三:与力学结合的电磁感应问题
- 格式:ppt
- 大小:107.50 KB
- 文档页数:13
电磁感应综合应用1.掌握电磁感应与电路结合问题的分析方法2.掌握电磁感应动力学问题的重要求解内容3.能解决电磁感应与能量结合题型4.培养学生模型构建能力和运用科学思维解决问题的能力电磁感应中的电路问题1、分析电磁感应电路问题的基本思路对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.在闭合电路中,“相当于电源”的导体两端的电压与真实的电源两端的电压一样,等于路端电压,而不等于感应电动势.【例题1】用均匀导线做成的正方形线框边长为0.2m,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以10T/s的变化率增强时,线框中a、b两点间的电势差是()A.U ab=0.1V B.U ab=-0.1VC.U ab=0.2V D.U ab=-0.2V【演练1】如图所示,两个相同导线制成的开口圆环,大环半径为小环半径的2倍,现用电阻不计的导线将两环连接在一起,若将大环放入一均匀变化的磁场中,小环处在磁场外,a、b两点间电压为U1,若将小环放入这个磁场中,大环在磁场外,a、b两点间电压为U2,则()A.=1B.=2C.=4D.=【例题2】把总电阻为2R的均匀电阻丝焊接成一半径为a的圆环,水平固定在竖直向下的磁感应强度为B的匀强磁场中,如图所示,一长度为2a,电阻等于R,粗细均匀的金属棒MN放在圆环上,它与圆环始终保持良好的接触,当金属棒以恒定速度v向右移动经过环心O时,求:(1)棒上电流的大小和方向及棒两端的电压U MN;(2)圆环消耗的热功率和在圆环及金属棒上消耗的总热功率.【演练2】如图甲所示,固定在水平面上电阻不计的光滑金属导轨,间距d=0.5m.右端接一阻值为4Ω的小灯泡L,在CDEF矩形区域内有竖直向上的匀强磁场,磁感应强度B按如图乙规律变化.CF长为2m.在t=0时,金属棒从图中位置由静止在恒力F作用下向右运动到EF位置,整个过程中,小灯泡亮度始终不变.已知ab金属棒电阻为1Ω,求:(1)通过小灯泡的电流;(2)恒力F的大小;(3)金属棒的质量.电磁感应的动力学问题1.导体棒的两种运动状态(1)平衡状态——导体棒处于静止状态或匀速直线运动状态,加速度为零;(2)非平衡状态——导体棒的加速度不为零.2.两个研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为有感应电流而受到安培力),而感应电流I和导体棒的速度v是联系这两个对象的纽带.3.电磁感应中的动力学问题分析思路(1)电路分析:导体棒相当于电源,感应电动势相当于电源的电动势,导体棒的电阻相当于电源的内阻,感应电流I=.(2)受力分析:导体棒受到安培力及其他力,安培力F安=BIl=,根据牛顿第二定律:F合=ma.(3)过程分析:由于安培力是变力,导体棒做变加速运动或变减速运动,当加速度为零时,达到稳定状态,最后做匀速直线运动,根据共点力的平衡条件列方程:F合=0.4. 电磁感应中电量求解(1)利用法拉第电磁感应定律由整理得:若是单棒问题(2)利用动量定理单棒无动力运动时-BILΔt=mv2-mv1 又整理得:BLq= mv1-mv2【例题3】如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于斜面向下.导轨和金属杆的电阻可忽略,让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图.(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小.(3)求在下滑过程中,ab杆可以达到的速度最大值.(4)若从开始下滑到最大速度时,下滑的距离为x,求这一过程中通过电阻R的电量q.【演练3】(多选)如图所示,电阻不计间距为L的光滑平行导轨水平放置,导轨左端接有阻值为R的电阻,以导轨的左端为原点,沿导轨方向建立x轴,导轨处于竖直向下的磁感应强度大小为B的匀强磁场中。
电磁感应中的力学问题电磁感应中中学物理的一个重要“节点”,不少问题涉及到力和运动、动量和能量、电路和安培力等多方面的知识,综合性强,也是高考的重点和难点,往往是以“压轴题”形式出现.因此,在二轮复习中,要综合运用前面各章知识处理问题,提高分析问题、解决问题的能力. 本学案以高考题入手,通过对例题分析探究,让学生感知高考命题的意图,剖析学生分析问题的思路,培养能力.例1.【2003年高考江苏卷】如右图所示,两根平行金属导端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20 m .有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B 与时间t 的关系为B=kt ,比例系数k =0.020 T /s .