江苏省启东市吕四中学2013届高三高考最后一卷数学试题.pdf
- 格式:pdf
- 大小:472.13 KB
- 文档页数:9
(第5题)2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1.函数)42sin(3π+=x y 的最小正周期为 .2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 .3.双曲线191622=-y x 的两条渐近线的方程为 . 4.集合}1,0,1{-共有 个子集.5.右图是一个算法的流程图,则输出的n 的值是 .6.的那位运动员成绩的方差为 .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .ABC1ADEF1B1C10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 .11.已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 .13.在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点, 若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为 . 14.在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的 最大正整数n 的值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥;(2)设)1,0(=c ,若c b a =+,求βα,的值.16.(本小题满分14分)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ;(2)SA BC ⊥.A BCS G FE。
2013年高三数学最后必考题及答案一一本试卷共4页,分第1卷(选择题)和第Ⅱ卷(非选择题)两部分共150分考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上 2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再改涂其它答案标号一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的 A .B .C .D .1·复数31i z i=+复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.在△ABC 中,“30A ∠=”是“1sin 2A =”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.集合{}{}|13,|4A x x B y y x =+≤==≤≤.则下列关系正确的是A .AB R = B .R A B ⊆餽C .R B A ⊆餽D .R R A B ⊆餽餽 4.已知双曲线22221x y a b-=的实轴长为2,焦距为4,则该双曲线的渐近线方程是A .3y x =±B .3y x =±C .y =D .2y x =± 5.已知m ,n 是两条不同直线,,αβ是两个不同平面,给出四个命题:①若,,m n n m αβα=⊂⊥ ,则αβ⊥ ②若,m m αβ⊥⊥,则//αβ ③若,,m n m n αβ⊥⊥⊥,则αβ⊥ ④若//,////m n m n αβ,则//αβ 其中正确的命题是A .①②B .②③C .①④D .②④6.设0(cos sin )xa x x dx =⎰-3x 项的系数为 A .-20 B .20 C .-160 D .1607.已知函数9()4(1)1f x x x x =-+>-+,当x=a 时,()f x 取得最小值则在直角坐标系 中,函数11()()x g x a+=的大致图象为8.有一平行六面体的三视图如图所示,其中俯视图 和左视图均为矩形,则这个平行六面体的表面积为A .B .6+C .30+D .429.已知1122log (4)log (32)x y x y ++<+-,若x y λ-<恒成立,则λ的取值范围是A .(],10-∞B .(),10-∞C .[)10,+∞D .()10,+∞ A .B .C .D .10.运行如图所示的程序,若结束时输出的结果不小于3,则t 的取值范围为A .14t ≥B .18t ≥ C .14t ≤ D .18t ≤11.定义在R 上的函数()f x 的导函数为'()f x ,已知(1)f x +是偶函数(1)'()0x f x -<. 若12x x <,且122x x +>,则1()f x 与2()f x 的大小关系是A .12()()f x f x <B .12()()f x f x =C .12()()f x f x >D .不确定12.某学校要召开学生代表大会,规定根据班级人数每10人给一个代表名额,当班级人数除以10的余数大于6时,再增加一名代表名额.那么各班代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =([x]表示不大于*的最大整数)可表示为 A .[]10x y = B .3[]10x y += C .4[]10x y += D .5[]10x y +=第Ⅱ卷 (非选择题共90分)注意事项:1.将第Ⅱ卷答案用0 5mm 的黑色签字笔答在答题纸的相应位置上 2.答卷前将密封线内的项目填写清楚,二、填空题:本大题共4小题,每小题4分,共16分13.如图,在△ABC 中,O 为BC 中点,若AB=I ,3AC =,60AB AC =,则OA = ______________。
2013高考数学试卷参考公式: 样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。
棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。
棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。
一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上。
DE AB AC λλ=+(λ、11、已知()f x 是定义在R12n n a a a a ++>的最大正整数内作答,解答时应写出文字说明、证明或演.(本小题满分14分)已知向量(cos ,sin ),(cos ,sin ),0a b ααββ==(1)若||2a b -=,求证:a b ⊥;(2)设(0,1)c =,若a b c +=,求βα,的值。
16、(本小题满分14分)如图,在三棱锥S-ABC 中,平面⊥SAB 平面SBC,BC AB ⊥,AS=AB 。
过A 作SB AF ⊥,垂足为F ,点E 、G 分别为线段SA 、SC 的中点。
求证:(1)平面EFG//平面ABC ;(2)BC SA ⊥。
如图,在平面直角坐标系xoy 中,点A(0,3),直线42:-=x y l ,设圆C 的半径为1,圆心在直线l 上。
(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MA=2MO ,求圆心C 的横坐标a 的取值范围。
18、(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。
一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C 。
现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50米/分钟。
在甲出发2分钟后,乙从A 乘坐缆车到B ,在B 处停留1分钟后,再从B 匀速步行到C 。
假设缆车速度为130米/分钟,山路AC 的长为1260米,经测量,123cos ,cos 135A C ==。
江苏启东中学2013届高三高考考前辅导数学试题填空题《统计问题》1.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a= ,b= 。
2.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为____.《概率问题》1.在区间15,⎡⎤⎣⎦和24,⎡⎤⎣⎦分别取一个数,记为a b ,, 则方程22221x y ab+=表示焦点在x 轴上且离心率的椭圆的概率为 .2.在圆错误!未找到引用源。
=4所围成的区域内随机取一个整点P(x,y)(横,纵坐标都是整数点),则满足错误!未找到引用源。
的整点的概率为 .《三角问题》1.在错误!未找到引用源。
中,D 为BC 的中点,∠BAD=错误!未找到引用源。
,∠CAD=错误!未找到引用源。
AB=错误!未找到引用源。
,则AD= .2.已知sin(错误!未找到引用源。
=错误!未找到引用源。
(错误!未找到引用源。
则cos 错误!未找到引用源。
. 3.若错误!未找到引用源。
.4.在ABC ∆中,若tan A tan B =tan A tan C +tanctan B ,则 222cb a += .5.若角 C 是一三角形内角,关于x 的不等式错误!未找到引用源。
的解集为错误!未找到引用源。
,则角C 的最大角为 .6.已知ABC ∆的内角C B A ,,的对边c b a ,,成等比数列,则ABsin sin 的取值范围为 。
《立几问题》1.已知四棱锥S-ABCD 的底面ABCD 是边长为2的正方形,侧面SAB 是等边三角形,侧面SCD 是以CD 为斜边的直角三角形,E 为CD 的中点,则三棱锥S-AED 的体积 .2.设,αβ为两个不重合的平面,,m n 为两条不重合的直线,给出下列的四个命题:(1)若,m n m α⊥⊥,则//n α;(2)若α与β相交且不垂直,则n 与m 不垂直 (3)若,,,,m n n m αβαβα⊥⋂=⊂⊥则n β⊥(4)若//,,//,m n n ααβ⊥则m β⊥其中,所有真命题的序号是 .《切线问题》1.已知f(x)=错误!未找到引用源。
2013届高三模拟考试数学试卷 2013.6 一、填空题:本大题共14小题,每小题5分,共70分。
不需写出解答过程,请把答案直接填写在答题卡相应位置上。
