四川省渠县中学2020-2021学年七年级上学期期中考试数学试题(含答案)
- 格式:doc
- 大小:1.68 MB
- 文档页数:6
2020--2021学年人教版七年级数学上册期中考试数学试题有答案2020-2021学年第一学期期中教学质量检测七年级数学(人教版)第Ⅰ卷(共60分)一、选择题(每小题3分,共30分)1.XXX手机上显示某地“海拔-45米”,这表示此地的海拔高度是()A.高于海平面45米B.低于海平面-45米C.低于海平面-45米D.低于海平面45米2.在数轴上,点A表示的数是-4,点B表示的数是2,线段AB的中点表示的数为()A.1B.-1C.3D.-33.在下列气温的变化中,能够反映温度上升5℃的是()A.气温由-3℃到2℃B.气温由-1℃到-6℃C.气温由-1℃到5℃D.气温由4℃到-1℃4.在下列变形中,错误的是()A.(-2)-3+(-5)=-2-3-5B.(-3)-(-5)=-3+5C.a+(b-c)=a+b-cD.a-(b+c)=a-b-c5.2019年4月10日21时,人类首张黑洞照片面世。
该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球xxxxxxxx光年,质量约为太阳的65亿倍。
则xxxxxxxx用科学记数法表示为()A.5.5×105B.5.5×106C.5.5×107D.55×1066.在代数式①51b;②-2x3+y4;③0.2x2y3;④3;⑤1-;⑥中,整式的个数有()A.4个B.3个C.2个D.1个7.下列说法正确的是()A.-2xy的系数是-2B.x2+x-1的常数项为1C.22ab3的次数是6次D.2x-5x2+7是二次三项式8.下列运算正确的是()A.x3+x2=x5B.x4+x4=2x4C.x3+x3=2x6D.x5+x5=x109.已知m-n=99,x+y=-1,则代数式(n+x)-(m-y)的值是()A.100B.98C.-100D.-9810.如图,把六张形状大小完全相同的小长方形纸卡片(如图①)不重叠地放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A。
2020-2021学年人教版期七年级初一上册数学期中达标测试卷(一)一.选择题(每小题3分,满分30分)1.﹣2021的相反数是()A.﹣2021 B.﹣C.D.20212.﹣2的倒数是()A.﹣2 B.﹣C.D.23.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为()A.47.24×109B.4.724×109C.4.724×105D.472.4×1054.用四舍五入法将数3.14159精确到千分位的结果是()A.3.1 B.3.14 C.3.142 D.3.1415.下列叙述不正确的是()A.﹣y的系数是﹣1,次数为1B.单项式ab2c3的次数是6C.5不是单项式D.多项式2x2﹣3x﹣5的次数是2,常数项是﹣56.a、b是有理数,它们在数轴上的对应点的位置如图所示,下列说法正确的有()个.①|a+b|=|a|﹣|b|;②﹣b<a<﹣a<b;③a+b>0;④|﹣b|<|﹣a|.A.1 B.2 C.3 D.47.若x=0是方程的解,则k值为()A.0 B.2 C.3 D.48.数a的绝对值一定是()A.非负数B.负数C.非正数D.正数9.一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3 B.﹣x2+x﹣1 C.﹣x2+5x﹣3 D.x2﹣5x﹣1310.若a、b、c为有理数,满足a+b+c=0,abc≠0且a>|c|>﹣b,则b、c两个数与0的大小关系是()A.b>0,c>0 B.b<0,c>0 C.b>0,c<0 D.b<0,c<0二.填空题(每小题3分,满分18分)11.计算:0﹣(﹣6)=.12.在下列式子①ab,②a+2b,③﹣a,④﹣6中,多项式有.单项式有.(填序号)13.若|a|=3,b2=9,ab<0,则a﹣b的值.14.观察下列等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;2+22+23+24+25=26﹣2;…已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=(结果用含m的代数式表示).15.当|x+2|+|x﹣3|取最小值时,x的取值范围是,最小值是.16.已知:|x﹣|+(y﹣2)2=0,则x y的值为.三.解答题17.(8分)计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×(﹣﹣+);(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.18.规定一种新的运算△:a△b=a(a+b)﹣a+b.例如,1△2=1×(1+2)﹣1+2=4.(1)8△9=;(2)若x△3=11,求x的值;(3)求代数式﹣x△4的最小值.19.(8分)先化简,再求值:3x2y﹣[2x2﹣(xy2﹣3x2y)﹣4xy2],其中|x|=2,y=,且xy<0.20.(8分)解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)1﹣=21.(8分)一辆出租车从甲地出发,在一条东西走向的街道上行驶,每次行驶的路程记录如下表(规定向东为正,其中x是小于5的正数,单位:km):第1次第2次第3次第4次x x﹣6 2(8﹣x)(1)通过计算,求出这辆出租车每次行驶的方向;(2)如果出租车行驶每千米耗油0.1升,当x=2时,求这辆出租车在这四次的行驶中总共耗油多少升?22.(10分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)23.(10分)将连续的偶数2,4,6,8,…,排成如下表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)十字框中的五个数的和等于;(2)若将十字框上下左右移动,可框住另外的五个数,设中间的数为x,用代数式表示十字框中的五个数的和是;(3)在移动十字框的过程中,若框住的五个数的和等于2020,这五个数从小到大依次是,,,,;(4)框住的五个数的和能等于2019吗?答:(回答“能”或“不能”)理由是:.24.(12分)用﹣5、﹣2、1,三个数按照给出顺序构造一组无限循环数据.(1)求第2018个数是多少?(2)求前50个数的和是多少?(3)试用含k(k为正整数)的式子表示出数“﹣2所在的位置数;(4)请你算出第n个,第n+1个,第n+2个这三个数的和?(n≥50)参考答案一.选择题1.解:﹣2021的相反数是:2021.故选:D.2.解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.3.解:47.24亿=4724 000 000=4.724×109.故选:B.4.解:3.14159精确到千分位的结果是3.142.故选:C.5.解:A.﹣y的系数是﹣1,次数为1,叙述正确;B.单项式ab2c3的次数是6,叙述正确;C.5是单项式,故原叙述错误;D.多项式2x2﹣3x﹣5的次数是2,常数项是﹣5叙述正确.故选:C.6.解:根据有理数a、b在数轴上的对应点的位置可知,a<0,b>0,且|a|<|b|,∴a+b>0,因此③正确;∵|a|=|﹣a|,|b|=|﹣b|,而|a|<|b|,∴|﹣a|<|﹣b|,因此④不正确;∵a<0,b>0,且|a|<|b|,∴a+b=|b|﹣|a|>0,因此①不正确,根据绝对值和相反数的意义可得,﹣b<a<﹣a<b;因此②正确,故选:B.7.解:把x=0代入方程,得1﹣=解得k=3.故选:C.8.解:数a的绝对值一定是非负数.故选:A.9.解:由题意得:这个多项式=3x﹣2﹣(x2﹣2x+1),=3x﹣2﹣x2+2x﹣1,=﹣x2+5x﹣3.故选:C.10.解:∵足a+b+c=0,abc≠0且a>|c|>﹣b,∴a>0,b<0,c<0.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:原式=0+6=6.故答案为:6.12.解:在下列式子①ab,②a+2b,③﹣a,④﹣6中,多项式有②,单项式有①③④.故答案为②;①③④.13.解:∵|a|=3,b2=9,ab<0,∴a=3,b=﹣3;a=﹣3,b=3,则a﹣b=6或﹣6,故答案为:6或﹣614.解:∵220=m,∴220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=m(2m﹣1).故答案为:m(2m﹣1).15.解:当x<﹣2时,原式=﹣x﹣2+3﹣x=1﹣2x>5,当﹣2≤x≤3时,原式=x+2+3﹣x=5,当x>3时,原式=x+2+x﹣3=2x﹣1>5,综上可知,当﹣2≤x≤3时,|x+2|+|x﹣3|的值最小为5.故答案为:﹣2≤x≤3;5.16.解:由题意得,x﹣=0,y﹣2=0,解得,x=,y=2,则x y=()2=,故答案为:.三.解答题(共8小题,满分64分,每小题8分)17.解:(1)12﹣(﹣6)+(﹣9)=12+6+(﹣9)=18+(﹣9)=9;(2)(﹣48)×(﹣﹣+)=(﹣48)×(﹣)+(﹣48)×(﹣)+(﹣48)×=24+30﹣28=26;(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.=﹣9÷4××6+(﹣8)=﹣××6+(﹣8)=(﹣18)+(﹣8)=﹣26.18.解:(1)∵a△b=a(a+b)﹣a+b,∴8△9=8×(8+9)﹣8+9=8×17﹣8+9=136﹣8+9=137,故答案为:137;(2)∵x△3=11,∴x(x+3)﹣x+3=11,解得,x1=2,x2=﹣4;(3)∵﹣x△4=﹣x(﹣x+4)+x+4=x2﹣4x+x+4=x2﹣3x+4=(x﹣)2+,∴当x=时,﹣x△4有最小值.19.解:原式=3x2y﹣2x2+xy2﹣3x2y+4xy2=5xy2﹣2x2,∵|x|=2,y=,且xy<0,∴x=﹣2,y=,则原式=﹣﹣8=﹣.20.解:(1)去括号得:x﹣2x+8=3﹣3x,移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4﹣3x+1=6+2x,移项合并得:﹣5x=1,解得:x=﹣0.2.21.解:(1)第1次,向东行驶x千米,第2次,向西行驶x千米,第3次,向西行驶(6﹣x)千米,第4次,向东行驶2(8﹣x)千米;(2)行驶的总路程为:x+x+6﹣x+2(8﹣x)=22﹣x,当x=2时,原式=22﹣3=19,0.1×19=1.9升,答:这辆出租车在这四次的行驶中总共耗油1.9升.22.解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8×20)×80%=288(元);乙商场所需费用为5×40+(20﹣5×2)×8=280(元),∵288>280,∴选择乙商场购买更合算.23.解:(1)6+14+16+18+26=80,故答案为:80;(2)设中间的数为x,则另四个数分别为:x﹣10,x+10,x﹣1,x+1,∴x﹣10+x+10+x﹣1+x+1+x=5x,故答案为:5x;(3)根据题意得:5x=2020,解得:x=404,∴另四个数分别为:394,403,405,414,故答案为:394,403,404,405,414;(4)根据题意可得5x=2019,解得:x=403.8,∴2019不能被5整除,∴这五个数之和不能为2019.故答案为:不能,2019不能被5整除24.解:(1)∵从第四个数开始循环2018÷3=672 (2)∴第2018个数是﹣2;(2)∵50÷3=16 (2)∴前50个数的和是:(﹣5﹣2+1)×16+(﹣5)+(﹣2)=﹣103;(3)由﹣5,﹣2,1,﹣5,﹣2,﹣1,﹣5,﹣2,1…,可知“﹣2”的位置为第2个,第5个,第8个,即第3k﹣1个;(4)从﹣5,﹣2,1,﹣5,﹣2,﹣1,﹣5,﹣2,1…,任取三个连续位置的数,有三种可能:﹣5,﹣2,1;﹣2,1,﹣5;1,﹣5,﹣2;它们的和均等于:﹣5﹣2+1=﹣6∴第n个,第n+1个,第n+2个这三个数的和为﹣6.2020-2021学年人教版期七年级初一上册数学期中达标测试卷(二)一.选择题(每小题4分,满分48分)1.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等2.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得()A.7(x﹣y)2B.﹣3(x﹣y)2C.﹣3(x+y)2+6(x﹣y)D.(y﹣x)23.下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.这个三位数可表示成()A.10b+a B.ba C.100b+a D.b+10a5.已知a,b两数在数轴上的位置如图所示,则化简代数式|a+b|﹣|a﹣1|+|b+2|的结果是()A.1 B.2b+3 C.2a﹣3 D.﹣16.如图是一块长为a,宽为b(a>b)的长方形空地,要将阴影部分绿化,则阴影面积是()A.a2b2B.ab﹣πa2C.D.7.对于多项式3x2﹣y+3x2y3+x4﹣1,下列说法正确的是() A.次数为12 B.常数项为1C.项数为5 D.最高次项为x48.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<b C.﹣b<a<﹣a<b D.﹣b<b<﹣a<a 9.有理数a,b在数轴上的位置如图,则的值()A.大于0 B.小于0 C.等于0 D.等于1或﹣1 10.截止2020年5月3日,我国新冠疫情得到有效控制,但世界累计确诊3395978人,将3395978人用科学记数法(保留三个有效数字)表示应为()A.3.395×106B.3.395×107C.3.40×106D.3.40×10711.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有3颗棋子,第②个图形一共有9颗棋子,第③个图形一共有18颗棋子,…,则第⑧个图形中棋子的颗数为()A.84 B.108 C.135 D.15212.根据如图中箭头的指向规律,从2018到2019再到2020,箭头的方向是以下图示中的()A.B.C.D.二.填空题(每小题4分,满分24分)13.一个有理数的倒数与它的绝对值相等,则这个数是.14.单项式﹣的系数是.15.已知p是数轴上表示﹣2的点,把p点移动2个单位长度后,p点表示的数是.16.设代数式A=代数式B=,a为常数.观察当x取不同值时,对应A的值,并列表如下(部分):x… 1 2 3 …A… 4 5 6 …当x=1时,B=;若A=B,则x=.17.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k=.18.在3×3方格内做填字游戏,要求每行每列及对角线上三个方格中的数字和都等于S,又填在图中三格中的数字如图所示,若要能填成,则S=.108 13三.解答题19.(8分)计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×(﹣﹣+);(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.20.(8分)画出数轴,并在数轴上画出表示下列各数的点,再按从小到大的顺序用“<”号把这些数连接起来:﹣1,0,﹣2,3,四.解答题21.(10分)直接写出下列各题结果(﹣5)+(﹣7)=,7﹣|﹣7|=,3x﹣x=,(﹣6)﹣4=,=,﹣4a2+2a2=,=,0﹣1﹣3=,﹣m2﹣m2=,(﹣2)3+6=,=,﹣=.22.(10分)已知(x+4)2+|y﹣|=0,求代数式(2xy2﹣3x2y)﹣2(3x2y+xy2﹣1)的值.23.(10分)单项式﹣2x4y m﹣1与5x n﹣1y2的和是一个单项式,求m﹣2n的值.24.(10分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.25.(10分)观察下列,回答问题:第一行:2,﹣4,8,﹣16,32,﹣64,……第二行:4,﹣2,10,﹣14,34,﹣62,……第三行:1,﹣2,4,﹣8,16,﹣32,……(1)第一行数的第8个数为,第二行数的第8个数为,第三行数的第8个数为;(2)第一行的第n个数为;(n为正整数,用含n的式子表示)(3)第一行是否存在连续的三个数使得三个数的和是768?若存在求出这三个数,若不存在说明理由:(4)是否存在一列数,使得这一列的三个数的和为1282?若存在求出这三个数,若不存在说明理由.五.解答题26.(12分)某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:不超过2000本时,每本收印刷费1.5元;超过2000本超过部分每本收印刷费0.25元,若该校印制证书x本.(1)若x不超过2000时,甲厂的收费为元,乙厂的收费为元;(2)若x超过2000时,甲厂的收费为元,乙厂的收费为元(3)当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?(4)请问印刷多少本证书时,甲乙两厂收费相同?参考答案一.选择题1.解:A、+a和﹣(﹣a)互为相反数;错误,二者相等;B、+a和﹣a一定不相等;错误,当a=0时二者相等;C、﹣a一定是负数;错误,当a=0时不符合;D、﹣(+a)和+(﹣a)一定相等;正确.故选:D.2.解:2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x),=[2(x﹣y)2+5(y﹣x)2]+[3(y﹣x)+3(x﹣y)],=7(x﹣y)2.故选:A.3.解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.4.解:两位数的表示方法:十位数字×10+个位数字;三位数字的表示方法:百位数字×100+十位数字×10+个位数字.a是两位数,b是一位数,依据题意可得b扩大了100倍,所以这个三位数可表示成100b+a.故选:C.5.解:由数轴可知﹣2<b﹣1,1<a<2,且|a|>|b|,∴a+b>0,则|a+b|﹣|a﹣1|+|b+2|=a+b﹣(a﹣1)+(b+2)=a+b﹣a+1+b+2=2b+3.故选:B.6.解:由图可得,阴影部分的面积是:ab﹣=,故选:C.7.解:多项式3x2﹣y+3x2y3+x4﹣1,次数时5,故选项A不合题意;多项式3x2﹣y+3x2y3+x4﹣1,常数项为﹣1,故选项B不合题意;多项式3x2﹣y+3x2y3+x4﹣1,项数为5,故选项C符合题意;多项式3x2﹣y+3x2y3+x4﹣1,最高次项为3x2y3,故选项D不合题意.