【数学】高考复习点拨:二项分布与超几何分布辨析
- 格式:doc
- 大小:463.50 KB
- 文档页数:1
超几何分布和二项分布超几何分布和二项分布是概率论中两种重要的离散型概率分布。
它们都在描述了离散型随机变量的分布规律,但在具体的描述和应用上有一定的区别。
本文将分别介绍超几何分布和二项分布的定义、特点、性质和应用,并对两者之间的关系和区别进行详细的比较分析。
一、超几何分布的定义、特点和性质超几何分布是描述了一种从有限个物件中抽出样本不放回地抽取成功次数的概率分布。
具体来说,超几何分布描述了在总体中有M个成功物件和N-M个失败物件时,从总体中抽取n个物件,其中成功物件的个数X的分布概率。
其概率质量函数为:P(X=k) = (M choose k) * (N-M choose n-k) / (N choose n),其中(M choose k)表示从M个物件中抽取k个物件的组合数。
超几何分布的特点有以下几点:1.超几何分布是离散型概率分布,其取值只能是非负整数。
2.超几何分布的期望值和方差分别为E(X) = n * M/N, Var(X) =n * M/N * (N-M)/N * (N-n)/(N-1)。
3.超几何分布的分布形状随着总体大小和成功物件的比例而改变,当总体很大时,超几何分布近似于二项分布。
超几何分布在实际应用中有着广泛的应用。
例如在质量抽样、抽样调查、生物统计学等领域,常常需要进行不放回地从总体中抽取物件的情况,而超几何分布恰好可以描述这类情况下随机变量的分布规律。
二、二项分布的定义、特点和性质二项分布是描述了n次独立重复的伯努利试验中成功次数的概率分布。
具体来说,二项分布描述了n次重复试验中成功的次数X的概率分布。
其概率质量函数为:P(X=k) = (n choose k) * p^k * (1-p)^(n-k),其中(n choose k)表示从n次试验中成功k次的组合数。
二项分布的特点有以下几点:1.二项分布是离散型概率分布,其取值只能是非负整数。
2.二项分布的期望值和方差分别为E(X) = np, Var(X) = np(1-p)。
高考数学2021年$月深度咅慚趨几何分布和二顶分布■江苏省天一中学周海军概率统计是高中数学的重要知识模块#近几年来在高考中考查的比例越来越高,基本以两道小题加一道解答题的形式出现,试题富有时代气息,通过创设源于社会生活中的真实情境,考查同学们的阅读、识图、计算、表达等能力,考查的重心是数据分析能力和数学运算能力。
在概率中,二项分布、超几何分布是出现频率较高的两种概率模型,很多同学在学习的过程中容易产生混淆,经常有同学问二项分布与超几何分布到底怎么区分。
要弄清楚两者的关系,我们先来看看人教版新课标教材选修2—$给出的概念:超几何分布:一般地,在含有M件次品的N件产品中,任取九件,其中恰有X件次品,那么+Q,-<)=C C C—3(<=0,1,2,…,C nB)#其中B=min{32},且2&N,M&N,n,3,N+N*。
如果随机变量X的分布列具有表1的形式,则称随机变量X服从超几何分布,记为X〜H53N)。
表1X01…BP厂0厂2—0J3「N—3c3c n—3…C3C n—3C N C N C N二项分布:在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为。
,则P(X=k)=C n p k(1—p)n—k(@=0,1,2,…,n),此时称随机变量X 服从二项分布,记为X〜B21),并称p为成功概率。
从定义通过实践我们可以提炼出两者的关系:相同点:超几何分布和二项分布都是离散型分布。
区别:(1)超几何分布需要知道总体的容量,而二项分布不需要;))超几何分布是“不放回%由取,而二项分布是“有放回%由取(独立重复);($)当总体的容量非常大时,超几何分布近似于二项分布。
一、超几何分布模型超几何分布特点:超几何分布是离散型分布,需要知道总体的容量,并且是“不放回”抽取。
!!(2020年广东模拟)台风“山竹”对我国多个省市的财产造成重大损害,据统计,直接经济损失达52亿元。
二项分布与超几何分布问题区别举例文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)关于“二项分布”与“超几何分布”问题举例一.基本概念1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件X=k 发生的概率为:P(X=k)= nNk n MN k M C C C --⋅,k= 0,1,2,3,,m ;其中,m = minM,n,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n MN2.二项分布在n 次独立重复试验中,设事件A 发生的次数为X,在每次试验中,事件A 发生的概率为P,那么在n 次独立重复试中,事件A 恰好发生k 次的概率为:P(X=k)= C n kp k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X 服从二项分布.记作:X B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别(1)“二项分布”所满足的条件每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次试验只有两种结果,事件要么发生,要么不发生;随机变量是这n 次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;(3)“二项分布”和“超几何分布”是两种不同的分布,但其期望是相等的.即:把一个分布看成是“二项分布”或“超几何分布”时,它们的期望是相同的.分布”和“二项分布”的这种“巧合”,使得“超几何分布”期望的计算大简化.共同点:每次试验只有两种可能的结果:成功或失败。
不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布。
