十二章静不定问题
- 格式:ppt
- 大小:657.50 KB
- 文档页数:32
《工程力学》课程的知识体系和内容结构1、课程的知识体系《工程力学》是一门是既与工程又与力学密切相关的技术基础课程,在基础课程和专业课程之间起桥梁作用。
通过本课程的学习,使学生掌握工程力学的理论和方法,具备从力学角度对工程问题的思维能力和初步解决此类问题的实践能力,并且获得大量的工程背景知识,为学习后续课程、掌握机械等工程设计技术打下牢固的基础。
本课程涵盖了“静力学”和“材料力学”两部分的内容。
“静力学”主要研究刚体的受力和平衡的规律;“材料力学”主要研究构件强度、刚度和稳定性的问题,在保证构件既安全适用又经济的条件下,为合理设计和使用材料提供理论依据。
静力学主要研究的问题:物体的受力分析、力系的简化和力系的平衡条件。
材料力学主要研究的问题:杆件在发生拉伸或压缩、剪切、扭转和弯曲基本变形时内力、应力和变形的计算,在各种基本变形下的强度和刚度计算;应力状态的基本理论;材料在复杂应力作用下破坏或失效规律及其应用;压杆稳定性问题。
2、课程的内容结构第一章介绍静力学的基本概念,常见的几类典型约束及约束力的特征,物体的受力分析。
第二章介绍汇交力系的简化和平衡条件。
第三章介绍力偶的概念及其对刚体的作用效应,力偶系的合成与平衡条件。
第四章介绍平面任意力系的简化、平衡条件和平衡方程,刚体系的平衡问题求解。
第五章介绍空间任意力系的简化和平衡条件。
第六章静力学专题:桁架杆件内力的求解;滑动摩擦、摩擦角和自锁现象、以及滚动摩擦的概念。
第七章介绍材料力学的研究对象、基本假设、外力和内力、应力和应变的概念。
第八章介绍拉压杆的内力、应力、变形及材料在拉伸与压缩时的力学性能,拉压杆的强度和刚度问题,简单静不定问题,拉压杆连接部分的强度计算。
第九章介绍圆轴扭转的外力、内力、应力与变形,圆轴的强度和刚度计算,静不定轴的扭转问题。
第十章介绍梁的外力和内力(剪力与弯矩),内力图的绘制。
第十一章介绍对称弯曲时梁的正应力、切应力、强度计算和梁的合理强度设计。
第十三章静不定问题分析§13-1 静不定结构概述1.定义用静力学平衡方程无法确定全部约束力和内力的结构或结构系统,统称为静不定结构或系统,也称为超静定结构或系统。
2.静定、静不定结构(系统)无多余联系的几何不变的承载结构系统,其全部支承反力与内力都可由静力平衡条件求得,此系统称为静定结构或系统。
静定结构除了变形外,没有可运动的自由度(图12-1(a、b))如解除简支梁的右端铰支座,或解除悬臂梁固端对转动约束,使之成为铰支座,则此时的梁变成了图12.1(c)的可动机构,是几何可变系不能承受横向载荷。
在无多余联系的几何不变的静定系统上增加约束或联系,称为多余约束,并因而产生多余约束反力,则这样的有多余约束的系统,仅利用静力平衡条件无法求得其反力和内力,称为静不定(或超静定)系统,如图12-2。
外静不定:静不定结构的外部支座反力不能全由静力平衡方程求出的情况,常称为外静不定结构(图12-2b,d)内静不定:静不定结构内部约束(或联系)形成的内力不能单由静力平衡方程求出的情况称为内静不定结构(图12-2a,c)。
对于内、外静不定兼而有之的结构,有时称为混合静不定结构。
3.静不定次数的确定1)根据结构约束性质可确定内、外约束力总数,内、外约束力总数与独立静力平衡方程总数之差即为静不定结构的静不定次数。
2)外静不定的判断:根据结构与受力性质,确定其是空间或是平面承载结构,即可确定全部约束的个数。
根据作用力的类型,可确定独立平衡方程数,二者之差为静不定次数。
如图12-3(b),外载荷为平面力系,则为三次外静不定静,而图12-3(c)为空间力系,则为六次外静不定。
3)内静不定次数确定桁架:直杆用铰相连接,载荷只作用于结点,杆只受拉压力的杆系,其基本几何不变系由三杆组成(图12-4a)。
图12-4(b)仍由基本不变系扩展而成,仍是静定系,而(c)由于在基本系中增加了一约束杆,因而为一次超静定。
刚架:杆以刚结点相连接,各杆可以承受拉、压、弯曲和扭转,这样的杆系为刚架(图12-5)。