故选:C.8.解:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a<b;在a和﹣b两个负数中,绝对值大的反而小,则﹣b<a.因此,﹣b<a<﹣a<b.故选:C.9.解:根据数轴上点的位置得:a<0<b,且|a|<|b|,∴a+b>0,ab<0,则小于0,故选:B.10.解:3395978=3.40×106.故选:C.11.解:第①个图形有3颗棋子,第②个图形一共有3+6=9颗棋子,第③个图形一共有3+6+9=18颗棋子,第④个图形有3+6+9+12=30颗棋子,…,第⑧个图形一共有3+6+9+…+24=3×(1+2+3+4+…+7+8)=108颗棋子.故选:B.12.解:观察图形的变化发现:每4个数为一个循环组,2016÷4=504所以从0开始到2015共2016个数构成504个循环,2016是第505个循环的第1个数,2017是第505个循环的第2个数,2018是第505个循环的第3个数,2019是第505个循环的第4个数,2020是第506个循环的第1个数,所以从2018到2019再到2020,箭头的方向是以下图示中的C.故选:C.二.填空题(共6小题,满分24分,每小题4分)13.解:因为1的倒数是1,1的绝对值是1,所以1的倒数与它的绝对值相等,所以一个有理数的倒数与它的绝对值相等,则这个数是1.故答案为:1.14.解:单项式﹣的系数是﹣,故答案为:﹣.15.解:若向左平移2个单位长度,则为:﹣2﹣2=﹣4;若是向右平移2个单位长度,则为﹣2+2=0.16.解:由表格的值可得当x=1时,A=4,代入A得+1,解得a=4故B的代数式为:当x=1时,代入B得=1若A=B,即,解得x=4故答案为1;417.解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.18.解:7 11 1215 10 58 9 13 三.解答题(共2小题,满分16分,每小题8分)19.解:(1)12﹣(﹣6)+(﹣9)=12+6+(﹣9)=18+(﹣9)=9;(2)(﹣48)×(﹣﹣+)=(﹣48)×(﹣)+(﹣48)×(﹣)+(﹣48)×=24+30﹣28=26;(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.=﹣9÷4××6+(﹣8)=﹣××6+(﹣8)=(﹣18)+(﹣8)=﹣26.20.解:,﹣2<﹣1<0<<3.四.解答题(共5小题,满分50分,每小题10分)21.解:(﹣5)+(﹣7)=﹣(5+7)=﹣12;7﹣|﹣7|=7﹣7=0;3x﹣x=(3﹣1)x=2x;(﹣6)﹣4=(﹣6)+(﹣4)=﹣10;;﹣4a2+2a2=(﹣4+2)a2=﹣2a2;;0﹣1﹣3=0+(﹣1)+(﹣3)=﹣4;﹣m2﹣m2=(﹣1﹣1)m2=﹣2m2;(﹣2)3+6=﹣8+6=﹣2;;.故答案为:﹣12;0;2x;﹣10;;﹣2a2;2;﹣4;﹣2m2;﹣2;;﹣x2.22.解:∵(x+4)2+|y﹣|=0,∴x=﹣4,y=,(2xy2﹣3x2y)﹣2(3x2y+xy2﹣1)=2xy2﹣3x2y﹣6x2y﹣2xy2+2=﹣9x2y+2当x=﹣4,y=时,原式=﹣9×(﹣4)2×+2=﹣70.23.解:∵单项式﹣2x4y m﹣1与5x n﹣1y2的和是一个单项式,∴,解得:m=3,n=5,∴m﹣2n=3﹣2×5=﹣7.24.解:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克=30元.故答案为:30.(2)由题意y1=30×0.6x+60=18x+60,由图可得,当0≤x≤10时,y2=30x;当x>10时,设y2=kx+b,将(10,300)和(20,450)代入y2=kx+b,解得y2=15x+150,所以y2=,(3)函数y1的图象如图所示,由解得,所以点F坐标(5,150),由解得,所以点E坐标(30,600).由图象可知甲采摘园所需总费用较少时5<x<30.25.解:(1)∵2,﹣4,8,﹣16,32,﹣64,…;①∴21=2,﹣4=﹣22,8=23,﹣16=﹣24,…∴第①行第8个数为:﹣28=﹣256;∵4,﹣2,10,﹣14,34,﹣62,…都比第一行对应数字大2,∴第②行第8个数为:﹣254;∵1,﹣2,4,﹣8,16,﹣32,….③∴第③行是第一行的,∴第③行第8个数为:﹣128;故答案为:﹣256,﹣254,﹣128,(2)第一行的数:2,﹣22,23,﹣24,25,﹣26……其偶数个时为负,因此第n个为:(﹣1)n+12n,故答案为:(﹣1)n+12n,(3)不存在.设第一行其中连续的三个数分别为x,﹣2x,4x,则x﹣2x+4x=768,解得x=256,∵256不在第一行,∴不存在;(4)存在.∵同一列的数符号相同,∴这三个数都是正数,∴这一列三个数的和为:2n+(2+2n)+×2n=1282,2n=512,n=9,∴存在这样的一列,分别是521,514,256,使得其中的三个数的和为1282.五.解答题(共1小题,满分12分,每小题12分)26.解:(1)若x不超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为(1.5x)元,故答案为:0.5x+1000,1.5x;(2)若x超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为2000×1.5+0.25(x﹣2000)=0.25x+2500元,故答案为:1000+0.5x,0.25x+2500;(3)当x=8000时,甲厂费用为1000+0.5×8000=5000元,乙厂费用为:0.25×8000+2500=4500元,∴当印制证书8000本时应该选择乙印刷厂更节省费用,节省了500元;(4)当x≤2000时,1000+0.5x=1.5x,解得:x=1000;当x>2000时,1000+0.5x=0.25x+2500,解得:x=6000;答:印刷1000或6000本证书时,甲乙两厂收费相同.2020-2021学年人教版期七年级初一上册数学期中达标测试卷(三)一.选择题(满分30分,每小题3分)1.如图,数轴上有A,B,C,D四个点,其中表示﹣2的相反数的点是()A.点A B.点B C.点C D.点D2.2019年“十一”黄金周期间(7天),北京市接待旅游总人数为920.7万人次,旅游总收入111.7亿元.其中111.7亿用科学记数法表示为()A.111.7×106B.11.17×109C.1.117×1010D.1.117×1083.在﹣(﹣1),﹣|﹣3.14|,0,(﹣3)4中,正数有()A.1个B.2个C.3个D.4个4.若单项式a m+1b2与的和是单项式,则m n的值是()A.3 B.4 C.6 D.85.若x=0是方程的解,则k值为()A.0 B.2 C.3 D.46.设■,●,▲分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么以下方案不正确的是()A.B.C.D.7.如图,有理数a,b,c在数轴上的位置,则下列选项正确的是()A.a<b<0<c B.a<c<0<b C.b<0<a<c D.c<a<0<b8.一件夹克衫先按成本提高40%标价,再按9折(标价的90%)出售,结果获利38元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+40%)x×90%=x﹣38 B.(1+40%)x×90%=x+38C.(1+40%x)×90%=x﹣38 D.(1+40%x)×90%=x+389.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如利用图1可以得到(a+b)2=a2+2ab+b2,那么利用图2所得到的数学等式是()A.(a+b+c)2=a2+b2+c2B.(a+b+c)2=a2+b2+c2+2ab+2ac+2bcC.(a+b+c)2=a2+b2+b2+ab+ac+bcD.(a+b+c)2=2a+2b+2c10.在数轴上,若点N表示原点,则表示负数的点是()A.M点B.P点C.A点D.Q点二.填空题11.(2分)0.666、、按从小到大排列是.12.(2分)把2.895精确到0.01是.13.(2分)2﹣7=,比较大小:.14.(2分)若x2+3x=0,则2019﹣2x2﹣6x的值为.15.(2分)若a、b互为相反数,c、d互为倒数,则(a+b)2﹣2cd=.16.(2分)若(a+1)2+|b﹣2|=0,则﹣2a﹣b=.17.(2分)若关于x,y的单项式x m+2y b和单项式2xy是同类项,则m2019+b2020=.18.(4分)当x=时,2x﹣3与的值互为倒数.19.(2分)如图,有一个窗户,上部是半圆,下部是正方形,正方形的边长为4acm,此窗户的面积是cm2.20.(4分)如图是用相同长度的小棒摆成的一组有规律的图案,图案(1)需要4根小棒,图案(2)需要10根小棒……按此规律摆下去第8个图案需要小棒根.三.解答题21.把下列各数在数轴上表示出来,再按从小到大的顺序用“<”连接起来:﹣3,0,+3.5,22.(16分)计算:(1)16÷(﹣2)3﹣(﹣)×(﹣4)+(﹣1)2020;(2)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].23.(4分)化简:(1)(5a2+2a﹣1)﹣4[3﹣2(4a+a2)].(2)3x2﹣[7x﹣(4x﹣3)﹣2x2].24.(4分)解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)1﹣=25.(4分)先化简,再求值:﹣xy,其中x=3,y =﹣.四.解答题26.(4分)为鼓励居民节约用电,某市采用价格调控手段达到省电目的.该市电费收费标准如下表(按月结算):每月用电量/度电价/(元/度)不超过150度的部分0.50元/度超过150度且不超过250度的部分0.65元/度超过250度的部分0.80元/度问:(1)某居民12月份用电量为180度,请问该居民12月应缴交电费多少元?(2)设某月的用电量为x度(0<x≤300),试写出不同用电量区间应缴交的电费.27.(5分)检验下列方程后面小括号内的数是否为相应方程的解.(1)2x+5=10x﹣3(x=1)(2)2(x﹣1)﹣(x+1)=3(x+1)﹣(x﹣1)(x=0)28.(6分)如图所示,点A、B在数轴上分别表示有理数a、b,A、B两点之间距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)若x表示一个有理数,|x﹣2019|+|x﹣2020|有最小值吗?若有,请求出最小值,若没有,写出理由.(2)求|x﹣1|+2|x﹣3|+3|x﹣4|的最小值.(3)已知(|x+1|+|x﹣2|)(|y﹣2|+|y+1|)(|z﹣3|+|z+1|)=36,求x+2y+3z的最大值和最小值.参考答案一.选择题1.解:数轴上表示﹣2的相反数的点是2,即D点.故选:D.2.解:111.7亿=11170000000=1.117×1010故选:C.3.解:因为﹣(﹣1)=1,﹣|﹣3.14|=﹣3.14,(﹣3)4=34=81,所以正数有﹣(﹣1),(﹣3)4共两个.故选:B.4.解:∵整式a m+1b2与的和为单项式,∴m+1=3,n=2,∴m=2,n=2,∴m2=22=4.故选:B.5.解:把x=0代入方程,得1﹣=解得k=3.故选:C.6.解:根据图示可得:2●=▲+■①,●+▲=■②,由①②可得●=2▲,■=3▲,则■+●=5▲=2●+▲=●+3▲.故选:A.7.解:数轴上所表示的数,右边总比左边的大,因此有a<c<0<b,故选:B.8.解:设这件夹克衫的成本是x元,根据题意,列方程得:(1+40%)x×90%=x+38.故选:B.9.解:∵正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故选:B.10.解:在数轴上,若点N表示原点,则表示负数的点是M点.故选:A.二.填空题(共10小题,满分24分)11.解:=0.,=0.6,所以<0.666<;故答案为:<0.666<.12.解:2.895≈2.90(精确到0.01),故答案为:2.90.13.解:2﹣7=﹣5,∵|﹣|==,|﹣|==,而,∴﹣<﹣,故答案为:﹣5,<.14.解:当x2+3x=0时,原式=2019﹣2(x2+3x)=2019﹣2×0=2019﹣0=2019,故答案为:2019.15.解:根据题意得:a+b=0,cd=1,则原式=0﹣2=﹣2.故答案为:﹣2.16.解:∵(a+1)2+|b﹣2|=0,∴a+1=0,b﹣2=0,解得:a=﹣1,b=2,则﹣2a﹣b=2﹣2=0.故答案为:0.17.解:由关于x,y的单项式x m+2y b和单项式2xy是同类项,可得m+2=1,b=1,解得m=﹣1,b=1,∴m2019+b2019=(﹣1)2019+12019=﹣1+1=0.故答案为:0.18.解:∵2x﹣3与的值互为倒数,∴2x﹣3=,去分母得:5(2x﹣3)=4x+3,去括号得:10x﹣15=4x+3,移项、合并得:6x=18,系数化为1得:x=3.所以当x=3时,2x﹣3与的值互为倒数.19.解:4a×4a+π×(4a÷2)2÷2=(16a2+2πa2)cm2.故此窗户的面积是(16a2+2πa2)cm2.答案为:(16a2+2πa2).20.解:如图可知,后一幅图总是比前一幅图多两个菱形,且多6根小棒,图①需要小棒:6×1﹣2=4(根),图②需要小棒:6×2﹣2=10(根),…则第n个图案需要小棒:(6n﹣2)根,∴当n=8时,6×8﹣2=46(根).故答案为:46.三.解答题(共5小题,满分31分)21.解:如图所示:数轴上的点表示的数右边的总比左边的大,得<0.5<+3.5.22.解:(1)16÷(﹣2)3﹣(﹣)×(﹣4)+(﹣1)2020=16÷(﹣8)﹣+1=﹣2﹣+1=﹣;(2)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=.23.解:(1)原式=5a2+2a﹣1﹣[12﹣8(4a+a2)]=5a2+2a﹣1﹣12+8(4a+a2)=5a2+2a ﹣1﹣12+32a+8a2=13a2+34a﹣13;(2)原式=3x2﹣7x+(4x﹣3)+2x2=3x2﹣7x+4x﹣3+2x2=5x2﹣3x﹣3.24.解:(1)去括号得:x﹣2x+8=3﹣3x,移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4﹣3x+1=6+2x,移项合并得:﹣5x=1,解得:x=﹣0.2.25.解:原式=3x2y﹣2xy2+2xy﹣3x2y+3xy2﹣xy=xy2+xy,当x=3,y=﹣时,原式=﹣1=﹣.四.解答题(共3小题,满分15分)26.解:(1)由题意,得150×0.50+(180﹣150)×0.65=94.5(元)答:该居民12月应缴交电费94.5元;(2)若某户的用电量为x度,则当x≤150时,应付电费0.50x元;当150<x≤250时,应付电费[0.65(x﹣150)+75]元;当250<x<300,应付电费[0.80(x﹣250)+140]元.27.解:(1)当x=1时,左边=2×1+5=2+5=7,右边=10×1﹣3=10﹣3=7,左边=右边,∴x=1是方程的解;(2)当x=0时,左边=2×(0﹣1)﹣×(0+1)=﹣2﹣=﹣2.5,右边=3×(0+1)﹣×(0﹣1)=3+=,左边≠右边,∴x=0不是此方程的解.28.解:(1)|x﹣2019|+|x﹣2020|表示数轴上表示x的点到表示2019、2020点的距离之和,要使距离之和最小,则2019≤x≤2020,∴|x﹣2019|+|x﹣2020|的最小值为2020﹣2019=1,答:|x﹣2019|+|x﹣2020|的最小值为1;(2)由(1)得,当x=3时,|x﹣1|+2|x﹣3|+3|x﹣4|的值最小,最小值为5.(3)当﹣1≤x≤2时,|x+1|+|x﹣2|的最小值为3,当﹣1≤y≤2时,|y﹣2|+|y+1|的最小值为3,当﹣1≤z≤3时,|z﹣3|+|z+1|的最小值为4,∵(|x+1|+|x﹣2|)(|y﹣2|+|y+1|)(|z﹣3|+|z+1|)=36,∴各自均取最小值,当x=﹣1、y=﹣1、z=﹣1时,x+2y+3z的值最小,x+2y+3z=﹣6,当x=2、y=2、z=3时,x+2y+3z的值最小,x+2y+3z=15,答:x+2y+3z的最大值为15,最小值为﹣6.。