R,集合≤0}∪>2},则A=▲ . 2.若复数满足(是虚数单位),则其共轭复数=_ ▲ . 3.下面求的值的伪代码中,正整数的最大值为 ▲ . 4.200辆汽车经过某一雷达地区,时速频率分布直方图上右图所示,则时速超过70km/h的汽车数量为___▲___ 辆. 5.一只口袋有形状,大小都相同的5只小球,其中2只白球,3只红球。
从中一次随机摸出2只球,则2只球不同色的概率是 ▲ 。
6.如图,为边长为a的正方体,分 别是的中点,过作正方体截面,若截面平 行于平面,则截面的面积为 ▲ . 7.中,角A,B,C所对的边分别为a,b,c,则“”是“ 为钝角三角形”的 ▲ 条件.(从“充要”,“充分不必要”,“必要不充分”中选择一个正确的填写) 8.函数的定义域为 ▲ . 9.恒过定点且成等差数列, ▲ . 10.C:,点是直线l:上的动点,若在圆C上总存在不同的两点A,B使得,则的取值范围是 ▲ . 11.已知函数,若函数有两个不同的零点,则的取值范围为___▲ ___. 12.在平面直角坐标系xOy中,对任意的实数m,集合A中的点(x,y)都不 在直线2mx+(1-m2)y-4m-2=0上,则集合A所对应的平面图形面积 的最大值为 ▲ . 13.设函数的定义域为,如果,使(为常数)成立,则称函数在上的均值为,已知四个函数:①;②;③;④,上述四个函数中,满足所在定义域上“均值”为1的函数是 ▲ 14.设实数,满足,则的取值范围是 ▲ 二、解答题:本大题共6小题,共90分。
请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
114分)设函数ab,向量a=, b=,其中角的顶点与坐标原点重合,始边与轴非负半轴重合,终边经过点,且0≤≤. (1)若点的坐标为,求的值; (2)若点为平面区域上的一个动点试确定的取值范围并求16.(本题满分14分)如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF. (1)求证:BF∥平面ACE; (2)求证:BF⊥BD. 17.(本题满分14分)交管部门遵循公交优先的原则,在某路段开设了一条仅供车身长为10的公共汽车行驶的专用车道,据交管部门收集的大量数据分析发现,该车道上行驶着的前,后亮亮公共汽车间的安全距离()与车速()之间满足二次函数关系,现已知车速为15时,安全距离为8,车速为45时,安全距离为38;出现堵车状况时,两车安全距离为2 (1)试确定关于的函数关系式; (2)车速()为多少时,单位时段内通过这条车道的公共汽车数量最多,最多是多少辆? 18.(本题满分16分),离心率为,过焦点且垂直于x轴的直线交椭圆于A,B两点,AB=2. (1)求该椭圆的标准方程; (2)设动点满足,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为,求证:为定值. 19.(本题满分16分)已知数列中,,为正整数(1)证明:数列为等比数列()设,,若数列的前项之和,并求使的的最小值 20.(本小题满分16分) 已知函数,. (1)若函数在其定义域内是单调增函数,求实数的取值范围; (2)若函数的图象被点分成的两部分为(点除外),该函数图象在点处的切线为,求证:当时,分别完全位于直线的两侧. (3)试确定的取值范围使得曲线上存在唯一的点曲线在该点处的切线与曲线只有一个公共点加 试 题 考试时间30分钟;满分40分 21.(本题共2小题;每题10分,共20分) B.(选修:矩阵与变换) abcd...z1234 (26) 如果已发现发送方传出的密码矩阵为,双方约定人可逆矩阵为, 试破解发送的英文字母密码. C.(选修:坐标系与参数方程) (为参数),若以该直角坐标系的原点O为极点,轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为:(其中为常数). (1)求曲线M的普通方程; (2)若曲线N与曲线M只有一个公共点,求的取值范围. 22.ABCD为矩形,平面ABEF⊥平面ABCD, EF // AB,BAF=90o, AD=2,AB=AF=2EF=1,点P在棱DF上. ()若P是DF的中点, 求异面直线BE与CP所成角的余弦值; ()若二面角D-AP-C的余弦值为,求PF的长度. 是定义在R上的函数, (1)若,求g(x); (2)若,求g(x).2013届高三模拟考试数学试卷答案 2013.6 一、填空题: 答案:答案:-.答案:20,由A{-1,0,1,2}得A的个数为,其中单元集有4个; 6.答案:,截面与侧面相交于EF,E、F分别是的中点, 7.得∠C=,故为钝角三角形,反之, 为钝角三角形不只有 8.答案: 9.,由成等差数列,所以 10.,因OAPB是棱形,故AB垂直平分OP,则当时,不存在,这时当时,,且直线AB过点, 直线AB方程为,圆心到直线AB的距离, 即,且,化为, 11.答案:或; 由图象可得或 12.答案:;利用≥, 得,, 13.答案:-4令,,,,再令,,则是偶函数,先考虑(0,3],利用二分法解决,关键是(0,]上的交点个数的判定,<0,,,在(0,]上有两个交点,在(,3]上有2个交点,共有4个,在上有8个交点,其和为零,故答案是-4 14.答案:;依题意由,,使,设,则有,,所以,令,则由,求得,所以函数在上单调递减,在上单调递增,于是. 二、解答题: 1 且0≤≤得;-------------------------------2分 ab= -------------- 6分 (2) 如图,作出平面区域 由图形可得 ------------8分 因为 所以 故的最小值 ; 的最大值----------14分 16.(1)证明:设AC与BD的交于O,连结EO, 在正方形ABCD中,BO=AB,∵AB=EF,∴BO=EF,-----2分 又∵EF∥BD,∴EFBO是平行四边形,----------------------------------4分 ∵BF∥EO,BF平面ACE,EO平面ACE ∴BF∥平面ACE ---------------------------------------------------------7分 (2)在正方形ABCD中,AC⊥BD, 又∵正方形ABCD和三角形ACE所在的平面互相垂直, BD平面ABCD,平面ABCD∩平面ACE=AC, ∴BD⊥平面ACE, ---------------------------------------------------10分 ∵EO平面ACE ∴BD⊥EO, -------------------------------------------------------------12分 ∵EO∥BF, ∴BF⊥BD -------------------------------------------------------------14分 17.解(1)不妨设,依题意, 且 由,---------------------3分 所以,,所以,,-------------------------5分 即该文化中心km;------------------------7分 (2)总费用---------------------------------------------------9分 ,得,------------------------11分 当时,当时, 所以,当时,有最小值, 这时,,-----------------------13分 答:该文化中心km.-------------------14分 (本题可建立直角坐标系用解析法来解决) 17.(备用题)分析:(1)--4分 (2) -------------------------------8分 (3)分层抽样的比例为2:5:3:7:3,现共抽取20人,在, 在.共有10种可能结果.列举为: ---------------------------------------12分 满足条件的结果有:, 设满足的事件为A,则-------------------14分 1.1)因为,即,---------------------------------2分 ∵过焦点且垂直于x轴的直线交椭圆于A,B两点,AB=2. ∴由椭圆的对称性知,椭圆过点,即--------------------4分 ,解得, 椭圆方程为 ------------------------------------------------------------7分 (2)证明:设,, 则,化简为 ----------------------9分 ∵M,N是椭圆C上的点,∴, 由得-----------------------------------------11分 所以 (定值)------------------------------------------------------16分 19.解析:()由条件an+1=2an2+2an,得2an+1+1=4an2+4an+1=(2an+1)2.∵lg(2a1+1)=lg≠0,∴=2.∴{lg(2an+1)}为等比数列.()∵lg(2a1+1)=lg,∴lg(2an+1)=2n-1(lg,∴2an+1=,∴an=(-1).∵lgTn=lg(2a1+1)+lg(2a2+1)+…+lg(2an+1)=(2n-1)lg. ∴Tn=.===,∴Sn=2n-=2n-2+由Sn>20得2n-2+>20,n>100, 当n100时,n<100,当n≥100时,>100,∴n的最小值为100.20.解析:(1),即, 所以.------------------------------------------------------------------------4分 (2). 所以切线的方程为.--------------------------------------------6分 令,则. ≥0,------------- --------------------------8分 是单调增函数, 当时,; 当时,, 所以分别完全位于直线的两侧.--------------------------10分 (3), 则曲线点 令,则 ,, , ①当时 在上单调递增,在上单调递减 只有唯一解,而是任意选取的值,故不满足题意;----12分 ②当时 ,记,则. (i)若,则在上单调递减,在上单调递增 ,在上单调递增 只有唯一解 (ii)若 ,则 在上单调递减,在上单调递增 此时存在,使得 在和上单调递增,在上单调递减 此时存在,使得,有两个零点. (iii)若 则 在上单调递减,在上单调递增 此时存在,使得 在和上单调递增,在上单调递减 此时存在,使得,有两个零点. 