高考物理弹簧专题,包含弹簧问题所有类型的经典例题
- 格式:docx
- 大小:64.76 KB
- 文档页数:3
弹簧专题1、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.例1、如图3-7-15所示,质量为m的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b、对质点的作用力均为F,则弹簧c对质点作用力的大小可能为( )A、0B、F mg+C、F mg-D、mg F-2、轻弹簧高中物理中描述一类物体时常在其前面加上限定词“轻”,如“轻结点”、“轻绳”、“轻弹簧”、“轻杆”、“轻滑轮”等.“轻"主要可以理解为物体质量对所研究的物理问题影响很小,可以忽略不计,它是一种理想化的物理模型。
根据牛顿第二定律F = ma知,由于“轻物体”质量为零,无论其加速度多大,所受合外力必然为零,与物体的运动状态无关.这也是它与常规物体的最大区别.例2、如图4所示,4个完全相同的轻质弹簧都处于水平位置,他们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以L1、L2、L3、L4依次表示4个弹簧的伸长量.则有()3、质量不可忽略的弹簧例3、如图所示,一质量为M、长为L的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.答案解析Fx=FLx图3-7-154、三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是轻质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变,即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变。
例4、如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.求解下列问题:(1)现将线L2剪断,求剪断L2的瞬间物体的加速度.(2)若将图甲中的细线L1换成长度相同,质量不计的轻弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体的加速度.例5、如图所示,一光滑圆环竖直固定在地面上,三个完全相同的质量均为m的小球穿在圆环上,其中小球A位于圆环最高点,小球B、C位于同一高度,小球A与小球B之间、小球A与小球C间用等长的轻质细绳相连,小球B与小球C用轻弹簧相连。
弹簧问题一、分离点1、质量为M=3kg 的小车放在光滑的水平地面上,物块A 和B 的质量均为m=1kg ,且均放在小车的光滑水平地板上,物块A 和小车右侧壁用一根轻弹簧连接,不会分离,如图所示。
物块A 和B 并排靠在一起,现用力向右压B ,并保持小车静止,使弹簧处于压缩状态,在此过程中外力做功135J ,撤去外力,当A 和B 分开后,在A 达到小车地板的最左端位置之前,B 已从小车左端抛出。
求:B 与A 分离时,小车的速度是多大?smv s m v W E Mv mv Mv mv v v B A B A B M P M B M B M B 9,6212210222====+⋅=-解得:能守恒,得:,则由动量守恒和机械车速度为,分离时小等速,设为、长时分离,分离前应在弹簧第一次恢复原与解析:2、如图所示,一个弹簧台秤的秤盘和弹簧质量都不计,盘内放有一质量m=12kg 并处于静止的物体P ,弹簧劲度系数k=300N/m ,现给P 施加一个竖直向上的力F ,使P 从静止开始始终向上作匀加速直线运动,在这过程中,头0.2s 内F 是变力,在0.2s 后F 是恒力,则(1)、物体P 作匀加速运动的加速度大小为多少? (2)、F 的最小值、最大值分别为多少?Na g m F ma mg F P F N ma F P F sm at x x k mg F F P P 360)(24020a 21max max min 22=+==-====∆∆=所以托盘后,刚要离开托盘时和离开最大值即为刚开始加速时,即:最小值为解得:,原长的时刻。
,所以分离时必是弹簧恒力。
因托盘不计质量为变力,分离后为前与托盘分离互间弹力为零。
物体与托盘分离的条件为相解析:物体 3、如图所示,在倾角为θ的光滑斜面上端系一劲度系数为k 的轻弹簧,弹簧下端连有一质量为m 的小球,球被一垂直于斜面的挡板A 挡住,此时弹簧没有形变,若手持挡板A 以加速度a(a<gsin θ)沿斜面匀加速下滑,求:从挡板开始运动到球与挡板分离所经历的时间。
高考物理典型方法及专题:15、与弹簧有关的物理问题1.一个劲度系数为K=800N/m 的轻弹簧,两端分别连接着质量均为m=12kg 物体A 和B ,将它们竖直静止地放在水平地面上,如图所示。
施加一竖直向上的变力F 在物体A 上,使物体A 从静止开始向上做匀加速运动,当t=0.4s 时物体B 刚离开地面(设整个匀加速过程弹簧都处于弹性限度内,取g=10m/s 2).求:(1)此过程中物体A 的加速度的大小。
(2)此过程中所加外力F 所做的功。
2.用一根轻质弹簧悬吊一物体A ,弹簧伸长了L ,现该弹簧一端固定在墙上,另一端系一三棱体,先将弹簧压缩,4L然后将物体A 从三棱体的斜面上由静止释放,则当A 下滑过程中三棱体保持静止。
若水平地面光滑,三棱体斜面与水平地面成30°角,如图所示。
求: (1)物块A 的下滑加速度a ;(2)物块A 与斜面之间的动摩擦因数μ。