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题:(本大题共10个小题,每小题2分,共20分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的相反数是( ) A.2B.2-C.21D.21-2. 下列运算正确的是( )A.2523a a a =+B.ab b a 743=+C.325a a a =-D.b a b a b a 2222=- 3. 一种面粉的质量标识为“25.025±”,则下列面粉中合格的是:A.24.70千克B.25.30千克C.24.80千克D.25.51千克4. 在式子31,3,2,9.0,52,12+--+x y x a y x x 中,单项式的个数是( )A.5个B.4个C.3个D.2个5. 如果两个数的和是负数,那么这两个数( )A.至少有一个为正数B.同是正数C.同是负数D.至少有一个为负数6. 多项式7)4(21||+--x m x m 是关于x 的四次三项式,则m 的值是( )A.4B.2-C.4-D.4或4-7. 一个有理数和它的相反数之积一定为( ) A.正数B.非正数C.负数D.非负数8. 一个多项式与122+-x x 的和是23-x ,则这个多项式为: A.352+-x x B.12-+-x x C.352-+-x x D.1352--x x 9. 计算44442222+++的结果是( ) A.162B.48C.82D.62 10. 有理数b a ,在数轴上的位置如下图所示,在下列结论中:①<ab ;②>+b a ;③23b a >;④)(3<-b a ;⑤ab b a -<<-<;⑥b a a b =--||||.正确的结论有( ) A.5个 B.4个 C.3个D.2个二、填空题:(本大题共6个小题,每小题2分,共12分) 11. 地球上海洋面积约为36100万2km ,可表示为科学记数法________________2km .12. 已知:||||y x -=,3-=x ,则y =_______. 13. 在3223)2(,2,)1(,)1(----这四个数中,最大的数与最小的数的和等于_________. 14. 如果3251b a 与y x x b a ++-141是同类项,那么xy =________.15. 多项式9126322-+--xy y mxy x 合并后不含xy 项,则=m ________.16. 已知:b a ,互为相反数,c 与d -互为倒数,2||=m ,则3m cd mba +-+=________.题号一 二 三 总分 得分ba密 封 线 内 不 得 答 题三、解答题:(本大题共8个小题,共68分)解答应写出文字说明、证明过程或演算步骤.17.(每小题4分,共16分) (1) )31(|)11(7|)32(|5|322-+--⨯---+- (2) )14()2()3121()61(2-⨯-+--÷- (3) )7()7649(-⨯-(4) ]2)31()4[(|10|22⨯---+- 18.(本小题满分6分)化简求值: y x y x xy xy y x 222222)(5)31(12--+-,其中5,51-==y x .19.(每小题4分,共8分) (1) 1]2)1(32[--+---n m m (2) )74()53(252222xy y x y x +-+-- 20.(本小题满分6分)已知:多项式1222-+my x 与多项式632+-y nx 的差与y x ,的大小无关.求:mn n m ++的值. 21.(本小题满分6分)(1) 各线段长度如图标记,请用含n m ,的式子表示阴影部分的面积;(2) 若(1)中的nm ,满足0)2(|3|2=-+-n m ,请计算阴影部分的面积. 22.(本小题满分6分)设一个两位数的个位数字为a ,十位数字为b (b a ,均为正整数,且b a >),若把这个两位数的个位数字和十位数字交换位置得到一个新的两位数,则新的两位数与原两位数的差 一定是9的倍数,试说明理由. 23.(本小题满分10分)某出租车司机国庆节的营运全是在长虹路南北方向上进行的,如果规定向北为正,向南为负,他这天行车里程(单位:千米)如下:12,16,5,15,4.4,4.2,5,10+-+++-+-(1) 最后一名乘客送到目的地时,出租车在出发点的哪个方向?与出发点的距离?(2) 长虹路南北至少有多少千米?(3) 若该出租车耗油量为每千米0.08升,每升油7.5元,出租车按物价部门规定,起步价(不超过3千米)5元,超过3千米的部分,每千米(不足1千米按1千米计算)加价2元,该出租车司机今天的纯收入为多少元?(纯收入=收入-油耗钱)24. (本小题满分10分)如图,在数轴上每相邻两点之间的距离为一个单位长度.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)若点A,B,C,D 对应的数分别是d c b a ,,,, 则可用含a 的整式表示d 为 ,若1423=-a d ,则b= c= (填具体数值)(2)在(1)的条件下, 点A 以4个单位/秒的速度沿着数轴的正方向运动,同时点B 以2个单位/秒的速度沿着数轴的正方向运动,当点A 到达D 点处立刻返回,与点B 在数轴的某点处相遇,求相遇点所对应的数.(3)如果点A 以2个单位/秒的速度沿着数轴的负方向运动,同时点B 以4个单位/秒的速度沿着数轴的正方向运动,是否存在某时刻使得点A 与点B 到点C 的距离相等,若存在请求出时间t,若不存在请说明理由.七年级数学试题参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案 A D C C D C B C D B二.填空题11.81061.3⨯ 12.3± 13.7- 14.2 15. 4 16.79-或(第16题只填一种情况并且对了的,给2分;若填了两种情况,但有一种错误的,给0分)三.解答题 17.31123185931189459)31(|)11(7|)32(|5|3)1(22-=--+-=-⨯-+-=-+--⨯---+-54555651)14(4)56()61()14()2()3121()61)(2(2-=-=-⨯+-⨯-=-⨯-+--÷-3493501)7(50)7(71)7()5071()7()7649)(3(=+-=-⨯--⨯=-⨯-=-⨯- 423210)1616(10]2)91(16[10]2)31()4[(|10|)4(22=+=++=⨯--+=⨯---+- (每小题4分,共计16分,请按步骤给分) 18. 解:22222222222252554122)(5)31(12xy y x y x y x xy xy y x yx y x xy xy y x +=--+-=--+-.............................………...............…4分 当5,51-==y x 时,原式=451)5(51)5()51(522=+-=-⨯+-⨯⨯........…6分19. 解: 431531)53(1)23332(1]2)1(32[)1(+-=-+-=--+--=---+--=--+---n m n m n m n m m n m m xy y x xy y x y x xy y x y x 71015741065)74()53(25)2(2222222222+-=+-+-=+-+-- (每小题4分,共计8分,请按步骤给分) 20. 解:18)3()2(63122)63()122(22222-++-=-+--+=+---+y m x n y nx my x y ny my x ................................................…2分∵上式的值与y x ,的大小无关∴03,02=+=-m n ....................................................................…4分 即3,2-==m n ...........................................................................…5分 ∴7612)3(23-=--=⨯-++-=++mn n m ......................…6分21. 解:(1)mn mn mn n n n m n m S 211216)25.03(32=-=---⋅=阴.................…3分(2)由题意得02,03=-=-n m .....................................................................…4分 所以2,3==n m ..........................................................................................…5分 ∴3323211211=⨯⨯==mn S 阴 .................................................................…6分 22. 解:原数与新数可用含b a ,的式子分别表示为b a a b ++10,10则..................…1分)(9991010)10()10(b a b a ab b a a b b a -=-=--+=+-+.....................................................................................…4分∵b a ,均为正整数,且b a >∴)(9b a -一定是9的倍数.............................................................................…5分 即新的两位数与原两位数的差一定是9的倍数...........................................…6分 23. 解:(1)∵1312165154.44.2510+=+-+++-+-.................................…2分∴最后一名乘客下车时,出租车在出发点的北边13千米处......................3分 (2)八次运营与出发点的距离如下:南10;南5;南7.4;南3;北12;北17;北1;北13…..5分∴长虹路南北至少:10+17=27千米...........................................................…6分 (3)油耗钱:88.415.708.0)12165154.44.2510(=⨯⨯+++++++….........7分 收入:134233192995919=+++++++...............................................…8分 纯收入:12.9288.41134=-…..........................................................................9 答:该出租车司机今天的纯收入为92.12元.…...........................................10分(本题每问分数分配:3分+3分+4分)24. 解: (1) 8+a ;7;12-- (2) ∵8102)10(2=+-=---=AD 10122)12(2=+-=---=BD∴两点的路程之和为 ∴两点的相遇时间为:3)24(18=+÷ ∴相遇点所表示的数为:62312-=⨯+- (3) 存在431或=t 时,点A 与点B 到点C 的距离相等,理由如下 ①当点A 与点B 相遇时:31)24()]12(10[=+÷---②当点A 在点C 右侧时:t 秒时点A 、B 表示的数分别为:t 210--;t 412+-此时点A 到点C 的距离为:32)210(7+=----t t 点B 到点C 的距离为:54)7(412-=--+-t t∴5432-=+t t解得4=t 综上所述:当431或=t 时,点A 与点B 到点C 的距离相等(本题每问分数分配:3分+3分+4分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分). 1.﹣2的相反数是( ) A .B .2C .﹣D .﹣22.将数据15 000 000用科学记数法表示为( )A .15×106B .1.5×107C .1.5×108D .0.15×1083.在数8,﹣6,0,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14中,负数的个数有( ) A .4B .5C .6D .7 4.下列说法正确的是( )A .一个数前面加上“﹣”号这个数就是负数B .非负数就是正数C .正数和负数统称为有理数D .0既不是正数也不是负数5.下列各图中,数轴表示正确的是( )A .B .C .D .6.如果单项式与2x 4y n+3是同类项,那么m 、n 的值分别是( )A .B .C .D .7.下面运算正确的是( )A .3ab+3ac=6abcB .4a 2b ﹣4b 2a=0C .2x 2+7x 2=9x 4D .3y 2﹣2y 2=y 28.下列式子中去括号错误的是( )A .5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5zB .2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c+2dC .3x 2﹣3(x+6)=3x 2﹣3x ﹣6D .﹣(x ﹣2y )﹣(﹣x 2+y 2)=﹣x+2y+x 2﹣y 29.若2是关于x 的方程x+a=﹣1的解,则a 的值为( )A .0B .2C .﹣2D .﹣610.如图,M ,N ,P ,Q ,R 分别是数轴上五个整数所对应的点,其中有一点是原点,并且MN=NP=PQ=QR=1.数a 对应的点在N 与P 之间,数b 对应的点在Q 与R 之间,若|a|+|b|=3,则原点可能是( )A .M 或QB .P 或RC .N 或RD .P 或Q题号一 二 三 四 五 六 总分 得分密 题二、填空题(每小题2分,共16分). 11.比较大小:﹣2 ﹣3.12.单项式﹣的系数是 ,次数是 次.13.将多项式﹣2+4x 2y+6x ﹣x 3y 2按x 的降幂排列: . 14.已知x ﹣3y=3,则6﹣x+3y 的值是 . 15.若(m ﹣2)x|m|﹣1=3是关于x 的一元一次方程,则m 的值是 .16.若关于x 的方程mx+2=2(m ﹣x )的解是,则m= .17.若|a|=2,|b|=4,且|a ﹣b|=b ﹣a ,则a+b= . 18.观察下列一组图形中点的个数,其中第1个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第5个图形中共有点的个数是 .三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 四、先化简、再求值:(本题5分)20.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中﹣5.五、解下列方程(每题4分,共8分)21.解方程:(1)2x ﹣(x+10)=6x ; (2)=3+.六、解答题:(本题21分,第1-4题各4分,第5小题题分)22.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为求a ﹣2cd+b+m 的值.23.有理数在数轴上的对应点位置如图所示,化简:﹣2|a ﹣b|.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.已知|2a+1|+(4b ﹣2)2=0,求:(﹣ a+b 2)﹣(a ﹣b 2)﹣(+b )的值.25.用“☆”定义一种新运算:对于任意有理数a 、b ,都有a ☆b=ab+a 2,例如(﹣3)☆2=﹣3×2+(﹣3)2=3(1)求(﹣5)☆3的值;(2)若﹣a ☆(1☆a )=8,求a 的值.26.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a+4|+(b ﹣1)2=0.现将A 、B 之间的距离记作|AB|,定义|AB|=|a ﹣b|.(1)|AB|= ;(2)设点P 在数轴上对应的数是x ,当|PA|﹣|PB|=2时,求x 的值.参考答案与试题解析一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分).1.【解答】解:﹣2的相反数是2,故选:B .2.【解答】解:将15 000 000用科学记数法表示为:1.5×107. 故选:B .3.【解答】解:﹣|﹣2|=﹣2,(﹣1)2015=﹣1,﹣14=﹣1,负数有:﹣6,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14,负数的个数共6个, 故选:C .4.【解答】解:A 、不一定,例如0前面加上“﹣”号0还是0;B 、错误,0既不是正数也不是负数; C 、错误,正数和负数和0统称为有理数;D 、正确.故选D .5.【解答】解:A 、没有正方向,不是数轴,故本选项错误;B 、没有原点,不是数轴,故本选项错误;C 、没有单位长度,不是数轴,故本选项错误;D 、符合数轴的定义,故本选项正确.故选D . 6.【解答】解:∵单项式与2x 4y n+3是同类项,∴2m=4,n+3=1,解得:m=2,n=﹣2.故选A .7.【解答】解:A 、3ab+3ac=3a (b+c );B 、4a 2b ﹣4b 2a=4ab (a ﹣b );C 、2x 2+7x 2=9x 2;D 、正确.故选D .8.【解答】解:A 、5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5z ,故本选项不符合题意;得答B、2a2+(﹣3a﹣b)﹣(3c﹣2d)=2a2﹣3a﹣b﹣3c+2d,故本选项不符合题意;C、3x2﹣3(x+6)=3x2﹣3x﹣18,故本选项符合题意;D、﹣(x﹣2y)﹣(﹣x2+y2)=﹣x+2y+x2﹣y2,故本选项不符合题意.故选C.9.【解答】解:把x=2代入方程得:1+a=﹣1,解得:a=﹣2,故选C10.【解答】解:∵MN=NP=PQ=QR=1,∴|MN|=|NP|=|PQ|=|QR|=1,∴|MR|=4;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在N或R时且|Na|=|bR|时,|a|+|b|=3;③当原点在M点时,|a|+|b|>3,又因为|a|+|b|=3,所以,原点不可能在M点;综上所述,此原点应是在N或R点.故选:C.二、填空题(每小题2分,共16分).11.【解答】解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.故答案为:>.12.【解答】解:单项式﹣的系数是﹣,次数是5,故答案为:﹣,5.13.【解答】解:多项式﹣2+4x2y+6x﹣x3y2按字母x列是:﹣x3y2+4x2y+6x﹣2.故答案是:﹣x3y2+4x2y+6x﹣2.14.【解答】解:∵x﹣3y=3,∴原式=6﹣(x﹣3y)=6﹣3=3,故答案为:315.【解答】解:∵(m﹣2)x|m|﹣1=3是关于x程,∴,解得m=﹣2.故答案为:﹣2.16.【解答】解:把x=代入方程,得:m+2=2(m﹣),解得:m=2.故答案是:2.17.【解答】解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=b﹣a,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴或, ∴a+b=6或2, 故答案为:6或2.18.【解答】解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点,…第n 个图有1+1×3+2×3+3×3+…+3n 个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故答案为:46.三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 【解答】解:①原式=12+18=30. ②原式=﹣3××=﹣2. ③原式=﹣6.5+13﹣3.5=3.④原式=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4.⑤原式=4+(﹣6)×9=﹣50. 四、先化简、再求值:(本题5分)20.【解答】解:原式=a 2+5a 2﹣2a ﹣2a 2+6a=4a 2+4a ,当a=﹣5时,原式=100﹣20=80. 五、解下列方程(每题4分,共8分)21.【解答】解:(1)方程去括号得:2x ﹣x ﹣10=6x , 移项合并得:5x=﹣10, 解得:x=﹣2;(2)方程去分母得:2(x+1)=12+2﹣x ,去括号得:2x+2=12+2﹣x , 移项合并得:3x=12, 解得:x=4.六、解答题:(本题21分,第1-4题各4分,第5小题题5分)22.【解答】解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴原式=(a+b )﹣2cd+m=﹣2±2, ∴a ﹣2cd+b+m 的值为0或﹣4.密 封 内 不 得 23.【解答】解:∵由图可知,a <﹣1<0<b <1, ∴a+b <0,a ﹣b <0,∴原式=﹣a ﹣(a+b )+2(a ﹣b )=﹣a ﹣a ﹣b+2a ﹣2b =﹣3b .24.【解答】解:∵|2a+1|+(4b ﹣2)2=0, ∴a=﹣,b=.(﹣a+b 2)﹣(a ﹣b 2)﹣(+b )=﹣a+b 2﹣a+b 2﹣﹣b =当a=﹣,b=时,原式==.25.【解答】解:(1)(﹣5)☆3=(﹣5)×3+(﹣5)2=﹣15+25=10;(2)∵﹣a ☆(1☆a )=﹣a ☆(a+1)=﹣a (a+1)+(﹣a )2=﹣a 2﹣a+a 2=﹣a=8, ∴a=﹣8.26.【解答】解:(1)∵|a+4|+(b ﹣1)2=0,∴a=﹣4,b=1, ∴|AB|=|a ﹣b|=5;(2)当P 在点A 左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣5≠2.当P 在点B 右侧时, |PA|﹣|PB|=|AB|=5≠2.∴上述两种情况的点P 不存在.当P 在A 、B 之间时,|PA|=|x ﹣(﹣4)|=x+4,|PB|=|x ﹣﹣x ,∵|PA|﹣|PB|=2,∴x+4﹣(1﹣x )=2.∴x=﹣,即x 的值为﹣; 故答案为:5.。
