分解因式:22672x xy y -+【解析】 22672(2)(32)x xy y x y x y -+=--【巩固】 分解因式:22121115x xy y --【解析】 22121115(35)(43)x xy y x y x y --=-+【例 5】分解因式:⑴2()4()12x y x y +-+-;⑵2212()11()()2()x y x y x y x y +++-+-【解析】 ⑴把x y +看作一个整体,利用十字相乘法分解即可.2()4()12(2)(6)x y x y x y x y +-+-=+++-⑵将,x y x y +-看作整体,则原式[][]4()()3()2()(53)(5)x y x y x y x y x y x y =++-++-=++.【巩固】 分解因式:257(1)6(1)a a ++-+【解析】[][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+【巩固】 分解因式:2(2)8(2)12a b a b ---+【解析】[][]2(2)8(2)12(2)2(2)6(22)(26)a b a b a b a b a b a b ---+=----=----【例 6】分解因式:1a b c ab ac bc abc +++++++【解析】 把a 视为未知数,其它视为参数。
十字相乘法及分组分解法要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq cp q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++要点诠释:(1)在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号 (2)若2x bx c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止. 要点二、首项系数不为1的十字相乘法在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即12a a a =,常数项c 可以分解成两个因数之积,即12c c c =,把1212a a c c ,,,排列如下:按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数a 一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有: 方法分类分组方法特点分组分解法四项二项、二项 ①按字母分组②按系数分组 ③符合公式的两项分组 三项、一项先完全平方公式后平方差公式 五项三项、二项 各组之间有公因式 六项三项、三项二项、二项、二项 各组之间有公因式 三项、二项、一项可化为二次三项式要点四:添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法. 【典型例题】 类型一、十字相乘法1、将下列各式分解因式: (1); (2)21016x x -+; (3)2310x x --举一反三:【变式1】分解因式:(1)1072++x x ; (2)822--x x ; (3)2718x x --+【变式2】因式分解:m 2n ﹣5mn+6n.2、将下列各式分解因式: (1)22355x x +-; (2)25166x x ++(3)22616x xy y --; (4).举一反三:【变式】将下列各式分解因式:(1)10722+-xy y x ; (2)()()342++-+b a b a .3、将下列各式分解因式: (1); (2)举一反三:【变式】分解因式:(1)2314x x +-;(2)2344x x --+;(3)2631105x x +-;类型二、分组分解法4、先阅读下列材料,然后回答后面问题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.能分组分解的多项式通常有四项或六项,一般的分组分解有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法: ax+ay+bx+by=(ax+ay )+(bx+by ) =a (x+y )+b (x+y ) =(x+y )(a+b ) 如“3+1”分法:2xy+y 2﹣1+x 2=x 2+2xy+y 2﹣1=(x+y )2﹣1 =(x+y+1)(x+y ﹣1)请你仿照以上方法,探索并解决下列问题: (1)分解因式:x 2﹣y 2﹣x ﹣y ;(2)分解因式:45am 2﹣20ax 2+20axy ﹣5ay 2;(3)分解因式:4a 2+4a ﹣4a 2b ﹣b ﹣4ab+1.举一反三:【变式】分解因式:22244a b ab c +--【巩固练习】 一.选择题1. 将21016a a ++因式分解,结果是( ) A.()()28a a -+ B.()()28a a +- C.()()28a a ++ D.()()28a a --2.(2014•保定二模)下列因式分解正确的是( ) A . x 2﹣7x+12=x (x ﹣7)+12B . x 2﹣7x+12=(x ﹣3)(x+4)C . x 2﹣7x+12=(x ﹣3)(x ﹣4) D . x 2﹣7x+12=(x+3)(x+4)3. 如果()()2x px q x a x b -+=++,那么p 等于( )A.abB.a b +C.ab -D.a b --4. 若()()236123x kx x x +-=-+,则k 的值为( ) A.-9 B.15 C.-15 D.95. 如果,则b 为 ( )A .5B .-6C .-5D .6 6.把2222a b c bc --+进行分组,其结果正确的是( ) A. 222()(2)a c b bc --- B. 222()2a b c bc --+ C. 222()(2)a b c bc --- D. 222(2)a b bc c --+ 二.填空题7. 若()()21336m m m a m b -+=++,则a b -= .8. 因式分解22a b ac bc -++___________. 9.因式分解:4a 2+4a ﹣15= .10. 因式分解:ax bx cx ay by cy +++++=_______________; 11. 因式分解()2064x x -+= . 12.分解因式:321a a a +--=________.三.解答题 13.分解因式:(1)268x x -+; (2)21024x x +-;(3)215238a a -+; (4)22568x xy y -++;(5)225533a b a b --+.分式的概念和性质要点一、分式的概念一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式.