扩散工艺的化学原理32页PPT
- 格式:ppt
- 大小:4.78 MB
- 文档页数:32
第三章 扩散工艺在前面“材料工艺”一章,我们就曾经讲过一种叫“三重扩散”的工艺,那是对衬底而言相同导电类型杂质扩散.这样的同质高浓度扩散,在晶体管制造中还常用来作欧姆接触,如做在基极电极引出处以降低接触电阻.除了改变杂质浓度,扩散的另一个也是更主要的一个作用,是在硅平面工艺中用来改变导电类型,制造PN 结。
第一节 扩散原理扩散是一种普通的自然现象,有浓度梯度就有扩散。
扩散运动是微观粒子原子或分子热运动的统计结果.在一定温度下杂质原子具有一定的能量,能够克服某种阻力进入半导体,并在其中作缓慢的迁移运动。
一.扩散定义在高温条件下,利用物质从高浓度向低浓度运动的特性,将杂质原子以一定的可控性掺入到半导体中,改变半导体基片或已扩散过的区域的导电类型或表面杂质浓度的半导体制造技术,称为扩散工艺。
二.扩散机构杂质向半导体扩散主要以两种形式进行:1.替位式扩散一定温度下构成晶体的原子围绕着自己的平衡位置不停地运动。
其中总有一些原子振动得较厉害,有足够的能量克服周围原子对它的束缚,跑到其它地方,而在原处留下一个“空位".这时如有杂质原子进来,就会沿着这些空位进行扩散,这叫替位式扩散。
硼(B )、磷(P )、砷(As )等属此种扩散。
2.间隙式扩散构成晶体的原子间往往存在着很大间隙,有些杂质原子进入晶体后,就从这个原子间隙进入到另一个原子间隙,逐次跳跃前进.这种扩散称间隙式扩散.金、铜、银等属此种扩散。
三. 扩散方程扩散运动总是从浓度高处向浓度低处移动。
运动的快慢与温度、浓度梯度等有关。
其运动规律可用扩散方程表示,具体数学表达式为:N D tN 2∇=∂∂ (3—1) 在一维情况下,即为: 22xN D t N ∂∂=∂∂ (3-2) 式中:D 为扩散系数,是描述杂质扩散运动快慢的一种物理量;N 为杂质浓度;t 为扩散时间;x 为扩散到硅中的距离。
四.扩散系数杂质原子扩散的速度同扩散杂质的种类和扩散温度有关.为了定量描述杂质扩散速度,引入扩散系数D 这个物理量,D 越大扩散越快。
扩散工艺的化学原理扩散工艺是一种将固体材料中的原子或分子在另一固体材料中扩散的方式。
它是一种重要的材料加工技术,被广泛应用于半导体行业、材料科学、电子设备制造等领域。
1.气相扩散:气相扩散是一种将气体原子或分子从高浓度区域扩散到低浓度区域的过程。
它广泛应用于半导体制造中。
在气相扩散过程中,气体原子或分子通过与被处理材料的表面发生化学反应来扩散。
这种化学反应的速率由固体表面与气体界面之间的反应速率决定。
例如,氮化硅薄膜的制备常采用氨气(NH3)与硅表面上的硅原子发生反应,形成氮化硅层。
氨气的浓度差异使其向硅表面扩散,反应的速率主要取决于氨气与硅表面反应的速率。
2.液相扩散:液相扩散是指液体中原子或分子通过扩散来实现的过程,这种扩散通常发生在固体表面和液体之间。
液相扩散常用于金属合金的制备。
在液相扩散过程中,金属原子在固相间扩散,并在固体和液体相界面处重新结晶。
液体中的浓度差异是驱动液相扩散的主要原因。
例如,当固体镍和固体铬在液体中混合时,镍原子和铬原子会相互扩散使合金形成均匀的镍铬分布。
这种液相扩散过程中,镍原子和铬原子之间的化学反应被加速,形成新的镍铬化合物。
3.固相扩散:固相扩散是指固体材料中的原子或分子通过固体晶界、点缺陷、空位等的移动来实现的扩散过程。
固相扩散通常发生在材料的固态结构中,是一种非常缓慢的过程。
固相扩散的速率取决于晶体中原子或分子的浓度差异以及晶界和缺陷的性质。
例如,金属在高温下会发生固相扩散。
当金属中的原子在晶界或点缺陷处移动时,它们会在固态结构中扩散,从而改变金属的组织结构和性能。
这种固相扩散对于合金的制备和材料的加工具有重要意义。
总之,扩散工艺是通过利用浓度差异从而使固体材料中的原子或分子在其它材料中扩散的一种技术。
气相扩散、液相扩散和固相扩散是扩散工艺的常见形式,它们的化学原理基于热运动和化学反应,其中浓度差异是驱动扩散的主要力量。
这些扩散过程对于材料的合成、改性和加工具有重要作用,广泛应用于各个领域。
扩散工艺原理
扩散工艺是一种常用的半导体器件制造工艺,其原理是通过控制不同材料间的原子扩散(Diffusion)过程,使得材料中的掺
杂原子浓度发生变化,从而实现改变材料的电学性质。
扩散工艺一般分为固相扩散和气相扩散两种类型。
固相扩散是指将掺杂材料与基底材料接触并加热,在高温下由于热激活,掺杂原子会从高浓度扩散到低浓度区域,从而改变材料的电学性能。
气相扩散则是将掺杂材料置于特定的气氛中,通过气氛中的气体分子与基底材料表面上的原子进行反应,使掺杂原子扩散到材料中。
在固相扩散中,加热是一个关键的步骤。
当材料加热到一定温度时,原子具有足够的能量跨越势垒,从而可以自由扩散。
扩散速率通常受到温度、时间和材料的性质等因素的影响。
此外,不同材料的扩散行为也可能不同,因此需要根据具体材料来选择适当的扩散工艺参数。
在气相扩散中,选择合适的气氛对于控制扩散过程也是非常重要的。
通常会使用有机金属化合物作为掺杂源,将其在高温下分解生成活性原子,再通过反应与基底材料表面原子结合而实现扩散。
不同的掺杂源和基底材料对应的扩散机制也可能不同。
总之,扩散工艺是一项重要的半导体器件制造工艺,通过控制不同材料间的原子扩散过程,可以实现对器件电学性能的调控。
加热和选择合适的气氛是关键的操作步骤,而温度、时间和材料性质等因素也需要进行合理的选择和控制。