2020-2021学年七年级上学期期中考试数学试题一、选择题1.在1,−2,−3,4这四个数中,任取两个数相乘,所得积最大的是()A. −12B. −2C. 4D. 62.下列说法中,正确的个数是()①一个负数的相反数大于这个负数;②互为倒数的两个数符号相反;③一个正数的相反数小于这个正数;④互为相反数的两个数的和为0.A. 1个B. 2个C. 3个D. 4个3.数轴上表示互为相反数m与−m的点到原点的距离()A. 表示数m的点离原点较远B. 表示数−m的点距原点较远C. 一样远D. 无法比较4.下列说法,错误的是()A. 所有的有理数都可以用数轴上的点表示B. 数轴上的原点表示0C. 在数轴上表示−3的点与表示+1的点的距离是2D. 数轴上表示−513的点在原点负方向513个单位5.2019年“国庆”期间,我市接待海内外游客共690000人次,将690000这个数用科学记数法表示为()A. 6.9×105B. 0.69×106C. 69×104D. 6.9×1066.下列式子中,符合书写规范的是()A. m÷nB. 235x C. yx D. a×20%7.π2与下列哪一个是同类项()A. abB. ab2 C. 22 D. m8.如图所示,边长为a的正方形中阴影部分的面积为()A. a2−π(a2)2 B. a2−πa2 C. a2−πa D. a2−2πa9.下列运算正确的是()A. 3a+2a=5a2B. 3a+3b=3abC. 2a2bc−a2bc=a2bcD. a5−a2=a310.代数式7a3−6a3b+3a2b+3a2+6a3b−3a2b−10a3的值()A. 与字母a,b都有关B. 只与a有关C. 只与b有关D. 与字母a,b都无关11.若当x=3时,代数式x2+mx+2有最小值,则当x2+mx=7时,x的值为()A. x=0或x=6B. x=1或x=7C. x=1或x=−7D. x=−1或x=7二、填空题12.如下图是一个运算程序的示意图,若开始输入x的值为625,则第2020次输出的结果为.(1)若单项式−58a2b m与−117x3y4是次数相同的单项式,则m的值为;(2)如果−axy b是关于x、y的四次单项式,且系数为7,那么a+b=.13.用含字母的式子表示:(1)若三角形的底边长是x,底边上的高是y,则该三角形的面积为________;(2)21的n倍可以表示为________;2(3)一个三位数,个位上的数字为a,十位上的数字为b,百位上的数字为c.则这个三位数为________.14.今年1~5月份,深圳市累计完成地方一般预算收入216.58亿元,数据216.50亿精确到__________,有效数字有________ 个。
I-1I-22020-2021学年上学期七年级期中考试试卷数学I 卷时间:90分钟满分:100分一、选择题(每小题3分共30分)1.2019年暑期爆款国产动漫《哪吒之魔童降世》票房已斩获49.3亿,开启了国漫市场崛起新篇章,49.3亿用科学记数法可表示为()A.849.310⨯B.94.9310⨯C.84.9310⨯D.749310⨯2.桌上摆着一个由若干个相同小正方体组成的几何体,其三视图如图所示,则组成此几何体需要的小正方体的个数是()A.5B.6C.7D.83.下列计算正确的是()A.347a b ab+= B.321a a -= C.22232a b ab a b -=D.222235a a a +=4.在数(3)--,0,2(3)-,|9|-,41-中,正数的有()个.A.2B.3C.4D.55.下列说法中,不正确的个数有()①有理数分为正有理数和负有理数,②绝对值等于本身的数是正数,③平方等于本身的数是1±,④只有符号不同的两个数是相反数,⑤多项式2531x x --是二次三项式,常数项是1.A.2个B.3个C.4个D.5个6.若单项式12m a b -与212na b 的和仍是单项式,则2m n -的值是()A.3B.4C.6D.87.下列各式中,不能由3a ﹣2b +c 经过变形得到的是()A.3a ﹣(2b +c )B.c ﹣(2b ﹣3a )C.(3a ﹣2b )+c D.3a ﹣(2b ﹣c )8.若数轴上,点A 表示﹣1,AB 距离是3,点C 与点B 互为相反数,则点C 表示()A.﹣2B.2C.﹣4或2D.4或﹣29.设232A x x =--,2231B x x =--,若x 取任意有理数.则A 与B 的大小关系为()A.A B<B.A B=C.A B>D.无法比较10.程序框图的算法思路源于我国古代数学名著《九章算术》,如图所示的程序框图,当输入x 的值是17时,根据程序,第一次计算输出的结果是10,第二次计算输出的结果是5,……,这样下去第2020算输出的结果是()A .-2B .-1C .-8D .-4二、填空题(每小题3分共15分)11.243a b π-的系数是.12.若49a +与35a +互为相反数,则a 的值为13.若2(2)|2|0a b -++=,则a b =.14.多项式()22321m x y m x y ++-是关于x,y 的四次三项式,则m 的值为15.将边长为1的正方形纸片按如图所示方法进行对折,第1次对折后得到的图形面积为1S ,第2次对折后得到的图形面积为2S ,依此类推,则3S =;若123n nA S S S S =+++⋯+,则352A A A =-.I-3I-4三、解答题16.(每题4分共8分)()()2020131312+24512864⎡⎤⎛⎫⨯÷⨯ ⎪⎢⎥⎝⎭⎣⎦-()223123(2)|1|6(2)3-÷-⨯-⨯+-17.(8分)先化简下式,再求值:22221132224a ab b a ab b ⎛⎫⎛⎫-+---+- ⎪ ⎪⎝⎭⎝⎭,其中1,12ab ==,18.(6分)若用点A ,B ,C 分别表示有理数a ,b ,c,它们在数轴上的位置如图所示.(1)请在横线上填上>,<或=:a +b 0,b ﹣c 0;(2)化简:2c +|a +b |+|c ﹣b |﹣|c ﹣a |.19.(8)如图,是由12个大小相同的小正方体组合成的简单几何体.(1)请在下面方格纸中分别画出它的左视图和俯视图;(2)若小正方体的棱长为1,求出该几何体的表面积。
期中综合能力检测题(附答案)一.选择题1.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A.B.C.D.2.﹣|﹣3|的倒数是()A.﹣3 B.﹣C.D.33.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个4.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人5.下列各式中,次数为5的单项式是()A.5ab B.a5b C.a5+b5D.6a2b36.下列各式中,正确的是()A.x2y﹣2x2y=﹣x2y B.2a+3b=5abC.7ab﹣3ab=4 D.a3+a2=a57.下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c8.已知a,b两数在数轴上的位置如图所示,则化简代数式|a+b|﹣|a﹣1|+|b+2|的结果是()A.1 B.2b+3 C.2a﹣3 D.﹣19.﹣(﹣)的相反数是()A.3 B.﹣3 C.D.﹣10.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10 B.15 C.18 D.21二.填空题11.计算:﹣5+3=.12.已知x=3是关于x方程mx﹣8=10的解,则m=.13.若多项式(k﹣1)x2+3x|k+2|+2为三次三项式,则k的值为.14.若单项式﹣2x3y n与4x m y5合并后的结果还是单项式,则m﹣n=.15.若a、b互为相反数,m、n互为倒数,则(a+b)2015+2016mn=.16.若x2﹣4x=1,则=.三.解答题17.计算﹣32+1÷4×﹣|﹣1|×(﹣0.5)2.18.先化简,再求值:﹣xy,其中x=3,y=﹣.19.解下列方程:(1)2(x﹣2)﹣3(4x﹣1)=9(1﹣x);(2)﹣=﹣2.20.如下图所示,边长分别为a,b的两个正方形拼在一起,用代数式表示图中阴影部分的面积,并求a=8,b=5时,阴影部分的面积.21.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9 (1)产量最多的一天比产量最少的一天多生产多少辆?(2)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖20元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?22.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.23.数轴上两个质点A.B所对应的数为﹣8、4,A.B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒.(1)点A.B两点同时出发相向而行,在4秒后相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CA=2CB,若干秒钟后,C停留在﹣10处,求此时B点的位置?参考答案一.选择题1.解:∵|1.2|=1.2,|﹣2.3|=2.3,|+0.9|=0.9,|﹣0.8|=0.8,又∵0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项D中的元件.故选:D.2.解:﹣|﹣3|=﹣3,﹣|﹣3|的倒数是﹣,故选:B.3.解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.4.解:∵530060是6位数,∴10的指数应是5,故选:B.5.解:A、5ab是次数为2的单项式,故此选项错误;B、a5b是次数为6的单项式,故此选项错误;C、a5+b5是次数为5的多项式,故此选项错误;D、6a2b3是次数为5的单项式,故此选项正确.故选:D.6.解:A、x2y﹣2x2y=﹣x2y,故A正确;B、不是同类项,不能进一步计算,故B错误;C、7ab﹣3ab=4ab,故C错误;D、a3+a2=a5,不是同类项,故D错误.故选:A.7.解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.8.解:由数轴可知﹣2<b﹣1,1<a<2,且|a|>|b|,∴a+b>0,则|a+b|﹣|a﹣1|+|b+2|=a+b﹣(a﹣1)+(b+2)=a+b﹣a+1+b+2=2b+3.故选:B.9.解:﹣(﹣)=的相反数是:﹣.故选:D.10.解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,…∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.二.填空11.解:﹣5+3=﹣(5﹣3)=﹣2.故答案为:﹣2.12.解:将x=3代入mx﹣8=10,∴3m=18,∴m=6,故答案为:613.解:∵多项式(k﹣1)x2+3x|k+2|+2是关于x的三次三项式,∴|k+2|=3,k﹣1≠0,解得:k=﹣5.故答案为:﹣5.14.解:由题意得:m=3,n=5,则m﹣n=3﹣5=﹣2,故答案为:﹣2.15.解:∵a、b互为相反数,∴a+b=0;∵m、n互为倒数,∴mn=1,∴(a+b)2015+2016mn=02015+20161=0+2016=2016故答案为:2016.16.解:∵x2﹣4x=1,x≠0,∴x﹣4=,∴x﹣=4,∴x2﹣2+=16,∴x2+=18,∴===.故答案为:.三.解答17.解:原式=﹣9+﹣=﹣9.18.解:原式=3x2y﹣2xy2+2xy﹣3x2y+3xy2﹣xy=xy2+xy,当x=3,y=﹣时,原式=﹣1=﹣.19.解:(1)去括号得:2x﹣4﹣12x+3=9﹣9x,移项得:2x﹣12x+9x=9+4﹣3,合并同类项得:﹣x=10,系数化为1得:x=﹣10,(2)去分母得:2(2x﹣1)﹣(5x+2)=3(1﹣2x)﹣12,去括号得:4x﹣2﹣5x﹣2=3﹣6x﹣12,移项得:4x﹣5x+6x=3﹣12+2+2,合并同类项得:5x=﹣5,系数化为1得:x=﹣1.20.解:如图所示,在边长分别为a,b的两个正方形中,阴影部分的面积为S=S△ACD +S△CDF,根据三角形的相似,可得=,又AB=BC=a,BE=EF=b,所以AE=a+b,即=,解得:BD=则CD=BC﹣BD=a﹣=,∴S△ACD=×AB×CD=×a×=,S△CDF=×FG×CD=×b×=,所以阴影部分的面积为S=+=;当a=8,b=5时,阴影部分的面积为S==32.21.解:(1)16﹣(﹣10)=26(辆).答:产量最多的一天比产量最少的一天多生产26辆;(2)5﹣2﹣4+13﹣10+16﹣9=9,(1400+9)×60+9×20=84720(元).答:该厂工人这一周的工资总额是84720元.22.解:由数轴得,c>0,a<b<0,|a|>|c|,则a﹣b<0,a+c<0,b﹣c<0.故原式=b﹣a+a+c+c﹣b=2c.23.解(1)设B点的运动速度为x个单位/秒,A.B两点同时出发相向而行,他们的时间均为4秒,则有:(2+x)×4=12.解得x=1,所以B点的运动速度为1个单位/秒;(2)设经过时间为t.则B在A的前方,B点经过的路程﹣A点经过的路程=6,则2t﹣t=6,解得t=6.A在B的前方,A点经过的路程﹣B点经过的路程=6,则2t﹣t=12+6,解得t=18.(3)设点C的速度为y个单位/秒,运动时间为t,始终有CA=2CB,即:8+(2﹣y)t=2×[4+(y﹣1)t].解得y=.当C停留在﹣10处,所用时间为:秒.B的位置为.七年级期中数学卷(附答案)第I 卷(选择题共32 分)一.选择题(共32 小题)1.﹣5 的倒数是()1 1A.B.﹣C.﹣5 D.55 52.计算1﹣(﹣2)的结果为()A.﹣1 B.1 C.3 D.﹣33.下列计算错误的是()A.7.2﹣(﹣4.8)=2.4 B.(﹣4.7)+3.9=﹣0.8-12C.(﹣6)×(﹣2)=12 D.=-434.计算(﹣1)÷(﹣5)× 的结果是()A.﹣1 B.1 C.D.﹣255.已知∠A=37°17',则∠A 的余角等于()A.37°17' B.52°83' C.52°43' D.142°43'6.下列四组数中,其中每组三个都不是负数的是()①2,|﹣7|,﹣(﹣);②﹣(﹣6),﹣|﹣3|,0;③﹣(﹣5),,﹣(﹣|﹣6|);④﹣[﹣(﹣6)],﹣[+(﹣2)],0.A.①、②B.①、③C.②、④D.③、④7.关于“倒数”,下列说法错误的是()A.互为倒数的两个数符号相同B.互为倒数的两个数的积等于1C.互为倒数的两个数绝对值相等D.0 没有倒数8.如果两个数m、n 互为相反数,那么下列说法不正确的是()A.m+n=0 B.m、n 的绝对值相等C.m、n 的商为1D.数轴上,表示这两个数的点到原点的距离相等9.下列说法正确的个数为()(1)0 是绝对值最小的有理数;(2)﹣1 乘以任何数仍得这个数;(3)0 除以任何数都等于0;(4)数轴上原点两侧的数互为相反数;(5)一个数的平方是正数,则这个数的立方也是正数;(6)一对相反数的平方也互为相反数A.0 个B.1 个C.2 个D.3 个10.23 + 23 + 23 + 23 = 2n ,则n=()A.3 B.4 C.5 D.611.一座山峰,从底端开始每升高100 米气温下降0.6℃.小明从山峰底端出发向上攀登,当他到达300 米高处时,此时的气温相比底端气温下降()A.﹣1.8℃B.1.8℃C.﹣1.2℃D.1.2℃12.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段13.如图,点C,D 在线段A B 上,若A C=DB,则一定成立的是()A.AC=CD B.CD=DB C.AD=2DB D.AD=CB14.下列说法中,①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半,正确的个数为()A.1 个B.2 个C.3 个D.4 个15.给出以下几个判断,其中正确的是()①两个有理数之和大于其中任意一个加数;②减去一个负数,差一定大于被减数;③一个数的绝对值一定是正数;④若m<0<n,则m n<n﹣m.A.①③B.②④C.①②D.②③④16.任意大于1 的正整数m 的三次幂均可“分裂”成m 个连续奇数的和.如:23=3+5,33=7+9+11,43=13+15+17+19.……仿此,若m3 的“分裂数”中有一个是59,则m=()A.6 B.7 C.8 D.9第Ⅱ卷(主观题/非选择题共88 分)二.填空题(每小题3 分,共18 分)17.若∠α的补角为76°29′,则∠α= .18.若 a、b 互为倒数,则(-ab)2017= .19.若a = 3, b = 5 ,且a b < 0 ,则a-b 的值为.20.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.20 题图22 题图21. 