其中A 叫做分子,B 叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如aπ是整式而不能当作分式. (4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x y x是分式,与xy 有区别,xy 是整式,即只看形式,不能看化简的结果.要点二、分式有意义,无意义或等于零的条件 1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零. 要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值. 要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M 是不等于零的整式). 要点诠释:(1)基本性质中的A 、B 、M 表示的是整式.其中B ≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M ≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M ≠0这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有b b a a -=-,b b a a-=-.根据有理数除法的符号法则有b b b a a a -==--.分式a b 与ab-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用. 要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分.要点六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言. 【典型例题】 类型一、分式的概念1、下列式子中,哪些是整式?哪些是分式?2a ,3x ,1m m +,23x +,5π,2a a ,23-.类型二、分式有意义,分式值为02、下列各式中,m 取何值时,分式有意义? (1)2m m +;(2)1||2m -;(3)239mm --.举一反三:【变式1】在什么情况下,下列分式没有意义?(1)3(7)x x x +;(2)21x x +;(3)222x x ++.【变式2】当x 为何值时,下列各式的值为0.(1)2132x x +-;(2)221x x x +-;(3)224x x +-.类型三、分式的基本性质3、不改变分式的值,将下列分式的分子、分母中的系数化为整数.(1)0.20.020.5x y x y+-; (2)11341123x yx y +-.举一反三:【变式1】如果把分式yx x232-中的y x ,都扩大3倍,那么分式的值( )A 扩大3倍B 不变C 缩小3倍D 扩大2倍【变式2】填写下列等式中未知的分子或分母.(1)22?x y x y x y +-=-; (2)()()?()()()b a c b a c a b b c a c--=----.4、 不改变分式的值,使下列分式的分子和分母不含“-”号. (1)2a b -;(2)45x y --;(3)3m n -;(4)23bc--.类型四、分式的约分、通分5、 将下列各式约分:(1)23412ax x ;(2)243153n n x y x y +-;(3)211a a --;(4)321620m m m m -+-.举一反三: 【变式】通分:(1)4b ac ,22a b c ;(2)22x x +,211x -.(3)232a b 与2a b ab c -;(4)12x +,244x x -,22x -.【巩固练习】 一.选择题1.在代数式22221323252,,,,,,33423x x xy x x x x π+-+中,分式共有( ). A.2个 B.3个C.4个D.5个2.使分式5+x x值为0的x 值是( ) A .0 B .5 C .-5D .x ≠-53. 下列判断错误..的是( ) A .当23x ≠时,分式231-+x x 有意义 B .当a b ≠时,分式22aba b-有意义 C .当21-=x 时,分式214x x+值为0 D .当x y ≠时,分式22x y y x --有意义4.x 为任何实数时,下列分式中一定有意义的是( )A .21x x+B .211x x -- C .11x x -+ D .211x x -+ 5.如果把分式yx yx ++2中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .缩小10倍 C .是原来的32D .不变6.下列各式中,正确的是( )A .a m ab m b+=+ B .0a ba b+=+ C .1111ab b ac c +-=-- D .221x y x y x y-=-+二.填空题7.当x =______时,分式632-x x无意义. 8.若分式67x--的值为正数,则x 满足______. 9.(1)112()x xx --=- (2).y x xy x22353)(= 10.(1)22)(1yx y x -=+ (2)⋅-=--24)(21y y x11.分式2214a b 与36xab c的最简公分母是_________. 12. 化简分式:(1)3()x yy x -=-_____;(2)22996x x x -=-+_____. 三.解答题13.当x 为何值时,下列分式有意义?(1)12x x +-;(2)1041x x -+;(3)211x x -+;(4)2211x x ---.14.已知分式,y ay b-+当y =-3时无意义,当y =2时分式的值为0, 求当y =-7时分式的值.15.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.(1)22x x y --(2)2ba a-- (3)2211x x x x---+(4)2231m m m ---。
