长方体正方体知识点附重点题型
- 格式:doc
- 大小:50.50 KB
- 文档页数:2
长方体和正方体知识点归纳和习题{知识点归纳}1、认识长方体的长、宽、高;认识正方体的棱长2、长方体、正方体各自的特点。
3、能计算长方体、正方体的棱长总和。
长方体的棱长总和二(长+宽+高)X4或长X4+宽X4+高X4正方体的棱长总和二棱长X124、认识并了解长方体和正方体的平面展开图;熟悉几种正方体平面展开图的几种形式,并能判断。
5、长方体的表面积(1)、长方体表面积是指六个面的面积之和。
(2)、长方体和正方体表面积的计算方法。
长方体表面积=(长X宽+长X高+宽X高)X2正方体表面积=棱长X棱长X66、能结合生活中的实际情况,计算图形的表面积。
如:粉刷墙壁。
7、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。
8、体积与容积的概念。
体积:物体所占空间的大小叫作物体的体积。
容积:容器所能容纳入体的体积叫做物体的容积。
9、常用的体积单位有:立方厘米、立方分米、立方米。
常用容积单位:升、毫如:冰箱的容积用“升”作单位;我们饮用的自来水用“立方米”作单位。
10、长方体的体积二长X宽X高正方体的体积二棱长X棱长X棱长长方体(正方体)的体积二底面积X高11、能利用长方体(正方体)的体积及其他两个条件求出问题。
如:长方体的高二体积三(长X宽)12、相邻两个体积单位、容积单位之间的进率是1000。
如:1dm3=1000cm31L=1000mL1m3=1000dm3高级单位化低级单位乘进率,低级单位化高级单位除以进率。
13、不规则物体体积测量方法:将物体体积转化成可测量的水的体积。
如:容器中上升水的体积=不规则物体体积专题练习一、填空:1、长方体和正方体都有()个面,()条棱,()个顶点。
2、长方体的长是8厘米,宽是6厘米,高是5厘米,它的棱长和是()厘米;六个面中最大的一个面积是()平方厘米,表面积是()平方厘米。
3、2850平方厘米二()平方分米()平方厘米12.8米二()分米二()厘米4、一个棱长是1分米的正方体,锯成2个小长方体,其中一个长方体的表面积是()平方分米。
长方体和正方体知识点汇总一、长方体和正方体的认识一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形!长方体有六个面,最多可以看到3个面,最少看到一个面,一个长方体至少4条棱相等的,最多8条棱相等的!练习:(1)判断并改正:1、长方体的六个面一定是长方形; ( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。
( )7、长方体的三条棱分别叫做长、宽、高。
( )8、有两个面是正方形的长方体一定是正方体。
( )9、有三个面是正方形的长方体一定是正方体。
()11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
()12、长方体和正方体最多可以看到3个面。
()14、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
()15、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
()16、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
()(2)填空:1、一个长方体最多有()个面是正方形,最多有()条棱长度相等。
2、一个长方体的底面是一个正方形,则它的4个侧面是()形。
3、正方体不仅相对的面相等,而且所有相邻的面(),它的六个面都是相等的()形。
4、把长方体放在桌面上,最多可以看到()个面。
最少可以看到()个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4长方体棱长和=下面周长×2+高×4长方体棱长和=右面周长×2+长×4长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12棱长和的变形:突破口:几长+几宽+几高+结头处=包装绳总长3、如图,有一个长5分米、宽和高都是3分米的长方体硬纸箱,用绳子将箱子捆扎起来,打结处共用2分米。
第二讲 长方体和正方体一、长方体和正方体的认识【知识点1】棱面顶点要素立体图形数量特征数量特征数量特征长方体12互相平行的棱长度相等6相对的面完全相同8特殊长方体12垂直于正方形面的棱长度相等6两个面是正方形,其余四个面是完全相同的长方形8正方体12所有的棱长度都相等6所有面都是正方形且完全相同8同一个顶点引出的三条棱分别叫做长、宽、高一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形!练习:(1)判断并改正:1、长方体的六个面一定是长方形; ( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。
( )7、长方体的三条棱分别叫做长、宽、高。
( )8、有两个面是正方形的长方体一定是正方体。
( )9、有三个面是正方形的长方体一定是正方体。
( )11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
( )12、长方体和正方体最多可以看到3个面。
( ) 14、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
( ) 15、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
( )16、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( )(2)填空:1、一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。
2、一个长方体的底面是一个正方形,则它的4个侧面是( )形。
3、正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
4、把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)长+宽+高=棱长和÷4长方体棱长和=下面周长×2+高×4长方体棱长和=右面周长×2+长×4长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的, 因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
一、长方体和正方体的定义长方体:长方体是一种特殊的长方形,其六个面都是矩形,相邻的两个面是相等的,相对的两个面是相似的,并且相邻的三条棱相交于一点,这样的立体叫做长方体。
正方体:正方体是一个特殊的长方体,它的所有边长相等,并且每个面都是正方形,相邻的两个面是相等的,相对的两个面是相似的,且相邻的四条棱相交于一点,这样的立体叫做正方体。
二、长方体和正方体的性质1. 面的个数和性质:长方体有六个矩形的面;正方体有六个正方形的面。
2. 顶点、棱、面的关系:长方体有八个顶点、十二条棱和六个面;正方体有八个顶点、十二条棱和六个面。
3. 对角线的长度:长方体的对角线长度为√(l² + w² + h²),其中l、w、h分别为长方体的长、宽、高;正方体的对角线长度为√3a,其中a为正方体的边长。
4. 体积和表面积:长方体的体积为lwh,其中l、w、h分别为长方体的长、宽、高,表面积为2lw + 2lh + 2wh;正方体的体积为a³,其中a为正方体的边长,表面积为6a²。
5. 对顶点、棱、面的关系:对每个顶点,有四条棱和三个面相交;对每条棱,有两个面相交;对每个面,有四条棱相交。
三、长方体和正方体的题型及解题方法1. 计算体积和表面积:给定长方体或正方体的边长,要求计算它们的体积和表面积,可以使用公式进行计算。
2. 计算对角线的长度:给定长方体或正方体的长、宽、高或边长,要求计算它们的对角线长度,可以使用勾股定理进行计算。
3. 判断给定的图形是长方体还是正方体:根据图形的特征,可以判断给定的立体是长方体还是正方体,主要依据是它的六个面是否都是矩形或正方形。
4. 求棱长:已知长方体或正方体的体积和某个棱长,要求计算其它两个棱长,可以使用体积的公式进行计算。
四、案例分析例题一:已知正方体的边长为5cm,求其体积和表面积。
解:正方体的体积为a³,表面积为6a²。
长方体和正方体单元知识点1. 长方体(Rectangular Prism):长方体是由6个矩形面组成的立体图形。
它的所有对面都是相等的,并且相对的面是平行的。
长方体有8个顶点、12条边和6个面。
1.1定义:长方体的定义可以用以下几个要素来描述:-一个有6个矩形面的立体图形。
-每个面都是直角相邻的。
-所有面的边长都不相等。
-所有对面都是平行的。
1.2特征:长方体具有以下特征:-所有边长不相等。
-所有对面都是平行的。
-每个面上的相对边长相等。
-所有的角都是直角。
1.3表面积计算:长方体的表面积可以通过计算每个面的面积,并将结果相加得到。
表面积 = 2lw + 2lh + 2wh其中,l、w和h分别代表长方体的长度、宽度和高度。
1.4体积计算:长方体的体积可以通过将长度、宽度和高度相乘来计算。
体积 = lwh2. 正方体(Cube):正方体是一种特殊的长方体,其所有边长相等。
正方体有8个顶点、12条边和6个面。
正方体具有更多的对称性和特殊性质。
2.1定义:正方体的定义可以用以下几个要素来描述:-一个具有6个正方形面的立体图形。
-所有边长相等。
-所有的角都是直角。
2.2特征:正方体具有以下特征:-所有边长相等。
-所有对面都是平行的。
-每个面上的角度都是直角。
-具有更多的对称性,即旋转或反射一个正方体的结果仍然是一个正方体。
2.3表面积计算:正方体的表面积可以通过计算每个面的面积,并将结果相加得到。
表面积=6s^2其中,s代表正方体的边长。
2.4体积计算:正方体的体积可以通过将边长三次幂(即三次方)来计算。
体积=s^3其中,s代表正方体的边长。
总结:长方体和正方体都是由矩形面组成的三维立体图形。
长方体具有所有边长不相等的特征,而正方体具有所有边长相等的特征。
它们在计算表面积和体积时的公式也有所不同。