3.如图所示,将质量为g m A 100=的平台A 连结在劲度系数m N k /200=的弹簧上端,弹簧下端固定在地上,形成竖直方向的弹簧振子,在A 的上方放置A B m m =的物块B ,使A 、B 一起上下振动,弹簧原子为5cm.A 的厚度可忽略不计,g 取10./2s m 求: (1)当系统做小振幅简谐振动时,A 的平衡位置离地面C 多高?(2)当振幅为0.5cm 时,B 对A 的最大压力有多大?(3)为使B 在振动中始终与A 接触,振幅不能超过多大?4.如图所示,一质量不计的轻质弹簧竖立在地面上,弹簧的上端与盒子A 连接在一起,下端固定在地面上。
盒子内装一个光滑小球,盒子内腔为正方体,一直径略小于此正方体边长的金属圆球B 恰好能放在盒内,已知弹簧的劲度系数为k=400N/m ,A 和B 的质量均为2kg 。
将A 向上提高,使弹簧从自由长度伸长10cm 后,从静止释放,不计阻力,A 和B 一起做竖直方向的简揩振动,g 取。
已知弹簧处在弹性限度内,对于同一弹簧,其弹性势能只决定于其形变的大小。
1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。
若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有 ( ) A .l 2>l 1 B .l 4>l 3 C .l 1>l 3 D .l 2=l 42、如图所示,a 、b 、c 为三个物块,M ,N 为两个轻质弹簧,R 为跨过光滑定滑轮的轻绳,它们连接如图所示并处于静止状态( ) A.有可能N 处于拉伸状态而M 处于压缩状态 B.有可能N 处于压缩状态而M 处于拉伸状态 C.有可能N 处于不伸不缩状态而M 处于拉伸状态 D.有可能N 处于拉伸状态而M 处于不伸不缩状态3、如图所示,在一直立的光滑管内放置一轻质弹簧,上端O 点与管口A 的距离为2x 0,一质量为m 的小球从管口由静止下落,将弹簧压缩至最低点B ,压缩量为x 0,不计空气阻力,则( ) A.小球运动的最大速度大于20gx B.小球运动中最大动能等于2mgx 0 C.弹簧的劲度系数为mg/x 0D.弹簧的最大弹性势能为3mgx 04、如图所示,A 、B 质量均为m ,叠放在轻质弹簧上,当对A 施加一竖直向下的力,大小为F ,将弹簧压缩一段,而且突然撤去力F 的瞬间,关于A 的加速度及A 、B 间的相互作用力的下述说法正确的是( ) A 、加速度为0,作用力为mg 。
B 、加速度为m F 2,作用力为2F mg + C 、速度为F/m ,作用力为mg+F D 、加速度为m F 2,作用力为2mgF +5、如图所示,一根轻弹簧上端固定,下端挂一质量为m 1的箱子,箱中有一质量为m 2的物体.当箱静止时,弹簧伸长L 1,向下拉箱使弹簧再伸长L 2时m 2k 1m 1k 2放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的支持力为:( ) A..g m L L 212)1(+B..g m m L L))(1(2112++ C.g m L L 212 D.g m m L L)(2112+ 6、如图所示,在一粗糙水平面上有两个质量分别为m 1和m 2的木块1和2,中间用一原长为L 、劲度系数为K 的轻弹簧连接起来,木块与地面间的滑动摩擦因数为μ。
高中物理弹簧类问题专题练习、;用一绝缘弹簧联结,和mq,质量分别为a1.图中Mb为两带正电的小球,带电量都是。
现把一匀强电场作用弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d0),在两小球的加速度相等的时刻,弹簧的长度为d。
(于两小球,场强的方向由a指向b >dm,则dB.若M>A.若M = m,则d = d 00a b、M无关m D.d = d,与C.若M<m,则d<d 00 mM整个系统处于平衡状B用一轻弹簧相连接,、2. 如图a所示,水平面上质量相等的两木块A向上做匀加速直线运动,使木块A.现用一竖直向上的力F拉动木块A,态F刚离开地面的瞬B研究从力F刚作用在木块A的瞬间到木块b如图所示.的起始位置为坐标原点,则下A间这个过程,并且选定这个过程中木块A A)列图象中可以表示力F和木块A的位移x之间关系的是( B BFF F F a bx x x x OO O OD C B A的两物块相连接,并且静止在光滑的m和3.如图甲所示,一轻弹簧的两端分别与质量为m21两物块的速度随时间以此刻为时间零点,水平面上.现使m瞬时获得水平向右的速度3m/s,1)变化的规律如图乙所示,从图象信息可得(A.在t、t时刻两物块达到共同速度1m/s且弹簧都是处于压缩状态31时刻弹簧由伸长状态逐渐恢复原长t.从t到B43/m/sv2 m = 1∶C .两物体的质量之比为m∶213 m12 ∶∶t时刻两物体的动量之比为PP =1 D.在m2 22121 v0 /s tttttmm4 3 12 2 1 1-乙甲(可视为质.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q4大小相同,Q上。
现把与点)固定在光滑绝缘斜面上的M点,且在通过弹簧中心的直线ab与弹簧接触到速度变为N带电性也相同的小球P,从直线ab上的点由静止释放,在小球P 零的过程中()a 的速度是先增大后减小A.小球PQ和弹簧的机械能守恒,且PP速度最大时 B.小球PM 所受弹力与库仑力的合力最大N 的动能、重力势能、电势能与弹簧的弹 C.小球P 性势能的总和不变b 合力的冲量为零PD.小球、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B如图所示,5、A质量分别为0.42 kg和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A22.)=10 m/sg的加速度竖直向上做匀加速运动(0.5 m/s由静止开始以.(1)使木块A竖直做匀加速运动的过程中,力F的最大值;B分离的过)若木块由静止开始做匀加速运动,直到A、(2 ,求这一过程F对程中,弹簧的弹性势能减少了0.248 J.木块做的功弹簧相连,m的物体B如图,质量为m的物体A经一轻质弹簧与下方地面上的质量为6、21都处于静止状态。