一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t=0时刻,轨固定在水平桌面上,每根导轨每m 的电阻为r 0=0.10Ω/m ,导轨的金属杆紧靠在P 、Q 端,在外力作用下,杆恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0 s 时金属杆所受的安培力. [解题思路] 以a 示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离L =21at 2 此时杆的速度v =at这时,杆与导轨构成的回路的面积S=L l回路中的感应电动势E =StB∆∆+B lv 而ktBtt t B t B ktB =∆-∆+=∆∆=)( 回路的总电阻 R =2Lr 0 回路中的感应电流,REI=作用于杆的安培力F =BlI解得t r l k F 02223= 代入数据为F =1.44×10-3N例2. (2000年高考试题)如右上图所示,一对平行光滑R 轨道放置在水平地面上,两轨道间距L =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆与轨道的电阻皆可忽略不计,整个装置处于磁感强度B =0.50T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动.测得力F 与时间t 的关系如下图所示.求杆的质量m 和加速度a .解析:导体杆在轨道上做匀加速直线运动,用v 表示其速度,t 表示时间,则有v =at ① 杆切割磁感线,将产生感应电动势E =BLv ②在杆、轨道和电阻的闭合回路中产生电流I=E/R ③ 杆受到的安培力为F 安=IBL ④ 根据牛顿第二定律,有F -F 安=ma ⑤联立以上各式,得at Rl B ma F 22= ⑥由图线上各点代入⑥式,可解得 a =10m/s 2,m =0.1kg例3. (2003年高考新课程理综)两根平行的金属导轨,固定在同一水平面上,磁感强度B =0.05T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l =0.20 m .两根质量均为m =0.10 kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =0.50Ω.在t =0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.经过t =5.0s ,金属杆甲的加速度为a =1.37 m /s ,问此时两金属杆的速度各为多少?本题综合了法拉第电磁感应定律、安培力、左手定则、牛顿第二定律、动量定理、全电路欧姆定律等知识,考查考生多角度、全方位综合分析问题的能力.设任一时刻t ,两金属杆甲、乙之间的距离为x ,速度分别为v l 和v 2,经过很短的时间△t ,杆甲移动距离v 1△t ,杆乙移动距离v 2△t ,回路面积改变△S =[(x 一ν2△t )+ν1△t]l —l χ=(ν1-ν2) △t 由法拉第电磁感应定律,回路中的感应电动势 E =B △S/△t =B ι(νl 一ν2) 回路中的电流 i =E /2 R杆甲的运动方程 F —B l i =ma由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t =0时为0)等于外力F 的冲量.Ft =m νl +m ν2 联立以上各式解得ν1=[Ft/m +2R(F 一ma)/B 2l 2]/2 ν2=[Ft /m 一2R(F 一ma)/B 2l 2]/2代入数据得移νl =8.15 m /s ,v 2=1.85 m /s 练习1、.如图l ,ab 和cd 是位于水平面内的平行金属轨道,其电阻可忽略不计.af 之间连接一阻值为R 的电阻.ef 为一垂直于ab 和cd 的金属杆,它与ab 和cd 接触良好并可沿轨道方向无摩擦地滑动.ef 长为l ,电阻可忽略.整个装置处在匀强磁场中,磁场方向垂直于图中纸面向里,磁感应强度为B ,当施外力使杆ef 以速度v 向右匀速运动时,杆ef 所受的安培力为( ).R lvB A 2.R vBlB R lvB C 2 RvBl D 2图1图22、如图2所示·两条水平虚线之间有垂直于纸面向里、宽度为d 、磁感应强度为B 的匀强磁场.质量为m 、电阻为R 的正方形线圈边长为L(L<d),线圈下边缘到磁场上边界的距离为h .将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时刻的速度都是v 0在整个线圈穿过磁场的全过程中(从下边缘进入磁场到上边缘穿出磁场),下列说法中正确的是( ). A·线圈可能一直做匀速运动 B .线圈可能先加速后减速C .线圈的最小速度一定是mgR /B 2 L 2D .线圈的最小速度一定是)(2l d h g +-3、如图3所示,竖直放置的螺线管与导线abed 构成回路,导线所围区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平面桌面上有一导体圆环.导线abcd 所围区域内磁场的磁感强度按图1 5—11中哪一图线所表示的方式随时问变化时,导体圆环将受到向上的磁场力作用?( ).图3A B CD4、如图4所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从零均匀增大时,金属杆ab 始终处于静止状态,则金属杆受到的静摩擦力将( ).A .逐渐增大B .逐渐减小C .先逐渐增大,后逐渐减小D .先逐渐减小,后逐渐增大图45、如图所示,一闭合线圈从高处自由落下,穿过一个有界的水平方向的匀强磁场区(磁场方向与线圈平面垂直),线圈的一个边始终与磁场区的边界平行,且保持竖直的状态不变.