十字相乘和分组分解法因式分解【知识梳理】一、十字相乘十字相乘法:如果二次三项式2x px q ++中的常数项q 能分解成两个因式a 、b 的积,而且一次项系数p 又恰好是a b +,那么2x px q ++就可以进行如下的分解因式,即:()()()22x px q x a b x ab x a x b ++=+++=++要将二次三项式2x px q ++分解因式,就需要找到两个数a 、b ,使它们的积等于常数项q ,和等于一次项系数p , 满足这两个条件便可以进行如下分解因式, 即:22()()()x px q x a b x ab x a x b ++=+++=++.由于把2x px q ++中的q 分解成两个因数有多种情况,怎样才能找到两个合适的数,通常要经过多次的尝试才能确定采用哪种情况来进行分解因式.二、分组分解如何将多项式am an bm bn +++因式分解?分析:很显然,多项式am an bm bn +++中既没有公因式,也不好用公式法.怎么办呢?由于()am an a m n +=+,()bm bn b m n +=+而:()()()()a m n b m n m n a b +++=+.这样就有:()()()()()()am an bm bn am an bm bn a m n b m n m n a b +++=+++=+++=++将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法. 说明:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.【考点剖析】一.因式分解-十字相乘法等(共22小题)1.(2022秋•静安区校级期中)多项式77x 2﹣13x ﹣30可因式分解成(7x +a )(bx +c ),其中a 、b 、c 均为整数,求a +b +c 之值为何?( )A .0B .10C .12D .22【分析】首先利用十字交乘法将77x2﹣13x ﹣30因式分解,继而求得a ,b ,c 的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选:C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c(a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).2.(2021秋•奉贤区期末)分解因式:x2+3x﹣10=.【分析】原式利用十字相乘法分解即可.【解答】解:原式=(x﹣2)(x+5),故答案为:(x﹣2)(x+5)【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.3.(2022秋•闵行区校级期末)因式分解:(y2﹣y)2﹣14(y2﹣y)+24.【分析】直接利用十字相乘法分解因式得出答案【解答】解:原式=(y2﹣y﹣2)(y2﹣y﹣12)=(y﹣2)(y+1)(y﹣4)(y+3).【点评】此题主要考查了十字相乘法分解因式,正确分解常数项是解题关键.4.(20222x2﹣6x﹣8=.【分析】原式先提取公因数2,再利用十字相乘法求出解即可.【解答】解:原式=2(x2﹣3x﹣4)=2(x﹣4)(x+1),故答案为:2(x﹣4)(x+1).【点评】本题考查了因式分解—十字相乘法,熟练掌握十字相乘的方法是解题的关键.5.(2022秋•虹口区校级期中)分解因式:x2﹣7xy﹣18y2=.【分析】由十字相乘法进行分解因式即可.【解答】解:x2﹣7xy﹣18y2=(x﹣9y)(x+2y).故答案是:(x﹣9y)(x+2y).【点评】本题考查因式分解,熟练掌握十字相乘法分解因式是解题的关键.6.(2022秋•宝山区期末)分解因式:2x2+6xy+4y2.【分析】先提公因式,再用十字相乘法因式分解即可.【解答】解:2x2+6xy+4y2=2(x2+3xy+2y2)=2(x+2y)(x+y).【点评】本题考查了提公因式法与十字相乘法的综合运用,熟练掌握因式分解的方法是解题的关键.7.(2022秋•宝山区期末)分解因式:x2﹣9x+14=(x+□)(x﹣7),其中□表示一个常数,则□的值是()A.7B.2C.﹣2D.﹣7【分析】利用十字相乘法因式分解即可.【解答】解:x2﹣9x+14=(x﹣2)(x﹣7),∴□表示﹣2,故选:C.【点评】本题考查因式分解,熟练掌握利用十字相乘法进行因式分解是解题的关键.8.(2022秋•虹口区校级期中)如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5【分析】∵4=﹣1×(﹣4),﹣1+(﹣4)=﹣5,∴可以用十字相乘法因式分解.【解答】解:当c=4时,x2﹣5x+c=x2﹣5x+4=(x﹣1)(x﹣4).故选:C.【点评】本题主要考查了因式分解﹣十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.9.(2022x2﹣5x﹣6=.【分析】因为﹣6×1=﹣6,﹣6+1=﹣5,所以利用十字相乘法分解因式即可.【解答】解:x2﹣5x﹣6=(x﹣6)(x+1).【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.10.(2022秋•嘉定区校级期末)因式分解a2﹣a﹣6=.【分析】根据因式分解就是把一个多项式变形成几个整式的积的形式的定义,利用十字相乘法求解.【解答】解:a2﹣a﹣6=(a+2)(a﹣3).故答案为:(a+2)(a﹣3).【点评】本题考查了因式分解.解题的关键是掌握十字相乘法因式分解.11.(2022秋•闵行区校级期中)因式分解:x2﹣5x﹣24=.【分析】用十字相乘法因式分解.【解答】解:x2﹣5x﹣24=(x﹣8)(x+3),故答案为:(x﹣8)(x+3),【点评】本题主要考查了因式分解﹣十字相乘法,熟练掌握十字相乘法分解因式的方法,根据题意可知a、b是相互独立的,利用多项式相乘法则计算,再根据对应系数相等即可求出a、b的值是解题关键.12.(2021秋•宝山区期末)分解因式:x2+4x﹣21=.【分析】根据因式分解﹣十字相乘法进行分解即可.【解答】解:x2+4x﹣21=(x+7)(x﹣3),故答案为:(x+7)(x﹣3).【点评】本题考查了因式分解﹣十字相乘法,熟练掌握因式分解﹣十字相乘法是解题的关键.13.(2021秋•普陀区期末)已知关于x的多项式x2+kx﹣3能分解成两个一次多项式的积,那么整数k的值为.【分析】把常数项分解成两个整数的乘积,k就等于那两个整数之和.【解答】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k=﹣3+1=﹣2或k=﹣1+3=2,∴整数k的值为:±2,故答案为:±2.【点评】本题考查了因式分解﹣十字相乘法,熟练掌握因式分解﹣十字相乘法是解题的关键.14.(2022ax4﹣14ax2﹣32a.【分析】首先提取公因式a,再利用十字相乘法分解因式,再结合平方差公式分解因式即可.【解答】解:ax4﹣14ax2﹣32a=a(x4﹣14x2﹣32)=a(x2+2)(x2﹣16)=a(x2+2)(x+4)(x﹣4).【点评】此题主要考查了十字相乘法分解因式,正确运用公式是解题关键.15.(2022秋•嘉定区校级期中)阅读下列文字,解决问题.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4解:x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.