二项分布与超几何分布★ 知 识 梳理 ★1.条件概率:称)()()|(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的概率。
特别提醒: ①0≤P (B|A )≤1;②P(B ∪C|A)=P(B|A)+P(C|A)。
2. 相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。
特别提醒:①如果事件A 、B 是相互独立事件,那么,A 与_B 、_A 与B 、_A 与_B 都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
我们把两个事件A 、B 同时发生记作A ·B ,则有P (A ·B )= P (A )·P (B )推广:如果事件A 1,A 2,…A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。
即:P (A 1·A 2·…·A n )= P (A 1)·P (A 2)·…·P(A n )3.独立重复试验: 在同样的条件下,重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.4.如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率计算公式:P n (k )=C k n P k (1-P )n -k ,其中,k =0,1,2,…,n 5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ 0 1… k … n P n n q p C 00 111-n n q p C … k n k k n q p C - …0q p C n n n 由于k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--ΛΛ中的各项的值,所以称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ).6. 两点分布:X 0 1P 1-p p特别提醒: 若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率.7. 超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则},,min{,,1,0,)(n M m m k C C C k X P n Nk n M N k M ====--Λ其中,N M N n ≤≤,。
关于二项分布与超几何分布问题区别举例Company number:【0089WT-8898YT-W8CCB-BUUT-202108】关于“二项分布”与“超几何分布”问题举例一.基本概念 1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件X=k 发生的概率为:P(X=k)=n Nk n MN k M C C C --⋅,k= 0,1,2,3,,m ;其中,m = minM,n,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n MN2.二项分布在n次独立重复试验中,设事件A 发生的次数为X,在每次试验中,事件A 发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为:P(X=k)= C n k p k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X服从二项分布.记作:X B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别(1)“二项分布”所满足的条件每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次试验只有两种结果,事件要么发生,要么不发生;随机变量是这n次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;合”,使得“超几何分布”期望的计算大简化.共同点:每次试验只有两种可能的结果:成功或失败。
不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布。
因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. 二.典型例题例1:袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为15,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,. 03031464(0)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 21231412(2)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 333141(3)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭.因此,X 的分布列为(2).不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P YC ===.因此,Y 的分布列为例2.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1) 取出的3件产品中一等品件数多于二等品件数的概率.(2) 记:X表示“取出的3件产品中一等品件数多于二等品件数的数量”,求X 的分布列并求EX;分析:由题可知:从10件产品中分别任取两次得到“一等品”或“二等品”的概率是不相等的,因此是一种不放回抽样;随机变量 X服从超几何分布.