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
一、“轻弹簧”类问题1.如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不计,施加水平方向的力1F、2F,且12F F>,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为 .二、质量不可忽略的弹簧2.如图3-7-2所示,一质量为M、长为L的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.三、弹簧的弹力不能突变(弹簧弹力瞬时)问题3.如图3-7-3所示,木块A与B用轻弹簧相连,竖直放在木块C上,三者静置于地面,A B C、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C的瞬时,木块A和B的加速度分别是Aa= 与B a=4.如图3-7-4所示,质量为m的小球用水平弹簧连接,并用倾角为030的光滑木板AB托住,使小球恰好处于静止状态.当AB突然向下撤离的瞬间,小球的加速度为 ( )A.0B.,方向竖直向下C.,方向垂直于木板向下D. , 方向水平向右四、弹簧长度的变化问题5.如图3-7-6所示,劲度系数为1k的轻质弹簧两端分别与质量为1m、2m的物块1、2拴接,劲度系数为2k的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .五、弹簧形变量可以代表物体的位移6.如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B、,其质量分别为A Bm m、,弹簧的劲度系数为k,C为一固定挡板,系统处于静止状态,现开始用一恒力F沿斜面方向拉A使之向上运动,求B刚要离开图3-7-4图3-7-2图3-7-1图3-7-3高中物理中的弹簧问题归类图3-7-6C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).六、弹力变化的运动过程分析7.如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?七.与弹簧相关的临界问题8.如图3-7-9所示,A B 、两木块叠放在竖直轻弹簧上,已知木块A B 、的质量分别为0.42kg 和0.40kg ,弹簧的劲度系数100/k N m =,若在A 上作用一个竖直向上的力F ,使A 由静止开始以20.5/m s 的加速度竖直向上做匀加速运动(210/g m s =)求:(1) 使木块A 竖直做匀加速运动的过程中,力F 的最大值;(2)若木块由静止开始做匀加速运动,直到A B 、分离的过程中,弹簧的弹性势能减少了0.248J ,求这一过程中F 对木块做的功.9.如图3-7-11所示,一质量为M 的塑料球形容器,在A 处与水平面接触.它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m 的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度.在振动过程中球形容器对桌面的最小压力为0,求小球振动的最大加速度和容器对桌面的最大压力.八、弹力做功与弹性势能的变化问题 10.如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块A 和B 大小可忽略,它们分别带有A Q +和B Q +的电荷量,质量分别为A m 和B m .两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B 连接,另一端连接轻质小钩.整个装置处于场强为E 、方向水平向左的匀强电场中,A 、B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力, A 、B 所带电荷量保持图3-7-8图 3-7-11 图3-7-9不变,B 不会碰到滑轮.(1)若在小钩上挂质量为M 的物块C 并由静止释放,可使物块A 对挡板P 的压力恰为零,但不会离开P ,求物块C 下降的最大距离h . (2)若C 的质量为2M ,则当A 刚离开挡板P 时, B 的速度多大?11.如图3-7-14所示,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B相连,弹簧的劲度系数为k ,物体A B 、都处于静止状态.一不可伸长的轻绳一端绕过轻滑轮连接物体A ,另一端连接一轻挂钩.开始时各段绳都处于伸直状态,物体A 上方的一段绳沿竖直方向.现给挂钩挂一质量为2m 的物体C 并从静止释放,已知它恰好能使物体B 离开地面但不继续上升.若将物体C 换成另一质量为12()m m +的物体D ,仍从上述初始位置由静止释放,则这次物体B 刚离地时物体D 的速度大小是多少?已知重力加速度为g九、弹簧弹力的双向性12.如图3-7-15所示,质量为m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b 、对质点的作用力均为F ,则弹簧c 对质点作用力的大小可能为 ( ) A 、0 B 、F mg + C 、F mg - D 、mg F -十、弹簧振子13.