这样利用添项的方法,将原代数式中的部分(或全部)变形为完全平方的形式,这种方法叫做配方法.按照这个思路,试把多项式x4+3x2y2+4y4分解因式.【分析】把原式中的第二项的系数1变为4﹣1,化简后三项结合构成完全平方式,剩下的一项写出完全平方式,然后再利用平方差公式即可分解因式.【解答】解:x4+3x2y2+4y4=x4+4x2y2+4y4﹣x2y2=(x2+2y2)2﹣x2y2=(x2+2y2+xy)(x2+2y2﹣xy).【点评】此题考查学生阅读新方法并灵活运用新方法的能力,考查了分组分解法进行分解因式,是一道中档题.本题的思路是添项构成完全平方式.16.(2021秋•普陀区期末)因式分解:(x2+4x)2﹣(x2+4x)﹣20.【分析】直接利用十字相乘法分解因式得出即可.【解答】解:原式=(x2+4x﹣5)(x2+4x+4)=(x+5)(x﹣1)(x+2)2.【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.17.(2022秋•虹口区校级期中)分解因式:(a2﹣a)2+2(a2﹣a)﹣8.【分析】先变形,局部逆用完全平方公式,再使用十字相乘法.【解答】解:(a2﹣a)2+2(a2﹣a)﹣8=(a2﹣a)2+2(a2﹣a)+1﹣9=(a2﹣a+1)2﹣9=(a2﹣a+1+3)(a2﹣a+1﹣3)=(a2﹣a+4)(a2﹣a﹣2)=(a2﹣a+4)(a﹣2)(a+1).【点评】本题主要考查运用公式法、十字相乘法进行因式分解,熟练掌握公式法、十字相乘法是解决本题的关键.18.(2021秋•浦东新区期末)分解因式:x2﹣4x﹣12=.【分析】因为﹣6×2=﹣12,﹣6+2=﹣4,所以利用十字相乘法分解因式即可.【解答】解:x2﹣4x﹣12=(x﹣6)(x+2).故答案为:(x﹣6)(x+2).【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.19.(2022秋•上海期末)分解因式:3x2﹣9x﹣30.【分析】先提取公因式,再利用十字相乘法分解.【解答】解:3x2﹣9x﹣30=3(x2﹣3x﹣10)=3(x﹣5)(x+2).【点评】本题考查了整式的因式分解,掌握提公因式法和十字相乘法是解决本题的关键.20.(2022秋•徐汇区期末)分解因式:(1)2ab2﹣6a2b2+4a3b2;(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24.【分析】(1)先提取公因式,再利用十字相乘法;(2)先利用十字相乘法,再利用公式法和十字相乘法.【解答】解:(1)2ab2﹣6a2b2+4a3b2=2ab2(1﹣3a+2a2)=2ab2(2a﹣1)(a﹣1);(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24=(x2﹣4x﹣8)(x2﹣4x+3)=[(x2﹣4x+4)﹣12](x﹣3)(x﹣1)=[(x﹣2)2﹣12](x﹣3)(x﹣1)=(x﹣2+2)(x﹣2﹣2)(x﹣3)(x﹣1).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.21.(2021秋•金山区期末)分解因式:(x2﹣x)2﹣18(x2﹣x)+72.【分析】把(x2﹣x)看成一个整体,利用十字相乘法分解即可.【解答】解:(x2﹣x)2﹣18(x2﹣x)+72=[(x2﹣x)﹣6][(x2﹣x)﹣12]=(x2﹣x﹣6)(x2﹣x﹣12)=(x﹣3)(x+2)(x﹣4)(x+3).【点评】本题考查了整式的因式分解,掌握十字相乘法和整体的思想是解决本题的关键.22.(2021秋•奉贤区期末)分解因式:(a2+a)2﹣8(a2+a)+12.【分析】因为﹣2×(a2+a)=﹣2(a2+a),﹣6×(a2+a)=﹣6(a2+a),所以可利用十字相乘法分解因式;得到的两个因式,还可以用十字相乘法分解因式.【解答】解:根据十字相乘法,(a2+a)2﹣8(a2+a)+12,=(a2+a﹣2)(a2+a﹣6),=(a+2)(a﹣1)(a+3)(a﹣2).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察、体会它实质是二项式乘法的逆过程;并注意一定要分解完全.二.因式分解-分组分解法(共12小题)23.(2022秋•徐汇区期末)分解因式:xy+(x+1)(y+1)(xy+1).【分析】根据分组法和十字相乘法因式分解即可.【解答】解:xy+(x+1)(y+1)(xy+1)=xy+(xy+x+y+1)(xy+1)=xy+[(xy+1)+(x+y)](xy+1)=(xy+1)2+(x+y)(xy+1)+xy=(xy+x+1)(xy+y+1).【点评】本题考查了分组法进行因式分解,熟练掌握分组法和十字相乘法是解题的关键.24.(2022秋•青浦区校级期末)因式分解:x2+4y﹣1﹣4y2.【分析】首先重新分组,进而利用完全平方公式以及平方差公式分解因式得出答案即可.【解答】解:x2+4y﹣1﹣4y2.x2﹣(﹣4y+4y2+1)=x2﹣(1﹣2y)2=(x﹣2y+1)(x+2y﹣1).【点评】此题主要考查了分组分解法以及公式法分解因式,正确分组是解题关键.25.(2022秋•浦东新区校级期末)分解因式:(1)m2﹣n2+6n﹣9;(2)(x+2y)x2+6(x+2y)x﹣7x﹣14y.【分析】(1)根据平方差公式和完全平方公式解答;(2)用提公因式法和十字相乘法解答.【解答】解:(1)原式=m2﹣(n2﹣6n+9)=m2﹣(n﹣3)2=(m﹣n+3)(m+n﹣3);(2)原式=(x+2y)x2+6(x+2y)x﹣7(x+2y)=(x+2y)(x2+6x﹣7)=(x+2y)(x﹣1)(x+7).【点评】本题考查了因式分解,熟悉乘法公式和提公因式法是解题的关键.26.(2022秋•闵行区校级期末)分解因式:2x3﹣2x2y+8y﹣8x.【分析】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).【点评】本题考查了平方差公式,分组分解法分解因式,要先把式子整理,再分解因式.对于一个四项式用分组分解法进行因式分解,难点是采用两两分组还是三一分组.27.(2022秋•闵行区校级期中)因式分解:a2﹣6ab+9b2﹣16.【分析】先分成两组,用完全平方公式,再用平方差公式分解因式.【解答】解:原式=(a2﹣6ab+9b2)﹣16=(a﹣3b)2﹣42=(a﹣3b+4)(a﹣3b﹣4).【点评】本题主要考查了因式分解﹣分组分解法,掌握因式分解﹣分组分解法的方法,先分组,再分解因式,完全平方公式和平方差公式的熟练应用是解题关键.28.