综上所述当时上存在唯一的点曲线在该点处的切线与曲线只有一个公共点16分 加 试 题 考试时间30分钟;满分40分 21. B.,则A=, 由题意AX=X==B, ----------------------------------5分 故=, 发送方所传出的密码对应的数字是4、5、19、11, 故破解发送的密码是desk. ------------------------------------------------10分 (此题也可以用待定系数法求解) C.(1)------------ 得普通方程为(|x|≤)-------------------5分 (2)曲线是抛物线的一部分;对于曲线N,化成直角坐标方程为,曲线N,得, 的取值范围为-+1<t≤+1或-------------------------------10分 22.∠BAF=90o,所以AF⊥AB, 因为 平面ABEF⊥平面ABCD,且平面ABEF ∩平面ABCD=AB, 所以AF⊥平面ABCD,因为四边形ABCD为矩形, 所以以A为坐标原点,AB,AD,AF分别 为x,y,z轴,建立如图所示空间直角坐标系. 所以 ,,,.所以 , ,所以, 即异面直线BE与CP所成角的余弦值为.------------------------------5分 (2)解:因为AB⊥平面ADF,所以平面APF的法向量为. 设P点坐标为,在平面APC中,,, 所以 平面APC的法向量为, 所以 , 解得,或(舍). 所以.--------------------------10分 23.解,则,所以 ---------------------------------------------------------------------3分 又无意义,即)---------------------------5分 (2)若,则 所以 因为--------------8分 所以 所以)-----------------------------------------10分 (第3题) (第4题) 0.005 0.01 0.018 0.028 0.039 40 50 60 70 80 30 时速 I←2 S←0 While I<m S←S+I I←I+3 End While Print S End YCY A B C D E F YCY x+y-1=0 x y 0 1 1。
2013年江苏高考数学最后一卷2013.06.01数学(必试部分)注意事项:1.本试卷总分160分,考试用时120分钟。
2.答题前,考生务必将班级、姓名、学号写在答卷纸的密封线内。
选择题答案填涂在答.........题卡对应的题号下,主观题答案写在答卷纸上对应的题号下空格内的横线上.................................。
考试结束后,上交答题卡和答卷纸。
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上...... 1.设复数z 满足()(1)1i i i z ++=-(i 是虚数单位),则复数z 的模z =___▲____.2.已知tan 2α=,则sin()cos()sin()cos()παπααα++-=-+-___▲_____.3.抛物线y 2 = 8x的焦点到双曲线x 212 – y 24 = 1的渐近线的距离为___▲___.4.阅读下列算法语句: Read S ←1For I from 1 to 5 step 2 S ←S+I End for Print S End输出的结果是 ▲ .5.设集合11{33},{0}3x x A x B x x-=<<=<,则A B =____▲_______.6.设等比数列{a n }的公比q = 12,前n 项和为S n ,则 S 4a 4= ____▲_______.7.在区间[5,5]-内随机地取出一个数a ,则恰好使1是关于x 的不等式2220x ax a +-<的一个解的概率大小为__▲_____.8.已知向量()3,1-b =,2=a ,则2-a b 的最大值为 ▲ .9.已知A (2,4),B (–1,2),C (1,0),点P (x ,y )在△ABC 内部及边界上运动,则z = x – y 的最大值与最小值的和为___▲___10.设,b c 表示两条直线,,αβ表示两个平面,现给出下列命题: ① 若,//b c αα⊂,则//b c ; ② 若,//b b c α⊂,则//c α; ③ 若//,c ααβ⊥,则c β⊥; ④ 若//,c c αβ⊥,则αβ⊥. 其中正确的命题是___▲______.(写出所有正确命题的序号)11.设函数22,0,()log ,0x x f x x x ⎧≤=⎨>⎩,若关于x 的方程2()()0f x af x -=恰有三个不同的实数解,则实数a 的取值范围为___▲_____.12.函数()()g x y f x =在求导数时,可以运用对数法:在函数解析式两边求对数得()()ln ln y g x f x =,两边求导数()()()()()ln f x y g x f x g x y f x '''=+,于是()()g x y f x '= ()()()()()ln f x g x f x g x f x '⎡⎤'+⎢⎥⎢⎥⎣⎦.运用此方法可以探求得知()10x y x x =>的一个单调增区间为____▲_____.13.已知椭圆22134x y +=的上焦点为F ,直线10x y ++=和10x y +-=与椭圆相交于点A ,B ,C ,D ,则AF BF CF DF +++= ▲ .14.已知定义在R 上的函数()f x 满足()12f =,()1f x '<,则不等式()221f x x <+的解集为_▲__.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明或演算步骤.15.(本小题满分14分)如图,点B 在以PA 为直径的圆周上,点C 在线段AB 上,已知1525,3,PA PB PC ===设,APB APC αβ∠=∠=,,αβ均为锐角. (1)求β;(2)求两条向量,AC PC 的数量积AC PC ⋅的值.PCB16. (本小题满分14分)如图,已知AB ⊥平面ACD ,DE //AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点. ⑴求证:AF //平面BCE ;⑵求证:平面BCE ⊥平面CDE .17.(本大题满分14分)2010年上海世博会组委会为保证游客参观的顺利进行,对每天在各时间段进入园区和离开园区的人数(以百人..为计数单位)作了一个模拟预测.为了方便起见,以10分钟为一个计算单位,上午9点10分作为第一个计数人数的时间,即1n =;9点20分作为第二个计数人数的时间,即2n =;依此类推 ,把一天内从上午9点到晚上24点分成了90个计数单位.第n 个时刻进入园区的人数()f n 和时间n (n *∈N )满足以下关系: ()()()()()24123612436325363216377207390n n n f n n n n -≤≤⎧⎪⎪⎪⋅≤≤=⎨⎪-+≤≤⎪≤≤⎪⎩,n *∈N第n 个时刻离开园区的人数()g n 和时间()n n *∈N 满足以下关系:()()()()012451202572,507390n g n n n n n *≤≤⎧⎪=-≤≤∈⎨⎪≤≤⎩N . (1)试计算在当天下午3点整(即15点整)时,世博园区内共有游客多少百人?(提示:123 1.1取,结果仅保留整数)(2)问:当天什么时刻世博园区内游客总人数最多?A BC D EF18.(本小题满分16分)设圆221:106320C x y x y +--+=,动圆222:22(8)4120 C x y ax a y a +---++=, (1)求证:圆1C 、圆2C 相交于两个定点;(2)设点P 是椭圆2214x y +=上的点,过点P 作圆1C 的一条切线,切点为1T ,过点P 作圆2C 的一条切线,切点为2T ,问:是否存在点P ,使无穷多个圆2C ,满足12PT PT =?如果存在,求出所有这样的点P ;如果不存在,说明理由.19. (本小题满分16分)已知数列{a n }的通项公式为a n = 2⨯3n + 23n – 1(n ∈N *). ⑴求数列{a n }的最大项;⑵设b n = a n + pa n– 2,试确定实常数p ,使得{b n }为等比数列;⑶设*,,,N m n p m n p ∈<<,问:数列{a n }中是否存在三项m a ,n a ,p a ,使数列m a ,n a ,p a 是等差数列?如果存在,求出这三项;如果不存在,说明理由.20.(本大题满分16分)已知函数()()||20,1x x f x a a a a=+>≠,(1)若1a >,且关于x 的方程()f x m =有两个不同的正数解,求实数m 的取值范围; (2)设函数()()[),2,g x f x x =-∈-+∞,()g x 满足如下性质:若存在最大(小)值,则最大(小)值与a 无关.试求a 的取值范围.2013年江苏高考数学最后一卷2013.06.01数学(加试部分)21.【选做题】在A 、B 、C 、D 四小题中只能选做两题....,每小题l0分,共计20分.请在答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤. A.选修4 – 1几何证明选讲如图,△ABC 的外接圆的切线AE 与BC 的延长线相交于点E , ∠BAC 的平分线与BC 交于点D . 求证:ED 2= EB ·EC .B .矩阵与变换 已知矩阵2143-⎡⎤=⎢⎥-⎣⎦A ,4131-⎡⎤=⎢⎥-⎣⎦B ,求满足=AX B 的二阶矩阵X .C.选修4 – 4 参数方程与极坐标若两条曲线的极坐标方程分别为ρ = 1与ρ = 2cos(θ + π3),它们相交于A ,B 两点,求线段AB 的长.D.选修4 – 5 不等式证明选讲设a ,b ,c 为正实数,求证:a 3 + b 3 + c 3 + 1abc ≥2 3.