解:(1) 记A1:取出3件一等品;A2:取出2件一等品;A3:取出1件一等品,二件三等品.A1、A2、A3互斥,P(A 1)= C 33C 103 = 1120 , P(A 2)= C 32C 71C 103 =740,P(A 3)= C 31C 72C 103 = 340 ; 所以,P =P(A 1)+ P(A 2)+ P(A 3)= 31120 .(2)X=0,1,2,3; X 服从超几何分布,所以P(X=0)= P(一件一等品,一件二等品,一件三等品)=310131413C C C C =310;P(X=1)=P (二件一等品,一件二等品) =3101423C C C =110; P(X=2)=P(三件一等品,一件二等品)=3101433C C C =130 ; P(X=3)= P (三件一等品,零件二等品)= 3100433C C C = 1120;EX = nM N = 3310=说明:谨防错误地认为随机变量X 服从二项分布,即:XB(3, 31120).例3.从某高中学校随机抽取16名学生,经校医检查得到每位学生的视力,其中“好视力”4人,以这16人的样本数据来估计整个学校的整体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.分析:本题就是从“该校(人数很多)任选3人”,由此得到“好视力”人数X,若每次从该校任取一名学生为“好视力”这一事件的概率显然是相等的,因为该校“人数很多”相当于“有放回抽样”,因此,随机变量X服从“二项分布”而不是“超几何分布”.解:由题可知:X= 0,1,2,3;由样本估计总体,每次任取一人为“好视力”的概率为: P = 416 = 14,则XB(3,14 );P(X=0)= C 30( 14 )0(1- 14)3-0 = 2764; P(X=1)= C 31( 14 )1(1- 14)3-1 = 2764 ;P(X=2)= C 32( 14 )2(1- 14 )3-2 = 964 ;P(X=3)= C 33( 14 )3(1- 14 )3-3 = 164;EX = 3×14 = 34. 说明:假设问题变为:“从16名学生中任取3名,记X 表示抽到“好视力”学生的人数,求X 的分布列及数学期望”.那么X 服从“超几何分布”,即:P(X=k)= 3163124C C C k k ,(X=0,1,2,3),其中,数学期望值不变,即为:EX= 3×416 = 34.。
高考数学总复习考点知识专题讲解 专题13 二项分布与超几何分布知识点一 n 重伯努利试验及其特征 1.n 重伯努利试验的概念将一个伯努利试验独立地重复进行n 次所组成的随机试验称为n 重伯努利试验. 2.n 重伯努利试验的共同特征 (1)同一个伯努利试验重复做n 次. (2)各次试验的结果相互独立.思考在相同条件下,有放回地抽样试验是n 重伯努利试验吗? 答案 是.其满足n 重伯努利试验的共同特征. 知识点二 二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n . 称随机变量X 服从二项分布,记作X ~B (n ,p ). 知识点三 二项分布的均值与方差若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ).【例1】(2023•大埔县月考)设随机变量~(,)B n p ξ,若() 2.4E ξ=,() 1.44D ξ=,则参数n ,p 的值分别为()A .12,0.4B .12,0.6C .6,0.4D .6,0.6【例2】(2023•永春县月考)设随机变量~(2,)B p ξ,~(3,)B p η,5(1)9P ξ=…,则(2)(P η=…)A .19B .727C .59D .89【例3】(2023•海门市期末)A 、B 两组各3人独立的破译某密码,A 组每个人译出该密码的概率均为1p ,B 组每个人译出该密码的概率均为2p ,记A 、B 两组中译出密码的人数分别为X 、Y ,且12112p p <<<,则()A .()()E X E Y <,()()D X D Y <B .()()E X E Y <,()()D X D Y >C .()()E X E Y >,()()D X D Y < D .()()E X E Y >,()()D X D Y >【例4】(2018•新课标Ⅲ)某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,() 2.4D X =,(4)(6)P X P X =<=,则(p =)A .0.7B .0.6C .0.4D .0.3【例5】(2023•多选•琼中县模拟)若袋子中有2个白球,3个黑球,现从袋子中有放回地随机取球4次,每次取一个球,取到白球记1分,取到黑球记0分,记4次取球的总分数为X ,则()A .3~(4,)5X B B .4(3)25P X ==C .X 的期望8()5E X =D .X 的方差24()25D X =【例6】(2023•武汉模拟)已知离散型随机变量X 服从二项分布(,)B n p ,其中*n N ∈,01p <<,记X 为奇数的概率为a ,X 为偶数的概率为b ,则下列说法中正确的有()A .1a b +=B .12p =时,a b =C .102p <<时,a 随着n 的增大而增大 D .112p <<时,a 随着n 的增大而减小知识点四 超几何分布1.定义:一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -k N -MC n N,k =m ,m +1,m +2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M }. 如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布. 2.均值:E (X )=nM N. 3.超几何分布是不放回抽样,且超几何分布与二项分布的均值相同. 二项分布与超几何分布的关系在n 次试验中,某事件A 发生的次数X 可能服从超几何分布或二项分布.l 联系:在不放回n 次试验中,如果总体数量N 很大,而试验次数n 很小,此时超几何分布可近似转化成二项分布区别:①当这n 次试验是n 重伯努利试验时(如有放回摸球),X 服从二项分布;②当n 次试验不是n 重伯努利试验时(如不放回摸球),X 服从超几何分布。