(2022秋•青浦区校级期中)因式分解:2ac﹣6ad+bc﹣3bd.【分析】首先将前两项以及后两项提取公因式,进而分解因式得出即可.【解答】解:2ac﹣6ad+bc﹣3bd=2a(c﹣3d)+b(c﹣3d)=(c﹣3d)(2a+b).【点评】此题主要考查了分组分解法分解因式,正确分组得出是解题关键.29.(2022秋•上海期末)分解因式:x2﹣xy+ax﹣ay=.【解答】解:x2﹣xy+ax﹣ay=x(x﹣y)+a(x﹣y)=(x﹣y)(x+a).故答案为:(x﹣y)(x+a).【点评】本题考查了整式的因式分解,掌握分组分解法和提公因式法是解决本题的关键.30.(2022秋•宝山区校级期末)分解因式:b2﹣4a2﹣1+4a.【分析】利用分组分解法,将﹣4a2﹣1+4a分为一组,先利用完全平方公式,再利用平方差公式即可.【解答】解:原式=b2﹣(4a2+1﹣4a)=b2﹣(2a﹣1)2=[b+(2a﹣1)][b﹣(2a﹣1)]=(b+2a﹣1)(b﹣2a+1).【点评】本题考查分组分解法分解因式,掌握分组的原则和分组的方法是正确解答的前提,掌握完全平方公式、平方差公式的结构特征是解决问题的关键.31.(2022秋•嘉定区校级期末)因式分解:x2﹣4+4y2﹣4xy.【分析】直接将原式分组,再利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:x2﹣4+4y2﹣4xy=x2+4y2﹣4xy﹣4=(x﹣2y)2﹣4=(x﹣2y+2)(x﹣2y﹣2).【点评】此题主要考查了分组分解法分解因式,正确运用公式是解题关键.32.(2022秋•徐汇区期末)分解因式:x2+4z2﹣9y2+4xz=.【分析】先利用完全平方公式,再利用平方差公式.【解答】解:x2+4z2﹣9y2+4xz=x2+4z2+4xz﹣9y2=(x+2z)2﹣9y2=(x+2z+3y)(x+2z﹣3y).故答案为:(x+2z+3y)(x+2z﹣3y).【点评】本题主要考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键.33.(2022秋•宝山区期末)分解因式:m2﹣2m+1﹣4n2.【分析】先分组再利用平方差公式.【解答】解:m2﹣2m+1﹣4n2=(m﹣1)2﹣4n2=(m﹣1+2n)(m﹣1﹣2n).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.34.(2022秋•闵行区校级期中)因式分解:x2+9xy+18y2﹣3x﹣9y.【分析】先把多项式按三、二分组,再分别因式分解,最后提取公因式.【解答】解:x2+9xy+18y2﹣3x﹣9y=(x2+9xy+18y2)﹣(3x+9y)=(x+3y)(x+6y)﹣3(x+3y)=(x+3y)(x+6y﹣3).【点评】本题考查了整式的因式分解,掌握因式分解的提公因式和十字相乘法是解决本题的关键.三.因式分解的应用(共9小题)35.(2022秋•青浦区校级期末)用合理的方法计算:7.52×1.6﹣2.52×1.6.【分析】先利用提取公因式法,再利用平方差公式因式分解求得答案即可.【解答】解:原式=(7.52﹣2.52)×1.6=(7.5+2.5)×(7.5﹣2.5)×1.6=10×5×1.6=80.【点评】此题考查因式分解的实际运用,掌握提取公因式法和平方差公式是解决问题的关键.36.(2022秋•黄浦区期中)已知x﹣y=2,x2+y2=6,(1)求代数式xy的值;(2)求代数式x3y﹣3x2y2+xy3的值.【分析】(1)根据x2+y2=(x﹣y)2+2xy,再将已知代入即可;(2)将所求的式子变形为xy(x2﹣3xy+y2),再将x2+y2=6,xy=1代入求值即可.【解答】解:(1)∵x2+y2=(x﹣y)2+2xy,又∵x﹣y=2,x2+y2=6,∴6=4+2xy,∴xy=1;(2)x3y﹣3x2y2+xy3=xy(x2﹣3xy+y2),∵x2+y2=6,xy=1,∴原式=1×(6﹣3)=3.【点评】本题考查因式分解的应用,熟练掌握完全平方公式的变形形式,提取公因式法因式分解是解题的关键.37.(2022秋•静安区校级期中)已知x2﹣x﹣3=0,那么x3﹣2x2﹣2x+2022=.【分析】根据x2﹣x﹣3=0,得出x2=x+3,代入求值即可.【解答】解:∵x2﹣x﹣3=0,∴x2=x+3,x3﹣2x2﹣2x+2022=x(x+3)﹣2x2﹣2x+2022=﹣x2+x+2022=﹣(x2﹣x﹣3)+2019=2019,故答案为:2019.【点评】本题主要考查因式分解的应用,熟练掌握因式分解是解题的关键.38.(2022秋•静安区校级期中)n是整数,式子[1﹣(﹣1)n](n2﹣1)计算的结果()A.是0B.总是奇数C.总是偶数D.可能是奇数也可能是偶数【分析】根据题意,可以利用分类讨论的数学思想探索式子[1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.【解答】解:当n是偶数时,[1﹣(﹣1)n](n2﹣1)=[1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选:C.【点评】本题考查因式分解的应用,解题的关键是明确题意,利用分类讨论的数学思想解答问题.39.(2022秋•闵行区校级期中)已知a2﹣a﹣1=0,则代数式a3﹣2a+6=.【分析】根据已知条件得到a2﹣a=1,将要求的代数式化简得到a(a2+a)﹣a2﹣2a+6,两次代入求解即可.【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,a3﹣2a+6=a3﹣a2+a2﹣2a+6=a(a2﹣a)+a2﹣2a+6=a+a2﹣2a+6=a2﹣a+6,将a2﹣a=1代入原式=1+6=7.故答案为:7.【点评】本题考查因式分解的应用,合理利用已知条件是关键.40.(2022秋•闵行区校级期中)已知a,b,c是三个连续的正整数,a2=33124,c2=33856,那么b2=.【分析】由于a2=33124,c2=33856,则利用平方差公式得到(c+a)(c﹣a)=732,再根据a、b、c是三个连续正整数得到c﹣a=2①,于是可计算出c+a=366②,然后由①②可解得c,从而得到b的值.【解答】解:c2﹣a2=(c+a)(c)=33856﹣33124=732,∵a、b、c是三个连续正整数,∴c﹣a=2,∴c+a=366,∴c=184,∴b=183,∴b2=33489.故答案为:33489.【点评】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.41.(2022秋•宝山区校级期中)a,b,c是正整数,且满足①a+b2﹣2c﹣2=0②3a2﹣8b+c=0,求abc的最小值(要有过程).