【必做题】第22题、第23题,每题10分,共20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22. (本小题满分10分)如图,在四棱锥P – ABCD 中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,点M 是棱PCB C ED A的中点,AM ⊥平面PBD . ⑴求PA 的长;⑵求棱PC 与平面AMD 所成角的正弦值.23.(本小题满分10分)用,,,a b c d 四个不同字母组成一个含1+n *)(N n ∈个字母的字符串,要求由a 开始,相邻两个字母不同. 例如1=n 时,排出的字符串是,,ab ac ad ;2=n 时排出的字符串是,,,,,,,,aba abc abd aca acb acd ada adb adc ,……, 如图所示.记这含1+n 个字母的所有字符串中,排在最后一个的字母仍是a 的字符串的种数为n a .(1)试用数学归纳法证明:*33(1)(,1)4N n nn a n n +-=∈≥; (2)现从,,,a b c d 四个字母组成的含*1(,2)N n n n +∈≥个字母的所有字符串中随机抽取一个字符串,字符串最后一个的字母恰好是a 的概率为P ,求证:2193P ≤≤.P B CDA M ab c d n=1abcd n=2ad a b d a b c2010届江苏省海安高级中学、南京外国语学校、南京市金陵中学高三调研测试 数学参考答案及评分标准题号 1 2 3 4 5答案 2 3 1 10 {}11x x -<<题号 6 7 8 9 10 答案 15 0.7 6 –2 ④题号 111213 14答案{}01a a <≤()0,e 8()(),11,-∞-+∞15.解(1):因为点B 在以PA 为直径的圆周上,所以90ABP ∠=,所以34cos ,sin 55PB PA αα===.所以4tan 3α=,………………………………………2分 72cos cos()101527PB CPB PC αβ∠=-===,2sin()10αβ-=, 所以1tan()7αβ-=,………………………………………………………………4分 tan tan()tan tan[()]11tan tan()ααββααβααβ--=--==+-,…………………………6分又(0,)2πβ∈,所以4πβ=.………………………………………………………8分(2)2()AC PC PC PA PC PC PA PC ⋅=-⋅=-⋅…………………………11分2152152275()577249=-⨯⨯=-……………………………………………14分16. ⑴解:取CE 中点P ,连结FP ,BP ,因为F 为CD 的中点,所以FP //DE ,且FP = 12DE , …2分 又AB //DE ,且AB =12DE ,所以AB //FP ,且AB = FP ,所以四边形ABPF 为平行四边形,所以AF //BP . ……………4分 又因为AF ⊂/平面BCE ,BP ⊂平面BCE , 所以AF //平面BCE . …7分 (该逻辑段缺1个条件扣1分)⑵因为△ACD 为正三角形,所以AF ⊥CD .因为AB ⊥平面ACD ,DE //AB ,所以DE ⊥平面ACD ,ABEP又AF ⊂平面ACD ,所以DE ⊥AF . …………………9分 又AF ⊥CD ,CD ∩DE = D ,所以AF ⊥平面CDE .又BP //AF ,所以BP ⊥平面CDE . ……………………………12分 又因为BP ⊂平面BCE ,所以平面BCE ⊥平面CDE . ………………………………………14分17. 解:(1)当024n ≤≤且n *∈N 时,()36f n =,当3625≤≤n 且n *∈N 时,2412()363n f n -=⋅所以[]36(1)(2)(3)(24)S f f f f =+++++…[])36()26()25(f f f ++++=36×24+36×(1212121233131⎡⎤-⎢⎢⎥-⎢⎥⎣⎦=864+792=1656;…………………………2分另一方面,已经离开的游客总人数是:12(25)(26)(36)T g g g =+++12=×5121152⨯+⨯390=;………………………4分 所以361216563901266S S T =-=-=(百人)故当天下午3点整(即15点整)时,世博园区内共有游客1266百人. ……………6分 (2)当0)()(≥-n g n f 时园内游客人数递增;当0)()(<-n g n f 时园内游客人数递减. (i)当241≤≤n 时,园区人数越来越多,人数不是最多的时间;………………………8分 (ii)当3625≤≤n 时,令512036n -≤,得出31≤n ,即当3125≤≤n 时,进入园区人数多于离开人数,总人数越来越多;……………10分 (iii)当3632≤≤n 时,24123635120n n -⋅>-,进入园区人数多于离开人数,总人数越来越多;……………………………………………………………………………12分 (Ⅳ)当7237≤≤n 时, 令32165120n n -+=-时,42n =, 即在下午4点整时,园区人数达到最多.此后离开人数越来越多,故园区内人数最多的时间是下午4点整. ……………………14分 答:(1)当天下午3点整(即15点整)时,世博园区内共有游客1266百人;(2)在下午4点整时,园区人数达到最多.18.解(1)将方程2222(8)4120 x y ax a y a +---++=化为221612(224)0x y y x y a +-++-++=,令22161202240x y y x y ⎧+-+=⎨-++=⎩得42x y =⎧⎨=⎩或64x y =⎧⎨=⎩,所以圆2C 过定点(4,2)和(6,4),……………4分 将42x y =⎧⎨=⎩代入22106320x y x y +--+=,左边=1644012320+--+==右边,故点(4,2)在圆1C 上,同理可得点(6,4)也在圆1C 上,所以圆1C 、圆2C 相交于两个定点(4,2)和(6,4);……………6分(2)设00(,)P x y ,则221000010632PT x y x y =+--+,…………………………8分222000022(8)412 PT x y ax a y a =+---++, …………………………………10分12PT PT =即00001063222(8)412x y ax a y a --+=---++,整理得00(2)(5)0x y a ---=(*)………………………………………………12分存在无穷多个圆2C ,满足12PT PT =的充要条件为0022002014x y x y --=⎧⎪⎨+=⎪⎩有解,解此方程组得0020x y =⎧⎨=⎩或006545x y ⎧=⎪⎪⎨⎪=-⎪⎩,………………………………………………………………………………14分故存在点P ,使无穷多个圆2C ,满足12PT PT =,点P 的坐标为64(2,0)(,)55或-.………………16分19. 解 ⑴由题意a n = 2 + 43n – 1,随着n 的增大而减小,所以{a n }中的最大项为a 1 = 4.…4分 ⑵b n = 2 + 43n – 1 + p 43n – 1= (2 + p )(3n – 1) + 44 = (2 + p )3n + (2 – p )4,若{b n }为等比数列, 则b 2n +1 – b n b n +2= 0(n ∈N * )所以 [(2 + p )3n +1 + ( 2 – p )]2 – [{2 + p )3n + (2 – p )][(2 + p )3n +2 + (2 – p )] = 0(n ∈N *),化简得(4 – p 2)(2·3n +1 – 3n +2 – 3n ) = 0即– (4 – p 2)·3n ·4 = 0,解得p = ±2. ………………………7分 反之,当p = 2时,b n = 3n ,{b n }是等比数列;当p = – 2时,b n = 1,{b n }也是等比数列.所以,当且仅当p = ±2时{b n }为等比数列. ………………………………………………………………10分 ⑶因为4231m m a =+-,4231n n a =+-,4231p pa =+-,若存在三项m a ,n a ,p a ,使数列ma ,n a ,p a 是等差数列,则2n m p a a a =+,所以42(2)31n +-=4231m +-4231p++-,……………12分 化简得3(2331)1323n p n p m p m n m ----⨯--=+-⨯(*),因为*,,,N m n p m n p ∈<<,所以1p m p n -≥-+,1p m n m -≥-+,所以13333p mp n p n --+-≥=⨯,13333p m n m n m --+-≥=⨯,(*)的 左边3(23331)3(31)0np np n n p n ---≤⨯-⨯-=--<,右边13323130n mn m n m ---≥+⨯-⨯=+>,所以(*)式不可能成立,故数列{a n }中不存在三项m a ,n a ,p a ,使数列m a ,n a ,p a 是等差数列. ……………16分20.解:(1)令xa t =,0x >,因为1a >,所以1t >,所以关于x 的方程()f x m =有两个不同的正数解等价于关于t 的方程2t m t+=有相异的且均大于1的两根,即 关于t 的方程220t mt -+=有相异的且均大于1的两根, (2)分所以2280,1,2120m m m ⎧∆=->⎪⎪>⎨⎪⎪-+>⎩,…………………………………………………………………4分解得223m <<,故实数m 的取值范围为区间(22,3).