例谈超几何分布与二项分布的辨析
超几何分布、二项分布是高考常考的概率分布类型,这两种分布既有区别,又有关联,学生在初学时由于对两种分布的本质认识不清,被易造成混淆,进面在解题中出现错解.那么如何区分这两种分布? 笔者归纳出如下几个区分点,供读者参考.
辨析超几何分布与二项分布既有区别,又有联系.当总体的数量非常大,抽取样本数量很少时,可以近似地认为每次抽取时事件发生的概率不变,这样就可以看成每次抽取结果是相互独立的,进面将超几何分布近似地看作二项分布来处理.
另外,常见的概率分布类型还有两点分布,两点分布是一种特殊的二项分布,即只进行一次独立重复试验,只有发生与不发生两种结果,与其有关的问题相对于前两种要简单一些
总之,在处理与概率分布有关的间题时,我们要明确各种概率分布的本质,以及不同概率类型之间的异同,结合题目条件,准确识别概率类型.。
二项分布与超几何分布辨析山东 韩文文二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,.3031464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;21231412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;3033141(3)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭. 因此,X 的分布列为X 0 1 2 3P64125 48125 12125 11252.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P Y C ===.因此,Y 的分布列为Y 0 1 2P 715715 115辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.超几何分布和二项分布都是离散型分布 超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)当总体的容量非常大时,超几何分布近似于二项分布.........二项分布与超几何分布辨析山东 韩文文二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,.3031464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;21231412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;3033141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭.因此,X 的分布列为X 0 1 2 3P64125 48125 12125 11252.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P Y C ===.因此,Y 的分布列为Y 0 1 2P 715715 115辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.超几何分布和二项分布都是离散型分布 超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)当总体的容量非常大时,超几何分布近似于二项分布.........2.2.2 椭圆的简单几何性质(1)教材分析《椭圆的简单几何性质》是数学选修2-1第二章第一节的内容,在此之前,学生已经学习了椭圆的定义及其标准方程,为过渡到本节的学习起着铺垫作用.本节涉及到数形结合这种重要的数学思想方法,是高考重点考察内容,并为双曲线、抛物线的学习打下基础,因此,在高中数学中占据重要地位.本课是在学生学习了椭圆的定义、标准方程的基础上根据方程研究曲线的性质.先引导学生观察椭圆----几何直观,了解应该关注椭圆的哪些方面的性质,然后再引导学生考虑方程的各种特征对应着椭圆的哪些几何特征,逐渐让学生掌握研究曲线的几何性质的方法.这样由形到数、由数到形,通过对曲线的范围、对称性及特殊点的讨论,从整体上把握曲线形状、大小、和位置.对于学生来说,利用曲线方程研究曲线性质这是第一次,因此它在教学中起到承上启下的作用,教学中教师要注意引导、点拨.课时分配本节内容用2课时的时间完成:第一课时的主要内容是椭圆的简单几何性质(对称性、范围、顶点、离心率); 第二课时的主要内容是椭圆性质的简单综合应用.教学目标重 点:椭圆的简单几何性质及其探究过程;难 点:运用曲线方程研究曲线几何性质的基本方法;知识点:1.掌握椭圆的简单几何性质(对称性、范围、顶点、离心率);2.能说明离心率的大小对椭圆形状的影响; 3.运用数形结合思想,研究曲线方程几何性质;能力点:体会数形结合的思想,掌握利用方程研究曲线性质的基本方法;教育点:感受解析法研究问题的思想,感知椭圆曲线的对称美,培养学生的学习兴趣; 自主探究点:从直观几何图形出发,探究椭圆的几何性质; 考试点:椭圆性质的简单应用,离心率对椭圆形状的影响; 易错易混点:a ,b ,c 之间的关系;离心率e 的定义及范围;教具准备 直尺,绳子,投影仪,多媒体课件等 课堂模式 三段六步教学、探究学习、学案导学 一、引入新课:复习引入:1.椭圆的定义:平面内与两个定点12,F F 的距离之和等于常数(大于12||F F )的点的轨迹叫做椭圆.2.椭圆的标准方程:当焦点在x 轴上时,22221(0)x y a b a b +=>>;当焦点在y 轴上时,22221(0)y x a b a b+=>>. 3.椭圆中a ,b ,c 的关系是: 222a b c =+.【设计意图】根据曲线的方程研究曲线的几何性质并正确地画出它的图形是解析几何的基本问题之一,在此之前,学生一定要能熟练写出椭圆的标准方程. 