长方体的表面积为2lw + 2lh + 2wh,体积为lwh;而正方体的表面积为6s^2,体积为s^3、正方体具有更多的对称性和特殊性质。
长方体和正方体的知识点1 1 一、正方体部分①最少要八个..相同..的小正方体才能拼成一个较大的正方体。
②正方体有十一种展开图。
③正方形涂色B :把一个正方体的表面都涂满颜色,然后切成棱长为1的小正方体。
(长方体同)三面有颜色:有8个,在顶点上二面有颜色:有(棱长-2)×12 在棱长上 实际上求棱长减去2以后正方体的棱长和一面有颜色:有(棱长-2)2 ×6在表面上 实际上求棱长减去2以后正方体的表面积没有颜色:(棱长-2)3 在正方体的内部 实际是求棱长减去2以后正方体的体积。
④正方体的棱长扩大到原来的2倍,表面积扩大到原来的4倍,增加了...原来的3倍,面积是原来的平方倍; 正方体的棱长扩大到原来的2倍体积扩大到8倍,增加了...原来的7倍。
正方体体积是原来的立方倍。
⑤设一个正方体的棱长为a ,则它的棱长和=12a ,表面积S :S=6×a×a =6a 2 体积V= a×a×a = a3 长方体和正方体都有:12条棱、6个面、8个顶点正方体的总棱长= 棱长 × 12 (单位:长度单位)正方体的表面积 =(棱长 × 棱长)×6 (单位:平方单位)正方体的体积 = 棱长 × 棱长 × 棱长 即: V= a 3 (单位:立方单位)长方体(或正方体)的体积= 底面积×高 即: V=sh (单位:平方单位)⑥体积单位有:立方米、立方分米、立方厘米 1立方分米=1000立方厘米 1立方米=1000立方分米 容积单位有:立方米、升、 毫升 1升=1立方分米 1毫升=1立方厘米 1升=1000毫升二、长方体①长方体有六个面,12条棱,8个顶点,最多可以看到3个面,最少看到一个面,长方体不包括正方体, 最多有两个面是正方形,最多有四个面相等,最多有8条棱相等。
②长、宽、高均不相等的长方体的表面展开图:一四一式27种;二三一式18种;二二二式6种;三三式3种,共计54种。
长方体和正方体的知识点整理
长方体和正方体是几何学中常见的几何体形状。
下面是关于长方体和正方体的知识点整理:
长方体:
1. 定义:长方体是具有三组相对平行并且相等的面的立体。
2. 特点:
- 具有六个面,每个面都是矩形。
- 有八个顶点和12条边。
- 相邻的三个面之间的角是直角。
- 面对面的两个矩形面的长和宽相等。
3. 主要参数和公式:
- 长方体的体积公式:V = l × w × h,其中V表示体积,l表示长,w表示宽,h表示高。
- 长方体的表面积公式:A = 2lw + 2lh + 2wh,其中A表示表面积,l表示长,w表示宽,h表示高。
正方体:
1. 定义:正方体是具有六个相等的正方形面的立体。
2. 特点:
- 具有六个面,每个面都是正方形。
- 有八个顶点和12条边。
- 相邻的三个面之间的角是直角。
- 所有的边长都相等。
3. 主要参数和公式:
- 正方体的体积公式:V = a^3,其中V表示体积,a表示边长。
- 正方体的表面积公式:A = 6a^2,其中A表示表面积,a表示边长。
总结:
长方体和正方体虽然在形状上有一些不同,但它们都是立体,具有边、面、顶点等特征。
计算体积和表面积时,长方体和正方体的公式也有所不同,需要根据具体的参数进行计算。
第三单元《长方体和正方体的认识》知识点及练习题发表时间:2011-5-31 18:45:56来源:访问次数:6690第三单元《长方体和正方体的认识》知识点1、两个面相交的线叫做棱,三条棱相交的点叫做顶点。
2、形体相同点不同点关系面棱顶点面的形状面的大小棱长长方体 6 12 8 一般都是长方形,有时也有两个相对的面是正方形。
相对的面的面积相等平行的四条棱长度相等正方体是特殊的长方体正方体 6 12 8 六个面都是正方形六个面的面积相等六条棱长都相等长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。
长方体的12条棱有3组,每组的四条棱长度相等。
长方体的棱长总和=长×4+宽×4+高×4=(长+宽+高)×4长方体放桌面上,最多只能看到3个面。
3、正方体的展开1).“141型”,中间一行4个图:作侧面,上下两个各作为上下底面,•共有6种基本图形。
2).“231型”,中间3个作侧面,共3种基本图形。
见上图3).“222”型,两行只能有1个正方形相连。
4).“33”型,两行只能有1个正方形相连。
4、长方体的表面积就是长方体六个面的总面积。
由于相对的面完全相同,所以可以先求出前面、后面和下面三个面的面积,再乘以2,就可以求出表面积了。
长方体的表面积 = 长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。
正方体的表面积 = 棱长×棱长×65、在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
一个抽屉有5个面,分别是前面、后面、左面、右面、底面。
所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。
第一单元《长方体和正方体》知识点一、长方体和正方体的特征:1.长方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。
2.正方体的特征:正方体有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
3.长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
4.长方体的棱长总和=(长+宽+高)×4 用字母表示:(a+b+h)×4正方体的棱长总和= 棱长×12 用字母表示:12a二、长方体和正方体的表面积的计算1.什么叫表面积:长方体或正方体6个面的总面积叫做它的表面积。
2.长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示:S=(ab+ah+bh)×23.正方体的表面积= 棱长×棱长×6 用字母表示:S=6a24.常用的面积单位:平方厘米、平方分米、平方米5.面积单位间的进率:1m2 =100dm2 1dm2 =100cm2三、长方体和正方体的体积的计算1.什么叫体积:物体所占空间的大小叫做物体的体积。
2.长方体的体积= 长×宽×高用字母表示:V=abh3.正方体的体积= 棱长×棱长×棱长用字母表示:V=a34.常用的体积单位:立方厘米、立方分米和立方米5.体积单位间的进率:1m3=1000dm3 1dm3=1000cm3 1m3=100 0000cm36.长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高用字母表示:V=Sh7.体积单位的互化:把高级单位化成低级单位,用高级单位数乘进率;------大乘小把低级单位聚成高级单位,用低级单位数除以进率。
-----------小除以大8.容积:容器所能容纳物体的体积。
正方体长方体知识点、易错题、小升初难题第三单元正方体和长方体知识点长方体.正方体概念.特征:长方体和正方体都是立体图形。
正方体是特殊的长方体。
相交于一个顶点的三条棱的长度分别叫做长方体的长.宽.高。
正方体都叫做棱。
长.宽.高都各有4条,分别平行并且相等,正方体的棱都相等。
)各部分特征:长方体:面:有6个面,都是长方形(特殊情况下最多有两个相对的面是正方形)。
相对的面完全相同。
棱:有12条棱。
相对的棱长度相等。
顶点:有8个顶点。
正方体:面:有6个面都是正方形,6个面完全相同。
棱:有12条棱。
12条棱的长度相等。
顶点:有8个顶点。
棱长总和公式:长方体的棱长总和=(长+宽+高)×4.L长4(a+b+h)正方体的棱长总和=棱长×12.L正12a表面积:长方体或正方体6个面和总面积叫做它的外表积。
基本公式:长方体的表面积=(长×宽+长×高+宽×高)×2.S 表长2(ab+ah+bh)正方体的表面积=棱长×棱长×6.S表正a×a×6公式延伸:①无底(或无盖):(少一个长×宽)长方体表面积=长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-ab。
S=2(ah+bh)+ab②无底又无盖:(一般烟囱)长方体表面积=(长×高+宽×高)×2.S=2(ah+bh)体积:物体所占空间的大小叫做物体的体积。
符号:V单位:常用:立方米m3立方分米dm3立方厘米cm3不常用:立方千米km3(描述天体星球)立方毫米mm3(XXX)基本公式:长方体的体积=长×宽×高V=abh正方体的体积=棱长×棱长×棱长V=a3公式延伸:长方体或正方体底面的面积叫做底面积。
底面积=长×宽V=sh(长.正方体的体积都=底面积×高)容积:箱子.油桶.仓库等所能包容物体的体积,通常叫做他们的容积。
一、知识点一:长方体和正方体的认识
6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。
正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
长方体的长、宽、高。
=(长+宽+高)×4
用字母表示:(a+b+h)×4
正方体的棱长总和= 棱长×12
用字母表示:12a
二、知识点二:长方体和正方体的表面积的计算
6个面的总面积叫做它的表面积。
=(长×宽+长×高+宽×高)×2用字母表示:S=(ab+ah+bh)×2
正方体的表面积= 棱长×棱长×6
用字母表示:S=6a2
6
7、1m2 =100dm2 1dm2 =100cm2
三、知识点三:长方体和正方体的体积的计算
= 长×宽×高
用字母表示:V=abh
正方体的体积= 棱长×棱长×棱长
用字母表示:V=a3
1m3=1000dm3 1dm3=1000cm3 1m3=100 0000cm3
长方体或正方体的体积=底面积×高
用字母表示:V=Sh
把高级单位化成低级单位,用高级单位数乘以进率;------大乘小
把低级单位聚成高级单位,用低级单位数除以进率。
-----------小除大
四、知识点三:长方体和正方体的容积的计算
L和ml)
1L=1000ml 1L= 1dm3 1ml= 1cm3
跟体积的计算方法相同,但要从里面量长、宽、高。
棱长加深拓展:
如图,有一个长5分米、宽和高都是3分米的长方体硬纸箱,如果用绳子将箱子横着捆两道,长着捆一道, 打结处共用2分米。
一共要用绳子多长?