……………………………6分 (2)||()2,[2,)x x g x a a x =+∈-+∞ ①当1a >时,a )0x ≥时,1x a ≥,()3x g x a =,所以 ()[3,)g x ∈+∞,b )20x -≤<时,211x a a≤<()2x x g x a a -=+,所以 ()221'()ln 2ln ln x x x xa g x a a a a a a --=-+=……8分ⅰ当2112a >即412a <<时,对(2,0)x ∀∈-,'()0g x >,所以 ()g x 在[2,0)-上递增, 所以 222()[,3)g x a a ∈+,综合a ) b )()g x 有最小值为222a a +与a 有关,不符合……10分 ⅱ当2112a ≤即42a ≥时,由'()0g x =得1log 22a x =-,且当12log 22a x -<<-时,'()0g x <,当1log 202a x -<<时,'()0g x >,所以 ()g x 在1[2,log 2]2a --上递减,在1[log 2,0]2a -上递增,所以min 1()log 22a g x g ⎛⎫=-= ⎪⎝⎭22a ) b ) ()g x 有最小值为22a 无关,符合要求.………12分②当01a <<时,a ) 0x ≥时,01x a <≤,()3x g x a =,所以 ()(0,3]g x ∈b ) 20x -≤<时,211x a a<≤,()2x x g x a a -=+,所以 ()221'()ln 2ln ln x x x xa g x a a a a a a --=-+= 0<,()g x 在[2,0)-上递减,所以 222()(3,]g x a a ∈+,综合a ) b ) ()g x 有最大值为222a a+与a 有关,不符合………14分 综上所述,实数a 的取值范围是42a ≥.………………………………………………16分数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选做两题....,每小题l0分,共计20分.请在答题..卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤. A.选修4 – 1几何证明选讲证明: 因为EA 是圆的切线,AC 为过切点A 的弦,所以 ∠CAE = ∠CBA . 又因为AD 是∠BAC 的平分线,所以∠BAD = ∠CAD 所以∠DAE = ∠DAC + ∠EAC = ∠BAD + ∠CBA = ∠ADE所以,△EAD 是等腰三角形,所以EA = ED . ……………………………………………………6分 又EA 2 = EC ·EB ,所以ED 2 = EB ·EC . ……………………………………………………………………………4分B .矩阵与变换: 解:由题意得1312221-⎡⎤⎢⎥=⎢⎥⎣⎦A,…………………………………………………5分 =AX B ,1319411222312151-⎡⎤⎡⎤--⎡⎤⎢⎥⎢⎥∴===⎢⎥⎢⎥⎢⎥-⎣⎦-⎣⎦⎣⎦X A B ………………………………………10分 C.选修4 – 4 参数方程与极坐标若两条曲线的极坐标方程分别为ρ = 1与ρ = 2cos(θ + π3),它们相交于A ,B 两点,求线段AB 的长. 解 首先将两曲线的极坐标方程化为直角坐标方程,得 x 2 + y 2 = 1与x 2 + y 2 – x +3y = 0……………………………………………………6分解方程组⎩⎪⎨⎪⎧x 2 + y 2 = 1x 2 + y 2 – x + 3y = 0 得两交点坐标(1,0),(–12, – 32)所以,线段AB 的长为(1 + 12)2 + (0 + 32)2=3即AB = 3.………………………………………………………………………………10分 D.选修4 – 5 不等式证明选讲设a ,b ,c 为正实数,求证:a 3 + b 3 + c 3 + 1abc ≥2 3.证明 因为a ,b ,c 为正实数,所以a 3 + b 3 + c 3≥33a 3b 3c 3 = 3abc >0…………………………5分B C ED A又3abc + 1abc ≥23abc ·1abc = 2 3.所以a 3 + b 3 + c 3 + 1abc ≥2 3.…………………………………………………………………10分【必做题】第22题、第23题,每题10分,共20分.请在答题..卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤.22.解 如图,以A 为坐标原点,AB ,AD ,AP 分别为x ,y ,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),P (0,0,a ).因为M 是PC 中点,所以M 点的坐标为(12,12,a 2),所以AM →= (12,12,a 2),BD → = (–1,1,0),BP →= ( – 1,0,a ).⑴因为AM →⊥平面PBD ,所以AM →·BD → = AM →·BP →= 0.即– 12 + a 22 = 0,所以a = 1,即PA = 1. ………………………………………4分 ⑵由AD → = (0,1,0),M →= (12,12,12),可求得平面AMD 的一个法向量n = ( – 1,0,1).又CP → = ( – 1,–1,1).所以cos<n , CP →> =n ·CP→|n |·|CP →|= 22·3= 63. 所以,PC 与平面AMD 所成角的正弦值为63.……………………………10分 23.解(1):证明:(ⅰ)当1n =时,因为10a =,33(1)04+-=,所以等式正确. (ⅱ)假设n k =时,等式正确,即*33(1)(,1)4N k kk a k k +-=∈≥, 那么,1n k =+时,因为11133(1)4333(1)33(1)33444k k k k k k k kkk k a a ++++-⋅---+-=-=-==, 这说明1n k =+时等式仍正确.据(ⅰ),(ⅱ)可知,*33(1)(,1)4N n nn a n n +-=∈≥正确. ……………………………5分 (2)易知133(1)13(1)[1]4343n n nn nP +--=⋅=+, PB CDAMxyz①当n 为奇数(3n ≥)时,13(1)43n P =-,因为327n ≥,所以132(1)4279P ≥-=,又131(1)434n P =-<,所以2194P ≤<;②当n 为偶数(2n ≥)时,13(1)43n P =+,因为39n≥,所以131(1)493P ≤+=,又131(1)434n P =+>,所以1143P <≤.综上所述,2193P ≤≤.……………………………10分。
(第5题) 2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1.函数)42sin(3π+=x y 的最小正周期为 .2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 .3.双曲线191622=-y x 的两条渐近线的方程为 . 4.集合}1,0,1{-共有 个子集.5.右图是一个算法的流程图,则输出的n 的值是 .6则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 .ABC1A DEF1B1C11.已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 .13.在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点, 若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为 . 14.在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的 最大正整数n 的值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥;(2)设)1,0(=c ,若c b a =+,求βα,的值.16.(本小题满分14分)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l . 设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线, 求切线的方程;ABCS GFE(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐 标a 的取值范围. 18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。
2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】函数3sin(2)4y x π=-的最小正周期为_______.【答案】π【解析】函数π3sin 24y x ⎛⎫=+ ⎪⎝⎭的最小正周期2ππ2T ==.(2)【2014年江苏,2,5分】设2(2i)z =-(i 为虚数单位),则复数z 的模为_______. 【答案】5【解析】()222i 44i i 3i 54z =--+-====.(3)【2014年江苏,3,5分】双曲线221169x y -=的两条渐近线的方程为_______.【答案】34y x =±【解析】由题意可知所求双曲线的渐近线方程为34y x =±.(4)【2014年江苏,4,5分】集合{}1,0,1-共有 _______个子集. 【答案】8【解析】由于集合{}1,0,1-有3个元素,故其子集个数为328=.(5)【2014年江苏,5,5分】右图是一个算法的流程图,则输出的n 的值是_______. 【答案】3【解析】第一次循环后:82a n ←←,;第二次循环后:263a n ←←,;由于2620>,跳出循环,输出3n =.(6)【的那位运动员成绩的方差为 .【答案】2【解析】由题中数据可得=90x 甲,=90x 乙.()()()()()22222287909190909089909015394s -+-+-⎡⎤=⎣+-+-⎦=甲,()()()()()22222289909090919088909015292s -+-+-⎡⎤=⎣+-+-⎦=乙,由22>s s 甲乙,可知乙运动员成绩稳定.故应填2.(7)【2014年江苏,7,5分】现有某类病毒记作m n X Y ,其中正整数,(7,9)m n m n ≤≤可以任意选取,则,m n 都取到奇数的概率为________.【答案】2063【解析】由题意知m 的可能取值为1,2,3,…,7;n 的可能取值为1,2,3,…,9.由于是任取m ,n :若1m =时,n 可取1,2,3,…,9,共9种情况;同理m 取2,3,…,7时,n 也各有9种情况,故m ,n 的取值情况共有7963⨯=种.