课题引入:观察椭圆22221(0)x y a b a b+=>>的形状,你能从图上看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?【设计意图】借助多媒体辅助手段,先给出一个可以直观的椭圆,创设问题情景,让学生从形的角度先对椭圆的几何性质有一个整体的把握,引导学生观察、分析、猜测、论证,然后再重点从数的角度也就是方程组织讨论,合作交流,启发学生积极思维,不断探索后汇报研究成果,得到结论后总结,及时进行反馈应用和反思总结.二、探究新知:【师】观察椭圆22221(0)x y a b a b+=>>的形状,你能从图上看出它的范围吗?它具有怎样的对称性?【生】1.椭圆是轴对称图形,关于x 轴、y 轴对称;椭圆还是中心对称图形,关于坐标原点对称.2.椭圆与坐标轴有四个交点,其中与x 轴的两个交点分别为(,0),(,0)a a -,与y 轴的两个交点分别是(0,),(0,)b b -.3.x 的取值范围是[,]a a -,y 的取值范围是[,]b b -. 【师】由图形观察出的几何性质,能否由方程得到? 【生】思考、研究、交流,展示自己的研究方法. 1. 范围(1)从图像上容易看出,椭圆上的点的横坐标的范围是a x a -≤≤,纵坐标的范围是b y b -≤≤.(2)由方程可知,222210y x b a=-≥,所以,椭圆上所有的点都适合不等式221x a≤,即a x a -≤≤.同理有b y b -≤≤.【师】椭圆正好位于直线x a =±和y b =±所围成的矩形框里. 2. 对称性(1)观察椭圆的形状,可以发现椭圆既是轴对称图形,也是中心对称图形.(2)在椭圆22221(0)x y a b a b+=>>中,(i )把x 换成x -,方程不变,故图象关于y 轴对称; (ii )把y 换成y -,方程不变,故图象关于x 轴对称;(iii )把x 换成x -,同时把y 换成y -,方程不变,故图象关于原点成中心对称. 【师】综上,椭圆关于x 轴和y 轴都是轴对称的,关于原点是中心对称的,这时,坐标轴是椭圆的对称轴,坐标原点是椭圆的对称中心,椭圆的对称中心又叫椭圆的中心. 3. 顶点oy B 2 B 1A 1A 2F 1F 2cabO xyxO(,)P x y1(,)P x y - 2(,)P x y --令0x =,得y b =±,说明椭圆与y 轴的交点为(,0)b ±;令0y =,得x a =±,说明椭圆与x 轴的交点为(,0)a ±.顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点. 椭圆的四个顶点分别为1212(,0),(,0),(0,),(0,)A a A a B b B b --.长轴、短轴:线段12A A ,12B B 分别叫做椭圆的长轴和短轴.a ,b 分别叫做椭圆的长半轴长和短半轴长.【练习】根据前面所学有关知识画出下列图形:22(1)12516x y +=; 22(2)1254x y +=.【师】我们来比较上面两个图形的扁平程度,当长轴相当的时候,椭圆的短轴越短,椭圆就越扁,那么,我们有一个专门用来刻画椭圆扁平程度的量,离心率.【设计意图】引导学生分析图像,从图像中体会,,a b c 对椭圆扁平程度的影响,分析其中的相应变化,从而自然引出离心率的概念,显得不突兀;另外,除了离心率外,b a 或cb的大小也是可以刻画椭圆的扁平程度,具体的情况要学生自己探索,教师做到授之以渔就可以了.4. 离心率【师】我们把椭圆的焦距与长轴长的比称为椭圆的离心率,用e 表示,即c e a=. (1)离心率的取值范围:01e <<; (2)离心率对椭圆形状的影响:(i )e 越接近1,c 就越接近a ,从而b 就越小,椭圆就越扁; (ii )e 越接近0,c 就越接近0,从而b 就越大,椭圆就越圆. 【师】思考:当0e =时,曲线是什么?当1e =时,曲线又是什么?【生】当0e =时,0c =,a b =,曲线是圆;当1e =时,c a =,0b =,曲线是线段.(3)离心率e 与,a b 的关系:222221ab a b a ac e -=-== 练习:对于椭圆222:936C x y +=与椭圆222:21612y x C +=,更接近于圆的是: .【设计意图】通过探究,培养学生研究问题的严谨性,观察得到的结论不一定正确,必须给1 23-1 -2 -3-44 y 1 2 3 45 x -5 -4 -3-2-1 A 1 B 1 A 2 B 2O 1 2 3 -1 -2 -3 -44 y 1 2 3 45 -1 O -5 -2 -3 -4 x B 2 A 2 B 1 A 1予理论证明,同时让学生尝试研究性学习与接受式学习相结合的学习方式,在这种方式下,学生自主的研究问题,在研究中掌握本节知识,体验用方程研究图形性质的思想和方法.三、理解新知:椭圆的简单几何性质图形标准方程22221(0)x y a b a b +=>> 22221(0)y x a b a b+=>> 范围 a x a -≤≤,b y b -≤≤b x b -≤≤,a y a -≤≤焦点(,0)c -,(,0)c(0,)c -,(0,)c顶点(,0),(,0)a a -,(0,),(0,)b b -(,0),(,0)b b -,(0,),(0,)a a -对称性 关于x 轴、y 轴成轴对称;关于原点成中心对称离心率 ce a=,01e <<a ,b ,c 的关系 222a b c =+半轴长长半轴长a ,短半轴长b ,a >b【设计意图】用表格的形式呈现,更方便学生理解和应用,为继续学习打好坚实的基础.四、运用新知:例1. 求椭圆221625400x y +=的长轴和短轴的长、离心率、焦点和顶点坐标.分析:先把椭圆的方程化成标准方程2212516x y +=. xA 2B 2F 2y OA 1B 1F 1xyO A 1B 1A 2B 2F 1F 2解:把已知方程化成标准方程2222154x y +=,于是,225,4,3a b c a b ===-=.所以,长轴与短轴的长分别为210,28,a b == 离心率3,5c e a ==两个焦点坐标分别为12(3,0),(3,0),F F -。