【分析】根据②3a2﹣8b+c=0,得出c=8b﹣3a2,代入①a+b2﹣2c﹣2=0,得出(b﹣8)2=66﹣6a2﹣a,根据完全平方数得出a,b,c的值即可.【解答】解:∵②3a2﹣8b+c=0,∴c=8b﹣3a2,∵a+b2﹣2c﹣2=0,即a+b2﹣2(8b﹣3a2)﹣2=0,整理得(b﹣8)2=66﹣6a2﹣a,∴66﹣6a2﹣a是完全平方数,∴66﹣6a2﹣a的值可能为1,4,9,16,25,36,49,64,∵a为正整数,∴a=3,可得b=5或11,c=13或61,∴abc的最小值为3×5×13=195.【点评】本题主要考查因式分解的应用,熟练掌握因式分解的知识是解题的关键.42.(2022秋•杨浦区期中)已知:x﹣2y=8,xy=5,求代数式x3y+4xy3的值.【分析】首先运用提取公因式法分解因式,再配方,然后代入已知条件计算即可.【解答】解:∵x﹣2y=8,xy=5,∴x3y+4xy3=xy(x2+4y2)=xy[(x﹣2y)2+4xy]=5(82+4×5)=5×84=420.43.(2022秋•奉贤区期中)根据所学我们知道:可以通过用不同的方法求解长方形面积,从而得到一些数学等式.如图1可以表示的数学等式:(a+m)(b+n)=ab+an+bm+mn,请完成下列问题:(1)写出图2中所表示的数学等式:.(2)从图3可得(a+b)(a+b+c)=.(3)结合图4,已知a+b+c=6,a2+b2+c2=14,求ab+bc+ac的值.【分析】(1)(2)根据题意利用面积公式计算即可求解;(3)首先根据面积公式得到(a+b+c)(a+b+c)=a2+b2+c2+2ab+2ac+2bc,然后利用已知条件即可求解.【解答】解:(1)(a+1)(a+2)=a2+a+2a+2=a2+3a+2;故答案为:a2+3a+2;(2)(a+b )(a+b+c )=a2+b2+ab+ab+ac+bc =a2+2ab+b2+ac+bc ;故答案为:a2+2ab+b2+ac+bc ;(3)根据题意得;(a+b+c )(a+b+c )=a2+b2+c2+2ab+2ac+2bc ,而a+b+c =6,a2+b2+c2=14∴6×6=14+2ab+2ac+2bc ,∴ab+bc+ca =11.【点评】此题主要考查了因式分解的应用,解题的关键是正确理解题意,然后根据题意求解.【过关检测】一、单选题 1.(2023·上海·七年级假期作业)如果多项式x 2﹣5x +c 可以用十字相乘法因式分解,那么下列c 的取值正确的是( )A .2B .3C .4D .5【答案】C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A 、252x x −+,不能用十字相乘法进行因式分解,不符合题意; B 、253x x −+,不能用十字相乘法进行因式分解,不符合题意;C 、()()25414x x x x −+=−−,能用十字相乘法进行因式分解,符合题意;D 、255x x -+,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解. 2.(2018秋·上海浦东新·七年级校考阶段练习)把多项式2+x ax bw +分解因式得(+1)(-3)x x ,则a.b 的值分别是( )【答案】A【分析】运用多项式乘以多项式的法则求出(x+1)(x-3)的值,对比系数可以得到a ,b 的值.【详解】∵(x+1)(x−3)=x ⋅x−x ⋅3+1⋅x−1×3=x 2−3x+x−3=x 2−2x−3,∴x 2+ax+b=x 2−2x−3∴a=−2,b=−3.故选A.【点睛】此题考查因式分解的应用,解题关键在于掌握运算法则求出(x+1)(x-3)的值.3.(2021秋·上海·七年级期中)若1a −是25a a m ++的因式,则m 的值是( )A .4B .6C .-4D .-6【答案】D【分析】利用因式分解与整式乘法的恒等关系计算解答即可.【详解】∵多项式25a a m ++因式分解后有一个因式为1a −, ∴设另一个因式是a k −,即25a a m ++=()()1a a k −−=()21a k a k −++,则()15k k m ⎧−+=⎨=⎩,解得:66k m =−⎧⎨=−⎩,故答案为:D .【点睛】此题考查了因式分解的意义,熟练掌握因式分解的方法是解本题的关键.A .5m =,1n =B .5m =−,1n =C .5m =,1n =−D .5m =−,1n =−【答案】C 【分析】根据十字相乘法的分解方法和特点解答.【详解】解:由x2-4x-m=(x-5)(x-n ),得:-5-n=-4,(-5)(-n )=-m所以n=-1,m=5.故选:C .【点睛】本题主要考查十字相乘法分解因式,对常数项的不同分解是解本题的关键.5.(2021秋·上海·七年级期中)多项式3333a b c abc −++有因式( )A .a b c ++B .c a b +−C .222a b c bc ac ab ++−+−D .bc ac ab −+【答案】B【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.【详解】原式=33()33()a c b abc ac a c +−+−+=22()[()()]3()a c b a c b a c b ac a c b +−++++−+−=22()[()()3]a c b a c b a c b ac +−++++−=222()[23]a c b a c ac ab ac b ac +−+++++−=222()()a c b a c b ab ac ac +−++++−. 故选:B .【点睛】本题考查了分组分解法分解因式,难点是采用两两分组还是三一分组.本题还需要熟练掌握立方和立方差公式. 6.(2023·上海·七年级假期作业)给出下面四个多项式:①2232x xy y −−;②22x x y y +−−;③76x xy −;④33x y +,其中以代数式x y −为因式的多项式的个数是( )A .1B .2C .3D .4【答案】C 【分析】综合提公因式法和公式法,十字相乘法,将四个多项式分解因式,根据分解的结果,逐一判断即可得到答案.【详解】解:①()()223322x y x y x xy y −−=+−; ②()()()()()()()22221x x y y x y x y x y x y x y x y x y +−−=−+−=+−+−=−++; ③()()()()()()()663333222276x x y x x y x y x x y x y xy x xy x y x xy y =−=+−=+−+−++−; ④()()2323x y x y y x xy =++−+,∴以代数式x y −为因式的多项式为①②③,共3个,故选C .