一、低碳钢试件的拉伸图分为、、、四个阶段。
(10分)二、三角架受力如图所示。
已知F=20kN,拉杆BC采用Q235圆钢,[钢]=140MPa,压杆AB采用横截面为正方形的松木,[木]=10MPa,试用强度条件选择拉杆BC的直径d和压杆AB的横截面边长a。
(15分)三、实心圆轴的直径D=60 mm。
传递功率P=70 kW,轴的转速n=180 r/min,材料的许用切应力[]=100 MPa,试校核该轴的强度。
(10分)四、试绘制图示外伸梁的剪力图和弯矩图,q、a均为已知。
(15分)qa a2qa2 qaABC五、图示为一外伸梁,l=2m,荷载F=8kN,材料的许用应力[]=150MPa,试校核该梁的正应力强度。
(15分)FCAB六、单元体应力如图所示,试计算主应力,并求第四强度理论的相当应力。
(10分)七、图示矩形截面柱承受压力F 1=100kN 和F 2=45kN 的作用,F 2与轴线的偏心距e =200mm 。
b =180mm , h =300mm 。
求max和min。
(15分)σx =100MPaτx =100MPaσy =100MPalllFAB DC4F 100m m100mm60mm八、图示圆杆直径d =100mm ,材料为Q235钢,E =200GPa ,p=100,试求压杆的临界力F cr 。
(10分)《材料力学》试卷(1)答案及评分标准一、 弹性阶段、屈服阶段、强化阶段、颈缩断裂阶段。
评分标准:各 2.5分。
二、 d =15mm; a =34mm .评分标准:轴力5分, d 结果5分,a 结果5分。
三、 =87.5MPa, 强度足够.评分标准:T 3分,公式4分,结果3分。
四、评分标准:受力图、支座反力5分,剪力图5分,弯矩图5分。
五、max =155.8MPa >[]=100 MPa ,但没超过许用应力的5%,安全. 评分标准:弯矩5分,截面几何参数 3分,正应力公式5分,结果2分。
第十五章 压杆的稳定性一、 弹性平衡稳定性的概念1、 弹性体保持初始平衡状态的能力称为弹性平衡的稳定性。
2、 受压杆件保持初始直线平衡状态的能力称为压杆的稳定性。
二、 压杆的柔度:il μλ=,和压杆的长度、约束情况、截面形状及尺寸相关。
三、 压杆的分类根据压杆的柔度,压杆可分为三类:1) 细长杆(P λλ≥):计算临界应力用欧拉公式22λπσE cr =;2) 中长杆(P sλλλ<≤):计算临界应力用经验公式λσb a cr -=;3) 粗短杆(s λλ<):计算临界应力用压缩强度公式s cr σσ=(或b σ)四、 提高压杆稳定性的措施提高压杆稳定性的措施可以从改善支承情况、减少压杆长度(或增加中间约束)、选择合理的截面形状、使压杆在各弯曲平面内的柔度相等(等稳定性结构)及合理选择材料等方面考虑。
第十四章疲劳强度一、疲劳强度的概念1、交变应力:随时间而周期性交替变化的应力。
2、疲劳破坏:构件在长期交变应力作用下,虽最大应力小于材料的静强度极限,而构件仍发生断裂破坏,这种破坏称为疲劳破坏。
构件抵抗疲劳破坏的能力称为疲劳强度。
3、疲劳强度的特点:1)疲劳强度比静强度低。
2)疲劳强度和交变应力的大小及应力循环次数有关。
3)疲劳破坏的断口有两个明显不同的区域:光滑区和粗糙区。
4、疲劳破坏的机理和过程:疲劳破坏是在长期交变应力作用下,构件裂纹萌生、扩展和最后断裂的过程。
5、材料的持久极限:材料经受无限次应力循环而不发生疲劳破坏的最高应力值。
二、是非判断题1、材料的持久极限仅与材料、变形形式和循环特征有关;而构件的持久极限仅与应力集中、截面尺寸和表面质量有关。
(错)2、塑性材料具有屈服阶段,脆性材料没有屈服阶段,因而应力集中对塑性材料持久极限的影响可忽略不计,而对脆性材料持久极限的影响必须考虑。
(错)3、当受力构件内最大工作应力低于构件的持久极限时,通常构件就不会发生疲劳破坏的现象。
(对)第十二章超静定问题一、超静定问题的概念1、当结构的支反力或内力仅用独立的平衡方程不能全部求出时,该结构称为超静定结构。