表面积:
4、如图,把一个长方体木料沿着虚线正好锯成3个完全一样的小正方体后,表面积增加了48平方分米。
这根木料的表面
积是多少平方分米?
容积体积转化:
5、一个正方体水箱容积是343立方分米,把这一满水箱的水全部注入到一个长方体水箱内,已知长方体水箱长10分米,
宽7分米,这个水箱内的水深多少分米?
7、有一只长150厘米,宽50厘米,高40厘米的水盒,里面装满水,这时放入一块高和长都是20厘米的长方体石块,水溢岀4升,这块石头的宽是多少厘米?
1 / 21 / 2。
一,概念和定义:1,长方体:由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
1,棱长:两个面相交的边叫做棱。
2,顶点:三条棱相交的点叫做顶点。
3,长宽高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
2,长方体的特征: 1,有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
2,一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
3,正方体:由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
4,正方体特点: 1,有6个面,8个顶点,12条棱,12条棱长度都相等,6个面的面积都相等。
2,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5,长方体长、宽、高的意义:相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。
6,表面积 1,意义:长方体或正方体6个面的总面积,叫做它的表面积。
2,长方体表面积:长方体的表面积=(长×宽+宽×高+长×高)×2 字母表示S=2(ab+ah+bh)3,正方体表面积:正方体的表面积=棱长×棱长×6(任意一个面积×6),字母表示 S=a×a×64,无底(或无盖)长方体表面积= (长×宽+长×高+宽×高)×2 - 长×宽5,无底又无盖长方体表面积=(长×宽+长×高+宽×高)×2 - (长×宽)×26,没盖的正方体表面积=棱长×棱长×57,体积 1,意义:物体所占空间的大小叫做物体的体积。
2,体积单位:立方米,立方分米,立方厘米;用字母表示为:3,体积单位之间的进率:每两个相邻的体积单位之间的进率是1000.4,长方体的体积=长×宽×高=底面积×高字母表示V=abh 或 V=S h5,正方体的体积=棱长×棱长×棱长=底面积×高字母表示 V=a×a×a = a3读作“a的立方”表示3个a相乘,(即a·a·a)6,特殊体积:在一个有水的容器里放入一个物体(如:石头等),水面会上升,水面上升那部分水的体积,就是物体的体积。
长方体和正方体知识点汇总一、长方体和正方体的认识1、长方体定义:长方体是由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
面:长方体有 6 个面,相对的面完全相同。
棱:长方体有 12 条棱,相对的棱长度相等。
按长度可分为三组,每一组有 4 条棱。
顶点:长方体有 8 个顶点。
2、正方体定义:正方体是用六个完全相同的正方形围成的立体图形。
面:正方体有 6 个面,每个面都是正方形,且 6 个面完全相同。
棱:正方体有 12 条棱,12 条棱的长度都相等。
顶点:正方体有 8 个顶点。
3、长方体和正方体的关系正方体是特殊的长方体,当长方体的长、宽、高都相等时,就变成了正方体。
二、长方体和正方体的表面积1、表面积的定义长方体或正方体 6 个面的总面积,叫做它的表面积。
2、长方体表面积的计算公式:长方体的表面积=(长×宽+长×高+宽×高)× 2例如:一个长方体的长为 5 厘米,宽为 4 厘米,高为 3 厘米,其表面积为:(5×4 + 5×3 + 4×3)× 2 = 94(平方厘米)3、正方体表面积的计算公式:正方体的表面积=棱长×棱长× 6例如:一个正方体的棱长为 6 厘米,其表面积为:6×6×6 = 216(平方厘米)三、长方体和正方体的体积1、体积的定义物体所占空间的大小叫做物体的体积。
2、体积单位常用的体积单位有立方厘米、立方分米、立方米。
1 立方厘米:棱长为 1 厘米的正方体,体积是 1 立方厘米。
1 立方分米:棱长为 1 分米的正方体,体积是 1 立方分米。
1 立方米:棱长为 1 米的正方体,体积是 1 立方米。
3、长方体体积的计算公式:长方体的体积=长×宽×高例如:一个长方体的长为 6 厘米,宽为 5 厘米,高为 4 厘米,其体积为:6×5×4 = 120(立方厘米)4、正方体体积的计算公式:正方体的体积=棱长×棱长×棱长例如:一个正方体的棱长为 5 厘米,其体积为:5×5×5 = 125(立方厘米)5、体积单位的换算1 立方米= 1000 立方分米1 立方分米= 1000 立方厘米四、长方体和正方体的容积1、容积的定义容器所能容纳物体的体积,叫做它的容积。
长⽅体和正⽅体知识点+例题+习题第1节长⽅体和正⽅体的认识典型例题例1.⼀个长⽅体长8厘⽶,宽6厘⽶,⾼4厘⽶,它的棱长总和是多少厘⽶?分析:根据长⽅体的特征,它相对的棱(3组,每组4条)的长度相等,那么长⽅体的棱长和等于长、宽、⾼的4倍.解:(8+6+4)×4=18×4=72(厘⽶)答:它的棱长总和是72厘⽶.例2.⽤⼀根48厘⽶的铁丝焊接成⼀个最⼤的正⽅体框架,这个框架的每条边应该是多少厘⽶?分析:根据正⽅体的特征,它的12条棱长都相等,把48厘⽶平均分成12份,每份就是⼀条棱的长度.解:48÷12=4(厘⽶)答:这个框架的每条边应该是4厘⽶.例3.⽤棱长1厘⽶的⼩正⽅体摆成稍⼤⼀些的正⽅体,⾄少需要多少个⼩正⽅体?分析:题⽬要求⾄少要多少个棱长为1厘⽶的⼩正⽅体,那么拼成的棱长应尽量⼩,所以应该考虑棱长为2的⽴⽅体,体积是8⽴⽅厘⽶,所以要8个.解:2×2×2=8(个)答:⾄少需要8个⼩正⽅体.例4.将下⾯的硬纸板按照虚线折成⼀个⽴⽅体,哪个⾯与哪个⾯相对?分析:通过实验可以看到带有标号的⾯7与10,⾯8与11,⾯9与12是相对的⾯.例5.⼀个正⽅体的六个⾯上,分别写着“1”“2”“3”“4”“5”“6”.根据下⾯摆放的三种情况,判断出每个对⾯上的数字是⼏?分析:正⽅体有6个⾯,每⼀个⾯有⼀个相对的⾯,⽽与其余四个⾯相邻.解题时我们如果抓住这⼀特征,确定某⼀个⾯与哪四个⾯相邻,于是就不难判断出这⼀⾯相对的⾯上的数字是⼏了.即排除包括⾃⼰在内的五个数字,剩下的就是与某⼀⾯相对的⾯上数字了.先以“3”为例:从上⾯左图可以看出,“3”⾯与“2”⾯、“1”⾯相邻;从中图可以看出.“3”⾯⼜与“4”⾯、“5”⾯相邻.这就是说,“3”⾯与“1”⾯、“2”⾯、“4”⾯和“5”⾯这四个⾯相邻.那么,就可以很快知道,“3”⾯与“6”⾯相对.