在下落过程中,当线圈先后经过位置I 、Ⅱ、Ⅲ时,其加速度的大小分别为a 1、a 2、a 3( ).A . a 1<g ,a 2=g ,a 3<gB .a l <g ,a 2<g ,a 3<gC . a 1<g,a 2=0,a 3=gD .a 1<g ,a 2>g ,a 3<g图5 图66、如图6所示,有两根和水平方向成a 角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B .一根质量为m 的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度Vm ,则( ).A .如果B 增大,Vm 将变大 B .如果a 变大, Vm 将变大C .如果R 变大,Vm 将变大D .如果M 变小,Vm 将变大7、超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图6所示的模型:在水平面上相距L 的两根平行直导轨问,有竖直方向等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽都是ι,相间排列,所有这些磁场都以速度V 向右匀速运动.这时跨在两导轨间的长为L 、宽为ι的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R ,运动中所受到的阻力恒为f ,则金属框的最大速度可表示为( ).图7A 、2222/)(L B fR v L B v m -= B 、22222/)2(L B fR v L B v m -= C 、22224/)4(L B fR v L B v m -= D 、22222/)2(L B fR v L B v m+= 答案: 1 .A 2. D 3. A 4. D 5.B 6.BC 7. C8、水平面上两根足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见图),金属杆与导轨的电阻不计;均匀磁场竖直向下.用与导轨平行的恒定力F 作用在金属杆上,杆最终将做匀速运动.当改拉力的大小时,相对应的匀速运动速度v 也会改变,v 和F 的关系如图 (取重力加速度g=10m /s 2) (1)金属杆在匀速运动之前做作什么运动?(2)若m =0.5 kg ,L =0.5 m ,R =0.5 Ω,磁感应强度B 为多大? (3)由ν-F 图线的截距可求得什么物理量?其值为多少?解: (1)变速运动(或变加速运动、加速度减小的加速运动,加速运动). (2)感应电动势E —vBL ,感应电流I=E/R安培力RLvB BIL F m22== 由图可知金属杆受拉力、安培力和阻力作用,匀速时合力为零f RLvB BIL F +==22)(22f F l B Rv -=由图线可以得到直线的斜率k=2)(12T kLR B ==(3)由直线的截距可以求得金属杆受到的阻力f , f=2(N).若金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦因数 μ=0.49、如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略·让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦. (1)由b 向a 方向看到的装置如图1 5—2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图; (2)在加速下滑过程中,当杆ab 的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度最大值.解:(1)重力mg ,竖直向下;支撑力N ,,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E=BLv ,此时电路电流RBlvR E I ==杆受到安培力Rv L B Blv F 22==根据牛顿运动定律,有:R v L B mg ma 22sin -=θ R vL B g a 22sin -=θ(3)当RvL B mg 22sin =θ时,ab 杆达到最大速度mAX V22sin LB mgR V m θ=10.如图所示,电阻不计的平行金属导轨MN 和OP 水平放置,MO 间接有阻值为R 的电阻,导轨相距为d ,其间有竖直向下的匀强磁场,磁感强度为B .质量为m 、电阻为r 的导体棒CD 垂直于导轨放置,并接触良好.用平行于MN 的恒力F 向右拉动CD ,CD 受恒定的摩擦阻力.f ,已知F>f .问: (1)CD 运动的最大速度是多少?(2)当CD 达到最大速度后,电阻R 消耗的电功率是多少? (3)当CD 的速度是最大速度的1/3时,CD 的加速度是多少?解析:(1)以金属棒为研究对象,当CD 受力:F=F A +f 时,CD 速度最大,即:2222))((dB r R f F v f r R v d B f BId F m +-=⇒++=+= (2)CD 棒产生的感应电动势为:Bdr R f F Bdv E m))((--==回路中产生的感应电流为:BdfF r R E I -=+=则R 中消耗的电功率为:2222)(dB Rf F R I R P -== (3)当CD 速度为最大速度的1/3即m v v 31=时,CD 中的电流为最大值的1/3即I I 31'=则CD 棒所受的安培力为:)(31''f F d BI F A-== CD 棒的加速度为:mf F m F f F a A 3)(2'-=--=。