1- 2 + 3 - 4 + 5 - - 2014 + 2015 - 2016 + 2017 - 2018 + 2019 =.22. 按如图所示的程序进行计算,如果把第一次输入的数是20,而结果不大于100 时,就把结果作为输入的数再进行第二次运算,直到符合要求为止,则最后输出的结果为.三.解答题23.(10 分)在数轴上画出表示下列各数的点,再用“<”号把各数连接起来.24.计算(每小题5 分,共20 分)(1)27 -54 + 20 +(-46)-(-73)(2)(-16)÷4÷49 9(2)-12-1⨯[(-2)3+(-3)2]6(4)25. (8 分)(1)如图所示,△ABC 的顶点在8×8 的网格中的格点上,画出△ABC 绕点A 逆时针旋转90°得到的△AB1C1;(2)平面上有四个点A、B、C、D,根据下列语句画图:画直线AB、CD 交于 E 点,画线段AD、BC 交于点F,画射线AC.26.(8 分)京港澳高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护过程中,最远处离出发点有千米.(2)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(3)若汽车耗油量为0.5 升/千米,则这次养护共耗油多少升?27.(1)(4 分)数学课上,王老师在黑板上出示了一道问题让大家回答:题目如下在直线l 上顺次取A、B、C 三点,使得AB=5cm,BC=3cm,如果O 是线段AB 的中点,那么线段OC 的长度是.学生小明读完题后,稍微一想就画出了如图所示图形,并进行了解答:因为AB=5cm又因为O 是线段AB 的中点,所以O A=OB=所以OA=OB=2.5.因为O C=+又因为BC=3cm.所请你帮助小明将其解答过程补充完整;(2)(8 分)如图,点A、O、B 在同一直线上,OD 平分∠AOC,OE 平分∠BOC.①图中∠AOD 的补角是,∠BOE 的补角是;②∠COD 与∠EOC 具有的数量关系是;③若∠AOC=62°18′,求∠COD 和∠BOE 的度数.28. (12 分)如图所示,图1中有条线段,图2中有条线段,图3 中有条线段,当直线上有10 个点时共有条线段.知识迁移:如图,在∠AOB (小于平角)内部,画1条射线,可得个角,画2条不同射线,可得个角,画3条不同射线,可得个角:……照此规律,在∠AOB 的内部画10 条不同的射线,可得个角.应用:(1)从A市开往B市的特快列车,途中要停靠3个车站,如果任意2站间的票价都不同,则不同的票价有种,不同的车票有种.(2)学校为迎接国庆节,举行拔河比赛,规定进行单循环赛(每两班之间赛一场),九年级24 个班拔河比赛共进行场.(3)一次聚会中,有n人参加,如果每两个人都握手一次,则共握手次.参考答案一、选择题1 2 3 4 5 6 7 8B C A C C B C C9 10 11 12 13 14 15 16B C B C D B B C二、填空题17. 103°31′18.-1 19.±8 20.两点之间,线段最短21. 1010 22. 320三、解答题武汉市梅苑学校2019~2020学年度上学期期中质量检测七年级数学试卷(附图片答案)考试时间:2019年11月13日13:30~15:30 全卷满分120分★祝考试顺利★考生注意:1、本试卷共4页,满分120分,考试用时120分钟。
七年级上册期中考试综合训练(附答案)一.选择题1.下列语句:①一个数的绝对值一定是正数;②﹣a一定是一个负数;③没有绝对值为﹣3的数;④若﹣a=a,则a=0;⑤倒数等于本身的数是1.正确的有()个.A.1B.2C.3D.42.如果a与1互为相反数,那么a=()A.2B.﹣2C.1D.﹣13.有理数a,b,c在数轴上对应的点的位置如图所示,则下列式子正确的是()A.a>b B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.b+c>0 4.x﹣y的相反数是()A.x+y B.﹣x﹣y C.y﹣x D.x﹣y5.某种鞋子进价为每双a元,销售利润率为20%,则这种鞋子的销售价格为()A.20%a B.80%a C.D.120%a 6.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 7.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.48.《算法统宗》是我国古代数学著作,其中记载了一道数学问题大意如下:若将绳子三折后测井深则多4尺;若将绳子四折去测井深则多1尺.问绳长和井深各多少尺?设井深为x尺,则可列方程为()A.3(x+4)=4(x+1)B.3x+4=4x+1C.3(x﹣4)=4(x﹣1)D.﹣4=﹣19.已知关于x的方程a﹣x=+3a的解是x=4,则代数式3a+1的值为()A.﹣5B.5C.8D.﹣810.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二.填空题11.若数轴上点A表示的数为﹣2,将点A沿数轴正方向平移4个单位,则平移后所得到的点表示的数是.12.已知代数式a﹣2b+7=13,那么代数式2a﹣4b的值为.13.“绿水青山就是金山银山”,为了进一步优化环境,某区计划对长2000米的河道进行整治,原计划每天修x米,为减少施工对居民生活的影响,须缩短施工时间,实际施工时,每天的工作效率比原计划提高25%,那么实际整治这段河道的工期比原计划缩短了天.(结果化为最简)14.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.15.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.三.解答题16.画出数轴,用数轴上的点表示下列各数,并用“<”将它们连接起来:3,﹣2,1.5,0,﹣0.5.17.出租车司机小王某天上午营运是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣5,+6.(1)将最后一名乘客送到目的地时小王距上午出发时的出发点多远?(2)若汽车耗油量为0.12升/千米,这天上午小王的汽车共耗油多少升?18.先化简,再求值:(2a2b+4ab2)﹣(3ab2+a2b),其中a=2,b=﹣1.19.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样的时间段里,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今善行者与不善行者相距960步,两者相向而行,问,相遇时两者各行几步?(2)今不善行者先行100步,善行者追之,不善行者再行300步,请问谁在前面,两人相隔多少步?20.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.(3)在(2)的条件下,已知点A所表示的数为﹣2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?参考答案一.选择题1.解:①一个数的绝对值可能是正数,也可能是0,故此选项错误;②a若小于0,﹣a则是正数,故此选项错误;③任何数的绝对值都是非负数,故没有绝对值为﹣3的数,故此选项正确;④若﹣a=a,则a是0,故此选项正确;⑤倒数等于本身的数是±1,故此选项错误;综上所述,正确的有③④共2个,故选:B.2.解:因为a与1互为相反数,﹣1与1互为相反数,所以a=﹣1,故选:D.3.解:由题意,可知a<b<0<c,|a|=|c|>|b|.A、∵a<b<0<c,∴a>b错误,本选项不符合题意;B、∵a<b,∴a﹣b<0,∴|a﹣b|=﹣﹣a+b,∴|a﹣b|=a﹣b错误,本选项不符合题意;C、∵a<b<0<c,|a|=|c|>|b|,∴﹣a<﹣b<c错误,本选项不符合题意;D、∵b<0<c,|c|>|b|,∴c+b<0,正确,本选项符合题意.故选:D.4.解:将x﹣y括起来,前面加一个“﹣”号,即可得到x﹣y的相反数﹣(x﹣y)=y﹣x.故选:C.5.解:根据题意得:(1+20%)a=120%a,则这种鞋子的销售价格为120%a.故选:D.6.解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.7.解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.8.解:设井深为x尺,由题意得:3x+4=4x+1,故选:B.9.解:把x=4代入a﹣4=2+3a,移项合并得:﹣2a=6,解得:a=﹣3,则原式=﹣9+1=﹣8,故选:D.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题11.解:﹣2+4=2,故答案为:2.12.解:由a﹣2b+7=13可得a﹣2b=6,∴2a﹣4b=2(a﹣2b)=2×6=12.故答案为:12.13.解:根据题意,得﹣=(天).故答案是:.14.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.15.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.三.解答题16.解:如图所示:∴﹣2<﹣0.5<0<1.5<5.17.解:(1)15﹣2+5﹣1+10+3﹣2+12+4﹣5+6=45(千米)答:将最后一名乘客送到目的地时,小王距上午出车时的出发点45千米;(2)|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|+3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65(千米),65×0.12=7.8(升).答:这天上午小王的汽车共耗油7.8升.18.先化简,再求值:解:(2a2b+4ab2)﹣(3ab2+a2b)=a2b+2ab2﹣3ab2﹣a2b=﹣ab2当a=2,b=﹣1时,原式=﹣2×1=﹣2.19.解:(1)设两者相遇时行走的时间为t,根据题意得,100t+60t=960,解得,t=6,100t=600,60t=360,答:相遇时,善行者走了600步,不善行者走了360步;(2)不善行者一共走了100+300=400(步),善行者行走了(步)>400步,∴善行者在前面,两人相距:500﹣400=100(步),答:善行者在前面,两人相隔100步.20.解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图1,∵D为AC的中点,∴CD=AC=1cm.即线段CD的长为1cm;(3)在(2)的条件下,∵点A所表示的数为﹣2,AD=CD=1,AB=6,∴D点表示的数为﹣1,B点表示的数为4.设经过x秒时,有PD=2QD,则此时P与Q在数轴上表示的数分别是﹣2﹣2x,4﹣4x.分两种情况:①当点D在PQ之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[4﹣4x﹣(﹣1)],解得x=;②当点Q在PD之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[﹣1﹣(4﹣4x)],解得x=.答:当时间为或秒时,有PD=2QD.武昌八校2018-2019七(上)期中联合测试数学试卷(附答案)一、选择题(每小题3分,共30分)1.在-2,-1,0,2四个数中,最小的数是( ) A. -1 B. -2 C. 0 D. 2 2.下列运算中结果正确的是( )A. -3-(-3)=0B. -3+3=-6C. 3-(-3)=0D.-3-(+3)=0 3.如图,有理数a 、b 在数轴上的位置如下图,则下列说法错误的是( )A .b <aB .a +b <0C .ab <0D .b -a >04.下列各组中的两项是同类项的是( )A. 0和-5B. 22和x 2C. x 3和3xD. 2x 和2x 2 5.下列是关于x 的一元一次方程的是( )A. x(x -1)=xB. x +1x=2 C. x =1 D. x +25.下列是关于x 的一元一次方程的是( )A. x(x -1)= xB. x +1x=2 C. x =1 D. x +2 6.下列运算结果正确的是( )A. 5a -3a =2 B. 22223x y xy x y -+= C. 243x x x -= D. 2226612a b a b a b --=- 7.下列由等式的性质进行的变形,错误的是( )A .如果a =b ,那么a -5=b -5B .如果a =b ,那么22b a -=- C .如果a =3,那么a 2=3aD .如果bca c =,那么a =b 8.若2x +5y +3=0,则10y -(-1-4x )的值是( )A . -2B .6C .-5D .79. 如果对于某一特定范围内x 的任意允许值,s =|2-2x|+|2-3x|+|2-5x|的值恒为一常数,则此常数值为( ) A .4 B .2 C .6 D .0 10.下列说法:① 若a 为有理数,且a≠0,则a <a 2; ② 若a a=1,则a =1; ③ 若a 3+b 3=0,则a 、b 互为相反数; ④ 若|a|=-a ,则a <0;⑤ 若b <0<a ,且|a|<|b|,则|a +b|=-|a|+|b|,其中正确说法的个数是( ) A .1个 B .2个 C .3个 D .4个二、填空题(每小题3分,共18分)11.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是 吨12.室内温度是15 0C ,室外温度是-3 0C ,则室外温度比室内温度低________0C 13.已知x =1是方程(2k +1)x -1=0的解,则k =_________. 14.已知abc >0,ab >0,则cc b b a a ||||||++=__________ 15.有一串数:-2018,-2014,-2010,-2006,-2002……按一定的规律排列,那么这串数中前__________个数的和最小16.如果有理数x ,y 满足:x+3y+|3x -y|=19,2x+y =6.那么xy =__________三、解答题 (共8题,共72分) 17.计算:(每小题4分,共12分) (1) -20+(-14)-(-18)-13(2) -22+8÷(-2)3-2×(2181-)(3) 8)23()121()12161211(2⨯-+-÷-+18.解方程:(每小题4分,共8分)(1)9-3y =5y+5 (2)x x 2113834-=-19.(本题6分)先化简,再求值:)21(4)3212(22---+-x x x x ,其中21-=x20.(本题8分)已知02)3(2=-+-b a ,c 和d 互为倒数,m 和n 的绝对值相等, 且mn <0,y 为最大的负整数。
2021-2022学年四川省达州市渠县中学七年级(上)期中数学试卷一、选择题(每小题3分,共30分).1.一个棱柱有10个顶点,所有侧棱长的和是40cm,则每条侧棱长是()A.7cm B.8cm C.9cm D.10cm2.把﹣2﹣(+3)+(﹣4)﹣(﹣5)写成省略加号的和的形式,正确的是()A.﹣2﹣3+4﹣5B.﹣2+3﹣4﹣5C.﹣2+3﹣4+5D.﹣2﹣3﹣4+5 3.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.正方体,圆锥,四棱锥,圆柱C.正方体,圆锥,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱4.在下列各数:﹣(+2),0,﹣32,,﹣,﹣(﹣1)2021,﹣|﹣3|中,非负数的个数是()A.3个B.4个C.5个D.6个5.在一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中属于柱体有()A.3个B.4个C.5个D.6个6.下列说法正确的是()A.绝对值等于它本身的有理数只有0B.相反数等于它本身的有理数只有0C.倒数等于它本身的有理数有1D.平方等于它本身的有理数为0和±17.用一个平面去截一个几何体,得到的截面形状是长方形,那么这个几何体可能是()A.正方体、长方体、圆锥B.圆柱、球、长方体C.正方体、长方体、圆柱D.正方体、圆柱、球8.若|a|=3,b2=4,且ab<0,那么a﹣b的值是()A.5或﹣1B.﹣5或1C.5或﹣5D.1或﹣19.把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的表面包括下底面共有多少朵花朵.()A.60B.61C.62个D.63个10.如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n行有n 个数,且两端的数均为,每个数是它下一行左右相邻两数的和,则第9行第3个数(从左往右数)为()A.B.C.D.二、填空题(每小题3分,共18分)11.钓鱼岛是中国领土一部分.钓鱼诸岛总面积约5平方千米,岛屿周围的海域面积约170000平方千米.170000用科学记数法表示为.12.如图是一个生日蛋糕盒,这个盒子棱数一共有.13.a、b为有理数,规定一种新运算“*”,如a*b=ab+a2﹣1,则(﹣3)*2=.14.长方形的长为5cm,宽为3cm,请你计算该长方形绕着它的边旋转一周所得几何体的体积是.(π取3.14,结果保留整数)15.用小立方块搭成的几何体;从正面看到的图形和从上面看到的图形如图,问搭成这样的几何体最多需要个小立方块,最少需要个小立方块.16.我们平常的数都是十进制数,如2639=2×103+6×102+3×10+9,表示十进制的数要用10个数码(也叫数字):0,1,2,3,4,5,6,7,8,9.在电子数字计算机中用二进制只要两个数码0和1.如二进制数101=1×22+0×21+1=5,故二进制的101等于十进制的数5,10111=1×24+0×23+1×22+1×2+1=23,故二进制的10111等于十进制的数23,那么二进制的101011等于十进制的数.三、解答题(共72分)17.计算:(1)11+(﹣2)+2﹣5;(2)29×17;(3)(﹣10)+8÷(﹣2)3+(﹣1.5)2×4;(4)﹣24﹣()÷.18.在数轴上表示下列各数:0,﹣6.5,3,﹣2,+5,并用“<”号连接起来.19.若要使图中平面图形折叠成正方体后,相对面上的数字相等,求x+y+z的值.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为3,求a+b+x2﹣cdx的值.21.如图所示的长方体的容器,BC=2AB,BB'=3AB且这个容器的容积为384立方分米.(1)求这个长方体容器底面边长AB的长为多少分米?(2)若这个长方体的两个底面和侧面都是用铁皮制作的,则制作这个长方体容器需要多少平方分米铁皮?