若m ,n 都取奇数,则m 的取值为1,3,5,7,n 的取值为1,3,5,7,9,因此满足条件的情形有4×5=20种.故所求概率为2063.(8)【2014年江苏,8,5分】如图,在三棱柱111A B C ABC -中,,,D E F 分别是1,,AB AC AA 的中点,设三棱锥F ADE -的体积为1V ,三棱柱111A B C ABC -的体积为2V ,则12:V V =_______. 【答案】1:24【解析】由题意可知点F 到面ABC 的距离与点1A 到面ABC 的距离之比为1:2,1:4ADE ABC S S =V V :.因此12131:242AED ABCAF S AF S V V ∆∆=⋅=⋅:. (9)【2014年江苏,9,5分】抛物线2y x =在1x =处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点(,)P x y 是区域D 内的任意一点,则2x y +的取值范围是________.【答案】12,2⎡⎤-⎢⎥⎣⎦【解析】由题意可知抛物线2y x =在1x =处的切线方程为21y x =-.该切线与两坐标轴围成的区域如图中阴影部分所示:当直线20x y +=平移到过点1,02A ⎛⎫⎪⎝⎭时,2x y +取得最大值12.当直线20x y +=平移到过点1(0)B -,时,2x y +取得最小值2-. 因此所求的2x y +的取值范围为12,2⎡⎤-⎢⎥⎣⎦.(10)【2014年江苏,10,5分】设,D E 分别是ABC ∆的边,AB BC 上的点,12AD AB =,23BE BC =,若12DE AB AC λλ=+u u u r u u u r(12,λλ为实数),则12λλ+的值为________. 【答案】12【解析】由题意作图如图.∵在ABC ∆中,1223DE DB BE AB BC =+=+u u u r u u u r u u u r u u u r u u u r 12()23AB AC AB =+-u u u r u u u r u u u r121263AB AC AB AC λλ=-+=+u u u r u u u r u u u r u u u r ,∴116λ=-,223λ=.故1212λλ+=.(11)【2014年江苏,11,5分】已知()f x 是定义在R 上的奇函数.当0x >时,2()4f x x x =-,则不等式()f x x >的解集用区间表示为________. 【答案】5,0)5()(∞U -,+【解析】∵函数()f x 为奇函数,且0x >时,()24f x x x =-,则()22400040f x x x x x x x x =⎧->⎪=⎨⎪--<⎩∴原不等式等价于204x x x x >⎧⎨->⎩或204x x x x <⎧⎨-->⎩,由此可解得5x >或50x -<<. (12)【2014年江苏,12,5分】在平面直角坐标系xOy 中,椭圆C 的标准方程为22221(0,0)x y a b a b+=>>,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若21d =,则椭圆的离心率为________.【解析】设椭圆C 的半焦距为c ,由题意可设直线BF 的方程为=1x yc b+,即0bx cy bc +-=.于是可知1bc d a ==,22222a a c b d c c c c -=-==.∵21d =,∴2b c =,即2ab =.∴()22246a a c c -=.∴42610e e +-=.∴213e =.∴e(13)【2014年江苏,13,5分】平面直角坐标系xOy 中,设定点(,)A a a ,P 是函数1(0)y x x=>图像上一动点,若点,P A 之间最短距离为a 的所有值为________.【答案】1-【解析】设P 点的坐标为1,x x ⎛⎫⎪⎝⎭,则222222111()=2=2x a a x a x a x x A x P ⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=.令12t x x =+≥,则()()2222222222PA t at a t a a t =-+-=-+-≥.结合题意可知(1)当2a ≤,2t =时,2PA 取得最小 值.此时()22228a a -+-=,解得1a =-,3a =(舍去).(2)当2a >,t a =时,2PA 取得最小值.此时228a -=,解得a =a =(舍去).故满足条件的实数a 1-.(14)【2014年江苏,14,5分】在正项等比数列{}n a 中,512a =,673a a +=.则满足123123......n n a a a a a a a a ++++>的最大正整数n 的值为_______. 【答案】12【解析】设正项等比数列{}n a 的公比为q ,则由()26753a a a q q +=+=可得2q =,于是62n n a -=,则1251(12)13221232n n n a a a --=-+=-++⋯.∵512a =,2q =,∴61a =, 111210261a a a a a ==⋯==.∴12111a a a ⋯=.当n 取12时,7612121211121213222a a a a a a a a ++⋯+=->⋯==成立;当n 取13时,86713121312111213121322132·22a a a a a a a a a a ++⋯+=-⋯===<.当13n >时,随着n 增大12n a a a ++⋯+将恒小于12n a a a ⋯.因此所求n 的最大值为12.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()cos sin a αα=,r ,()cos sin b ββ=,r,0βαπ<<<.(1)若a b -=r r a b ⊥r r;(2)设()01c ,=r ,若a b c +=r r r ,求α,β的值.解:(1)解法一:由||a b -=r r 22||()2a b a b -=-=r r r r ,即2222a a b b -⋅+=r r r r .又2222||||1a b a b ====r r r u u r ,所以222a b -⋅=,0a b ⋅=r r ,故a b ⊥r r . 解法二:(cos cos ,sin sin )a b αβαβ-=--r r ,由||a b -=r r22||()2a b a b -=-=r r r r , 即:22(cos cos )(sin sin )2αβαβ-+-=,化简,得:2(cos cos sin sin )0αβαβ+-=, cos cos sin sin 0a b αβαβ⋅=+-=r r ,所以a b ⊥r r . (2)(cos cos ,sin sin )a b αβαβ+=++r r ,可得:cos cos 0(1)sin sin 1(2)αβαβ+=⎧⎨+=⎩L L L L解法一:AS AB =.过A 作AF SB ⊥,垂足为F ,点E ,G 分别是侧棱SA ,SC 的中点.求证:(1)平面EFG //平面ABC ; (2)BC SA ⊥. 解:(1)因为AS AB =,AF SB ⊥于F ,所以F 是SB 的中点.又E 是SA 的中点,所以//EF AB .因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以//EF 平面ABC .同理可证//EG 平面ABC .又EF EG E =I ,所以平面//EFG 平面ABC .(2)因为平面SAB ⊥平面SBC 于SB ,又AF ⊂平面SAB ,AF SB ⊥,所以AF ⊥平面SBC .因为BC ⊂平面SBC ,所以AF BC ⊥.又因为AB BC⊥,AF AB A =I ,AF AB ⊂、平面SAB ,所以BC ⊥平面SAB .又因为SA ⊂平面SAB ,所以BC SA ⊥.(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,点()03A ,,直线24l y x =-:.设圆的半径为1,圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围. 解:(1)由题设,圆心C 是直线24y x =-和1y x =-的交点,解得点2(3)C ,,于是切线的斜率必存在.设过3(0)A ,的圆C 的切线方程为3y kx =+1=,解得0k =或34-, 故所求切线方程为3y =或34120x y +-=.(2)因为圆心在直线24y x =-上,所以圆C 的方程为()()22221x a y a -+--⎤⎣⎦=⎡.设点()M x y ,, 因为2MA MO =22230x y y ++-=,即()2214x y ++=, 所以点M 在以1(0)D -,为圆心,2为半径的圆上.由题意,点()M x y ,在圆C 上,所以圆C 与圆D 有 公共点,则2121CD -≤≤+,即13≤.由251280a a -+≥,得R a ∈;由25120a a -≤,得0125a ≤≤.所以点C 的横坐标a 的取值范围为120,5⎡⎤⎢⎥⎣⎦. (18)【2014年江苏,18,16分】如图,游客从某旅游景区的景点处下山至C 处有两种路径. 一种是从沿A 直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到 C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量,12cos 13A =,3cos 5C =.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处相互等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?.解:(1)在ABC ∆中,因为3os 1c 12A =,cos 35C =,所以sin 513A =,sin 45C =.从而()()sin sin sin sin cos cos sin 531246313513565B AC A C A C A C π=-+=+=+⨯⨯⨯==⎡⎤⎣⎦. 由正弦定理sin sin AB ACC B=,得12604sin 104063sin 565AC AB C B =⨯=⨯=.