如图3-7-16所示,一轻弹簧与一物体组成弹簧振子,物体在同一竖直线上的A B 、间做简谐运动, O 点为平衡位置;C 为AO 的中点,已知OC h =,弹簧振子周期为T ,某时刻弹簧振子恰好经过C 点并向上运动,则从此时刻开始计时,下列说法中正确的是 ( )A 、4T t =时刻,振子回到C 点 B 、2Tt ∆=时间内,振子运动的路程为4h C 、38T t =时刻,振子的振动位移为0 D 、38Tt =时刻,振子的振动速度方向向下十一、弹簧串、并联组合14. 如图3-7-17所示,两个劲度系数分别为12k k 、的轻弹簧竖直悬挂,下端用光滑细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一重为G 的物体后滑轮下降,求滑轮静止后重物下降的距离.图3-7-17图 3-7-13 图3-7-15图3-7-14 图3-7-16十二、通电的弹簧15.如图3-7-18所示装置中,将金属弹簧的上端固定,下端恰好浸入水银,水银与电源负极相连,弹簧上端通过开关S 与电源正极相连.当接通开关S 后,弹簧的运动情况如何?十三、物体沿弹簧螺旋运动16.如图3-7-19所示,长度为L 的光滑钢丝绕成高度为H 的弹簧,将弹簧竖直放置.一中间有孔的小球穿过钢丝并从弹簧的最高点A 由静止释放,求经多长时间小球沿弹簧滑到最低点B .十四、生产和生活中的弹簧17.如图3-7-21所示表示某同学在科技活动中自制的电子秤原理,利用电压表示数来指示物体质量,托盘与电阻可忽略的弹簧相连,托盘与弹簧的质量均不计,滑动变阻器的滑动头与弹簧上端连接;当托盘中没放物体且S 闭合时,电压表示数为零.设变阻器的总电阻为R 、总长度为L ,电源电动势为E 、内阻为r ,限流电阻阻值为0R ,弹簧劲度系数为k ,不计一切摩擦和其他阻力.(1)推导出电压表示数x U 与所称物体质量m 的关系式.(2)由(1)结果可知,电压表示数与待测物体质量不成正比、不便于进行刻度.为使电压表示数与待测物体质量成正比,请利用原有器材进行改进并完成电路原理图,推导出电压表示数x U 与待测物体质量m 的关系式.图3-7-18 图3-7-19 图3-7-21。
1.如图所示,重10 N 的滑块在倾角为30°的斜面上,从a 点由静止下滑,到b 点接触到一个轻弹簧.滑块压缩弹簧 到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点,已 知ab =0.8 m ,bc =0.4 m ,那么在整个过程中 ( )A .滑块动能的最大值是6 JB .弹簧弹性势能的最大值是6 JC .从c 到b 弹簧的弹力对滑块做的功是6 JD .滑块和弹簧组成的系统整个过程机械能守恒 解析:滑块能回到原出发点,所以机械能守恒,D 正确;以c 点为参考点,则a 点的机械能为6 J ,c 点时的速度为0,重力势能也为0,所以弹性势能的最大值为6 J ,从c 到b 弹簧的弹力对滑块做的功等于弹性势能的减小量,故为6 J ,所以B 、C 正确.由a →c 时,因重力势能不能全部转变为动能,故A 错.答案:BCD2. 如图所示,水平面上的轻弹簧一端与物体相连,另一端固定在墙上P 点,已知物体的质量 为m =2.0 kg ,物体与水平面的动摩擦因数μ=0.4,弹簧的劲度系数k =200 N/m.现用力F 拉物体,使弹簧从处于自然状态的O 点由静止开始向左移动10 cm ,这时弹簧具有弹性势能E p =1.0 J ,物体处于静止状态,若取g =10 m/s 2,则撤去外力F 后 ( )A .物体向右滑动的距离可以达到12.5 cmB .物体向右滑动的距离一定小于12.5 cmC .物体回到O 点时速度最大D .物体到达最右端时动能为0,系统机械能不为0解析:物体向右滑动到O 点摩擦力做功W F =μmgs =0.4×2×10×0.1 J =0.8 J <E p ,故物体回到O 点后速度不等零 ,还要继续向右压缩弹簧,此时有E p =μmgx +E p ′且E p ′>0,故x =E p -E p ′μmg <E pμmg=12.5 cm ,A 错误,B 正确;物体到达最右端时动能为零,但弹性势能不为零,故系统机械能不为零,D 正确;由kx -μmg =ma ,可知当a =0,物体速度最大时,弹簧的伸长量x =μmg k>0,故C 错误.答案:BD3.如图所示,在倾角为30°的光滑斜面上,有一劲度系数为k 的轻质弹簧,其一端固定在固定挡板C 上,另一端连接一质量为m 的物体A.有一细绳通过定滑轮,细绳的一端系在物体A 上(细绳与斜面平行),另一端系有一细绳套,物体A 处于静止状态.当在细绳套上轻轻挂上一个质量为m 的物体B 后,物体A 将沿斜面向上运动,试求:(1)未挂物体B 时,弹簧的形变量;(2)物体A 的最大速度值.解析 (1)设未挂物体B 时,弹簧的压缩量为x ,则有:mg sin 30°=kx 所以x =mg2k.(2)当A 的速度最大时,设弹簧的伸长量为x ′,则有mg sin 30°+kx ′=mg 所以x ′=x =mg2k对A 、B 和弹簧组成的系统,从刚挂上B 到A 的速度最大的过程,由机械能守恒定律得:mg·2x -mg·2x sin 30°=12·2mv 2m 解得v m = mg 22k . 答案 (1)mg 2k (2) mg 22k4.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C 点.试求: (1)弹簧开始时的弹性势能. (2)物体从B 点运动至C 点克服阻力做的功.