电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。
③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。
)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。
再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。
然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。
按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。
最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。
【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。
拾躲市安息阳光实验学校2011江苏高考物理小一轮复习(假期之友)--电磁感应中的力学问题【知识梳理】1.电磁感应与力学的联系在电磁感应中切割磁感线的导体要运动,感应电流又要受到安培力的作用。
因此,电磁感应问题又往往和力学问题联系在一起,解决电磁感应中的力学问题,一方面要考虑电磁学中的有关规律;另一方面还要考虑力学的有关规律,要将电磁学和力学知识综合起来应用。
电磁感应与动力学、运动学结合的动态分析,思考方法是:电磁感应现象中感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,循环结束时,加速度等于零,导体达到稳定状态.【典型例题】例1:下图中a1b1c1d1 和a2b2c2d2 为同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。
导轨的a1b1段与a2b2段是竖直的,距离为l1,c1d1与c2d2段也是竖直的,距离为l2.x1y1与x2y2为两根用不可伸长的绝缘轻线相连接的金属杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。
两杆与导轨构成的回路的总电阻为R。
F为作用于金属杆x1y1上的竖直向上的恒力。
已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。
【分析与解】本题是电磁感应现象与物体的平衡相结合的问题,分析中应着重于两个方面,一是分析发生电磁感应回路的结构并计算其电流;二是分析相关物体的受力情况,并根据平衡条件建立方程。
设杆向上运动的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少.由法拉第电磁感应定律,回路中的感应电动势的大小E = B(l2-l1)v①回路中的电流REI=②电流沿顺时针方向.两金属杆都要受到安培力作用,作用于杆x1y1的安培力为f1 = B l1I③方向向上,作用于杆x2y2的安培力f2 = B l2I④方向向下.当杆做匀速运动时,根据牛顿第二定律有F-m1g-m2g + f1-f2=0 ⑤解以上各式,得)()(1221llBgmmFI-+-=⑥RllBgmmFv212221)()(-+-=⑦作用于两杆的重力的功率的大小P = (m1+m2)gv⑧电阻上的热功率Q =I2R⑨由⑥、⑦、⑧、⑨式,可得gmmRllBgmmFP)()()(21212221+-+-=,RllBgmmFQ21221])()([-+-=。
R图1法拉第电磁感应定律与力学、能量的综合问题【考纲考点】【学习内容】一、电磁感应与力学的综合(一)导体棒在水平导轨上切割磁感线运动当导体棒在水平导轨上垂直切割磁感线运动时,导体棒内将产生感应电动势。
若电路闭合,则电路中可以产生感应电流,此时,分析导体棒受力时,除正常考虑重力、弹力、摩擦力外,还要考虑安培力,然后利用牛顿第二定律列方程求解。
例题1:如图1所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻。
一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上。
在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B 。
对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动。
不计导轨的电阻,假定导轨与杆之间存在恒定的阻力。
求:(1)导轨对杆ab 的阻力大小f 。
(2)杆ab 中通过的电流及其方向。
(3)导轨左端所接电阻的阻值R 。
变式1:如图2所示,两条足够长的平行金属导轨水平放置,导轨的一端接有电阻和开关,导轨光滑且电阻不计,匀强磁场的方向与导轨平面垂直,金属杆ab 置于导轨上。
当开关S 断开时,在杆ab 上作用一水平向右的恒力F ,使杆ab 向右运动进入磁场。
一段时间后闭合开关并开始计时,金属杆在运动过程中始终与导轨垂直且接触良好。
下列关于金属杆ab 的v -t 图象不可能的是()导体棒还受到阻力。
当导体棒受力平衡时,物体匀速运动。
(二)导体棒在竖直导轨上切割磁感线运动例题2:如图3甲所示,不计电阻的平行金属导轨竖直放置,导轨间距为L =1m ,上端接有电阻R =3Ω,虚线OO ′下方是垂直于导轨平面的匀强磁场。