【点睛】本题考查了公因式的确定,先分解因式,再做判断,熟练掌握因式分解的方法是解题关键.二、填空题7.(2023·上海·七年级假期作业)分解因式:21124x x −+=________.【答案】()()38x x −−【分析】根据十字相乘法可进行因式分解.【详解】解:()()2112438x x x x −+=−−; 故答案为:()()38x x −−. 【点睛】本题主要考查因式分解,熟练掌握十字相乘法因式分解是解题的关键.8.(2023·上海·七年级假期作业)分解因式:256x x −−=________.【答案】()()61x x −+【分析】直接根据十字相乘法分解即可.【详解】256x x −−=()()61x x −+, 故答案为()()61x x −+.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.【答案】241x x −+【分析】原式先提取公因数2,再利用十字相乘法求出解即可.【详解】解:原式()2234x x =−−()()241x x =−+, 故答案为:()()241x x −+. 【点睛】本题考查了因式分解—十字相乘法,熟练掌握十字相乘的方法是解题的关键.10.(2022秋·上海·七年级专题练习)分解因式:2x -ay +ax -2y =________.【答案】()()2x y a −+【分析】首先分组,然后利用提取公因式法分解因式.【详解】解:原式=()()()()()()22222x ax y ay x a y a x y a +−+=+−+=−+, 故答案为:()()2x y a −+.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解,因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法,因式分解必须分解到每个因式都不能再分解为止. 11.(2023·上海·七年级假期作业)如图,边长分别为a ,b 的长方形,它的周长为15,面积为10,则2233a b ab +=__________.【答案】225【分析】根据长方形的周长及面积可得出152a b +=,10ab =,将其代入2233a b ab +中即可求出结论.【详解】解:长方形的周长为15,面积为10,152a b ∴+=,10ab =,()22153333102252a b ab ab a b ∴+=+=⨯⨯=. 故答案为:225.【点睛】本题考查了因式分解的应用以及长方形的周长及面积,根据长方形的周长及面积找出152a b +=,10ab =是解题的关键.【答案】27x y −−/27y x −−【分析】根据平方差公式将4249y x −分解因式,并变形为()()222277y x x y −−−,即可得出答案.【详解】解:∵()()2224224977y x y x y x =−−+()()222277y x x y ⎡⎤=−+−⎣⎦()()222277y x x y =−−−, ∴与()27x y −之积等于4249y x −的因式为27x y −−.故答案为:27x y −−. 【点睛】本题主要考查了分解因式的应用,解题的关键是熟练掌握平方差公式()()22a b a b a b −=+−. 13.(2020秋·上海闵行·七年级期中)分解因式:321024a a a +−=____.【答案】()()122a a a +−【分析】先提出公因式,再利用十字相乘法因式分解,即可求解.【详解】解:()()()32210241024122a a a a a a a a a +−=+−=+−. 故答案为:()()122a a a +− 【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并根据多项式的特征灵活选合适方法解答是解题的关键.14.(2023秋·上海嘉定·七年级上海市育才中学校考期末)因式分解a 2-a -6=_____.【答案】(a +2)(a -3)【分析】利用公式()()()2x p q x pq x p x q +++=++ 公式进行因式分解. 【详解】解:()()()()226323232a a a a a a −−=+−++−⨯=−+ , 故填(a-3)(a+2)【点睛】本题考查因式分解,基本步骤是一提二套三检查. 15.(2020秋·上海徐汇·七年级上海市徐汇中学校考阶段练习)已知多项式223x mx ++可以分解成两个一次多项式,则整数m 的值是_____________【答案】7±或5±【分析】分别把2和3分解成2个因数的积的形式,共有4种情况,所以对应的m 也有4种情况.【详解】解:221=⨯,313=⨯或13−⨯−,∴①2311m =⨯+⨯或2(3)1(1)⨯−+⨯−,即7m =±,②2131m =⨯+⨯或2(1)1(3)⨯−+⨯−,即5m =±,故答案为:7±或5±.【安静】此题主要考查了分解因式−十字相乘法,解题的关键是要熟知二次三项式的一般形式与分解因式之间的关系:2()()()x m n x mn x m x n +++=++,即常数项与一次项系数之间的等量关系. 16.(2023·上海·七年级假期作业)已知a ,b ,c 是三个连续的正整数,233124a =,233856c =,那么2b =_____.【答案】33489【分析】利用平方差公式得到()()732c a c a +−=,再根据a 、b 、c 是三个连续正整数得到2c a −=,于是可计算出366c a +=,然后可得c ,从而得到b 的值.【详解】解:()()223385633124732c a c a c a −=+−=−=,∵a 、b 、c 是三个连续正整数,∴2c a −=,∴366c a +=,∴184c =,182a =,∴183b =,∴233489b =.故答案为:33489.【点睛】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.17.(2023·上海·七年级假期作业)23x +______多项式43225101518x x x x −−++的因式(填“是”或“不是”)【答案】是【分析】假设23x +是多项式43225101518x x x x −−++的因式,则只需将多项式43225101518x x x x −−++进行分组,43225101518x x x x −−++可写成4332223812231218x x x x x x x +−−++++,此时两两一组分解因式即可得到结果.【详解】43225101518x x x x −−++,4332223812231218x x x x x x x =+−−++++,32(23)4(23)(23)6(23)x x x x x x x =+−+++++,32(23)(46)x x x x =+−++,∴23x +是多项式43225101518x x x x −−++的因式.