再来看“1”⾯:从上⾯左图可看出,“1”⾯与“2”⾯“3”⾯相邻;从右图可看出,“1”⾯⼜与“6”⾯“4”⾯相邻,这就是说,与“1”相邻的四个⾯,是“2”⾯、“3”⾯、“4”⾯和“6”⾯,那么,与“1”⾯相对的⾯就只能是“5”⾯了.最后看“4”⾯:从上⾯中图可以看出,“4”⾯与“3”⾯、“5”⾯相邻;从右图可以看出,“4”⾯⼜与“1”⾯“6”⾯相邻.这就是说,与“4”⾯相邻的四个⾯,是“1”⾯、“3”⾯、“5”⾯和“6”⾯,于是可知,与“4”⾯相对是⾯是“2”⾯.所以题⽬的结论是:这个正⽅体上相对的⾯,分别是“1”⾯和“5”⾯、“2”⾯和“4”⾯、“3”⾯和“6”⾯.解:这个正⽅体上相对的⾯,分别是“1”⾯和“5”⾯、“2”⾯和“4”⾯、“3”⾯和“6”⾯.习题精选⼀、填空.1.长⽅体有()个⾯,它们⼀般都是()形,也可能有()个⾯是正⽅形.2.长⽅体的上⾯和下⾯、前⾯和后⾯、左⾯和右⾯都叫做(),它们的⾯积().3.长⽅体的12条棱,每相对的()条棱算作⼀组,12条棱可以分成()组.4.正⽅体有()个⾯,每个⾯都是()形,⾯积都().5.⼀个正⽅体的棱长是6厘⽶,它的棱长总和是().6.⼀个长⽅体的长是1.5分⽶,宽是1.2分⽶,⾼是1分⽶,它的棱长和是()分⽶.7.⼀个长⽅体的棱长总和是80厘⽶,其中长是10厘⽶,宽是7厘⽶,⾼是()厘⽶.8.把两个棱长1厘⽶的正⽅体拼成⼀个长⽅体,这个长⽅体的棱长总和是()厘⽶.⼆、判断题.1.长⽅体和正⽅体都有6个⾯,12条棱,8个顶点.()2.长⽅体的6个⾯不可能有正⽅形.()3.长⽅体的12条棱中,长、宽、⾼各有4条.()4.正⽅体不仅相对的⾯的⾯积相等,⽽且所有相邻的⾯的⾯积也都相等.()5.长⽅体(不包括正⽅体)除了相对的⾯相等,也可能有两个相邻的⾯相等.()6.⼀个长⽅体长12厘⽶,宽8厘⽶,⾼7厘⽶,把它切成⼀个尽可能⼤的正⽅体,这个正⽅体的棱长是8厘⽶.()三、选择题.1.下列物体中,形状不是长⽅体的是()①⽕柴盒②红砖③茶杯④⽊箱2.长⽅体的12条棱中,⾼有()条.①4②6③8④123.下列三个图形中,能拼成正⽅体的是()4.把⼀个棱长3分⽶的正⽅体切成两个相等的长⽅体,增加的两个⾯的总⾯积是()平⽅分⽶.①18②9③36④以上答案都不对参考答案⼀、填空.1.6 长⽅形 22.相对⾯相等3.4 34.6 正⽅形相等5.72厘⽶6.14.87.38.16⼆、判断题.1.√ 2.× 3.√4.√ 5.√ 6.×三、选择题.1.③2.①3.①和③4.①第2节长⽅体和正⽅体的表⾯积例1.⼀种有盖的长⽅体铁⽪盒,长8厘⽶,宽5厘⽶,⾼3厘⽶.做25个这样的盒⼦⾄少需要多少平⽅⽶铁⽪?(不计接⼝⾯积)分析:根据长⽅体表⾯积的计算⽅法,先求出⼀个盒⼦需要的铁⽪数量,然后就可以求出25个这样的盒⼦需要的铁⽪数量.解:(8×5+8×3+5×3)×2×25=158×25=3950(平⽅厘⽶)=0.395(平⽅⽶)答:⾄少需要0.395平⽅⽶的铁⽪.例2.⼀个长⽅体,表⾯积是456平⽅厘⽶,它的底⾯是⼀个边长为4厘⽶的正⽅形,它的⾼是多少厘⽶?分析:题⽬中给出这个长⽅体底⾯是⼀个边长为4厘⽶的正⽅形,说明这个长⽅体是有两个相对的⾯是正⽅形的,其余4个⾯是⾯积相等的长⽅形,只要我们求出⼀个长⽅形⾯的⾯积,再⽤⾯积除以底⾯的边长,就算出了长⽅体的⾼了.这也是利⽤长⽅体的特征,逆解题⽬.解:456-4×4×2=424(平⽅厘⽶)424÷4=106(平⽅厘⽶)106÷4=26.5(厘⽶)答:它的⾼是26.5厘⽶.例3.⼀个教室长8⽶,宽6⽶,⾼3.5⽶,要粉刷教室的墙壁和天花板.门窗和⿊板的⾯积是22平⽅⽶,平均每平⽅⽶⽤涂料0.25千克,粉刷这个教室共需要涂料多少千克?分析:求需要涂料多少千克,必须先求出实际粉刷的⾯积.长⽅体的表⾯积去掉门窗、⿊板和地⾯的⾯积就是实际粉刷的⾯积.解:(1)粉刷的⾯积为:(8×6+8×3.5+6×3.5)×2-8×6-22=(48+28+21)×2-48-22=97×2-48-22=194-48-22=124(平⽅⽶)(2)需要涂料的重量为:0.25×124=31(千克)答:粉刷这个教室共需要涂料31千克.例4.将⼀个长12厘⽶,宽9厘⽶,⾼5厘⽶的长⽅体,切成两个长⽅体,两个长⽅体表⾯积的总和最多是多少平⽅厘⽶?最少是多少平⽅厘⽶?分析:切割长⽅体⼀次,原来的表⾯积增加两个⾯的⾯积,要使切开后的两个长⽅体表⾯积的总和最多(少),必须使横截⾯的⾯积最⼤(⼩).解:(12×9+12×5+9×5)×2+12×9×2=(108+60+45)×2+216=213×2+216=642(平⽅厘⽶)(12×9+12×5+9×5)×2+9×5×2=(108+60+45)×2+90=213×2+90=516(平⽅厘⽶)答:两个长⽅体表⾯积的总和最多是642平⽅厘⽶,最少是516平⽅厘⽶.例5.⼀个正⽅体,棱长的总和是96厘⽶.这个正⽅体的表⾯积是多少?分析:因为正⽅体的12根棱长都相等,所以可知,这个正⽅体的棱长是96÷12=8(厘⽶).⼜由于正⽅体有相等的6个⾯,每个都是正⽅形.解:8×8×6=384(平⽅厘⽶)答:这个正⽅体的表⾯积是384平⽅厘⽶.例6.做两个同样的正⽅体纸盒,⼀个有盖⼀个⽆盖,有盖纸盒⽤的纸板是⽆盖纸盒的多少倍?分析:有盖纸盒的表⾯积是它的⼀个⾯⾯积的6倍,⽆盖纸盒的表⾯积是它的⼀个⾯⾯积的5倍,⽽两个同样的正⽅体纸盒的⾯的⾯积是相等的,所以有盖纸盒⽤的纸板是⽆盖纸盒的6÷5=1.2倍.解:6÷5=1.2答:有盖纸盒⽤的纸板是⽆盖纸盒的1.2倍.习题精选⼀、填空题1.(1)下图上、下每个⾯的长()厘⽶,宽()厘⽶,⾯积是();(2)前、后每个⾯的长是()厘⽶,宽是()厘⽶,⾯积是();(3)左、右每个⾯的长是()厘⽶,宽是()厘⽶,⾯积是().(4)它的表⾯积是().2.(1)下图中上⾯的⾯积是(),前⾯的⾯积是(),右⾯的⾯积是();(2)计算它的表⾯积的算式是().⼆、计算题求下⾯各长⽅体的表⾯积:1.长6⽶,宽3⽶,⾼2⽶.2.长8分⽶,宽4.5分⽶,⾼2分⽶.3.长和宽都是6厘⽶,⾼3.4厘⽶.三、应⽤题1.做⼀个长⽅体的纸箱,长0.8⽶,宽0.6⽶,⾼0.4⽶.做这个纸箱⾄少需要纸板多少平⽅⽶?2.⼀个正⽅体的⽊箱,棱长5分⽶,在它的表⾯涂漆,涂漆的⾯积是多少?如果每平⽅分⽶⽤漆8克,涂这个⽊箱要⽤漆多少克?合多少千克?3.⼀个长⽅体的铁⽪盒,长25厘⽶,宽20厘⽶,⾼8厘⽶.做这个铁⽪盒⾄少要⽤多少平⽅厘⽶铁⽪?参考答案⼀、1.(1)下图上、下每个⾯的长( 9 )厘⽶,宽( 3 )厘⽶,⾯积是(27平⽅厘⽶);(2)前、后每个⾯的长是( 9 )厘⽶,宽是( 4 )厘⽶,⾯积是(36平⽅厘⽶);(3)左、右每个⾯的长是( 4 )厘⽶,宽是( 3 )厘⽶,⾯积是(12平⽅厘⽶).(4)它的表⾯积是:9×3+9×4+4×3)×2=150(平⽅厘⽶).2.(1)下图中上⾯的⾯积是(36平⽅分⽶),前⾯的⾯积是(48平⽅分⽶),右⾯的⾯积是(48平⽅分⽶);(2)计算它的表⾯积的算式是:6×6×2+6×8×4=264(平⽅分⽶).