现将质量m =0.1kg 、电阻r =1Ω的金属杆ab ,从OO ′上方某处垂直导轨由静止释放,杆下落过程中始终与导轨保持良好接触,杆下落过程中的v —t 图象如图乙所示。
高考物理中电磁感应的考点和解题技巧有哪些在高考物理中,电磁感应是一个重要且具有一定难度的考点。
理解和掌握电磁感应的相关知识,以及熟练运用解题技巧,对于在高考中取得优异成绩至关重要。
一、电磁感应的考点1、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的核心内容之一。
其表达式为:$E = n\frac{\Delta \Phi}{\Delta t}$,其中$E$ 表示感应电动势,$n$ 为线圈匝数,$\Delta \Phi$ 表示磁通量的变化量,$\Delta t$ 表示变化所用的时间。
这个考点通常会要求我们计算感应电动势的大小,或者根据给定的条件判断感应电动势的变化情况。
2、楞次定律楞次定律用于判断感应电流的方向。
其核心思想是:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
这一定律在解决电磁感应中的电流方向问题时经常用到,需要我们能够准确理解并运用“阻碍”这一概念。
3、电磁感应中的电路问题当导体在磁场中做切割磁感线运动或者磁通量发生变化时,会产生感应电动势,从而形成闭合回路中的电流。
在这类问题中,我们需要根据电路的基本规律,如欧姆定律、串并联电路的特点等,来计算电路中的电流、电压、电阻等物理量。
4、电磁感应中的能量转化问题电磁感应现象中,机械能与电能相互转化。
例如,导体棒在磁场中运动时,克服安培力做功,将机械能转化为电能;而电流通过电阻时,电能又转化为内能。
在解题时,需要运用能量守恒定律来分析能量的转化和守恒关系。
5、电磁感应与力学的综合问题这类问题通常将电磁感应现象与力学中的牛顿运动定律、功和能等知识结合起来。
例如,导体棒在磁场中受到安培力的作用,其运动情况会受到影响,我们需要综合运用电磁学和力学的知识来求解。
6、电磁感应中的图像问题包括磁感应强度$B$、磁通量$\Phi$、感应电动势$E$、感应电流$I$ 等随时间或位移变化的图像。
要求我们能够根据给定的物理过程,准确地画出相应的图像,或者从给定的图像中获取有用的信息,分析物理过程。
与力学结合的电磁感应问题1.超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具。
其推进原理可以简化为如图10-18所示的模型:在水平面上相距L 的两根平行直导轨间,有竖直方向等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽都是l ,相间排列,所有这些磁场都以速度v 向右匀速运动。
这时跨在两导轨间的长为L 宽为l 的金属框abcd (悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R ,运动中所受到的阻力恒为f ,则金属框的最大速度可表示为( )图10-18A .v m =(B 2L 2v -fR )/B 2L 2 B .v m =(2B 2L 2v -fR )/2B 2L 2C .v m =(4B 2L 2v -fR )/4B 2L 2D .v m =(2B 2L 2v +fR )/2B 2L 22.平行轨道PQ 、MN 两端各接一个阻值R 1=R 2=8Ω 的电热丝,轨道间距L =1m ,轨道很长,本身电阻不计。
轨道间磁场按如图10-19所示的规律分布,其中每段垂直纸面向里和向外的磁场区域宽度为2cm ,磁感应强度的大小均为B =1T ,每段无磁场的区域宽度为1cm 。
导体棒ab 本身电阻r =1Ω ,与轨道接触良好。
现让ab 以v =10m/s 的速度向右匀速运动。
求:图10-19(1)当ab 处在磁场区域时,ab 中的电流为多大?ab 两端的电压为多大?ab 所受磁场力为多大?(2)整个过程中,通过ab 的电流是否是交变电流?若是,则其有效值为多大?并画出通过ab 的电流随时间的变化图象。
3.如图10-20所示,质量为m 的跨接杆ab 可以无摩擦地沿水平的导轨滑行,两轨间距为L ,导轨一端与电阻R 连接,放在竖直向下的匀强磁场中,磁感应强度为B 。
杆从x 轴原点O 以大小为v 0的水平初速度向右滑行,直到停下。
——电磁感应现象的电路问题在电磁感应现象中,有些问题往往可以归结为电路问题,在这类问题中,切割磁感线的导体或磁通量发生变化的回路就相当于电源,这部分的电阻相当于电源的内阻,其余部分相当于外电路。
解这类问题时,一般先画出等效电路图,然后应用电路的有关规律进行分析计算.【例1】如图所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的二分之一。
磁场垂直穿过粗金属环所在区域,当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为E ,则a 、b 两点间的电势差为( )A .2EB .3EC .32ED .E【例2】粗细均习的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。