(不计损耗)22.一辆工程车沿着东西方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向东正方向(如:+7表示汽车向东行驶7千米).当天行驶记录如下:(单位:千米)+19,﹣9,+6,﹣13,﹣7,11,﹣8,+8.问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?23.由7个相同的小立方块搭成的几何体如图所示.(1)请画出从它的正面、上面、左面看到的图形.(2)计算它表面积(棱长为1).24.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1==()2(2)用含有n的式子表示上面的规律:.(3)用找到的规律解决下面的问题:计算:=.25.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示5和3的两点之间的距离是,表示﹣4和2两点之间的距离是,一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a 和﹣1的两点之间的距离是4,那么a=.(2)若数轴上表示数a的点位于﹣5与2之间,求|a+5|+|a﹣2|的值.(3)当a取何值时,|a+4|+|a﹣2|+|a﹣5|的值最小,最小值是多少?请说明理由.参考答案一、选择题(每小题3分,共30分)1.一个棱柱有10个顶点,所有侧棱长的和是40cm,则每条侧棱长是()A.7cm B.8cm C.9cm D.10cm【分析】一个棱柱有10个顶点,该棱柱是五棱柱共有五条侧棱,且都相等,所以它的每条侧棱长=所有侧棱长度之和÷5.解:∵一个棱柱有10个顶点,∴该棱柱是五棱柱,∴它的每条侧棱长是40÷5=8(cm).故选:B.2.把﹣2﹣(+3)+(﹣4)﹣(﹣5)写成省略加号的和的形式,正确的是()A.﹣2﹣3+4﹣5B.﹣2+3﹣4﹣5C.﹣2+3﹣4+5D.﹣2﹣3﹣4+5【分析】原式利用减法法则变形即可得到结果.解:﹣2﹣(+3)+(﹣4)﹣(﹣5)=﹣2﹣3﹣4+5,故选:D.3.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.正方体,圆锥,四棱锥,圆柱C.正方体,圆锥,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱【分析】依据正方体,圆锥,圆柱,三棱柱的展开图的特征,即可得到结论.解:由图可得,从左到右,其对应的几何体名称分别为正方体,圆锥,圆柱,三棱柱,故选:D.4.在下列各数:﹣(+2),0,﹣32,,﹣,﹣(﹣1)2021,﹣|﹣3|中,非负数的个数是()A.3个B.4个C.5个D.6个【分析】根据相反数、有理数的乘方、绝对值解决此题.解:∵﹣(+2)=﹣2<0,﹣32=﹣9<0,>0,<0,﹣(﹣1)2021=1>0,﹣|﹣3|=﹣3<0,∴非负数有:0,,﹣(﹣1)2021,共3个.故选:A.5.在一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中属于柱体有()A.3个B.4个C.5个D.6个【分析】根据柱体的特征判断即可.解:一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中,属于柱体有正方体、长方体、圆柱、六棱柱,4个,故选:B.6.下列说法正确的是()A.绝对值等于它本身的有理数只有0B.相反数等于它本身的有理数只有0C.倒数等于它本身的有理数有1D.平方等于它本身的有理数为0和±1【分析】根据绝对值、相反数、倒数、有理数的乘方解决此题.解:A.根据绝对值的定义,正数和0的绝对值等于本身,那么A不正确.B.根据相反数的定义,相反数等于本身的有理数只有0,那么B正确.C.根据倒数定义,倒数等于本身的有理数有1或﹣1,那么C不正确.D.根据有理数的乘方,平方等于本身的有理数为0和1,那么D不正确.故选:B.7.用一个平面去截一个几何体,得到的截面形状是长方形,那么这个几何体可能是()A.正方体、长方体、圆锥B.圆柱、球、长方体C.正方体、长方体、圆柱D.正方体、圆柱、球【分析】根据正方体、长方体、圆锥、圆柱的形状判断即可,可用排除法.解:本题中,圆锥的截面可能是椭圆,圆和三角形而不可能是长方形,球的截面是圆也不可能是长方形,所以A、B、D都是错误的,故选C.8.若|a|=3,b2=4,且ab<0,那么a﹣b的值是()A.5或﹣1B.﹣5或1C.5或﹣5D.1或﹣1【分析】根据绝对值、有理数的乘方、有理数的乘法法则、有理数的减法法则解决此题.解:∵|a|=3,b2=4,∴a=±3,b=±2.又∵ab<0,∴a=3,b=﹣2或a=﹣3时,b=2.当a=3时,b=﹣2,此时a﹣b=3﹣(﹣2)=5;当a=﹣3时,b=2,此时a﹣b=﹣3﹣2=﹣5.综上:a﹣b=±5.故选:C.9.把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的表面包括下底面共有多少朵花朵.()A.60B.61C.62个D.63个【分析】先根据图形得出最右边的正方体是:上蓝,下白,左绿,右红,前黄,后紫,即可推出其它正方形,代入朵数即可得出答案.解:∵大小颜色花朵分布完全一样,∴最左边的正方体告诉我们:黄色紧邻的面是白色;最右边的正方体告诉我们:黄色紧邻着红色和蓝色;∴可以推断出最右边的正方体的白色面是在它的左侧面或下底面;又∵右数第二个正方体告诉我们红色紧邻着白色;∴对于最右边的正方体,白色只可能在下底面(如果在左侧面就与红色是对立面了,不符题意);∵根据左数第二个正方体可知:红色紧邻着紫色;∴对于最右边的正方体,后侧面是紫色,左侧面是绿色.即最右边的正方体为例,它是:上蓝,下白,左绿,右红,前黄,后紫.也就是说:黄的对立面是紫;紫的对立面是黄;红的对立面是绿,蓝的对立面是白.依次对应从左至右的四个正方体,下底面分别是:紫,黄,绿,白.∴长方体的上面有花:2+5+1+3=11朵,前面有花:4+1+4+2=11朵,下面有花:5+2+6+4=17朵,后面有花:3+6+3+5=17朵,左面有花:1朵,右面有花:6朵,长方体的表面包括下底面共有:11+11+17+17+6+1=63朵.故选:D.10.如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n行有n 个数,且两端的数均为,每个数是它下一行左右相邻两数的和,则第9行第3个数(从左往右数)为()A.B.C.D.【分析】根据图形的变化规律可得,第n行有n个数,且两端都是,每个数是它下一行左右相邻两数的和,根据此规律写出第7,8,9行从左往右第一个数,第8,9行从左往右第二个数,第9行从左往右第三个数即可.解:由图形的变化可知,第n行有n个数,且两端都是,每个数是它下一行左右相邻两数的和,∴第7,8,9行从左往右第一个数分别是,,;第8,9行从左往右第二个数分别是﹣=,﹣=;第9行第3个数(从左往右数)为﹣=,故选:C.二、填空题(每小题3分,共18分)11.钓鱼岛是中国领土一部分.钓鱼诸岛总面积约5平方千米,岛屿周围的海域面积约170000平方千米.170000用科学记数法表示为 1.7×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:170 000=1.7×105,故答案为:1.7×105.12.如图是一个生日蛋糕盒,这个盒子棱数一共有18.【分析】根据棱的定义依次数出上下面和侧面的棱数相加即可.解:观察图形可知上下面的棱数都是6,侧面的棱数是6.则这个盒子的棱数为:6+6+6=18.故答案为:18.13.a、b为有理数,规定一种新运算“*”,如a*b=ab+a2﹣1,则(﹣3)*2=﹣14.【分析】直接利用新定义将原式变形,进而得出答案.解:(﹣3)*2=﹣(3×2+32﹣1)=﹣(6+9﹣1)=﹣14.故答案为:﹣14.14.长方形的长为5cm,宽为3cm,请你计算该长方形绕着它的边旋转一周所得几何体的体积是141cm3或236cm3.(π取3.14,结果保留整数)【分析】根据“面动成体”得出所得圆柱体的底面半径和高,由圆柱体体积的计算方法进行计算即可.解:将这个矩形绕着长为5cm的边所在直线旋转一周,可以得到底面半径为3cm,高为5cm的圆柱体,因此它的体积为π×32×5=45π≈141(cm3),将这个矩形绕着长为3cm的边所在直线旋转一周,可以得到底面半径为5cm,高为3cm的圆柱体,因此它的体积为π×52×3=75π≈236(cm3),故答案为:141cm3或236cm3.15.用小立方块搭成的几何体;从正面看到的图形和从上面看到的图形如图,问搭成这样的几何体最多需要8个小立方块,最少需要7个小立方块.【分析】利用俯视图,写出最多,最少的情形的个数,可得结论.解:如图,几何体最多需要3+2+2+1=8个小立方块,最少需要3+2+1+1=7个小立方块.故答案为:8,7.16.我们平常的数都是十进制数,如2639=2×103+6×102+3×10+9,表示十进制的数要用10个数码(也叫数字):0,1,2,3,4,5,6,7,8,9.在电子数字计算机中用二进制只要两个数码0和1.如二进制数101=1×22+0×21+1=5,故二进制的101等于十进制的数5,10111=1×24+0×23+1×22+1×2+1=23,故二进制的10111等于十进制的数23,那么二进制的101011等于十进制的数43.【分析】根据二进制,可得答案.解:101011=1×25+0×24+1×23+0×22+1×2+1=43,故答案为:43.三、解答题(共72分)17.计算:(1)11+(﹣2)+2﹣5;(2)29×17;(3)(﹣10)+8÷(﹣2)3+(﹣1.5)2×4;(4)﹣24﹣()÷.【分析】(1)先去括号,再计算即可;(2)将29转化为(30﹣),再计算即可;(3)先算乘方,再算乘除,最后算加减;(4)按照运算顺序计算即可.解:(1)原式=11﹣2+2﹣5=(11+2)﹣(2+5)=13﹣7=6;(2)原式=(30﹣)×17=30×17﹣×17=510﹣=509;(3)原式=(﹣10)+8÷(﹣8)+2.25×4=﹣10+(﹣1)+9=﹣2;(4)原式=﹣24﹣(﹣﹣)×=﹣24﹣(﹣)×=﹣24+6=﹣18.18.在数轴上表示下列各数:0,﹣6.5,3,﹣2,+5,并用“<”号连接起来.【分析】先在数轴上表示各个数,再比较即可.解:数轴表示如下:故:﹣6.5<﹣2<0<3<+5.19.若要使图中平面图形折叠成正方体后,相对面上的数字相等,求x+y+z的值.【分析】利用正方体及其表面展开图的特点解题.解:“2”与“y”相对,“3”与“z”相对,“1”与面“x”相对.则x+y+z=1+2+3=6.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为3,求a+b+x2﹣cdx的值.【分析】由a,b互为相反数,c,d互为倒数,x的绝对值为3,可得a+b=0,cd=1,x =±3,再代入计算即可.解:∵a,b互为相反数,c,d互为倒数,x的绝对值为3,∴a+b=0,cd=1,x=±3,当x=3时,a+b+x2﹣cdx=0+9﹣3=6,当x=﹣3时,a+b+x2﹣cdx=0+9+3=12.故a+b+x2﹣cdx的值为6或12.21.如图所示的长方体的容器,BC=2AB,BB'=3AB且这个容器的容积为384立方分米.(1)求这个长方体容器底面边长AB的长为多少分米?(2)若这个长方体的两个底面和侧面都是用铁皮制作的,则制作这个长方体容器需要多少平方分米铁皮?(不计损耗)【分析】(1)根据长方体的体积公式列出等量关系,从而解决此题.(2)根据长方体的表面积公式列出代数式,从而解决此题.解:(1)这个长方体的容积为AB•BC•BB′=AB•2AB•3AB=6AB3=384.∴AB=4(分米).(2)由(1)得:AB=4分米.∴BC=2AB=8(分米),BB′=3AB=12(分米).∴制作这个长方体容器需要铁皮是2AB•BC+2AB•BB′+2BC•BB′=2×4×8+2×4×12+2×8×12=352(平方分米).∴制作这个长方体容器需要352平方分米铁皮.22.一辆工程车沿着东西方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向东正方向(如:+7表示汽车向东行驶7千米).当天行驶记录如下:(单位:千米)+19,﹣9,+6,﹣13,﹣7,11,﹣8,+8.问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?【分析】(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.解:(1)+19﹣9+6﹣13﹣7+11﹣8+8=7.所以,B地在A地,东方7千米;(2)19+9+6+13+7+11+8+8=81(千米),81×0.35=28.35(升).即这一天共耗油28.35升.23.由7个相同的小立方块搭成的几何体如图所示.(1)请画出从它的正面、上面、左面看到的图形.(2)计算它表面积(棱长为1).【分析】(1)根据简单组合体的三视图的画法画出相应的图形即可;(2)根据三视图的面积和被遮挡的面积进行计算即可.解:(1)这个组合体从正面、上面、左面看到的图形如下:(2)(5+3+5)×2+2=28.答:它的表面积为28.24.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1=64=(8)2(2)用含有n的式子表示上面的规律:n(n+2)+1=(n+1)2.(3)用找到的规律解决下面的问题:计算:=.【分析】(1)(2)观察发现一个正整数乘以比这个正整数大2的数再加1就等于这个正整数加1的平方,依此得到7×9+1=64=82;含有n的式子表示的规律.(3)由(1+)(1+)=×××知,+…+[1+]=,利用此规律计算.解:(1)7×9+1=64=82;(2)上述算式有规律,可以用n表示为:n(n+2)+1=n2+2n+1=(n+1)2.(3)原式==.故答案为:64,8;n(n+2)+1=(n+1)2;.25.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示5和3的两点之间的距离是2,表示﹣4和2两点之间的距离是6,一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是4,那么a=3或﹣5.(2)若数轴上表示数a的点位于﹣5与2之间,求|a+5|+|a﹣2|的值.(3)当a取何值时,|a+4|+|a﹣2|+|a﹣5|的值最小,最小值是多少?请说明理由.【分析】(1)根据数轴上两点之间的距离等于两点所表示数的绝对值进行解答即可;(2)先根据表示数a的点位于﹣5与2之间可知﹣5<a<2,再根据绝对值的性质把原式去掉绝对值符号求出a的值即可;(3)|a+4|+|a﹣2|+|a﹣5|表示数轴上数a和数﹣4,2,5之间的距离之和,根据绝对值的意义求最小值.解:(1)由数轴上两点之间的距离公式可知:数轴上表示5和3的两点之间的距离是|5﹣3|=2;表示﹣4和2两点之间的距离是|﹣4﹣2|=6;若表示数a和﹣1的两点之间的距离是4,则|a+1|=4,解得a=3或a=﹣5,故答案为:2,6,3或﹣5;(2)∵﹣5<a<2,∴|a+5|+|a﹣2|=a+5+2﹣a=7;(3)∵|a+4|+|a﹣2|+|a﹣5|表示数轴上数a和数﹣4,2,5之间的距离之和,∴a=2时距离的和最小,∴|a+4|+|a﹣2|+|a﹣5|=|a+4|+|a﹣5|=|5﹣(﹣4)|=9.∴a=2时,|a+4|+|a﹣2|+|a﹣5|的值最小,最小值是9.。
2020-2021学年七年级(上)期中数学试卷一.选择题(共10小题)1.2的相反数是()A.﹣2 B.﹣C.D.22.下列4个数中最小的是()A.﹣|﹣2| B.﹣(﹣2)C.(﹣2)2D.﹣223.=()A.B.C.D.4.下列代数式书写规范的是()A.2m÷n B.5a C.﹣1b D.6x2y5.下列式子中,与2x2y是同类项的是()A.﹣3xy2B.2xy C.yx2D.3x26.单项式﹣xy3z4的系数及次数分别是()A.系数是0,次数是7 B.系数是1,次数是8C.系数是﹣1,次数是7 D.系数是﹣1,次数是87.若有理数a,b,满足|a|=﹣a,|b|=b,a+b<0,则a,b的取值符合题意的是()A.a=2,b=﹣1 B.a=﹣1,b=2 C.a=﹣2,b=1 D.a=﹣1,b=﹣2 8.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+x+x=346859.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A=|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m、n,再取这两个数的相反数,那么,所有A的和为()A.4m B.4m+4n C.4n D.4m﹣4n10.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d ×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A.B.C.D.二.填空题(共5小题)11.计算下列各题:(1)2+(﹣1)=.(2)﹣10+3=.(3)(﹣2)×(﹣3)=.(4)12÷(﹣3)=.(5)(﹣3)2×=.(6)1÷5×()=.(7)﹣3a2+2a2=.(8)﹣2(x﹣1)=.12.多项式中﹣﹣5二次项是,常数项是.13.月球的直径约为3476000米,将3476000用科学记数法表示应为,将3476000取近似数并精确到十万位,得到的值应是.14.阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书本.15.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右移动3个单位长度,得到点C,若CO=BO,则a的值为.三.解答题(共8小题)16.计算题(1)﹣2+(﹣3)﹣4×(﹣25﹣24)(2)0﹣32÷[(﹣2)3+5)]17.已知下列有理数:﹣3、﹣4、0、5、﹣24.(1)这些有理数中,整数有个,非负数有个.(2)从中间选两个数组成一个算式,和为负数的算式是:;商最大的算式是.18.先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.19.腾飞小组共有8名同学,一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10.(1)本次数学测验成绩的最高分是分,最低分是分;(2)求腾飞小组本次数学测验成绩的平均分.20.