⼆、1.(6×3+6×2+3×2)×2=72(平⽅⽶)2.(8×4.5+8×2+4.5×2)×2=122(平⽅分⽶)3.6×6×2+6×3.4×4=153.6(平⽅厘⽶)三、1.(0.8×0.6+0.8×0.4+0.6×0.4)×2=2.08(平⽅⽶)答:⾄少需要纸板2.08平⽅⽶.2.5×5×6=150(平⽅分⽶)答:涂漆的⾯积是150平⽅分⽶.8×150=1200(克)=1.2(千克)答:要⽤漆1200克,合1.2千克.3.(25×20+25×8+20×8)×2=1720(平⽅厘⽶)答:⾄少要⽤1720平⽅厘⽶铁⽪.第3节长⽅体和正⽅体的体积(⼀)典型例题例1.把⼀个棱长6分⽶的正⽅体钢坯,锻造成⼀个宽3分⽶,⾼2分⽶的长⽅体钢件,这个钢件长多少分⽶?分析:把正⽅体钢坯锻造成长⽅体钢件,形状改变了,但是体积没有改变,即正⽅体的体积和长⽅体的体积相等.已知长⽅体的宽和⾼,⽤体积除以宽,要再除以⾼,就可以求出长.解:6×6×6÷3÷2=216÷3÷2=36(分⽶)答:这个钢件的长是36分⽶.例2.⼀个正⽅体的铁⽪油箱,从⾥⾯量得棱长为6分⽶,⾥⾯装满汽油.如果把这箱汽油全部倒⼊⼀个长10分⽶、宽8分⽶、⾼5分⽶的长⽅体铁⽪油箱中,那么,油⾯离箱⼝还有多少分⽶?分析:根据题意,可先求得正⽅体铁⽪油箱的汽油体积为:6×6×6=216(⽴⽅分⽶)⽽长⽅体油箱底⾯积是10×8=80(平⽅分⽶),所以,汽油在长⽅体铁⽪油箱⾥的⾼度是216÷80=2.7(分⽶).因此,油⾯离油箱⼝的⾼度就是:5-2.7=2.3(分⽶)答:油⾯离油箱⼝还有2.3分⽶.例3.⼀段⽅钢长3⽶,横截⾯是⼀个边长为0.4分⽶的正⽅形.如果1⽴⽅分⽶的钢重7.8千克,那么这段⽅钢有多重?分析:题⽬中的长度单位不统⼀,为计算的⽅便,可都化成以分⽶为单位来进⾏计算.解:3⽶=30分⽶0.4×0.4×30=4.8(⽴⽅分⽶)7.8×4.8=37.44(千克)答:这段⽅钢的重量是37.44千克.例4.有沙⼟12⽴⽅⽶,要铺在长5⽶,宽4⽶的房间⾥,可以铺多厚?分析:此题要把12⽴⽅⽶的沙⼟铺在房间⾥,也就是铺成⼀个长5⽶、宽4⽶、厚⽶的长⽅体,我们就可以⽤⽅程法求出所求问题了.这题是⼀道利⽤体积计算公式逆解的题.遇到此类题⽤⽅程法解即可.解:设可铺⽶厚.4×5×=12=0.6答:可以铺0.6⽶厚.例5.⼀个长⽅体的底⾯长6厘⽶,长是宽的1.2倍,宽⽐⾼少0.5厘⽶,这个长⽅体的体积是多少⽴⽅厘⽶?分析:这道题要求的是长⽅体的体积,求体积就必须知道长⽅形的长、宽、⾼.此题只直接给出了长,宽和⾼是间接给出的,因此应先⽤求⼀倍量的⽅法求出宽,再根据“求⽐⼀个数多⼏的数是多少”的题型算出⾼,最后⽤公式V=abh算出体积就可以了.解:6÷1.2=5(厘⽶)5+0.5=5.5(厘⽶)6×5×5.5=165(平⽅厘⽶)答:这个长⽅体的体积是165平⽅厘⽶.例6.在长为12厘⽶、宽为10厘⽶、8厘⽶深的玻璃缸中放⼊⼀⽯块并没⼊⽔中,这时⽔⾯上升2厘⽶.⽯块的体积是多少?分析:把⽯块浸没在装⽔的长⽅体玻璃缸中,⽯块占有⼀定的空间,从⽽使⽔的体积增⼤,它的具体表现就是⽔⾯上升,不管⽯块的形状如何,只要求出增加的体积就可以了(即⽯块的体积).解:12×10×2=240(⽴⽅厘⽶)答:⽯块的体积是240⽴⽅厘⽶.例7.把棱长6厘⽶的正⽅体铁块锻造成宽和⾼都是4厘⽶的长⽅体铁条,能锻造出多长?分析:我们不难看出,棱长6厘⽶的正⽅体和要锻造的长⽅体的体积相等,只不过形状不⼀样,这类题叫等积变形题.只要求出正⽅体的体积就是长⽅体的体积了.解:6×6×6÷4÷4=13.5(厘⽶)答:能锻造13.5厘⽶长.习题精选⼀、填空题1.物体所占空间的⼤⼩叫做物体的().2.计量体积要⽤()单位,常⽤的体积单位有()()和().3.棱长1厘⽶的正⽅体体积是(),棱长1分⽶的正⽅体体积是(),棱长1⽶的正⽅体体积是().4.长⽅体的体积=(),正⽅体的体积=().5.在括号⾥填上合适的计量单位.(1)⼀本数学解题题典封⾯的周长是80(),⾯积是375(),体积是1125().(2)⼀块橡⽪的体积是6(),⼀只卫⽣保健箱的体积是30(),⼀堆钢材的体积是4().⼆、判断题1.⼀块长⽅体⽊料,长6分⽶,宽4分⽶,厚3分⽶.容积是72升.()2.⼀个游泳池的容积是1000毫升.()3.⼀个正⽅体的棱长扩⼤2倍,体积就扩⼤8倍.()4.⼀个长⽅体的⽊箱,它的体积和容积⼀样⼤.()5.⼀只杯⼦能装⽔1升,杯⼦的容积就是1⽴⽅分⽶.()三、计算题看图计算下⾯长⽅体和正⽅体的体积.1.2.3.四、应⽤题1.⼀个长⽅体⽊箱,长7分⽶,宽4分⽶,⾼3.5分⽶.这个⽊箱的体积是多少?2.⼀块⽅砖的厚是5厘⽶,长和宽都是30厘⽶.求这块⽅砖的体积.3.⼀块正⽅体⽯料,棱长是0.8⽶.这块⽯料的体积是多少⽴⽅分⽶?五、提⾼题1.下图是由棱长为1厘⽶的⼩正⽅体拼摆⽽成的.这个拼摆⽽成的形体的表⾯积是多少平⽅厘⽶?体积是多少⽴⽅厘⽶?⾄少再摆上⼏个⼩正⽅体后就可以拼摆成⼀个正⽅体?2.⼀个长⽅体玻璃容器,长5分⽶,宽4分⽶,⾼6分⽶,向容器中倒⼊30升⽔,再把⼀块⽯头放⼊⽔中,这时量得容器内的⽔深20厘⽶,⽯头的体积是多少⽴⽅分⽶?参考答案⼀、1.物体所占空间的⼤⼩叫做物体的(体积).2.计量体积要⽤(体积)单位,常⽤的体积单位有(⽴⽅厘⽶)(⽴⽅分⽶)和(⽴⽅⽶).3.棱长1厘⽶的正⽅体体积是(1⽴⽅厘⽶),棱长1分⽶的正⽅体体积是(1⽴⽅分⽶),棱长1⽶的正⽅体体积是(1⽴⽅⽶).4.长⽅体的体积=(长×宽×⾼),正⽅体的体积=(棱长×棱长×棱长).5.在括号⾥填上合适的计量单位.(1)⼀本数学解题题典封⾯的周长是80(厘⽶),⾯积是375(平⽅厘⽶),体积是1125(⽴⽅厘⽶).(2)⼀块橡⽪的体积是6(⽴⽅厘⽶),⼀只卫⽣保健箱的体积是30(⽴⽅分⽶),⼀堆钢材的体积是4(⽴⽅⽶).⼆、1.⼀块长⽅体⽊料,长6分⽶,宽4分⽶,厚3分⽶.容积是72升.(× )2.⼀个游泳池的容积是1000毫升.(× )3.⼀个正⽅体的棱长扩⼤2倍,体积就扩⼤8倍.(√ )4.⼀个长⽅体的⽊箱,它的体积和容积⼀样⼤.(× )5.⼀只杯⼦能装⽔1升,杯⼦的容积就是1⽴⽅分⽶.(√ )三、1.48×5=240(⽴⽅厘⽶)2.0.36×0.6=0.216(⽴⽅⽶)3.9×8=72(⽴⽅分⽶)四、1.7×4×3.8=98(⽴⽅分⽶)答:这个⽊箱的体积是98⽴⽅分⽶.2.30×30×5=4500(⽴⽅厘⽶)答:这块⽅砖的体积是4500⽴⽅厘⽶.3.0.8×0.8×0.8=0.512(⽴⽅⽶)答:这块⽯料的体积是512⽴⽅分⽶.五、1.(1×1)×48=48(平⽅厘⽶)(1×1×1)×18=18(⽴⽅厘⽶)答:表⾯积是48平⽅厘⽶,体积是18⽴⽅厘⽶,⾄少再摆上9个⼩正⽅体就可以拼成⼀个正⽅体.2.5×4×[2-30÷(5×4)] =10(⽴⽅分⽶)或5×4×2-30=10(⽴⽅分⽶)答:⽯头的体积是10⽴⽅分⽶.2-3长⽅体和正⽅体的体积(⼆)典型例题例1.