二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。
在实际应用中,如何理解它们的关联性同时又能区分两个概率模型呢?本文笔者就此问题予以阐述。
一、超几何分布与二项分布的定义1.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为P (X=k)=C M k C n-m n-kC Nn,k=0,1,2,…,m其中m=min {M,n},且n ≤N ,M ≤N ,n ,M ,N ∈N*。
其分布列为超几何分布列。
如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。
2.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。
在n 次独立重复试验中,设事件A 发生的次数X ,在每次试验事件A 发生的概率为p,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X=k)=C n k P k(1-p )n-k,k=0,1,2,…,n 。
此时称随机变量X 服从二项分布,记作X ~B (n ,p),并称p 为成功概率。
二、超几何分布与二项分布的区别从它们的定义不难看出超几何分布研究的是试验后的结果(不研究试验中先后取的顺序),并且是无放回的抽取;二项分布研究的是既有研究先后发生的顺序又有试验结果,并且是有放回的抽取。
超几何分布是无放回的抽取,即每做一次试验,下一次再发生同一事件A 的概率已经发生了变化,即每次发生的概率都不相等。
实质上,超几何分布是古典概型的一种特例。
二项分布是有放回的抽取,每做一次试验,发生同一事件A 的概率都相同。
这就是二者之间的区别。
本文笔者举例说明:例1:在装有4个黑球6个白球的袋子中,任取2个,试求:(1)不放回地抽取,取到黑球数X 的分布列;(2)有放回地抽取,取到黑球数的分布列。
解:(1)是不放回地抽取,X 服从超几何分布。
从10个球中任取2球的结果数为C 102,从10个球中任取2个,其中恰有k 个黑球的结果数为C 4k C 62-k,那么从10个球中任取2个,其中恰有k 个黑球的概率为P (X=k )=C 4k C 62-kC 102,k=0,1,2。
超几何分布和二项分布一、两者的定义是不同的1超几何分布的定义2独立重复试验与二项分布的定义(1)独立重复试验.(2)二项分布.本质区别(1)超几何分布描述的是不放回抽样问题,而二项分布描述的是放回抽样问题.(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题.二、两者之间是有联系的人教版新课标选修2-3第59页习题2.2B组第3题:例1某批n件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问:(1)当n=500,5000,500000时,分别以放回和不放回的方式抽取,恰好抽到1件产品的概率各是多少?(2)根据(1)你对超几何分布与二项分布的关系有何认识?【说明】由于数字比较大,可以利用计算机或计算器进行数值计算.另外,本题目也可以帮助学生了解超几何分布和二项分布之间的关系:第一,n次试验中,某一事件A出现的次数X可能服从超几何分布或二项分布.当这n次试验是独立重复试验时,X服从二项分布;当这n次试验是不放回摸球问题,事件A为摸到某种特性(如某种颜色)的球时,X服从超几何分布第二,在不放回n次摸球试验中,摸到某种颜色的次数X服从超几何分布,但是当袋子中的球的数目N 很大时,X的分布列近似于二项分布,并且随着N的增加,这种近似的精度也增加.从以上分析可以看出两者之间的联系:当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布.例2袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取一个球,求(1)又放回抽样时,取到黑球的个数X的分布列;(2)无放回地抽样时,取到黑球的个数Y的分布列.[错解分析]第二问的选人问题是不放回抽样问题,按照定义先考虑超几何分布,但是题目中又明确给出:“以这16人的样本数据来估计整个社区的总体数据,从该社区(人数很多)任选3人”,说明不是从16人中任选3人,而是从该社区(人数很多)任选3人,所以可以近似看作是3次独立重复试验,应该按照二项分布去求解,而不能按照超几何分布去处理.【正解】(1)同上;从以上解题过程中我们还发现,错解中的期望值与正解中的期望值相等,好多学生都觉得不可思议,怎么会出现相同的结果呢?其实这还是由于前面解释过的原因,超几何分布与二项分布是有联系的,看它们的期望公式:综上可知,当提问中涉及“用样本数据来估计总体数据”字样的为二项分布。
备战高考数学复习考点知识与题型讲解第82讲二项分布与超几何分布的辨别二项分布与超几何分布是概率中最重要的两种数学模型,学生对这两种模型的定义不能很好地理解,一遇到“取”或“摸”的题型,就认为是超几何分布,不加分析,滥用公式,运算对象不明晰,事实上,超几何分布和二项分布确实有着密切的联系,但也有明显的区别.分别指出下列随机变量服从什么分布,并用合适的符号表示:(1)某班级共有30名学生,其中有10名学生戴眼镜,随机从这个班级中抽取5人,设抽到的不戴眼镜的人数为X;(2)已知女性患色盲的概率为0.25%,任意抽取300名女性,设其中患色盲的人数为X;(3)学校要从3名男教师和4名女教师中随机选出3人去支教,设抽取的人中男教师的人数为X.【解】(1)依题意不戴眼镜的人数为X服从参数为30,5,20的超几何分布,即X~H(30,5,20).(2)依题意每次抽到患色盲的概率为0.25%,任意抽取300名女性,设其中患色盲的人数为X,则X服从二项分布,即X~B(300,0.25%).(3)抽取的人中男教师的人数为X服从参数为7,3,3的超几何分布,即X~H(7,3,3).