(3)物体离开C 点后落回水平面时的动能.解析:(1)物体在B 点时,由牛顿第二定律得:F N -mg =m v B 2R,又F N =7mg ,可得E k B =12m v B 2=3mgR在物体从A 点至B 点的过程中,根据机械能守恒定律,弹簧的弹性势能E p =E k B =3mgR .(2)物体到达C 点仅受重力mg ,根据牛顿第二定律有mg =m v C 2R E k C =12m v C 2=12mgR物体从B 点到C 点只有重力和阻力做功,根据动能定理有:W 阻-mg ·2R =E k C -E k B解得W 阻=-12mgR所以物体从B 点运动至C 点克服阻力做的功为W =12mgR .(3)物体离开轨道后做平抛运动,仅有重力做功,根据机械能守恒定律有:E k =E k C +mg ·2R =52mgR .答案:(1)3mgR (2)12mgR (3)52mgR5.为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)【5题解答】固定时示数为F 1, 对小球F 1=mgsin θ ①整体下滑:(M+m )sin θ-μ(M+m)gcos θ=(M+m)a ② 下滑时,对小球:mgsin θ-F 2=ma ③ 由式①、式②、式③得 μ=12F F tan θ6. 如图是为了检验某种防护罩承受冲击能力的装置,M 为半径为1.0R m =、固定于竖直平面内的1/4光滑圆弧轨道,轨道上端切线水平,N 为待检验的固定曲面,该曲面在竖直面内的截面为半径r 的1/4圆弧,圆弧下端切线水平且圆心恰好位于M 轨道的上端点,M 的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量0.01m k g =的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M 的上端点,水平飞出后落到N 的某一点上,取210/g m s =,求:(1)发射该钢珠前,弹簧的弹性势能p E 多大? (2)钢珠落到圆弧N上时的速度大小N v 是多少?(结果保留两位有效数字)【6题解答】(1)设钢珠在M 轨道最高点的速度为v ,在最高点,由题意2v mg mR= ① 2分从发射前到最高点,由机械能守恒定律得:212p E mgR mv =+② 2分(2)钢珠从最高点飞出后,做平抛运动x vt = ③ 1分212y gt =④ 1分 由几何关系222x y r += ⑤ 2分 从飞出M 到打在N 得圆弧面上,由机械能守恒定律:221122N mgy mv mv +=⑥ 2分联立①、③、④、⑤、⑥解出所求 5.0/N v m s =1分7.如图所示,质量为m 的滑块放在光滑的水平平台上,平台右端B 与水平传送带相接,传送带的运行速度为v 0,长为L .今将滑块缓慢向左压缩固定在平台上的轻弹簧,到达某处时突然释放,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数为μ. 求:(1)试分析滑块在传送带上的运动情况;(2)若滑块离开弹簧时的速度大于传送带的速度,求释放滑块时弹簧具有的弹性势能; (3)若滑块离开弹簧时的速度大于传送带的速度,求滑块在传送带上滑行的整个过程中产生的热量.解析:(1)若滑块冲上传送带时的速度小于带速,则滑块由于受到向右的滑动摩擦力而做匀加速运动;若滑块冲上传送带时的速度大于带速,则滑块由于受到向左的滑动摩擦力而做匀减速运动.(2)设滑块冲上传送带时的速度为v ,由机械能守恒E p =12m v 2.设滑块在传送带上做匀减速运动的加速度大小为a ,由牛顿第二定律:μmg =ma .由运动学公式v 2-v 02=2aL 解得E p =12m v 02+μmgL .(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移s =v 0t ,v 0=v -at滑块相对传送带滑动的位移Δs =L -s 因相对滑动生成的热量Q =μmg ·Δs 解得Q =μmgL -m v 0(v 02+2μgL -v 0).答案:(1)见解析 (2)12m v 02+μmgL(3)μmgL-m v 0(v 02+2μgL -v 0)8.如图所示,两质量相等的物块A 、B 通过一轻质弹簧连接,B 足够长、放置在水平面上,所有接触面均光滑。
弹簧高考试题及答案弹簧是一种常见的机械弹性元件,广泛应用于各个领域。
在高考物理考试中,弹簧是一个重要的考点。
本文将介绍一些与弹簧相关的高考试题,并给出详细解答,帮助同学们更好地理解和应用弹簧的知识。
1.弹簧的刚度与什么因素有关?解答:弹簧的刚度与其弹性系数有关。
弹性系数又分为拉力弹性系数和剪力弹性系数。
拉力弹性系数用于描述弹簧在拉伸或压缩时的刚度,剪力弹性系数则用于描述弹簧在扭转时的刚度。
2.一根弹簧的弹性系数为k,它受力F时伸长(或缩短)的长度为多少?解答:根据胡克定律,F=kΔx,其中F为弹簧所受力的大小,k为弹簧的弹性系数,Δx为弹簧伸长(或缩短)的长度。
所以,弹簧伸长(或缩短)的长度Δx=F/k。
3.已知两个弹簧刚度分别为k1和k2,将它们串联在一起,等效刚度是多少?解答:若将两个弹簧串联在一起,则它们受力相同,即F1=F2。
根据弹簧的弹性系数与伸长量成正比的关系,可以得到k1Δx1=k2Δx2。
由于它们伸长量相等,即Δx1=Δx2,所以k1=k2。
4.已知两个弹簧刚度分别为k1和k2,将它们并联在一起,等效刚度是多少?解答:若将两个弹簧并联在一起,则它们所受的力相等,即F1=F2。
根据胡克定律,有F1=k1Δx1,F2=k2Δx2。
将两式相加得到F1+F2=(k1+k2)Δx,即两个弹簧并联时的等效刚度为k1+k2。