⼀个长⽅体沙坑的长是8⽶,宽是4.2⽶,深是0.6⽶,每⽴⽅⽶沙⼟重1.75吨,填平这个沙坑共要⽤沙⼟多少吨?分析:已知每⽴⽅⽶沙⼟重1.75吨,求共要⽤沙⼟多少吨,必须先求出共要沙⼟多少⽴⽅⽶,即先求出沙坑的容积.解: 1.75×(8×4.2×0.6)=1.75×20.16=35.28(吨)答:共要沙⼟35.28吨.例2.长⽅体货仓1个,长50⽶,宽30⽶,⾼5⽶,这个货仓可以容纳8⽴⽅⽶的正⽅体货箱多少个?分析:已知正⽅体货箱的体积是8⽴⽅⽶,可以知道正⽅体货箱的棱长为2⽶.货仓的长是50⽶,所以⼀排可以摆放50÷2=25个,宽是30⽶,可以摆放30÷2=15排,⾼是5⽶,可以摆放5÷2=2层 (1)⽶,所以⼀共可以摆放25×15×2=750个.(如图)解:50÷2=25(个)30÷2=15(排)5÷2=2层……1⽶25×15×2=750(个)答:可以容纳8⽴⽅⽶的正⽅体货箱750个.说明:如果此题先计算长⽅体货仓的体积(50×30×5=7500⽴⽅⽶),然后再除以⽴⽅体的体积8⽴⽅⽶(7500÷8=937.5个)是不对的.因为货仓的⾼是5⽶,⽴⽅体的棱长2⽶,只能摆放2层,上⾯的1⽶实际上是空的,没有摆放货箱.例3.⼀只底⾯是正⽅形的长⽅体铁箱,如果把它的侧⾯展开,正好得到⼀个边长是60厘⽶的正⽅形.(1)这只铁箱的容积是多少升?(2)如果铁箱内装半箱⽔,求与⽔接触的⾯的⾯积.分析:(1)根据侧⾯展开后是⼀个边长为60厘⽶的正⽅形,可以得出长⽅形的底⾯(正⽅形)的周长是60厘⽶,⾼也是60厘⽶.由底⾯(正⽅形)的周长可以求出底⾯的⾯积.从⽽求出容积.(2)与⽔接触的⾯的⾯积是原长⽅体的侧⾯积的⼀半加上⼀个底⾯积.⽽侧⾯积是边长60厘⽶的正⽅形的⾯积,底⾯积上⾯已经求出.解:(1)×60=225×60=13500(⽴⽅厘⽶)(2)60×60÷2+=1800+225=2025(平⽅厘⽶)答:这只铁箱的容积是13.5升,如果装半箱⽔,与⽔接触的⾯积是2.25平⽅厘⽶.例4.有⼀个空的长⽅体容器和⼀个⽔深24厘⽶的长⽅体容器,将容器的⽔倒⼀部分到,使两容器⽔的⾼度相同,这时两容器相同的⽔深为⼏厘⽶?分析1:容器的底⾯积是40×30,容器的底⾯积是30×20,40×30÷(30×20)=2,即的底⾯积是的底⾯积的2倍,中的⽔倒⼀部分到使、两容器⽔的⾼度相同,所以这个⽔深为24÷(2+1)=8厘⽶.解法1:24÷[40×30÷(30×20)+1 ]=24÷3=8(厘⽶)分析2:设这个相同的⽔深为厘⽶,则中倒出的⽔深为(24-)厘⽶,倒出的⽔为30×20×(24-)⽴⽅厘⽶,这些⽔就全部在中,中的⽔有40×30×⽴⽅厘⽶,故可得⽅程.解法2:设这个相同的⽔深为厘⽶.40×30×=30×20×(24-)24-=40×30×÷(30×20)24-=23=24=8答:这个相同的⽔深是8厘⽶.例5.⼀个正⽅体⽊头,棱长是6厘⽶,在6个⾯的中央各挖⼀个长、宽、⾼都是2厘⽶的洞孔,这时它的表⾯积、体积各是多少?分析:表⾯积等于正⽅体表⾯积加上6个洞孔的4个⾯的⾯积;体积等于正⽅体的体积减去6个洞孔的体积.解:表⾯积为:6×6×6+2×2×4×6=216+96=312(平⽅厘⽶)体积为:6×6×6-2×2×2×6=216-48=168(⽴⽅厘⽶)答:表⾯积为312平⽅厘⽶,体积为168⽴⽅厘⽶.例6.有⼀块宽为22厘⽶的长⽅形铁⽪,在四⾓上剪去边长为5厘⽶的正⽅形后(如图⼀),将它焊成⼀个⽆盖的长⽅体盒⼦(如图⼆),已知这个盒⼦的体积是2160⽴⽅厘⽶,求原来这块铁⽪的⾯积是多少平⽅厘⽶?分析:已知盒⼦的体积是2160⽴⽅厘⽶,⾼为5厘⽶,这个盒⼦的底⾯积就可以求出,⽽这个盒⼦的底⾯长⽅形的宽为22-5×2=12(厘⽶),所以这底⾯长⽅形的长也可以求出.解:长⽅体盒⼦的长为:2160÷5÷(22-5×2)=432÷12=36(厘⽶)铁⽪的⾯积为:(36+5×2)×22=46×22=1012(平⽅厘⽶)答:原来这块铁⽪的⾯积是1012平⽅厘⽶.习题精选⼀⼀、填空.1、40⽴⽅⽶=()⽴⽅分⽶4⽴⽅分⽶5⽴⽅厘⽶=()⽴⽅分⽶30⽴⽅分⽶=()⽴⽅⽶0.85升=()毫升2100毫升=()⽴⽅厘⽶=()⽴⽅分⽶0.3升=()毫升=()⽴⽅厘⽶2、⼀个正⽅体的棱长和是12分⽶,它的体积是()⽴⽅分⽶.3、⼀个长⽅体的体积是30⽴⽅厘⽶,长是5厘⽶,⾼是3厘⽶,宽是()厘⽶.4、⼀个长⽅体的底⾯积是0.2平⽅⽶,⾼是8分⽶,它的体积是()⽴⽅分⽶.5、表⾯积是54平⽅厘⽶的正⽅体,它的体积是()⽴⽅厘⽶.6、正⽅体的棱长缩⼩3倍,它的体积就缩⼩()倍.7、⼀个长⽅体框架长8厘⽶,宽6厘⽶,⾼4厘⽶,做这个框架共要()厘⽶铁丝,是求长⽅体(),在表⾯贴上塑料板,共要()塑料板是求(),在⾥⾯能盛()升⽔是求(),这个盒⼦有()⽴⽅⽶是求().8、长⽅体的长是6厘⽶,宽是4厘⽶,⾼是2厘⽶,它的棱长总和是()厘⽶,六个⾯种最⼤的⾯积是()平⽅厘⽶,表⾯积是()平⽅厘⽶,体积是()⽴⽅厘⽶.⼆、判断.1、体积单位⽐⾯积单位⼤,⾯积单位⽐长度单位⼤.()2、正⽅体和长⽅体的体积都可以⽤底⾯积乘⾼来进⾏计算.()3、表⾯积相等的两个长⽅体,它们的体积⼀定相等.()4、长⽅体的体积就是长⽅体的容积.()5、如果⼀个长⽅体能锯成四个完全⼀样的正⽅体,那么长⽅体前⾯的⾯积是底⾯积的4倍.()三、选择.1、正⽅体的棱长扩⼤2倍,则体积扩⼤()倍.①2 ②4 ③6 ④82、⼀根长⽅体⽊料,长1.5⽶,宽和厚都是2分⽶,把它锯成4段,表⾯积最少增加()平⽅分⽶.①8 ②16 ③24 ④323、⼀个长⽅体的长、宽、⾼都扩⼤2倍,它的体积扩⼤()倍.①2 ②4 ③6 ④84、表⾯积相等的长⽅体和正⽅体的体积相⽐,().①正⽅体体积⼤②长⽅体体积⼤③相等5、将⼀个正⽅体钢坯锻造成长⽅体,正⽅体和长⽅体().①体积相等,表⾯积不相等②体积和表⾯积都不相等.③表⾯积相等,体积不相等.6、⼀个菜窖能容纳6⽴⽅⽶⽩菜,这个菜窖的()是6⽴⽅⽶.①体积②容积③表⾯积参考答案⼀、填空.1、40000; 4.005; 850; 2100、2.1; 300、3002、13、24、16005、276、277、72、棱长和、208、表⾯积、0.192、容积、0.192、体积8、48、24、88、48⼆、判断.1、×2、√3、×4、×5、×三、选择.1、④2、③3、④4、①5、①6、②⼆⼀、填表.⼆、计算下图的体积(单位:分⽶).三、应⽤题.1、⼀块⽔泥砖长8厘⽶,宽6厘⽶,厚4厘⽶,它的体积是多少⽴⽅厘⽶?2、⼀个正⽅体⽊块,棱长6分⽶,已知每⽴⽅分⽶⽊重0.4千克,这个⽊块重多少千克?3、把⼀块棱长是20厘⽶的正⽅体钢坯,锻造成底⾯积是16平⽅厘⽶的长⽅体钢材,长⽅体钢材长多少厘⽶?参考答案⼀、填表.⼆、计算下图的体积.(单位:分⽶)1、8×4×5=160(⽴⽅分⽶)2、3×3×7=63(⽴⽅分⽶)3、2.5×2.5×2.5=15.625(⽴⽅分⽶)三、应⽤题.1、8×6×4=192(⽴⽅厘⽶)答:它的体积是192⽴⽅厘⽶.2、6×6×6=216(⽴⽅分⽶)0.4×216=86.4(千克)答:这个⽊块重86.4千克.3、20×20×20÷16=8000÷16=500(厘⽶)答:钢材长500厘⽶.。