(2022·重庆市巴蜀中学高三适应性考试)一机床生产了100个汽车零件,其中有40个一等品、50个合格品、10个次品,从中随机地抽出4个零件作为样本.用X 表示样本中一等品的个数.(1)若有放回地抽取,求X的分布列;(2)若不放回地抽取,用样本中一等品的比例去估计总体中一等品的比例.①求误差不超过0.2的X的值;②求误差不超过0.2的概率(结果不用计算,用式子表示即可).【解】 (1)对于有放回抽取,每次抽到一等品的概率为40100=25,且各次试验之间的结果是独立的,因此X ~B ⎝ ⎛⎭⎪⎫4,25,从而P ()X =0=⎝ ⎛⎭⎪⎫1-254=81625,P ()X =1=C 14·25·⎝ ⎛⎭⎪⎫1-253=216625,P (X =2)=C 24⎝ ⎛⎭⎪⎫252·⎝ ⎛⎭⎪⎫1-252=216625,P (X =3)=C 34(25)3·⎝ ⎛⎭⎪⎫1-25=96625,P (X =4)=⎝ ⎛⎭⎪⎫254=16625, 所以X 的分布列如下:X 0 1 2 3 4 P816252166252166259662516625(2)对于不放回抽取,各次试验结果不独立,X 服从超几何分布,样本中一等品的比例为X 4,而总体中一等品的比例为40100=0.4,由题意,①⎪⎪⎪⎪⎪⎪X 4-0.4≤0.2⇒0.8≤X ≤2.4⇒X =1或X =2; ②P ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪X 4-0.4≤0.2=P (X =1)+P (X =2)=C 140C 360+C 240C 260C 4100.超几何分布的抽取是不放回抽取,各次抽取不独立,二项分布的抽取是有放回抽取,各次抽取相互独立.当超几何分布所对应的总体数量很大时可以近似地看作二项分布.。
二项分布和超几何分布,五分钟让你再也不迷糊!有一次被学生问到:老师您给我讲讲二项分布和超几何分布的区别吧。
我想,二项分布和超几何分布的区别大着呀,没道理会把它们弄混。
但是既然学生提出来了,就说明这样的疑惑的确存在,我们今天就来捋一捋,让疑者不疑,不疑者更明。
发生条件的不同二项分布:描述n次独立重复试验,而且该随机试验只有两种可能结果:发生或者不发生(也常说试验成功或失败)。
“独立”强调的是各次试验互相不干扰,“重复”强调的是每次试验中事件发生与否的概率保持不变。
超几何分布:描述由N个物件(其中有M个指定物件)中抽出n 个物件。
随机变量的不同二项分布的随机变量ξ是n次独立重复试验中试验成功的次数k。
超几何分布的随机变量ξ是抽出的n个物件中抽到指定种类的物件的个数m。
概率:在二项分布中,P(ξ=k)= C(n, k) * p^k * (1-p)^(n-k).在超几何分布中,P(ξ=m)= C(M, m) * C(N-M, n-m) / C(N,n).用一个“抽取合格品/次品”(换成双色小球也是一样)模型来对比上述两种分布:现有N件产品,其中M件合格品,N-M件次品。
1.从中抽取一件产品,为合格品的概率是?p=M/N2.每次抽取一件产品,抽完放回,抽n次(这里的n与N无关),共抽到k次合格品的概率是?C(n, k) * p^k * (1-p)^(n-k),其中p为第1问里的p.3.每次抽取一件产品,抽完不放回,抽n次(这里的不大于N),共抽到m次合格品的概率是?C(M, m) * C(N-M, n-m) / C(N,n)对于第3问中的情况,和1次性抽出n件产品,其中有m件合格品的概率是一样的。
能不能像第2问一样,用分步做乘法的方法来写概率呢?也可以的,不过因为不放回,产品总数在递减,每次抽到合格品的概率受之前抽到合格品还是次品的结果影响,所以不是独立重复实验了!为了帮助大家进一步看清楚,我举一个数目较小的具体例子来演示,3件产品,其中2件合格品,1件次品。
⼆项分布与超⼏何分布辨析⼆项分布与超⼏何分布辨析马关县民族职业⾼级中学杨平荣摘要:⼆项分布与超⼏何分布是中学数学研究的两种分布类型,本⽂通过对两种分布的定义辨析⼊⼿,重点研究了超⼏何分布与⼆项分布的区别与联系,通过实例分析了两种分布类型的适⽤范围,理清了导致混淆的根源。
关键词:超⼏何分布、⼆项分布、辨析、区别与联系。
正⽂:在⼈教版《数学选修2-3》的课本中,第⼆章《概率》的2.1节和2.2节分别介绍了两种离散型随机变量的概率分布,超⼏何分布(hyper-geometric distribution)与⼆项分布(binomial distribution)。
通过实例,让学⽣认识模型所刻画的随机变量的共同特点,从⽽建⽴新的模型,并能运⽤两模型解决⼀些实际问题。
然⽽在教学过程中,却发现学⽣不能准确地辨别所要解决的问题是属于超⼏何分布还是⼆项分布,学⽣对这两模型的定义不能很好的理解,⼀遇到含“取”或“摸”的题型,就认为是超⼏何分布,不加分析,随便滥⽤公式。
事实上,超⼏何分布和⼆项分布确实有着密切的联系,但也有明显的区别。
⼀、概念辨析⼆项分布:课本定义:在n次独⽴重复试验中,⽤X表⽰事件A发⽣的次数,设每次试验中事件A发⽣的概率为p,则P(X=k)=C n k p k(1?p)n?k,k= 0,1,2,?,n.此时称随机变量X服从⼆项分布(binomial distribution),记作X~B(n,k),并称p为成功概率。
期望EX=np,⽅差DX=np(1-p).超⼏何分布:课本定义:⼀般地,在含有M件次品的N件产品中,任取n件,其中恰有X 件次品,则P(X=k)=C M k ?C N?Mn?kC Nn ,k=0,1,2?m.其中m =min {M,n },且n ≤N ,M ≤N,n ,M ,N ∈N ?.则称随机变量X 服从超⼏何分布(hypergeometric distribution ),记作X ~H(N,n,M ),期望DX =nM N,⽅差DX =nM(N?M)(N?n)[N (N?1)]。
低碳 非低碳 来自 B 小区,求这族4人中恰族t 2人是低碳比例二项分布与超几何分布是两个非常重要的、 应用广泛的概率模型,实际中的 许多问题都可以利用这两个概率模型来解决。