现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框的一边a 、b 两点间电势差绝对值最大的是( )【例3】如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F .此时( )A .电阻R 1消耗的热功率为Fv /3B .电阻 R 2消耗的热功率为 Fv /6C .整个装置因摩擦而消耗的热功率为μmgvcosθD .整个装置消耗的机械功率为(F +μmgcosθ)v【例4】如图所示,OACO 为置于水平面内的光滑闭合金属导轨,O 、C 处分别接有短电阻丝(图中用粗线表示),R l =4Ω、R 2=8Ω(导轨其他部分电阻不计).导轨OAC 的形状满足方程⎪⎭⎫ ⎝⎛=x y 3sin 2π(单位:m).磁感应强度B =0.2T 的匀强磁场方向垂直于导轨平面.一足够长的金属棒在水平外力F 作用下,以恒定的速率v =5.0m/s 水平向右在导轨上从O 点滑动到C 点,棒与导轨接触良好且始终保持与OC 导轨垂直,不计棒的电阻.求:⑴外力F 的最大值;⑵金属棒在导轨上运动时电阻丝R l 上消耗的最大功率;⑶在滑动过程中通过金属棒的电流I 与时间t 的关系.【例5】如图所示,粗细均匀的金属环的电阻为R ,可绕轴O 转动的金属杆OA 的电阻R / 4,杆长为l ,A 端与环相接触,一阻值为R / 2的定值电阻分别与杆的端点O 及环边缘连接.杆OA 在垂直于环面向里的、磁感强度为B 的匀强磁场中,以角速度ω顺时针转动.求电路中总电流的变化范围.能力提升1.如图所示,两条平行的光滑水平导轨上,用套环连着一质量为0.2 kg 、电阻为2 Ω的导体杆ab ,导轨间匀强磁场的方向垂直纸面向里.已知R 1=3 Ω,R 2=6 Ω,电压表的量程为0~10 V ,电流表的量程为0~3 A(导轨的电阻不计).求:(1)将R 调到30 Ω时,用垂直于杆ab 的力F =40 N ,使杆ab 沿着导轨向右移动且达到最大速度时,两表中有一表的示数恰好满量程,另一表又能安全使用,则杆ab 的速度多大?(2)将R 调到3 Ω时,欲使杆ab 运动达到稳定状态时,两表中有一表的示数恰好满量程,另一表又能安全使用,则拉力应为多大?(3)在第(1)小题的条件下,当杆ab 运动达到最大速度时突然撤去拉力,则电阻R 1上还能产生多少热量?2.半径为a 的圆形区域内有均匀磁场,磁感应强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2, 两灯的电场均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计。
高中物理电磁感应现象习题知识点及练习题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的水平平行金属导轨间距为 L ,导轨电阻忽略不计.空间存在垂直于导 轨平面竖直向上的匀强磁场,磁感应强度大小为 B ,轻质导体棒 ab 垂直导轨放置,导体棒 ab 的电阻为 r ,与导轨之间接触良好.两导轨之间接有定值电阻,其阻值为 R ,轻质导体棒中间系一轻细线,细 线通过定滑轮悬挂质量为 m 的物体,现从静止释放该物体,当物体速度达到最大时,下落的高度为 h , 在本问题情景中,物体下落过程中不着地,导轨足够长,忽略空气阻力和一切摩擦阻力,重力加速度 为 g .求:(1)物体下落过程的最大速度 v m ;(2)物体从静止开始下落至速度达到最大的过程中,电阻 R 上产生的电热 Q ; (3)物体从静止开始下落至速度达到最大时,所需的时间 t .【答案】(1)22()mg R r B L + (2) 3244()2mghR m g R R r R r B L+-+ (3) 2222()()m R r B L h B L mg R r +++ 【解析】【分析】在物体加速下落过程中,加速度逐渐减小,当加速度为0时,下落速度达到最大,由平衡条件、闭合电路欧姆定律和电磁感应定律求出物体下落过程的最大速度;在物体下落过程中,物体重力势能减少,动能增加,系统电热增加,根据能量守恒定律求出电阻R 上产生的电热;在系统加速过程中,分别对导体棒和物体分析,根据动量定理可得所需的时间;解:(1)在物体加速下落过程中,加速度逐渐减小,当加速度为0时,下落速度达到最大 对物体,由平衡条件可得mg=Fr 对导体棒Fr=BIL对导体棒与导轨、电阻R 组成的回路,根据闭合电路欧姆定律EI R r=+ 根据电磁感应定律E=BLv m 联立以上各式解得m 22()v mg R r B L +=(2)在物体下落过程中,物体重力势能减少,动能增加,系统电热增加,根据能量守恒定律可得 mgh=12mv m 2+Q 总 在此过程中任一时刻通过R 和r 两部分电阻的电流相等,则电功率之比正比于电阻之比,故整个过程中回路中的R 与r 两部分电阻产生的电热正比于电阻,所以Q R Q R r=+总 联立解得3244()Q 2mghR m g R R r R r B L+=-+ (3)在系统加速过程中,任一时刻速度设为v ,取一段时间微元Δt ,在此过程中分别对导体棒和物体分析,根据动量定理可得22T F 0B L v t R r ⎛⎫-∆= ⎪+⎝⎭()T m F m g t v -∆=∆整理可得22m m B L vg t t v R r ∆-∆=∆+即22m m B L g t x v R r ∆-∆=∆+全过程叠加求和22m m m B L gt h v R r-=+联方解得2222()t ()m R r B L hB L mg R r +=++2.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成=30θ︒角固定,N 、Q 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5T ,质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻位为r 。