长方体、正方体重点知识汇总一、长方体和正方体的各部分名称1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
在一个长方体中,相对面完全相同,相对的棱长度相等。
2、两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
3、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
4、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体有有6个面,8个顶点,12条棱,它们的长度都相等,所有的面都完全相同。
5、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
6、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
一个长方体最多有6个面是长方形,最少有4个面是长方形,( 正方体除外)最多有2个面是正方形。
正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。
二、总棱长公式1、长方体的棱长总和=(长+宽+高)×42、已知总棱长分别求长宽高的和方法:长+宽+高=棱长总和÷43、已知总棱长分别求长、宽、高的方法:①长方体的长=棱长总和÷4—宽—高②长方体的宽=棱长总和÷4—长—高③长方体的高=棱长总和÷4—长—宽4、正方体的棱长总和=棱长×12已知正方体总棱长求棱长:正方体的棱长=棱长总和÷12三、表面积1、长方体或正方体6个面和总面积叫做它的表面积。
2、长方体的表面积=长×高×2+宽×高×2+长×宽×23、无底(或无盖)长方体表面积=长×高×2+宽×高×2+长×宽4、无底又无盖长方体表面积=长×高×2+宽×高×25、正方体的表面积=棱长×棱长×6四、体积1、物体所占空间的大小叫做物体的体积。
长方体和正方体的表面积知识点长方体和正方体都有6个面,12条棱,8个顶点。
长方体相对的4条棱相等,长方体的12条棱按长度可以分成3组。
正方体是长宽高都相等的长方体。
长方体是6个长方形(特殊情况下有两个相对的面试正方形)围成的立体图形,相对的两个面完全相同。
1、正方体的展开1).141型,中间一行4个作侧面,上下两个各作为上下底面,共有六种基本图形2).132型,中间3个作侧面,共3中基本图形3).222型,两行只能有1个正方形相连4).33型,两行只能有一个正方形相连一共11种2、长方体的表面积就是长方体六个面的总面积。
由于相对的面完全相同,所以可以先求出前面、后面和下面三个面的面积,再乘以2,就可以求出表面积了。
长方体的表面积 = 长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。
正方体的表面积 = 棱长×棱长×63、在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
一个抽屉有5个面,分别是前面、后面、左面、右面、底面。
所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。
通风管顾名思义是通风用的,没有底面。
所以只要算四个侧面就可以了。
(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体、正方体物品:水池、鱼缸等;(3)具有四个面的长方体、正方体物品:水管、烟囱等。
长方体和正方体表面积知识巩固一、填空题。
1、一个正方体的棱长之得84厘米,它的棱长是(),一个面的面积是(),表面积是(),体积是()。
2、一个长方体的长、宽、高都扩大2倍,它的表面积就()。
正方体长方体复习资料基础知识填空(1)正方体、长方体有个面,个顶点,棱组成;每个顶点所连接的三条棱分别叫做它们的,,。
(2)长方体最多有面是正方形,最多有面相同。
(3)长方体的棱长和:(用文字表示),用字母表示为:正方体的棱长和:(用文字表示),用字母表示为:(4)长方体的表面积:(用文字表示),用字母表示为:正方体的表面积:(用文字表示),用字母表示为:(5)长方体的体积:(用文字表示),用字母表示为:正方体的体积:(用文字表示),用字母表示为:(6)长方体正方体体积公式都可以表示为:(用文字表示),用字母表示为:(7)物体占地面积就是底面积常考题型一:棱长和1、用一根长36cm的铁丝焊接成一个正方体框架,其表面积是,其体积是2、一个正方体的体积是27cm3,他的棱长是,它的表面积是3、用一根铁丝焊接成一个棱长为8cm的正方体,若用这根铁丝焊接成一个长方体,长为10cm,宽为8cm,其高为cm常考题型二:求表面积1、一根长5m的,宽和高都是1m的通风管,如果做10根这样的通风管道需要多少铁皮?2、贝智教育一教室要粉刷,其教室长9米,宽6米,高4米,门窗占地18平方米,要粉刷四周墙壁和顶棚,如果每平方米用0.25千克白灰,则粉刷这教室一共要用多少白灰?常考题型三:长方体,正方体的拼接和切割储备知识:切割一次会增加两个表面,相反拼接一次会减少两个面1、用三个棱长为1cm的正方体,拼成一个长方体,这个长方体的表面积是,体积是2、一个长方体长2米,截面是一个边长为3分米的正方形,将这个长方体木料锯成5段后,其表面积一共增加了平方分米。
3、将一个3米长方体木料平均截成3段,其表面积增加了0.36平方分米,这根木料的体积是。
常考题型四:底面是正方形,高变化引起表面积变化1、一个长方体如果高增加了2厘米成了正方体,而且表面积要增加56平方厘米,求原来这个长方体的体积?2、一个长方体,如果高减少2厘米,变成了一个正方体,并且表面积减少了56平方厘米,求原来这个长方体的体积是多少?常考题型五:棱长、面积、体积它们变化关系1、一个正方体,其棱长扩大两倍,棱长和夸大倍,表面积扩大倍,体积扩大倍。
《长方体和正方体》主要题型一、长方体和正方体之间相互等量转换知识点:一定要清楚不变的量是什么练习:1、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?2、已知一本书是长方体形状,它的长是10厘米,宽是3厘米,高是8厘米,现在有一个与这本书表面积相同的正方体,求这个正方体的棱长之和二、棱长的变化引起表面积和体积的变化。
知识点:要清楚哪一条棱在变,哪一条棱不变练习:1、一个长方体,如果高增加2厘米就成了正方体,而且表面积要增加56平方厘米,原来这个长方体的体积是多少立方厘米?2、一个长方体,高截去2厘米,表面积就减少了48平方厘米,剩下部分成为一个正方体,求原长方体的体积?3、一个长方体,如果长减少2厘米就成了一个正方体,而且表面积要减少56平方厘米。
