2015年中考数学复习课件:第二十九讲 弧长及扇形的面积、圆锥的侧面积配套课件 北师大版
- 格式:ppt
- 大小:1.51 MB
- 文档页数:45
辅导:弧长和扇形的面积、圆锥的侧面积和全面积一、弧长和扇形的面积:『活动一』因为360°的圆心角所对弧长就是圆周长C =2πR ,所以1°的圆心角所对的弧长是 .这样,在半径为R 的圆中,n °的圆心角所对的弧长l = . 『活动二』类比弧长的计算公式可知:在半径为R 的圆中,圆心角为n °的扇形面积的计算公式为:S = . 『活动三』扇形面积的另一个计算公式比较扇形面积计算公式与弧长计算公式,可以发现:可以将扇形面积的计算公式:S =360nπR 2化为S =180R n ·21R ,从面可得扇形面积的另一计算公式:S = . 二、圆锥的侧面积和全面积:1.圆锥的基本概念: 的线段SA 、SA 1……叫做圆锥的母线,的线段叫做圆锥的高.2.圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系:将圆锥的侧面沿母线l 剪开,展开成平面图形,可以得到一个扇形,设圆锥的底面半径为r ,这个扇形的半径等于 ,扇形弧长等于 . 3.圆锥侧面积计算公式圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长, 这样,S 圆锥侧=S 扇形=21·2πr · l = πrl 4.圆锥全面积计算公式S 圆锥全=S 圆锥侧+S 圆锥底面= πr l +πr 2=πr (l +r )三、例题讲解:例1、(2011•德州,11,4分)母线长为2,底面圆的半径为1的圆锥的侧面积为 . 例2、(2011年山东省东营市,21,9分)如图,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,BD 平分∠ABC ,∠BAD =120°,四边形ABCD 的周长为15.A1(1)求此圆的半径;(2)求图中阴影部分的面积.例3、(2010广东,14,6分)如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1. (1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).y x-3 O 12312 3 -3-2 -1-1 -2 -4 -5 -6A BCDEF(第3题)O四、同步练习:1、(2012北海,11,3分)如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为: ( )A .10πB .10C .10πD .π2、(2012北海,12,3分)如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了:( )A .2周B .3周C .4周D .5周3、(2012湖北咸宁,7,3分)如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( ).A .-3π2B .-32π3C .-32π2D .-322π34、(2012四川内江,8,3分)如图2,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分图形的面积为( )A .4πB .2πC .πD .2π35、(2012·湖南省张家界市·14题·3分)已知圆锥的底面直径和母线长都是10cm ,则圆锥的侧面积为________.6、(2012·哈尔滨,题号16分值 3)一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是 .ABD CO图2ABC 第1题图A OD第2题图 第9题第11题7、(2012江苏省淮安市,17,3分)若圆锥的底面半径为2cm ,母线长为5cm ,则此圆锥的侧面积为 cm 2.8、(2012四川达州,11,3分)已知圆锥的底面半径为4,母线长为6,则它的侧面积是 .(不取近似值)9、(2012年广西玉林市,16,3)如图,矩形OABC 内接于扇形MON ,当CN =CO 时,∠NMB10、(2012广安中考试题第15题,3分)如图6,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90o,∠A =30o,若△RtABC 由现在的位置向右无滑动地翻转,当点A 第3次落在直线上l 时,点A 所经过的路线的长为________________(结果用含л的式子表示).11、(2011•丹东,14,3分)如图,将半径为3cm 的圆形纸片剪掉三分之一,余下部分围成一个圆锥的侧面,则这个圆锥的高是 .12、(2012贵州贵阳,23,10分)如图,在⊙O 中,直径AB =2,CA 切⊙O 于A ,BC 交⊙O 于D ,若∠C =45°,则(1)BD 的长是 ;(5分) (2)求阴影部分的面积. (5分)第12题图AC13、(2012浙江省义乌市,20,8分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°. (1)求∠ABC 的度数; (2)求证:AE 是⊙O 的切线; (3)当BC =4时,求劣弧AC 的长.14、(2012年吉林省,第23题、7分.)如图,在扇形OAB 中,∠AOB =90°,半径OA =6.将扇形OAB 沿过点B 的直线折叠.点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,求整个阴影部分的周长和面积.O BCDE15、(2011甘肃兰州,25,9分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连结AD、CD.(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C、D;②⊙D的半径= (结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.参考答案例1、考点:圆锥的计算。
弧长、扇形和圆锥(2015新湘教版中考复习)一、复习目标1、会计算圆的弧长和扇形的面积;2、会计算圆锥的侧面积和全面积;二、复习重点和难点复习重点:熟练运用弧长的计算公式,扇形的面积计算公式和圆锥的侧面积计算公式解决有关问题。
复习难点:将阴影图形看成一些基本图形覆盖而成的重叠部分用整体和差法求解。
三、复习过程(一)知识梳理1.弧长公式:180n R l π=(n 为圆心角的度数,R 为圆半径)2、扇形的面积公式S=213602n R lR π=(n 为圆心角的度数,R 为圆的半径).3、圆锥的侧面展开图是一个扇形,扇形的弧长就是圆锥的底面圆的周长,扇形的半径就是圆锥的母线长。
4、圆锥的侧面积S=πRl ,(l 为母线长,r 为底面圆的半径),圆锥的侧面积与底面积之和称为圆锥的全面积.(二)典例精析1、在半径为3的⊙O 中,弦AB=3,则弧AB 的长为点拨:由弦AB 和圆的两条半径组成一个等边三角形,得出弧AB 所对的圆心角为60°,再由弧长计算公式即可求得弧AB 的长。
图12、已知扇形的圆心角为120°,弧长为10π㎝,则这个扇形的半径为___cm方法总结:利用弧长计算公式就可以求得。
3、如果圆锥的高为8cm ,母线长为10cm ,则它的侧面展开图的面积为_____方法总结:圆锥的高、底面圆的半径和母线组成一个直角三角形,据已知条件可求得圆锥底面圆的半径为6cm ,然后根据圆锥侧面积公式即可求出。
4、如图1,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,OA =3,OC =1,分别连结AC 、BD ,则图中阴影部分的面积为( C ) A. 12π B. π C. 2π D. 4π 点拨:阴影部分的面积就是圆心角为90°,半径分别为3、1的两个扇形的面积之差。
5、如图2,圆锥的母线长为5cm ,高线长为4cm ,则圆锥的底面积是( )A . 3πcm ZB .9πcm ZC .16πcm ZD .25πcm Z6、如图3,把直角△ABC 的斜边AC 放在定直线l 上,按顺时针的方向在直线l 上转动两次,使它转到△A 2B 2C 2的位置,设AB=3,BC=1,则顶点A 运动到点A 2的位置时,点A 所经过的路线为( B )A 、(1225 +23)πB 、(34 +23)πC 、2πD 、3π 图2 A A A 2B C C B 图3 l方法点拨:A 点所经过的弧长有两段,①以C 为圆心,CA 长为半径,∠ACA 1为圆心角的弧长;②以B 1为圆心,AB 长为半径,∠A 1B 1A 2为圆心角的弧长.分别求出两端弧长,然后相加即可得到所求的结论.7、如图4,⊙A ,⊙B ,⊙C 两两不相交,且它们的半径都是2cm ,图中的三个扇形(即三个阴影部分)的面积之和是多少?方法点拨:三个小扇形的圆心角分别是∠A、∠B、∠C,半径全等于2cm 而△ABC 中∠A+∠B+∠C=180度,所以如果将三个小扇形拼到一起,正好构成一个半径是2cm 的半圆。