电磁感应线框问题一、线框平动切割所谓线框平动切割,通常是指矩形线框平动进入磁场切割磁感线而产生电磁感应现象。
中学阶段通常讨论的是线框垂直磁感线平动切割。
1.水平平动切割例1.如图所示,Ⅰ、Ⅱ为两匀强磁场区域,Ⅰ区域的磁场方向垂直纸面向里,Ⅲ区域的磁场方向垂直纸面向外,磁感强度为B,两区域中间为宽为s的无磁场区域Ⅱ,有一边长为L(L>s)、电阻为R的正方形金属框abcd置于Ⅰ区域,ab边与磁场边界平行,现拉着金属框以速度v向右匀速移动。
(1)分别求出ab边刚进入中央无磁场区域Ⅱ和刚进入磁场区域Ⅲ时,通过ab边的电流大小和方向。
(2)把金属框从Ⅰ区域完全拉入Ⅲ区域过程中拉力所做的功。
(93‘上海市高考试题)[分析](1)金属框以速度v向右做匀速直线运动时,当ab边刚进入中央无磁场区域时,由于穿过金属框的磁通量减小,因而在金属框中产生感应电动势,形成adcb方向的感应电流,其大小为I1=ε1/R=BLv/R.当ab边刚进入磁场区域Ⅲ时,由于ab,dc两边都切割磁感线而产生感应电动势,其大小为εab=εdc=BLv,方向相反,故两电动势所对应的等效电源在回路中组成串联形式,因此,在线框中形成了adcb方向的感应电流,其大小为:I2=(εab+εdc)/R=2BLv/R图10-11(2)金属线框从Ⅰ区域完全拉入Ⅲ区域过程中,拉力所做的功分为三个部分组成,其中一、三两部分过程中,金属框在外力作用下匀速移动的位移均为s,第二部分过程中金属框在外力作用下增速移动的距离为(L-s)。
因金属框匀速运动,外力等于安培力,所以W 外=W 安=W 1+W 2+W 3 又W 1=F 1s =BI 1Ls =(B 2L 2v/R)sW 2=2F 2(L -s)=2BI 2L(L -s)=[4B 2L 2v/R](L -s) W 3=F 3s =(B 2L 2v/R)s因此整个过程中拉力所做的功等于:W 1+W 2+W 3=[4B 2L 2v/R](L -s/2)[评述]本题所要求解问题,是电磁感应中最基本问题,但将匀强磁场用一区域隔开,并将其反向,从而使一个常规问题变得情境新颖,增加了试题的力度,使得试题对考生思维的深刻性和流畅性的考查提高到一个新的层次。
[电磁感应] 电磁感应综合问题包含次级知识点:电路问题、图像问题、动力学问题、能量问题【知识点总结】本部分内容包含:电磁感应中的动力学问题、电磁感应中的能量问题、电磁感应中的图像问题,电磁感应的电路问题,在利用能的转化和守恒定律解决电磁感应的问题时,要注意分析安培力做功的情况,因为安培力做的功是电能和其他形式的能之间相互转化的“桥梁”。
考点1. 电磁感应中的动力学问题1.电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类电磁感应中的力学问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律、机械能守恒定律等。
要将电磁学和力学的知识综合起来应用。
2.电磁感应与动力学、运动学结合的动态分析,思考方法是:电磁感应现象中感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,循环结束时,加速度等于零,导体达到稳定状态.考点2.带电粒子在复合场中的运动实例1.在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流;将它们接上电容器,便可使电容器充电,因此电磁感应问题又往往跟电路问题联系在一起。
解决这类问题,不仅要考虑电磁感应中的有关规律,如右手定则、楞次定律和法拉第电磁感应定律等,还要应用电路中的有关规律,如欧姆定律、串联、并联电路电路的性质等。
2. 解决电磁感应中的电路问题,必须按题意画出等效电路图,将感应电动势等效于电源电动势,产生感应电动势的导体的电阻等效于内电阻,求电动势要用电磁感应定律,其余问题为电路分析及闭合电路欧姆定律的应用。
3. 一般解此类问题的基本思路是:①明确哪一部分电路产生感应电动势,则这部分电路就是等效电源②正确分析电路的结构,画出等效电路图③结合有关的电路规律建立方程求解.考点3.电磁感应中的能量问题1. 产生和维持感应电流的存在的过程就是其它形式的能量转化为感应电流电能的过程。
浅谈电磁感应规律在高中物理的综合应用摘要:在高中电磁感应规律的问题是电学中的一个重要问题,在高考中也是一个重要的考点,本人从教学经验中总结了从电磁感应与电路电量问题的结合、电磁感应与力学问题的结合、电磁感应与能量转化问题的结合的三方面的解决方法。
关键词:电磁感应椤次定律安培力加速度牛顿运动定律在高中电磁感应规律的问题是电学中的一个重要问题,在高考中也是一个重要的考点,但在各种电磁感应问题中并不是单纯的出现电磁感应问题而是掺杂着力学、电学等方面的问题。
我从自己的教学经验来粗略地谈谈与电磁感应相结合的三个方面的问题。
第一、电磁感应中的电路和电量问题:在电磁感应中由于导体切割磁感线运动或磁通量发生变化的回路将产生感应电动势,那么该导体或磁通量变化的回路相当于电源。