原来这个长方体的体积是多少立方厘米?4、一个长方体,长a分米,宽b分米,高h分米,如果高减少3分米,这个长方体表面积比原来减少()平方分米?体积比原来减少()立方分米?三、段的变化知识点:截1次,产生2个面(即表面积增加了2个面)练习:1、一个长方体长2米,截面是边长3厘米的正方形,将这个长方体木料锯成五段后,表面积一共增加了多少平方厘米?2、将一个长3米的长方体木料平均截成3段,表面积一共增加了0.36平方分米,这根木料的体积是多少立方分米?四、正方体拼知识点:拼表面积发生变化,体积不变练习:1、用8个棱长都是2厘米的正方体拼成一个长方体(包括正方体),拼成的长方体的表面积最多是多少平方厘米?最少是多少平方厘米?2、用12个棱长都是2厘米的正方体拼成一个长方体,一共有多少种拼法,每种拼法拼成的长方体的表面分别是多少?3、用四个棱长都是3厘米的正方体拼成一个长方体,拼成的长方体的表面积可能是多少?五、长方体切、拼1、将一个长8厘米,宽6厘米,高5厘米的长方体切成两个小长方体,表面积最多增加多少平方厘米?最少增加多少平方厘米?2、将三个长8厘米,宽6厘米,高5厘米的长方体拼成一个大长方体,表面积最多减少多少平方厘米?最少减少多少平方厘米?3、把一个长16 厘米,宽12厘米,高8厘米的长方体木块,锯成若干个小正方体,(没有剩余)至少可以锯成多少个这样的小正方体?表面积一共增加多少平方方厘米?六、挖知识点:清楚是哪一个位置被挖走,比较前后增加了几个面,减少了几个面1、用8个小正方体木块拼成一个大的正方体,如果拿走1个小方块,它的表面积和原来比( )。
金牌家教归纳的六年级数学上册重点知识点及题型
第一章方程
一、华氏度与摄氏度的转化
华氏温度=摄氏温度×1.8+32 华氏温度用(F°)表示,摄氏温度用(C°)表示。
如:一个温度计中温度是30 C°,相当于()F°;另一个温度计中测出的温度是68F°,相当于()C°二、注意单位
如:一个三角形的底是x米,高是底的3倍,高是(),面积是()。
一个三角形的面积是S平方厘米,高是4厘米,底是()。
三、填空题的答题要化成最简
如:甲和乙的年龄和是m岁,甲比乙大n 岁,甲的年龄是()岁。
小明有a元钱,小芳是小明的5倍,每人用去6元后,两人还剩下()元。
四、认识大写的数字
零(0)、壹(1)、贰(2)、叁(3)、肆(4)、伍(5)、陆(6)、柒(7)、捌(8)、玖(9)、拾(10)、佰、仟、万、亿。
如:人民币(大写)壹佰零伍圆捌角阿拉伯数字写成()元;人民币(大写)贰仟玖佰肆拾柒元叁角整写成()元。
五、解方程的几种形式(都是应用等式基本的性质)
A、①ax=b (除不尽时a放在分母上) ②ax+b=c ③ax-b=c ④ax-b=cx-d
5x=10 11x=6 3x+7=13 4x-12=25 7x-14=9x-25
⑤b- ax=cx-d ⑥ax-b=c-dx (注意不同于④⑤)⑦ ax+b=cx+d
15-7x=18-9x 12-6x=5x-7 33x+70=36x+4
B、方程中带有括号时,要先打开括号,和外面的数相乘时,要注意同号得正
....。
....,导号得负
7(x+2)-4(x-1)+2(3x-1)=34 7(6x+1)-6(7-x)=7
4(2x-1)-2(x-1)=28 6x-3×(x-1)=12-2×(x+2)
五、列方程解应用题。
一般情况直接把最后的问题设为末知数,但有时换一种设法更为方便。
1.有黑白棋子一堆,黑子是白子的2倍,如果取出5颗黑子和4颗白子,若干次后,白子取尽,黑子还有24颗,这堆棋子共有多少颗?(课本上第八页有平行题)
2.一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的平均工资多30元.求细木工每人得多少元。
金牌家教归纳的六年级数学上册重点知识点及题型
第二章 正方体和长方体
一、正方形部分
①最小要八块相同....
的正方体才能拼成一个较大的正方体。
②正方体有十一种展开图。
③正方形涂色B :把一个正方体的表面都涂满颜色,然后切成棱长为1的小正方体。
(长方体同) 三面有颜色:有8个,在顶点上
二面有颜色:有(棱长-2)×12 在棱长上 实际上求棱长减去2以后正方体的棱长和
一面有颜色:有(棱长-2)2 ×6在表面上 实际上求棱长减去2以后正方体的表面积
没有颜色:(棱长-2)3 在正方体的内部 实际是求棱长减去2以后正方体的体积。
④正方体的棱长扩大到原来的2倍,表面积扩大到原来的4倍,增加了...
原来的3倍,面积是原来的平方倍;正方体的棱长扩大到原来的2倍体积扩大到8倍,增加了...
原来的7倍。
正方体体积是原来的立方倍。
⑤设一个正方体的棱长为a ,则它的棱长和=12a ,表面积S :S=6×a×a =6a 2 体积V= a×a×a = a 3
⑥体积单位有:立方米、立方分米、立方厘米 1立方分米=1000立方厘米 1立方米=1000立方分米 容积单位有:立方米、升、 毫升 1升=1立方分米 1毫升=1立方厘米 1升=1000毫升
二、长方体
①长方体有六个面,12条棱,8个顶点,最多可以看到3个面,最少看到一个面,长方体不包括正方体,最多有两个面是正方形,最多有四个面相等,最多有8条棱相等。
②长、宽、高均不相等的长方体的表面展开图:一四一式27种;二三一式18种;二二二式6种;三三式3种,共计54种。
③物体的面的个数:两个面:一级台阶(一个前面,一个上面)
四个面:火柴盒外壳、漏水管、通风管、柱子、饼干盒的四测包装纸
五个面:鱼缸、游泳池、抽屉、火柴盒内盒、粉刷教室的墙壁(有一个顶面,不含地面)
六个面:油箱、油桶、空调的包装盒。
④长方体的表面积=(长×宽+长×高+宽×高)×2 长方体的侧面积=底面周长×高 底面周长=(长+宽)×2 ⑤一个或几个物体叠加在另一个物体上:这些物体的表面积=下面物体的表面积+上面所有物体的侧面积 长方体的的体积=长×宽×高
⑥一个长方形沿着高增加或减少一段长度,表面积增加或减少的是那段高所对应的侧面积。
底面周长=长方体的侧面积÷高
三、物体浸入水中有关的计算(②竞赛中会出现)
①重物完全浸入水中:物体的体积=水面上升的体积=容器底面积×水面上升的高度;
水面上升的高度=物体的体积÷容器的底面积
②重物部分浸入水中:水面现在的高度=水的体积÷(容器的底面积-重物的底面积)
四、捆扎物品
①两个面(通常上下面)十字捆扎一道,绳长=两个交叉十字的周长+接头长=2长+2宽+4高+接头长 ②六个面十字捆扎一道,绳长=长方体棱长总和+接头长=4长+4宽+4高+接头长
五、饼干盒四周商标面积=(底面周长+接头长)×高 物体的占地面积即底面积,所占空间即体积
六、楼梯铺地毯或地砖面积=(每级楼梯的高+每级楼梯的宽)每节楼梯的长度×楼梯级数
(一四一)
(二三一)
(二二)
二) (三三)。