如图,两个大小正方形的边长分别是4cm和xcm(0<x<4).并(1)用含x的式子表示图中阴影部分(三角形)的面积S,并化简;(2)计算当x=3时,阴影部分的面积.21.(1)我们知道当x=时,|x|有最小值是0,所以3﹣|x+1|的最大值是;(2)我们知道|x|=2,则x=±2,请你运用“类比”的数学思想求出式子|x+3|=2中x的值.22.有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:质量(克) 1 2 3 4 …n伸长量(厘米)0.5 1 1.5 2 …总长度(厘米)10.5 11 11.5 12 …(1)要想使弹簧伸长5厘米,应挂重物多少克?(2)当所挂重物为x克时,用代数式表示此时弹簧的总长度.(3)当x=30克时,求此时弹簧的总长度.23.观察以下一系列等式:①22﹣21=4﹣2=21;②23﹣22=8﹣4=22;③24﹣23=16﹣8=23;④;…(1)请按这个顺序仿照前面的等式写出第④个等式:;(2)根据你上面所发现的规律,用含字母n的式子表示第n个等式:,并说明这个规律的正确性;(3)请利用上述规律计算:21+22+23+ (2100)参考答案与试题解析一.选择题(共10小题)1.2的相反数是()A.﹣2 B.﹣C.D.2【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:2的相反数是﹣2.故选:A.2.下列4个数中最小的是()A.﹣|﹣2| B.﹣(﹣2)C.(﹣2)2D.﹣22【分析】先根据相反数,绝对值,有理数的乘方进行计算,再根据有理数的大小比较法则比较大小,最后得出选项即可.【解答】解:﹣|﹣2|=﹣2,﹣(﹣2)=2,(﹣2)2=4,﹣22=﹣4,∵﹣4<﹣2<2<4,∴下列4个数中最小的是﹣22,故选:D.3.=()A.B.C.D.【分析】根据乘方和乘法的定义求解可得.【解答】解:=,故选:B.4.下列代数式书写规范的是()A.2m÷n B.5a C.﹣1b D.6x2y【分析】本题根据代数式的书写规则,数字应在字母前面,分数不能为带分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【解答】解:A、正确的书写形式为,故本选项不符合题意;B、正确书写形式为a,故本选项不符合题意,C、正确的书写形式为﹣b,故本选项不符合题意;D、数字应写在前面,书写正确,故本选项符合题意.故选:D.5.下列式子中,与2x2y是同类项的是()A.﹣3xy2B.2xy C.yx2D.3x2【分析】所含字母相同且相同字母的指数也相同的项是同类项.【解答】解:与2x2y是同类项的是yx2,故选:C.6.单项式﹣xy3z4的系数及次数分别是()A.系数是0,次数是7 B.系数是1,次数是8C.系数是﹣1,次数是7 D.系数是﹣1,次数是8【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣xy3z4的系数是﹣1,次数1+3+4=8,故选:D.7.若有理数a,b,满足|a|=﹣a,|b|=b,a+b<0,则a,b的取值符合题意的是()A.a=2,b=﹣1 B.a=﹣1,b=2 C.a=﹣2,b=1 D.a=﹣1,b=﹣2 【分析】由|a|=﹣a,|b|=b知a≤0,b≥0,结合a+b<0得|a|>|b|,从而得出答案.【解答】解:∵|a|=﹣a,|b|=b,∴a≤0,b≥0,又a+b<0,∴|a|>|b|,故选:C.8.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+x+x=34685【分析】设他第一天读x个字,根据题意列出方程解答即可.【解答】解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.9.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A=|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m、n,再取这两个数的相反数,那么,所有A的和为()A.4m B.4m+4n C.4n D.4m﹣4n【分析】(1)数轴上一个数所对应的点与原点的距离就叫该数的绝对值.(2)正数的绝对值大于零,负数的绝对值是它的相反数.【解答】解:依题意,m,n(m>n)的相反数为﹣m,﹣n,则有如下情况:m,n为一组,﹣m,﹣n为一组,有A=|m+n|+|(﹣m)+(﹣n)|=2m+2nm,﹣m为一组,n,﹣n为一组,有A=|m+(﹣m)|+|n+(﹣n)|=0m,﹣n为一组,n,﹣m为一组,有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m所以,所有A的和为2m+2n+0+2n﹣2m=4n故选:C.10.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d ×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A.B.C.D.【分析】根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.【解答】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.二.填空题(共6小题)11.计算下列各题:(1)2+(﹣1)= 1 .(2)﹣10+3=﹣7 .(3)(﹣2)×(﹣3)= 6 .(4)12÷(﹣3)=﹣4 .(5)(﹣3)2×= 5 .(6)1÷5×()=﹣.(7)﹣3a2+2a2=﹣a2.(8)﹣2(x﹣1)=﹣2x+2 .【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数的加减运算法则计算得出答案;(3)直接利用有理数的乘除运算法则计算得出答案;(4)直接利用有理数的乘除运算法则计算得出答案;(5)直接利用有理数的乘除运算法则计算得出答案;(6)直接利用有理数的乘除运算法则计算得出答案;(7)直接合并同类项得出答案;(8)直接去括号得出答案.【解答】解:(1)2+(﹣1)=1.(2)﹣10+3=﹣7.(3)(﹣2)×(﹣3)=6.(4)12÷(﹣3)=﹣4.(5)(﹣3)2×=5.(6)1÷5×()=﹣.(7)﹣3a2+2a2=﹣a2.(8)﹣2(x﹣1)=﹣2x+2.故答案为:(1)1;(2)﹣7;(3)6;(4)﹣4;(5)5;(6)﹣;(7)﹣a2;(8)﹣2x+2.12.多项式中﹣﹣5二次项是2xy,常数项是﹣5 .【分析】根据多项式的次数和项的定义即可解答.【解答】解:多项式中﹣﹣5二次项是 2xy,常数项是﹣5.故答案为:2xy,﹣5.13.月球的直径约为3476000米,将3476000用科学记数法表示应为 3.476×106,将3476000取近似数并精确到十万位,得到的值应是 3.5×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据3476000用科学记数法表示应为3.476×106;将3476000取近似数并精确到十万位,得到的值应是3.5×106.故答案为:3.476×106,3.5×106.14.阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书19 本.【分析】(﹣3,+1)表示借出3本归还1本,求出20与借出归还的和就是该书架上现有图书的本数,【解答】解:20﹣3+1﹣1+2=19(本)故答案为:1915.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右移动3个单位长度,得到点C,若CO=BO,则a的值为﹣5或﹣1 .【分析】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【解答】解:由题意知:A点表示的数为a,B点表示的数为2,C点表示的数为a+3因为CO=BO,所以|a+3|=2,解得a=﹣5或﹣1故答案为:﹣5或﹣1三.解答题(共8小题)16.计算题(1)﹣2+(﹣3)﹣4×(﹣25﹣24)(2)0﹣32÷[(﹣2)3+5)]【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算除法,最后算加减;如果有括号,要先做括号内的运算.【解答】解:(1)﹣2+(﹣3)﹣4×(﹣25﹣24)=﹣2﹣3﹣4×(﹣32﹣16)=﹣2﹣3﹣4×(﹣48)=﹣2﹣3+192=187;(2)0﹣32÷[(﹣2)3+5)]=0﹣9÷(﹣8+5)=0﹣9÷(﹣3)=0+3=3.17.已知下列有理数:﹣3、﹣4、0、5、﹣24.(1)这些有理数中,整数有 5 个,非负数有 2 个.(2)从中间选两个数组成一个算式,和为负数的算式是:(﹣3)+(﹣4)=﹣7(不唯一);商最大的算式是.【分析】(1)根据整数和非负数的概念求解可得;(2)根据有理数的加法以及有理数的除法计算即可.【解答】解:(1)这些有理数中,整数有:﹣3、﹣4、0、5,﹣24共5个,非负数有:0、5,共2个.故答案为:5,2;(2)和为负数的算式可以是:(﹣3)+(﹣4)=﹣7;商最大的算式是:.故答案为:(﹣3)+(﹣4)=﹣7(不唯一);.18.先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y,当x=﹣2,y=2时,原式=﹣4﹣4=﹣8.19.腾飞小组共有8名同学,一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10.(1)本次数学测验成绩的最高分是100 分,最低分是80 分;(2)求腾飞小组本次数学测验成绩的平均分.【分析】(1)根据正数和负数表示相反意义的量,可得答案;(2)根据有理数的运算,可得答案.【解答】解:(1)本次数学测验成绩的最高分是 100分,最低分是 80分,故答案为:100,80;(2)﹣7+(﹣10)+9+2+(﹣1)+5+(﹣8)+10=0,平均分是90+=90.20.如图,两个大小正方形的边长分别是4cm和xcm(0<x<4).并(1)用含x的式子表示图中阴影部分(三角形)的面积S,并化简;(2)计算当x=3时,阴影部分的面积.【分析】(1)利用两个正方形的面积减去3个空白三角形的面积即可;(2)把x的值代入求出答案.【解答】解:阴影部分(三角形)的面积S=42+x2﹣(4+x)×4﹣x2﹣×4×(4﹣x)=x2;(2)当x=3时,(cm2).21.(1)我们知道当x=0 时,|x|有最小值是0,所以3﹣|x+1|的最大值是 3 ;(2)我们知道|x|=2,则x=±2,请你运用“类比”的数学思想求出式子|x+3|=2中x的值.【分析】(1)根据绝对值的定义即可得到结论;(2)由绝对值的定义即可得到结论.【解答】解:(1)当x=0时,|x|有最小值是0,∴3﹣|x+1|的最大值是3,故答案为:0 3;(2)∵|x+3|=2,∴x+3=±2,∴x=﹣1或x=﹣5.22.有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:质量(克) 1 2 3 4 …n伸长量(厘米)0.5 1 1.5 2 …总长度(厘米)10.5 11 11.5 12 …(1)要想使弹簧伸长5厘米,应挂重物多少克?(2)当所挂重物为x克时,用代数式表示此时弹簧的总长度.(3)当x=30克时,求此时弹簧的总长度.【分析】(1)当弹簧上挂1g重物后,弹簧伸长0.5cm,变为10.5cm,即可得出使弹簧伸长5厘米,应挂重物的克数;(2)当弹簧上挂1g重物后,弹簧伸长0.5cm,变为10.5cm,那么弹簧不挂重物时长10cm,挂1g在10的基础上加1个0.5,挂xg,就在10的基础上加x个0.5;(3)把x=30代入计算即可.【解答】解:(1)由表格可知弹簧每伸长1厘米,需挂2克重物,所以要使弹簧伸长5厘米,应挂重物10克.(2)弹簧的总长度为10+0.5x.(3)将x=30代入10+0.5x.得弹簧的总长度为25厘米.23.观察以下一系列等式:①22﹣21=4﹣2=21;②23﹣22=8﹣4=22;③24﹣23=16﹣8=23;④25﹣24=32﹣16=24;…(1)请按这个顺序仿照前面的等式写出第④个等式:25﹣24=32﹣16=24;(2)根据你上面所发现的规律,用含字母n的式子表示第n个等式:2n+1﹣2n=2n,并说明这个规律的正确性;(3)请利用上述规律计算:21+22+23+ (2100)【分析】(1)根据题目中的式子,可以写出第④个等式;(2)根据题目中式子的特点可以写出第n个等式;(3)根据发现的规律,可以计算出所求式子的值.【解答】解:(1)∵①22﹣21=4﹣2=21;②23﹣22=8﹣4=22;③24﹣23=16﹣8=23;则第④个等式是:25﹣24=32﹣16=24,故答案为:25﹣24=32﹣16=24;(2)第n个等式是:2n+1﹣2n=2n,故答案为:2n+1﹣2n=2n,∵2n+1﹣2n=2×2n﹣2n=(2﹣1)×2n=2n,∴2n+1﹣2n=2n;(3)根据规律:21+22+23+ (2100)=(22﹣21)+(23﹣22)+(24﹣23)+…+(2101﹣2100)=22﹣21+23﹣22+24﹣23+…+2101﹣2100=2101﹣21=2101﹣2.。
四川省渠县天关中学2020-2021学年第一学期七年级数学期中测试题(全卷满分120分,考试时间90分钟)一、 你一定能选对!(每小题只有一个正确的选项,每小题3分,共30分)1、甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么最高的地方比最低的地方高_________ m 。
( )A .5B .10C .30D .352、李克强总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将1 300 000 000用科学记数法表示为 ( )A .81310⨯B .81.310⨯C . 91.310⨯D .91.33、在下列各数-(+2),-32,431-)(52-2-(-1)2020,-|-3|中,负数的个数是( ) A .2 B .3 C .4 D .54、用一个平面去截一个正方体,截面不可能是 ( )A 、梯形B 、五边形C 、六边形D 、七边形5、下列说法,不正确的是 ( )A 、圆锥和圆柱的底面都是圆.B 、棱锥底面边数与侧棱数相等.C 、棱柱的上、下底面是形状、大小相同的多边形.D 、长方体是四棱柱,四棱柱是长方体.6、下列说法正确的是 ( )A. 35a -的项是35a 和B. 32233x y xy z ++是三次多项式C. a c a ab b +++82322与是多项式D. x xy x818161++和都是整式 7、下列说法中正确的是 ( )A .单项式322h r π的系数是32B .相反数大于本身的数是负数C .1)1()1(--+-n n = -1(n 是大于1的整数)D .若,a b =则a b =.8、火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a 、b 、c 的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为( )A .c b a 23++B .c b a 642++C .c b a 4104++D .c b a 866++9、已知221,a ab -= 212ab b -=-,则代数式222a ab b -+的值是 ( )A. 9 ;B. 33;C. 7;D. 3010、已知一列数:1,34,59,716,925……,则第n 个数是 ( ) A.21n n -; B.221n n -; C.221n n +; D.24n n-、 二、你能填得又快又准吗?(每小题3分,共18分)11、如图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z=___.12、若33b a m -与n b a 24的和仍是一个单项式,则m+n=______。