5.弹簧振子的振动周期与什么因素有关?解答:弹簧振子的振动周期与其等效质量和振子长度有关。
振动周期T与等效质量m和弹簧刚度k之间的关系为T=2π√(m/k)。
振子长度的变化会导致等效质量的变化,从而影响振动周期。
6.一根弹簧的弹性系数为k,在地球表面上重力加速度为g,若将物体悬挂于该弹簧下方,则该物体受力为多少?解答:物体受到的力包括重力和弹簧的拉力。
由于物体悬挂于弹簧下方,所以弹簧的拉力方向与重力方向相反,力的平衡条件为F=kΔx-mg=0,其中Δx为弹簧的伸长量。
整理得F=kΔx=mg。
1两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球 1 和球 2 的加速度分别为()A. 1 g,a =g.B.a = 0 ,a =g.球 12 1 2C.1 g, 2= 0.D.1 g, 2a = a a = 2 a =0.球 22 如图 A 所示,一质量为 m 的物体系于长度分别为l 1、 l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ, l 2水平拉直,物体处于平衡状态。
求将 l2线剪断瞬时物体的加速度。
将 l 1换成弹簧如图 B剪断 l 2瞬时,物体的加速度?3 如图所示 , 木块 A 与 B用一轻质弹簧相连 , 竖直放在木板 C 上 , 三者静置于地面 , 它们的质量之比是 1:2:3, 设所有接触面都光滑 , 当沿水平面方向迅速抽出木板 C的瞬时 ,A 和 B 的加速度大小分别为多大?4 如图5 所示,在倾角为的光滑斜面上有两个用轻质弹簧相连接的物块 A、B,它们的质量分别为m A、m B,弹簧的劲度系数为 k,C 为一固定挡板。
系统处于静止状态,现开始用一恒力 F 沿斜面方向拉物块 A 使之向上运动,求物块 B 刚要离开 C 时物块 A的加速度a 和从开始到此时物块 A 的位移,重力加速d度为 g。
解析:令 x1表示未加 F 时弹簧的压缩量,由胡克定律和牛顿定律可知m A g sin kx ①令 x2表示 B 刚要离开 C时弹簧的伸长量, a 表示此时 A 的加速度,由胡克定律和牛顿定律可知:kx2=m B gsinθ②F-m A gsin θ- kx 2=m A a ③由②③式可得F ( m A m B ) g sin④a mA由题意 d=x 1+x 2 ⑤由①②⑤式可得 d ( m A m B ) g sin⑥k5 如 9 所示,一度系数k=800N/m 的簧两端各接着两个量均m=12kg 的物体 A 、B。
-v 甲 高中物理弹簧类问题专题练习1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。
现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。
( )A .若M = m ,则d = d 0B .若M >m ,则d >d 0C .若M <m ,则d <d 0D .d = d 0,与M 、m 无关2. 如图a 所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬间这个过程,并且选定这个过程中木块A列图象中可以表示力F 和木块A 的位移x 之间关系的是(3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( )A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长C .两物体的质量之比为m 1∶m 2 = 1∶2D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。
现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( )A.小球P 的速度是先增大后减小B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变D.小球P 合力的冲量为零5、如图所示,A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2).A B C D b(1)使木块A竖直做匀加速运动的过程中,力F的最大值;(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功.6、如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态。
1两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1和球2的加速度分别为( ) A. a 1=g,a 2=g. B. a 1=0,a 2=g. C. a 1=g,a 2=0. D. a 1=2g,a 2=0.2如图A 所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ,l 2水平拉直,物体处于平衡状态。
求将l 2线剪断瞬时物体的加速度。
将l 1换成弹簧如图B 剪断 l 2瞬时,物体的加速度?3如图所示,木块A 与B 用一轻质弹簧相连,竖直放在木板C 上,三者静置于地面,它们的质量之比是1:2:3,设所有接触面都光滑,当沿水平面方向迅速抽出木板C 的瞬时,A 和B 的加速度大小分别为多大?4如图5所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k,C 为一固定挡板。