所以索道AB 的长为1040 m . (2)假设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了()10050 m t +,乙距离A 处130m t ,所以由余弦定理得()()()()2222121005013021301005020037705013d t t t t t t =++-⨯⨯+⨯=-+, 因10430001t ≤≤,即08t ≤≤,故当3537t =(min)时,甲、乙两游客距离最短. (3)由正弦定理sin sin BC ACA B=,得12605sin 500m 63sin 1365AC BC A B =⨯=⨯=. 乙从B 出发时,甲已走了()50281550⨯++=(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得5007103350v -≤-≤,解得12506254314v ≤≤,所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在1250625,4314⎡⎤⎢⎥⎣⎦(单位:m/min)范围内. (19)【2014年江苏,19,16分】设{}n a 是首项为a ,公差为d 的等差数列()0d ≠,n S 是其前n 项和.记2n n nSb n c=+,N n *∈,其中c 为实数.(1)若0c =,且1b ,2b ,4b 成等比数列,证明:()2N nk k S n S k,n *=∈;(2)若{}n b 是等差数列,证明:0c =. 解:由题设,(1)2n n n S na d -=+. (1)由0c =,得12n n S n b a d n -==+.又因为124b b b ,,成等比数列,所以1224b b b =,即23=22d a a a d ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 化简得220d ad -=.因为0d ≠,所以2d a =.因此,对于所有的*N m ∈,有2m S m a =.从而对于所有的k ,*N n ∈,有()2222nk k S nk a n k a n S ===. (2)设数列{}n b 的公差是1d ,则()111n b b n d =+-,即()1121nb n nS n cd =+-+,*N n ∈,代入n S 的表达式,整理 得,对于所有的*N n ∈,有()111321111122d d n b d a d n cd n c d b ⎛⎫⎛⎫-+--++ ⎪ =⎪⎭⎭-⎝⎝.令112A d d =-,1112B d d b a =--+,()11D c d b =-,则对于所有的*N n ∈,有321An Bn cd n D ++=.(*)在(*)式中分别取1234n =,,,,得1111842279364164A B cd A B cd A B cd A B cd ++=++=++=++, 从而有11173019502150A B cd A B cd A B cd ++=⎧⎪++=⎨⎪++=⎩①②③,由②,③得0A =,15cd B =-,代入方程①,得0B =,从而10cd =.即1102d d -=,11102b d a d -+=-=0,10cd =.若d 1=0,则由1102d d -=,得0d =,与题设矛盾,所以10d ≠.又因为10cd =,所以0c =.(20)【2014年江苏,20,16分】设函数()ln f x x ax =-,()x g x e ax =-,其中a 为实数. (1)若()f x 在()1,+∞上是单调减函数,且()g x 在()1,+∞上有最小值,求a 的范围; (2)若()g x 在()1,-+∞上是单调增函数,试求()f x 的零点个数,并证明你的结论. 解:(1)令f ′(x )=()110axf x a x x-'=-=<,考虑到()f x 的定义域为(0)+∞,,故0a >,进而解得1x a ->,即()f x 在1()a -+∞,上是单调减函数.同理,()f x 在1(0)a -,上是单调增函数.由于()f x 在(1)+∞,上是单调减函数,故1()(1)a -∞∞⊆++,,,从而11a -≤,即1a ≥.令()0x g x e a '=-=,得ln x a =.当ln x a <时,()0g x '<;当ln x a >时,()0g x '>.又()g x 在(1)+∞,上有最小值,所以ln 1a >,即a e >.综上,有()a e ∈+∞,.(2)当0a ≤时,()g x 必为单调增函数;当0a >时,令()0x g x e a '=->,解得x a e <,即ln x a >.因为()g x 在()1-+∞,上是单调增函数,类似(1)有ln 1a ≤-,即10a e -<≤.结合上述两种情况,有1a e -≤. ①当0a =时,由()10f =以及()10f x x'=>,得()f x 存在唯一的零点; ②当0a <时,由于()()10a a a f e a ae a e =-=-<,()10f a =->,且函数()f x 在[1]a e ,上的图象不间断, 所以()f x 在(1)a e ,上存在零点.另外,当0x >时,()10f x a x'=->,故()f x 在(0)+∞,上是单调增 函数,所以f (x )只有一个零点.③当10a e -<≤时,令()10f x a x'=-=,解得1x a -=.当10x a -<<时,()0f x '>,当1x a ->时,()0f x '<,所以,1x a -=是()f x 的最大值点,且最大值为()1ln 1f a a -=--.当ln 10a --=,即1a e -=时,()f x 有一个零点x e =.当ln 10a -->,即10a e -<<时,()f x 有两个零点.实际上,对于10a e -<<,由于()1110f e ae --=--<,()10f a ->,且函数()f x 在11[]e a --,上的图象不间断,所以()f x 在11()e a --,上存在零点.另外,当1()0x a -∈,时, ()10a xf x =->',故()f x 在1(0)a -,上是单调增函数,所以()f x 在1(0)a -,上只有一个零点.下面考虑()f x 在1()a -+∞,上的情况.先证()()1210a a f e a a e ---=-<.为此,我们要证明:当x e >时,2x e x >.设()2x h x e x =-,则()2x h x e x '=-,再设()()2x l x h x e x ='=-,则()2x l x e '=-.当1x >时,()220x l x e e '=->->,所以()()l x h x ='在(1)+∞,上是单调增函数.故当2x >时,()()22240x h x e x h e '=->'=->,从而()h x 在(2)+∞,上是单调增函数,进而当x e >时,()()220x e h x e x h e e e =->=->.即当x e >时,2x e x >.当10a e -<<,即1a e ->时,()()111210a a a f e a ae a a e -----=-=-<,又()10f a ->,且函数()f x 在11[]a a e --,上的图象不间断,所以()f x 在11()a a e --,上存在零点.又当1x a ->时,()0f x a '=-<,故()f x 在(a -1,+∞)上是单调减函数,所以f (x )在(a -1,+∞)上只有一个零点.综合①,②,③,当0a ≤或1a e -=时,()f x 的零点个数为1,当10a e -<<时,()f x 的零点个数为2.数学Ⅱ【选做】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 和BC 分别与圆O 相切于点D C AC 、,经过圆心O ,且2BC OC =.求证:2AC AD =.解:连结OD .因为AB 和BC 分别与圆O 相切于点D ,C ,所以90ADO ACB ∠=∠=︒.又因为A A ∠=∠,所以Rt Rt ADO ACB ∆∆∽.所以BC ACOD AD=. 又22BC OC OD ==,故2AC AD =. (21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵1012,0206-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A B ,求矩阵1-A B . 解:设矩阵A 的逆矩阵为 a b c d ⎡⎤⎢⎥⎣⎦,则 1 00 2-⎡⎤⎢⎥⎣⎦ a b c d ⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦,即 2 2a b c d --⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦,故100a b c =-==,,,12d =,从而A 的逆矩阵为1 1 010 2--⎡⎤⎢⎥⎢⎥⎣⎦=A ,所以1 1 010 2--⎡⎤⎢⎥⎢⎥⎣=⎦A B 1 20 6⎡⎤⎢⎥⎣⎦= 1 20 3--⎡⎤⎢⎥⎣⎦. (21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xoy 中,直线l 的参数方程为12x t y t =+⎧⎨=⎩(t 为参数),曲线C 的参数方程为22tan 2tan x y θθ⎧=⎨=⎩(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.解:因为直线l 的参数方程为12x t y t =+⎧⎨=⎩(t 为参数),由1x t =+得1t x =-,代入2y t =,得到直线l 的普通方程为220x y --=.同理得到曲线C 的普通方程为22y x =.联立2212y x y x =(-)⎧⎨=⎩,解得公共点的坐标为(2)2,,1,12⎛⎫- ⎪⎝⎭. (21-D )【2014年江苏,21-D ,10分】(选修4-4:不等式选讲)已知0a b ≥>,求证:332222a b ab a b -≥-. 解:()()()()()()()()332222222222222a b ab a b a a b b a b a b a b a b a b a b ---=-+-=-+=-++.