故答案为:是【点睛】本题主要考查因式分解的应用,掌握分组分解法是解题的关键. 18.(2022秋·七年级单元测试)已知关于x 的多项式x 2+kx ﹣3能分解成两个一次多项式的积,那么整数k 的值为 _____.【答案】2±【分析】把常数项分解成两个整数的乘积,k 就等于那两个整数之和.【详解】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k =﹣3+1=﹣2或k =﹣1+3=2,∴整数k 的值为:±2,故答案为:±2.【点睛】本题考查因式分解—十字相乘法,是重要考点,掌握相关知识是解题关键.三、解答题19.(2022秋·上海·七年级专题练习)因式分解:2244x x a +−+.【答案】(2)(2)x a x a +++−【分析】分组,利用完全平方公式以及平方差公式分解即可求解.【详解】解:2244x x a +−+2244x x a =++−22(2)x a =+−(2)(2)x a x a =+++−.【点睛】本题考查的是因式分解,掌握完全平方公式以及平方差公式是解题的关键.20.(2022秋·上海闵行·七年级校考阶段练习)分解因式2812x x −+:.【答案】()()26x x −−【分析】根据十字相乘法,进行因式分解即可.【详解】解:()()281226x x x x −+=−−.【点睛】本题考查因式分解.熟练掌握十字相乘法因式分解,是解题的关键.21.(2022秋·上海·七年级校考期末)分解因式:()224516x xy y −−. 【答案】()()()22454x y x y x xy y −−−−【分析】先直接利用完全平方公式,然后再运用十字相乘法继续因式分解即可.【详解】解:()224516x xy y −− ()()222254x xy y =−− ()()()()22225454x xy y x xy y ⎡⎤⎡⎤=−+−−⎣⎦⎣⎦ ()()22225454x xy y xxy y =−+−− ()()()22454x y x y x xy y =−−−−.【点睛】本题考查了运用平方差公式和十字相乘法进行因式分解;解题的关键是分解因式要彻底.22.(2023秋·上海嘉定·七年级上海市育才中学校考期末)因式分解:4289ax ax a −−.【答案】()()()2331a x x x ++−【分析】先提取公因式a ,再用十字相乘法分解,最后再用平方差公式分解.【详解】解:4289ax ax a −−()4289a x x =−−()()2291a x x +=−()()()2331a x x x ++=−. 【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.23.(2022秋·上海·七年级校联考期末)分解因式:23930x x −−.【答案】()()352x x −+.【分析】先提取公因式,再利用十字相乘法继续分解即可.【详解】解:23930x x −−()23310x x =−−()()352x x =−+.【点睛】本题考查了用提公因式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.24.(2022秋·上海闵行·七年级校考阶段练习)分解因式:22944a ab b −+−.【答案】()()3232a b a b +−−+【分析】先将多项式分组为()22944a ab b −−+,再分别利用完全平方公式和平方差公式分解即可.【详解】解:22944a ab b −+−()22944b a a b =−−+()292a b =−−()()3232a b a b =+−−−⎡⎤⎡⎤⎣⎦⎣⎦()()3232a b a b =+−−+.【点睛】本题考查了因式分解-分组分解,熟练掌握完全平方公式和平方差公式,能根据多项式特点进行适当分组是解题关键.25.(2022秋·上海·七年级专题练习)阅读并解答:对于多项式32510x x x −++,我们把2x =代入多项式,。
《因式分解-分组分解与十字相乘法》知
识点归纳
★★
知识体系梳理
◆
分组分解法:
用分组分解法来分解的多项式一般至少有四项,分组不是盲目的,要有预见性.也就是说,分组后每组之间必须要有公因式可提取,或者分组后可直接运用公式。
、分组后能提公因式;
2、分组后能运用公式
◆
十字相乘法:
、型的二次三项式因式分解:
(其中,)
、二次三项式的分解:
如果二次项系数分解成、,常数项分解成、;并且等于一次项系数,那么二次三项式:
借助于画十字交叉线排列如下:
◆
因式分解的一般步骤:一提二代三分组
①、如果多项式的各项有公因式,那么先提取公因式;
②、提取公因式以后或没有公因式,再考虑公式法或十字相乘法;
③、对二次三项式先考虑能否用完全平方公式,再考虑能否用十字相乘法;
④、用以上方法不能分解的三项以上的多项式,考虑用分组分解法。
◆
因式分解几点注意与说明:
①、因式分解要进行到不能再分解为止;
②、结果中相同因式应写成幂的形式;
③、根据不同多项式的特点,灵活的综合应用各种方法分解因式是本章的重点和难点,因此掌握好因式分解的概念、方法、步骤是学好本章的关键。
★★
典型例题、解法导航
◆
考点一:十字相乘法
、型三项式的分解
【例1】计算:
(1)
(2)
(3)
(4)
运用上面的结果分解因式:
①、
②、
③、
④、
方法点金:型三项式关键是把常数分解为两个数之积(),而这两个数的和正好等于一次项的系数()。
◎变式议练一:
、
2、已知能分解成两个整系数的一次因式的乘积,则符合条的整数的个数为(
)
、个
、个
、个
、个
3、把下列各式分解因式:
①、
②、
③、
2、形如:的二次三项式的因式分解
【例2】将下列各式分解因式:
(1);(2);(3)
方法点金:(1)二次项系数不为1的二次三项式进行因式分解时,分解因数及十字相乘都有多种情况产生,往往要经过多次尝试,,直到满足条为止。
(2)一般地,二次项系数只考虑分解为两个正因数的积。
◎变式议练二:
将下列各式分解因式:
(1)
(2)
(3)
◆
考点二:运用分组分解法分解因式
【例】分组后能提公因式(二二分组)
①、
②、
【例】分组后能运用公式(一三分组)
①、
②、
◎变式议练三:
分解因式:(1)
(2)
◆
考点三:能力解读
【例】分解因式:
(1)
(2)
(3)
(“希望杯”邀请赛试题)【例6】若(),求的值。
◆◆◆
快乐体验
一、选择题、填空题:
、可以分解因式为(
)
、
、
、
、
2、已知,那么
;
3、(北京)把代数式分解因式,下列结果正确的是-----(
)
、
、
、
、
二、分解因式:
①、
②、
③、
④、
三、(能力提升)把下列多项式分解因式:
①、
②、
③、
④、(为正整数)
、已知:,求:的值;。