系统处于静止状态,现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位移d ,重力加速度为g 。
解析:令x 1表示未加F 时弹簧的压缩量,由胡克定律和牛顿定律可知kx g m A =θsin ①令x 2表示B 刚要离开C 时弹簧的伸长量, a 表示此时A 的加速度,由胡克定律和牛顿定律可知:kx 2=m B gsin θ ②F -m A gsin θ-kx 2=m A a ③由②③式可得A B A m g m m F a θsin )(+-= ④ 由题意 d=x 1+x 2 ⑤由①②⑤式可得kg m m d B A θsin )(+=⑥球1 球25如图9所示,一劲度系数为k=800N/m 的轻弹簧两端各焊接着两个质量均为m=12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g=10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
弹簧类问题一、选择题1.如图,足够长光滑斜面倾角为30°,斜面底端有一挡板,其上有一小球从某一高度处由静止开始沿斜面滑下,小球上固定一个轻质弹簧,使得小球和弹簧在斜面上可以往复运动,运动过程中弹簧始终在弹性限度内,则以下说法正确的是( )A .小球不一定可以达到出发位置B .弹簧刚接触挡板时,小球速度最大C .弹簧的最大弹力一定大于重力D .小球向下运动过程中,加速运动时间可能等于减速运动时间2.如图甲所示轻弹簧竖直放置,下端固定在水平地面上,一质量为m 的小球从弹簧正上方某一高处由静止释放,落到弹簧上瞬间粘连(无能量损失)并压缩弹簧至最低处。
设弹簧一直在弹性限度内,空气阻力忽略不计,以地面为参考平面,小球的动能随高度变化的图像如图乙所示。
已知h 1 ~ h 4段图线为曲线,h 4 ~ h 5段为直线,下列说法正确的是( )A .小球从最低点反弹上升的距离小于h 5B .小球的高度为h 2和h 4时,弹簧的弹性势能相同C .弹簧的劲度系数为3mg hD .小球的高度为h 2时,动能为mg (h 5 - h 2)3.如图所示,滑块2套在光滑的竖直杆上并通过细绳绕过光滑定滑轮连接物块1,物块1又与一轻质弹簧连接在一起,轻质弹簧另一端固定在地面上。
开始时用手托住滑块2,使绳子刚好伸直处于水平位置但无张力,此时弹簧的压缩量为d 。
现将滑块2从A 处由静止释放,经过B 处时速度最大,到达C 处时速度为零,此时物块1还没有到达滑轮位置。
已知滑轮与杆的水平距离为3d ,AC 间距离为4d ,不计滑轮质量、大小及摩擦。
下列说法正确的是( )A .物块1和滑块2的质量相等B .滑块2的加速度先增大后减小,最后减为0C .滑块1、2组成的系统机械能先增大后减小D .除A 、C 两点外,滑块1的速度大小始终大于滑块2的速度大小4.如图所示,重力均为G 的两小球用等长的细绳a 、b 悬挂于O 点,两小球之间用一根轻弹簧连接,均处于静止状态,两细绳a 、b 与轻弹簧c 恰好构成正三角形。
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始及物体分离。
分析及解:设物体及平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。
据牛顿第二定律有: mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体及平板分离,所以此时ka g m x )(-= 因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析及解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离: x=mg/k=0.4m图8图7因为221at x =,所以P 在这段时间的加速度22/202s m txa == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 及盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
A B
v 0 A
B 1如下图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①弹簧的左端固定在左墙上;②弹簧的左端受大小也为F 的拉力作用;③弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④弹簧左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有( )
A .l 2 > l 1
B .l 4 > l 3
C .l 1 > l 3
D .l 2 = l 4
2如图天花板上用细绳吊起两个用轻弹簧相连的两个质量相同的小球。
两小球均保持静止,突然剪断细绳时,上面小球A 与下面小球B 的加速度为
A .a1=g a2=g
B .a1=2g a2=g
C .a1=2g a2=0
D .a1=0 a2=g
3两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态。
现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为()
A 、m 1g/k 1
B 、m 2g/k 1
C 、m 1g/k 2
D 、m 2g/k 2
4.两块质量分别为m 1和m 2的木块,用一根劲度系数为k 的轻弹簧连在一起,
现在m 1上施加压力F ,.为了使撤去F 后m 1跳起时能带起m 2, 则所加压力F 应多大?