因为0a b ≥>,所以0a b -≥,0a b +>,20a b +>,从而()()()20a b a b a b -++≥,即332222a b ab a b -≥-. 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2014年江苏,22,10分】如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1ABA 所成二面角的正弦值. 解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,则()000A ,,,()200B ,,,()020C ,,()110D ,,,14(0)0A ,,,14(0)2C ,,,所以1(20)4A B =-u u u r ,,,1(11)4C D =--u u u u r,,.因为111111cos ,A B C D A B C D A B C D⋅===u u u r u u u u ru u u r u u u u r u u u r u u u u r ,所以异面直线1A B 与1C D. (2)设平面1ADC 的法向量为1()n x y z =r ,,,因为(1)10AD =u u u r ,,,10()24AC =u u u u r ,,,所以10n AD ⋅=u u r u u u r,110n AC ⋅=u u r u u u u r ,即0x y +=且20y z +=,取1z =,得2x =,2y =-,所以,12()21n =-u u r,,是平面1ADC 的一个法向量.取平面1AA B 的一个法向量为2(010)n =u u r,,,设平面1ADC 与平面 1ABA 所成二面角的大小为θ.由12122||||s 3co θ⋅===n n n n,得sin θ=.因此,平面1ADC 与平面1ABA.(1)求11中元素个数; (2)求集合2000P 中元素个数.解:(1)由数列{}n a 的定义得123456789101223334444a a a a a a a a a a ==-=-====-=-=-=-,,,,,,,,,,,115a =,1234567891011113036226105S S S S S S S S S S S ∴==-=-=====-=-=-=-,,,,,,,,,,,从而11445566111102S a S a S a S a S a ==⨯===-,,,,,所以集合11P 中元素的个数为5. (2)先证:()()*2121()i i S i i i +=-+∈N .①当1i =时,()3213i i S S +==-,()213i i -+=-,故原等式成立; ②假设i m =时成立,即()()2121m m S m m +=-+,则1i m =+时,()()()()()()()()22222(113)21222143253123m m m m S S m m m m m m m m m +++=++-+=-+--=-++=-++.综合①②可得()()2121i i S i i +=-+.于是()()()()()()()2(221121)212121211i i i i S S i i i i i i +++=++=-+++=++. 由上可知()21i i S +是21i +的倍数,而()21(211221)i i j a i j i ++=+=⋯+,,,,所以()()(212)121i i i i j S S j i +++=++是 ()211)2(21i i j a j i ++=⋯+,,,的倍数.又()()()()121121i i S i i ++=++不是22i +的倍数,而()()()12122i i j a i +++=-+()1222j i =⋯+,,,,所以()()()()()()()()1211212221122i i j i i S S j i i i j i +++++=-+=++-+不是()()121i i j a +++ 122()2j i =⋯+,,,的倍数,故当()21l i i =+时,集合l P 中元素的个数为()21321i i ++⋯+-=,于是,当()()21121l i i j j i =++≤≤+时,集合l P 中元素的个数为2i j +. 又()200031231147=⨯⨯++,故集合2000P 中元素的个数为231471008+=.。
2013年江苏省高考数学试卷
菁优网
2013年江苏省高考数学试卷
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.
1.(5分)(2013•江苏)函数y=3sin(2x+)的最小正周期为_________.
2.(5分)(2013•江苏)设z=(2﹣i)2(i为虚数单位),则复数z的模为_________.
3.(5分)(2013•江苏)双曲线的两条渐近线方程为_________.
4.(5分)(2013•江苏)集合{﹣1,0,1}共有_________个子集.
5.(5分)(2013•江苏)如图是一个算法的流程图,则输出的n的值是_________.
6.(5分)(2013•江苏)抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:
运动员第一次第二次第三次第四次第五次
甲87 91 90 89 93
乙89 90 91 88 92
则成绩较为稳定(方差较小)的那位运动员成绩的方差为_________.
7.(5分)(2013•江苏)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为_________.
8.(5分)(2013•江苏)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F ﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=_________.
©2010-2014 菁优网。
江苏省南通市启东吕四中学高三数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知双曲线C的中心为坐标原点,离心率为,点在C上,则C的方程为A.B.C.D.参考答案:B2. 16.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()(A)充分条件(B)必要条件(C)充分必要条件(D)既非充分也非必要条件参考答案:B3. 已知是上的偶函数,若将的图象向右平移一个单位后,则得到一个奇函数的图象,若,则的值为A.-1 B. C.1 D.不能确定高考资源网参考答案:A略4. 若数列的前n项和为,则下列命题:(1)若数列是递增数列,则数列也是递增数列;(2)数列是递增数列的充要条件是数列的各项均为正数;(3)若是等差数列(公差),则的充要条件是(4)若是等比数列,则的充要条件是其中,正确命题的个数是()A.0个 B.1个 C.2个 D.3个参考答案:B5. 复数()A . B. C. D.参考答案:A6. 已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.参考答案:A【考点】正弦定理;三角函数中的恒等变换应用.【分析】已知等式利用正弦定理化简,再利用诱导公式及两角和与差的正弦函数公式化简,求出tanB 的值,确定出B的度数,利用三角形面积公式求出ac的值,利用余弦定理,基本不等式可求b的最小值.【解答】解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,∵S△ABC=acsinB=ac=1+,∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.7. 设函数是定义在上的奇函数,且,当时,,则()A. B.C. D.参考答案:A考点:函数的周期性、奇偶性.8. 是虚数单位,复数= ()A.B.C.D.参考答案:B9. 如图,正方体ABCD-A1B1C1D1中,E为棱BB1的中点,用过点A、E、C1的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是()A. B. C. D.参考答案:A【分析】根据剩余几何体的直观图,结合三视图的定义即可得到主视图【详解】解:正方体中,过点的平面截去该正方体的上半部分后,剩余部分的直观图如图:则该几何体的正视图为图中粗线部分.故选:A.【点睛】本题主要考查了空间三视图与直观图的应用问题,是基础题.10. 在边长为2的正方体内部随机取一点,则该点到正方体8个顶点得距离都不小于1得概率为()A.B.C.D.1﹣参考答案:D【考点】几何概型.【专题】概率与统计.【分析】根据题意,求出满足条件的点P所组成的几何图形的体积是多少,再将求得的体积与整个正方体的体积求比值即可.【解答】解:符合条件的点P落在棱长为2的正方体内,且以正方体的每一个顶点为球心,半径为1的球体外; 根据几何概型的概率计算公式得,P==1﹣.故选:D .【点评】本题考查了几何概型中的体积类型的应用问题,基本方法是:分别求得构成事件A 的区域体积和试验的全部结果所构成的区域体积,两者求比值,即得概率.二、 填空题:本大题共7小题,每小题4分,共28分11. 如图,AB 是半径等于3的圆O 的直径,CD 是圆O 的弦,BA 、DC 的延长线交于点P ,若PA =4,PC =5,则∠CBD= ___________.参考答案:试题分析:由圆的切割线定理得,,即所以,.考点:1.平面几何选讲;2.圆的切割线定理;3.圆周角、圆心角.12. 已知凸函数的性质定理:“若函数f(x)区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有”,若函数y=sinx 在区间(0,)上是凸函数,则在ABC 中,sinA+sinB+sinC的最大值是.参考答案:13. 已知函数(是常数,,)的最小正周期为.设集合直线为曲线在点处的切线,.若集合中有且只有两条直线相互垂直,则_______;________.参考答案:【分析】本题是一个综合性较强的考题,与往年14题的命题思路有些不同,重点放在了知识的综合和深入理解上。