2020-2021学年四川省七年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.如图绕虚线旋转得到的几何体是()A.B.C.D.2.下列图形中,不是正方体平面展开图的是().A. B.C. D.3.用平面去截图中的正方体,截面形状不可能是()A.B.C.D.4.−16的绝对值是()A. −16B. 16C. −6D. 65.港珠澳大桥于2018年10月24日上午9时正式通车,它是中国境内一座连接香港珠海和澳门的桥隧工程,于2009年12月15日动工建设,2017年7月7日,大桥主体工程全线贯通,2018年2月6日,大桥主体完成验收,港珠澳大桥桥隧全长55千米,工程项目总投资额1269亿元,用科学记数法表示,1269亿元为()A. 1269×108B. 1.269×1010C. 1.269×1011D. 1.269×10126.下列说法正确的个数是()①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的.A. 4B. 3C. 2D. 17.如图所示,将有理数a,b在数轴上表示,下列各式中正确的是()A. −a>bB. |b|>|a|C. ab>0D. a<2a8.下列各项去括号正确的是()A. −3(m+n)−mn=−3m+3n−mnB. −(5x−3y)+4(2xy−y2)=−5x+3y+8xy−4y2C. ab−5(−a+3)=ab+5a−3D. x2−2(2x−y+2)=x2−4x−2y+49.下列整式与3x2y3是同类项的为()A. −5x3y2B. −2x3y3C. 4x2y2D. x2y310.用一个平面去截下列几何体:①圆柱,②正方体,③长方体,④球,⑤棱柱,⑥圆锥,其中截面可能是圆的有()A. 2个B. 3个C. 4个D. 5个11.一个整式与x2−y2的和是x2+y2,则这个整式是()A. 2x2B. 2y2C. −2x2D. −2y212.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式m2−cd+a+b的m 值为()A. 3B. −3C. −5D. 3或−5二、填空题(本大题共5小题,共15.0分)13.比较大小:−3______−0.1.14.已知一个数的绝对值是4,则这个数是_______.15.当x=1时,代数式ax2+2bx+1的值为3,则2a+4b−3=______.16.规定符号⊗的意义为a⊗b=ab−a2+|−b|+1,那么−3⊗4=___________.17.观察下面一列数:−1,2,−3,4,−5,6,−7,…将这列数排成下列形式:−12 −34−5 6 −78 −910 −1112 −1314 −1516……按照上述规律排下去,那么第10行从左边数第9个数是________;数−201是第________行从左边数第________个数.三、解答题(本大题共7小题,共69.0分)18.图中是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.19.计算:(1)(−36)×(−54+43−112)(2)−32+(1−47)÷2×[(−4)2−2]20.先化简,再求值:−3a2b+(4ab2−a2b)−2(2ab2−a2b),其中(a+1)2+|b−2|=0.21.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+18,−9,+7,−14,−3,+11,−6,−8,+6,+15.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车行驶每千米耗油量为a升,求这次养护小组的汽车共耗油多少升?22.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.(1)写出数轴上点B表示的数;(2)若动点P从点A出发.以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.问点P运动多少秒时追上点Q?23.20.A、B两仓库分别有水泥20吨和30吨,C、D两工地分别需要水泥15吨和35吨.已知从A、B仓库到C、D工地的运价如下表:到C工地到D工地A仓库每吨15元每吨12元B仓库每吨10元每吨9元(1)若从A仓库运到C工地的水泥为x吨,则用含x的代数式表示从A仓库运到D工地的水泥为_______吨,从B仓库将水泥运到D工地的运输费用为______元;(2)求把全部水泥从A、B两仓库运到C、D两工地的总运输费(用含x的代数式表示并化简);(3)如果从A仓库运到C工地的水泥为15吨时,那么总运输费为多少元?24.已知有理数a,b互为相反数,且a≠0,c,d互为倒数,有理数m和−2在数轴上表示的点相距3个单位长度,求|m|−ab +a+b2019−cd的值.答案和解析1.【答案】D【解析】解:根据旋转及线动成面的知识可得旋转后的图形为:两边为圆锥,中间为圆柱.故选:D.根据面旋转成体的原理及日常生活中的常识解题即可.本题考查线动成面的知识,属于基础题,注意掌握线动成面的概念.2.【答案】D【解析】【分析】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.由平面图形的折叠及正方体的展开图的情况逐一判断即可.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体,而D选项,下底面不可能有两个,故不是正方体的展开图.故选D.3.【答案】D【解析】解:无论如何去截,截面也不可能有弧度,因此截面不可能是圆.故选D.正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.无论如何去截,截面也不可能有弧度,因此截面不可能是圆.本题考查正方体的截面.正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形或其他的弧形.4.【答案】B【解析】解:|−16|=16.故选B.根据负数的绝对值是它的相反数解答.本题考查了绝对值:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.【答案】C【解析】解:将1269亿用科学记数法表示为1.269×1011.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【答案】C【解析】【分析】本题考查了有理数,解决本题的根据是熟记有理数的分类.根据有理数的分类,即可解答.【解答】解:①一个有理数不是整数就是分数,正确;②一个有理数不是正数就是负数,还有0,故错误;③一个整数不是正的,就是负的,还有0,故错误;④一个分数不是正的,就是负的,正确;正确的有2个,故选:C.7.【答案】A【解析】【分析】此题考查了数轴和绝对值的知识,由数轴观察出a<0,b>0,|a|>|b|是解答本题的关键,难度一般.根据数轴可得出a<0,b>0,|a|>|b|,结合选项可得出答案.【解答】解:由题意得a<0,b>0,|a|>|b|,A.−a>b,故本选项正确;B.|a|>|b|,故本选项错误;C.ab<0,故本选项错误;D.a>2a,故本选项错误.故选A.8.【答案】B【解析】【分析】本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.根据去括号法则逐个判断即可.【解答】解:A.−3(m+n)−mn=−3m−3n−mn,错误,故本选项不符合题意;B.−(5x−3y)+4(2xy−y2)=−5x+3y+8xy−4y2,正确,故本选项符合题意;C.ab−5(−a+3)=ab+5a−15,错误,故本选项不符合题意;D.x2−2(2x−y+2)=x2−4x+2y−4,错误,故本选项不符合题意.故选B.9.【答案】D【解析】【分析】本题考查了同类项的知识,解答本题的关键是理解同类项的定义.根据同类项所含字母相同,并且相同字母的指数也相同,进行判断即可.【解答】解:A.−5x3y2与3x2y3不是同类项,故本选项错误;B.−2x3y3与3x2y3不是同类项,故本选项错误;C.4x2y2与3x2y3不是同类项,故本选项错误;D.x2y3与3x2y3是同类项,故本选项正确;故选D.10.【答案】B【解析】解:在这些几何体中,正方体,长方体和棱柱的截面不可能有弧度,所以一定不会截出圆;圆柱和圆锥中如果截面和底面平行是可以截出圆的,球体中截面都是圆,因此,圆柱、球、圆锥能截出圆,共3个,故选:B.根据圆柱、正方体、棱柱、球、圆锥、长方体的形状特点判断即可.本题考查了截面的形状问题.解题的关键是明确截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.11.【答案】B【解析】解:根据题意得(x2+y2)−(x2−y2)=x2+y2−x2+y2=2y2.故选B.知道和与一个加数,求另一个加数,用减法即可.本题考查了整式的加减,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.12.【答案】A【解析】【分析】本题考查代数式的求值,根据题意得出a+b=0,cd=1,m=±2的信息是关键.由题意得a+b=0,cd=1,m=±2,由此可得出代数式的值.【解答】解:由题意得:a+b=0,cd=1,m=±2代数式可化为:m2−cd=4−1=3故选A.13.【答案】<【解析】[分析]根据两个负数相比较绝对值大的反而小,即得两个数的大小.[详解]解:∵|−3|=3,|−0.1|=0.1,∵3>0.1,∴−3<−0.1,故答案为:<.[点睛]本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.14.【答案】±4【解析】【分析】解题关键是掌握互为相反数的两个数的绝对值相等.如|−3|=3,|3|=3.互为相反数的两个数的绝对值相等.【解答】解:绝对值是4的数有两个,4或−4.答:这个数是±4.15.【答案】1【解析】【分析】本题主要考查代数式的求值,解题的关键是熟练掌握整体代入思想的运用.由已知条件得出a+2b=2,代入原式=2(a+2b)−3计算可得.【解答】解:根据题意,将x=1代入ax2+2bx+1=3,得:a+2b=2,则原式=2(a+2b)−3=2×2−3=4−3=1,故答案为1.16.【答案】−16【解析】【分析】本题考查了代数式求值,解题的关键是看懂新定义的运算,能代入展开.首先需要看懂新定义的运算,再根据运算,把−3、4转化成a、b展开,再根据有理数的运算法则计算即可.【解答】解:∵a⊗b=ab−a2+|−b|+1,∴−3⊗4=(−3)×4−(−3)2+|−4|+1=−12−9+4+1=−16.故答案为−16.17.【答案】90;15;5【解析】【分析】本题主要考查的是数字字母规律问题的有关知识,由数字的排列可知:每行的最后一个数的绝对值是所在行数的平方,奇数为负,偶数为正,由此规律求解即可.【解答】解:根据每行的最后一个数的绝对值是所在行数的平方,所以第9行最后一个数字的绝对值是:−9×9=−81,第10行从左边第9个数是:81+9=90,∵152=−225,142=196,∴−201=−(142+5),∴数−201是第15行从左边数第5个数.故答案为90;15;5.18.【答案】【解答】解:如图所示:【解析】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.由已知条件可知,主视图有4列,每列小正方数形数目分别为1,2,3,2,左视图有2列,每列小正方形数目分别为3,2.据此可画出图形.19.【答案】解:(1)原式=45−48+3=0;(2)原式=−9+37×12×14=−9+3=−6.【解析】【试题解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.20.【答案】解:原式=−3a2b+4ab2−a2b−4ab2+2a2b=−2a2b,∵(a+1)2+|b−2|=0,又∵(a+1)2≥0,且|b−2|≥0∴(a+1)2=0,|b−2|=0得:a=−1,b=2,当a=−1,b=2时原式=−2×(−1)2×2=−4.【解析】此题考查了整式的加减−化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.21.【答案】解:(1)18−9+7−14−3+11−6−8+6+15=+17.则养护小组最后到达的地方在出发点的东边,17千米处;(2)18−9=9,9+7=16,16−14=2,2−3=−1,−1+11=10,10−6=4,4−8=−4,−4+6=2,2+15=17,养护过程中,最远处离出发点是18千米;(3)(18+9+7+14+3+11+6+8+6+15)a=97a.答:这次养护小组的汽车共耗油97a升.【解析】【试题解析】本题考查了有理数的混合运算,以及正负数表示一对具有相反意义的量,是一个基础题.(1)求得这组数据的和,结果是正数则最后到达的地点在出发点的东边,相反,则在西边;(2)求得每个记录点的位置,即可确定;(3)求得这组数据的绝对值的和,即是汽车行驶的路程,乘以a,即可求得总耗油量.22.【答案】解:(1)设B点表示的数为x,由题意,得:8−x=14,x=−6.故B点表示的数为−6;(2)设点P运动t秒时追上点Q,依题意有:(5−3)t=14,解得:t=7.故点P运动7秒时追上点Q.【解析】【分析】(1)设B点表示的数为x,根据数轴上两点间的距离公式建立方程求出其解,就可以求出点B表示的数;(2)可设点P运动t秒时追上点Q,根据等量关系:速度差×时间=路程差,列出方程求解即可.23.【答案】(1)(20−x)吨,(9x+135)元;(2)(2x+525)元;(3)555元【解析】【分析】(1)A仓库原有的20吨去掉运到C工地的水泥,就是运到D工地的水泥;首先求出B仓库运到D仓库的吨数,也就是D工地需要的水泥减去从A仓库运到D工地的水泥,再乘每吨的运费即可;(2)用x表示出两个仓库A、B分别向C、D运送的吨数,再乘每吨的运费,然后合并起来即可;(3)把x=15代入(2)中的代数式,求得问题的解.【详解】解:(1)从A仓库运到D工地的水泥为:(20−x)吨,从B仓库将水泥运到D工地的运输费用为:[35−(20−x)]×9=(9x+135)元;(2)15x+12×(20−x)+10×(15−x)+[35−(20−x)]×9=(2x+ 525)元;(3)当x=15时,2x+525=555元.答:总运费为555元.故答案为:(1)(20−x)吨,(9x+135)元;(2)(2x+525)元;(3)555元.【点睛】本题考查了列代数式及代数式求值,读懂题意正确列出代数式是解题的关键.24.【答案】解:根据题意,可得:a+b=0,cd=1,m=−5或1,(1)m=−5时,|m|−ab+a+b2019−cd=|−5|−(−1)+0−1=5+1−1=5;(2)m=1时,|m|−ab+a+b2019−cd=|1|−(−1)+0−1=1+1−1=1;∴|m|−ab +a+b2019−cd的值是5或1.【解析】【试题解析】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.先根据相反数的性质、倒数的定义及数轴上两点间的距离得出a+b=0,cd=1,m=−5或1,再分别代入计算可得.。
四川省渠县中学2020-2021学年七年级上学期期中考试数学试题
【总分:120分,时间:120分钟】
一、选择题:(每小题3分,共30分)请把下列各题正确答案填写在答题卡中对应的方格中 1.﹣3的倒数是( ) A .3
B .
C .﹣3
D .﹣
2.下列各组的两个数中,运算后结果相等的是( ) A 、
和
B 、
和
C 、
和
D 、
和
3.如图是一个正方体的表面展开图,上面标有“我、爱、渠、县、中、学”六个字,图中“我”对面的字是( )
A .渠
B . 县
C .中
D .学
4.下列说法不正确的是( )
A .0既不是正数,也不是负数
B .1是绝对值最小的数
C .互为倒数的两个数的乘积为1
D .0的绝对值是0
5.下列代数式中,符合代数式书写要求的是( )
A .
n
m 3; B .y x 2
513; C .)(3n m +⨯; D .3⋅ab
6.下列各数中:①﹣|﹣1|,②﹣{﹣[﹣(﹣2)]},③(﹣2)3,④﹣22,⑤﹣(4)3,其运算结果为正数的个数有( ) A .1个
B .2个
C .3个
D .4个
7.在数轴上把2对应的点移动3个单位后所得的对应点表示的数是( )
A .5 B.1- C.51-或 D.不确定
爱 我
学
中
县 渠
第3题
8.若0<x <1,则下列选项正确的是( ) A .x <<x 2
B .x <x 2<
C .x 2<x <
D .<x <x 2
9.若(x +3)2与|y ﹣2|互为相反数,则x y 的值为( ) A .9
B .﹣9
C .8
D .﹣8
10.按如图所示的运算程序,能使输出的结果为8的是( )
A .x =4
B .x =2
C .x =﹣4
D .x =﹣2
二、填空题:(每小题3分,共18分)请把下列各题正确答案填写在答题卡中对应的方格中 11.渠县昨天早晨的气温是18℃,中午上升了4℃,夜间又下降了10℃,那么昨天夜间的气温是 ℃。
12.近日,新冠病毒在全球肆虐蔓延.在网络上用百度搜索“新冠病毒”,能搜索到与之相关的结果个数为44680000,这个数用科学计数法表示为_____________. 13.比较大小:
(填“>”或“<”)
14.若代数式2
5
22
--
x x 的值为3,则2245--x x 的值为_________. 15.a 的2倍与b 的差用代数式表示为 . 16.若三个有理数a 、b 、c 满足abc ≠0,则
=++c
c b
b a
a _______.
三、解答题:请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.
17. 把下列各数填入表示它所在的数集的大括号:(6分) -2.4,3,2.008,-3
10,141,-•
•15.0,0,-(-2.28),3.14,-|-4|
正 数 集 合:{ …}
负分数集合:{ …}
18.(9分)计算:
(1)(﹣5)+(﹣4)﹣(+6)﹣(﹣7).
(2)|﹣81|÷2÷(﹣16).
(3).
19.(7分)如图,是用几个边长为1的正方体堆积而成的几何体.
(1)画出该几何体的主视图和左视图;(4分)
(2)求出该几何体的表面积.(3分)
20. 在数轴上标出下列各数,再用“<”把它们连接起来.(6分) 3+,2
1
4
,2--,0,-5
21.已知2,6-==-ab b a ,求代数式b ab a 323-+的值。
(4分)
22.(10分)某淘宝商家计划平均每天销售某品牌儿童滑板车100辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负):星期一二三四五六日与计划量的差值+4 -3 -5 +14 -8 +21 -6
(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆;(2分)
(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售______辆;(2分)(3)本周实际销售总量达到了计划数量没有?(3分)
(4)该店实行每日计件工资制,每销售一辆车可得40元,若超额完成任务,则超过部分每辆另奖15元;少销售一辆扣20元,那么该店铺的销售人员这一周的工资总额是多少元?(3分)
23.(本题8分)如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A、B是数轴上的点,完成下列各题:
(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_________,A、B两点间的距离是________。
(2分)
(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是。
(2分)
(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是,A、B两点间的距离是(4分)
24.(10分)已知买入股票与卖出股票均需支付成交金额的0.2%的交易费,周先生上周星期五在股市收盘价每股18元买进某公司的股票2000股,下表为本周交易日内,该股票每天收盘时每股的涨跌情况:
星期星期一星期二星期三星期四星期五每股涨跌元+2+3﹣2.5+3﹣2注:①涨记作“+”,跌记作“﹣”;②表中记录的数据是每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.
(1)直接判断:本周内该股票收盘时,价格最高的是那一天?(3分)
(2)求本周星期五收盘时,该股票每股多少元?(3分)
(3)若周先生在本周的星期五以收盘价将全部股票卖出,试求出周先生一共盈利多少钱?
(4分)
25.(12分)如图,数轴上A、B、C三点表示的数分别为a、b、c,其中AC=2BC,a、b 满足|a+6|+(b﹣12)2=0.
(1)则a=,b=,c=.(6分)
(2)动点P从A点出发,以每秒2个单位的速度沿数轴向右运动,到达B点后立即以每秒3个单位的速度沿数轴返回到A点,设动点P的运动时间为t秒.(6分)
①P点在运动过程中表示的数为(用含t的代数式表示).
②求t为何值时,点P到A、B、C三点的距离之和为18个单位?
参考答案。