g m m F )(21+>
5一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,
弹簧的弹力F=kx 和平板的支持力N 作用。
当N=0时,物体与平板分离
6在足够大的光滑水平面上放有两物块A 和B ,已知m A >m B ,A 物块连接一个轻弹簧并处于静止状态,B 物体以初速度v 0向着A 物块运动。
在B 物块与弹簧作用过程中,两物块在同一条直线上运动,下列判断正确的是 ( D )
A .弹簧恢复原长时,
B 物块的速度为零
B .弹簧恢复原长时,B 物块的速度不为零,且方向向右
C .弹簧压缩过程中,B 物块的动能先减小后增大
D .在与弹簧相互作用的整个过程中,B 物块的动能先减小后增大
7一弹簧竖直静止在水平面上,下端固定在地面上,处于原长状态,原长为L 。
现一均匀小球质量为m 从离弹簧上端高h 处由静止自由下落,弹簧的劲度系数为k ,试分析小球从接触弹簧上端开始至运动到最低点的过程中小球做的是什么运动?在什么位置小球的速度最大?
8.质量均为m 的两物体b 、c 分别与轻质弹簧两端相连接,将它们静止放在地在地面上。
弹簧劲度系数为k 。
一质量也为m 小物体a 从距b 物体h 高处由静止开始下落。
a 与b 相碰后立即粘在一起向下运动,以后不再分开。
已知重力加速度为g ,不计空气阻力,弹簧始终处于弹性限度内。
在a 与b 一起向下运动的过程中,下列判断正确的是(C )
A .一起开始向下运动时的速度大小为 B
.达到最大速度时,物体c 对地面的压力大小为mg
C .达到最大速度时,弹簧的压缩量大小为
D .达到最低点时,弹簧的弹力大小为2mg
9如图所示,两质量相等的物块A 、B 通过一轻质弹簧连接,B 足够长、放置在水平面上,所有接触面均光滑。
弹簧开始时处于原长,运动过程中始终处在弹性限度内。
在物块A 上施加一个水平恒力,A 、B 从静止开始运动到第一次速度相等的过程中,下列说法中正确的有 (BCD )
A .当A 、
B 加速度相等时,系统的机械能最大
B .当A 、B 加速度相等时,A 、B 的速度差最大
C .当A 、B 的速度相等时,A 的速度达到最大
D .当A 、B 的速度相等时,弹簧的弹性势能最大
10.在光滑的水平面上,物体B 原来静止,在物体B 上固定一个轻弹簧,物体A 以某一速度沿水平方向向右运动,通过弹簧与物体B 发生作用,若两物体的质量相等,在作用过程中弹簧获得的最大弹性势能为Ep ;现将B 的质量加倍,再使物体A 以同样的速度通过弹簧与物体B 发生作用(作用前物体B 仍静止),在作用过程中弹簧获得的最大弹性势能为E′p ,那么(B )
A .Ep ∶E′p = 2∶1
B .Ep ∶E′p = 3∶4
C .Ep ∶E′p = 4∶3
D .Ep ∶E′p = 1∶2
11.A 、B 、C 三物块质量均为m ,置于光滑水平台面上.B 、C 间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A 以初速度v 0沿B 、C 连线方向向B 运动,相碰后,A 与B 、C 粘合在一起,然后连接B 、C 的细绳因受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离,脱离弹簧后C 的速度为v 0.
(1)求弹簧所释放的势能ΔE .
(2)若更换B 、C 间的弹簧,当物块A 以初速v 向B 运动,物块C 在脱离弹簧后的速度为2v 0,则弹簧所释放的势能ΔE ′是多少?
(3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C 在脱离弹簧后的速度仍为2v 0,A 的初速度v 应为多大?
(1)31mv 02 (2)12
1m (v -6v 0)2 (3)4v 0
12光滑水平面上有A 、B 、C 三个物块,其质量分别为m A = 2.0kg ,m B = 1.0kg ,m C = 1.0kg .现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做108J (弹簧仍处于弹性限度内),然后同时释放A 、B ,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰以4m/s 的速度迎面与B 发生碰撞并粘连在一起.求:
(1)弹簧刚好恢复原长时(B 与C 碰撞前)A 和B 物块速度的大小.
(2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.
.υA =6m/s ,υB = 12m/s ,A 的速度向右,B 的速度向左.E ′p =50J
gh 2k mg
2。