因此,电磁感应往往与电路联系在一起.例如:如图所示直角三角形导线框abc固定在匀强磁场中,ab是一段长为l,电阻为r的均匀导线,ac和bc的电阻不计,ac长为l/2,磁场的磁感强度为b,方向垂直纸面向里,现有一段长度为l/2,电阻为r/2的均匀导体杆mn架在导线框上,开始时紧靠ac,然后沿ab方向以恒定速度v向b端滑动,滑动中始终与ac平行,并与电线框保持良好接触。
当mn滑过的距离为l/3时,导线ac中的电流是多大?方向如何?解决这类与电路相联系的电磁感应问题的基本方法是先用法拉第电磁感应定律和楞次定律确定感应电动势的大小和感应电流的方向,再画出等效电路图然后用全电路欧姆定律进行求解,本题中当mn滑过l/3时,由数学知识可得导体的有效切割长度l有效=2l/3,此进的等效电路如右图所示,mn充当电源则内电阻r=2/3 × r/2 =r/3, e=bl有效v=1/3 blv,i干=e/(r并+r)=3blv /5r由并联电路的分流关系可得:iac=2/3 i干=2blv /5r电流方向由右手定则可判断为从a流向c.第二、电磁感应与力学方面的结合问题,在电磁感应中由于有了感应电流的产生磁场所中导体就会受到一个安培力,所以电磁感应问题往往和力学中问题联系在一起,解决这类问题关键是要抓好受力情况、和运动情况的分析研究,在分析中一般采用这样的流程: a=0,导体所受合力为零时导体达到稳定状态而使v达到最大。
电磁感应问题归类解析摘要:电磁感应的综合问题实际上就是电学、磁学、力学与运动学的综合应用,解答此类问题的关键是要抓住知识点间的衔接。
比如:电路与欧姆定律是电与磁的衔接点;安培力是磁学与力学和运动学的衔接点。
除电磁感应和力学、电学的综合外,电磁学中的图象问题也是高考中的一个重点,本文据此部分出现的重点题型试举例说明。
关键词:物理教学;电磁感应;归类解析在多年的教学经验中,笔者总结了以下三种题型,对电磁感应问题进行归类解析。
通过自己的分析和总结,以期给同仁带来帮助。
题型一:电磁感应现象中的图象问题电流为顺时针方向……选项D正确。
方法总结:解决图象问题,首先要设法看懂图象,从中找出必要的信息,把图象反映的规律对应到实际过程中去;其次要根据实际过程进行抽象,用相应的图象去表达。
用到的方法:利用右手定则或楞次定律判定感应电流的方向,利用法拉第电磁感应定律判定电流的大小变化。
题型二:电磁感应现象中的力学问题电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此电磁感应问题往往跟力学问题联系在一起.解决此类问题的一般思路是:先由法拉笫电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,再求出安培力,再后依照力学问题的处理方法进行,如进行受力情况分析、运动情况分析及功能关系分析等。
1.电磁感应中的平衡问题方法总结:解决电磁感应中平衡问题的基本方法还是力学的研究方法:确定研究对象;进行受力分析;根据平衡条件建立方程.只是受力中多了安培力,而安培力是由于感应电流产生的,故此类问题是将有关电磁感应规律、安培力公式和平衡条件相结合解题。
2.电磁感应中的运动问题在电磁感应中,由于磁场变化或导体杆的运动的速度的变化会引起感应电流的变化,感应电流的变化会引起安培力的变化,安培力的变化又可能引起合外力的变化,从而导致导体的加速度、速度等发生变化,而速度的变化反过来又影响感应电流、磁场力、合外力的变化,最终可能使导体达到稳定状态。
高中物理深入研究力学和电磁学的原理在高中物理学科中,力学和电磁学是两个重要的分支。
力学是研究物体运动以及受力情况的学科,而电磁学则研究电荷和电场、磁场之间的相互作用。
本文将深入研究力学和电磁学的原理。
一、力学的原理力学是物理学的基础,它研究物体的运动以及受力情况。
其中,牛顿三定律是力学的核心原理之一。
1. 牛顿第一定律,也称为“惯性定律”,指出当物体不受外力作用时,物体将保持匀速直线运动或保持静止状态。
2. 牛顿第二定律,也被称为“加速度定律”,它表达了力与物体质量和加速度之间的关系,即F=ma。
这个定律对物体受力情况的研究非常重要。
3. 牛顿第三定律,亦称为“作用-反作用定律”,指出任何两个物体之间存在相互作用力,且大小相等、方向相反。
以上是力学中的几个重要原理,它们为我们解释了物体的运动规律以及物体之间的相互作用方式。
二、电磁学的原理电磁学是研究电荷和电场、磁场之间相互作用的学科。
它包括电荷的性质、电场和磁场的产生以及它们之间的相互作用等内容。
以下是电磁学中的一些重要原理。
1. 库仑定律,描述了带电粒子之间相互作用的力。
库仑定律表达了两个电荷之间的力与它们之间的距离以及电荷大小之间的关系。
2. 电场和电场线,电荷周围存在电场,它是带电粒子周围空间的一种物理性质。
电场线是描述电场强度和方向的线条,它指示了电荷所在位置的电场情况。
3. 法拉第电磁感应定律,它描述了通过磁场变化引起的感应电流的现象。
根据法拉第电磁感应定律,电磁感应现象可用于发电、电子设备等领域。
以上是电磁学中的一些基本原理,它们揭示了电荷和电场、磁场之间的关系,为我们理解和运用电磁现象提供了基础。
三、力学和电磁学的联系在现实世界中,力学和电磁学是密不可分的。
力学和电磁学相互作用,相互影响。
1. 首先,电磁力是力学中的一种重要力。
它是由于电荷和磁场之间产生的相互作用而产生的力。
比如,磁铁和铁磁物体之间的吸引力和排斥力等都是电磁力的表现。