在实际应用中,理解并区分两个概 率模型是至关重要的。
下面举例进行对比辨析。
1•有放回抽样:每次抽取时的总体没有改变,因而每次抽到某物的概率都是 相同的,可以看成是独立重复试验,此种抽样是二项分布模型。
2. 不放回抽样:取出一个则总体中就少一个,因此每次取到某物的概率是不 同的,此种抽样为超几何分布模型。
因此,二项分布模型和超几何分布模型最主 要的区别在于是有放回抽样还是不放回抽样。
所以,在解有关二项分布和超几何 分布问题时,仔细阅读、辨析题目条件是非常重要的(特别注意:二项分布是在n 次独立重复试验的3个条件成立时应用的)。
超几何分布和二项分布的区别:(1)超几何分布需要知道总体的容量,而二项分布不需要;(2 )超几何分布是“不放回”抽取,而二项分布是“有放回”抽取(独立 重复)。
练习题:1袋中有8个白球、2个黑球,从中随机地连续抽取 3次,每次取1个球。
求:(1) 有放回抽样时,取到黑球的个数X 的分布列;(2) 不放回抽样时,取到黑球的个数Y 的分布列。
2.今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人 们可以扰此计算出自己每天的碳排放量。
例如:家居用电的碳排放量(千克)耗电度数X .785,汽车的碳排放量(千克)=油耗公升数X 0.785等。
某班同学利 用寒假在两个小区逐户进行了一次生活习惯进否符合低碳观念的调查。
若生活习 惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”。
这二族人数占各自 小区总人数的比例P 数据如下:(II ) A 小区经过大力宣传,每周非低碳族中有 20%的人加入到低碳族的行列。
如果2周后随机地从A 小区中任选25个人,记 表示25个人中低碳族人数,求 E .3. 在“自选模块”考试中,某试场的每位同学都选了一道数学题,第一小组 选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5 人,第二小组选《数学史与不等式选讲》的有2 人,选《矩阵变换和坐标系与参数方程》的有 4 人,现从第一、第二两小组各任选2人分析得分情况.(I)求选出的4人均为选《矩阵变换和坐标系与参数方程》的概率;(U)设为选出的4个人中选《数学史与不等式选讲》的人数,求的分布列和数学期望.4. (2008 年四川延考)一条生产线上生产的产品按质量情况分为三类:A 类、B类、C类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有 C 类产品或 2 件都是 B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为 A 类品,B类品和C类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(1) 求在一次抽检后,设备不需要调整的概率;(2) 若检验员一天抽检3次,以软示一天中需要调整设备的次数,求E 的分布列.5. 甲、乙两人参加2010 年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的 6 题,乙能答对其中的8 题.规定每次考试都从备选题中随机抽出 3 题进行测试,至少答对 2 题才能入选.(1) 求甲答对试题数E的概率分布;(2) 求甲、乙两人至少有一人入选的概率.(2oi2*an一模)甲、乙两名同学在§次與语口语测试中的咸绩统计如留的莖叶團所凤(1) 现莫从中选派一人泰加英话口语竞赛,从两同学的平均成議和方差分析,派谨参加更合适I(2) 若解频率视为槪率,前学生甲在今后的三次英语口语孟赛成麵进行预测,i己这三次成攝中鬲干汕分的次数为◎求电的分布列及數学期璽昭”(?t:样本数据“吁―> 龈的万差s*=-y L(x1~x r+ix^_x T+"-+(x ~r T] F其中工表示稈本均值丿6.7.仙⑷BI川aw为了蘇檢魅频瓢漏麟忆从械甦帳机齡了眩同勒这附禅鼬媒用数[婷叶跚示⑴竝睢薛赭解査蛹賊虽(2)处睢薛中耿选俯師学柚析髓冊楠込册城關司学中糊低千釉冊U瓠求血般狮期。
超几何分布与二项分布[知识点]关键是判断超几何分布与二项分布判断一个随机变量是否服从超几何分布,关键是要看随机变量是否满足超几何分布的特征:一个总体(共有N 个)内含有两种不同的事物()A M 个、()B N M -个,任取n 个,其中恰有X 个A .符合该条件的即可断定是超几何分布,按照超几何分布的分布列()k n k M N MnNC C P X k C --==(0,1,2,,k m = )进行处理就可以了.二项分布必须同时满足以下两个条件:①在一次试验中试验结果只有A 与A 这两个,且事件A 发生的概率为p ,事件A 发生的概率为1p -;②试验可以独立重复地进行,即每次重复做一次试验,事件A 发生的概率都是同一常数p ,事件A 发生的概率为1p -.1、某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品.(Ⅰ)随机选取1件产品,求能够通过检测的概率;(Ⅱ)随机选取3件产品,其中一等品的件数记为X ,求X 的分布列;(Ⅲ)随机选取3件产品,求这三件产品都不能通过检测的概率.【解析】(Ⅰ)设随机选取一件产品,能够通过检测的事件为A…………………………1分事件A 等于事件“选取一等品都通过检测或者是选取二等品通过检测”……………2分151332104106)(=⨯+=A p …………………………4分(Ⅱ)由题可知X 可能取值为0,1,2,3.30463101(0)30C C P X C ===,21463103(1)10C C P X C ===,12463101(2)2C C P X C ===,03463101(3)6C C P X C ===.………………8分故X 的分布列为……………9分X 0123P3011032161(Ⅲ)设随机选取3件产品都不能通过检测的事件为B……………10分事件B 等于事件“随机选取3件产品都是二等品且都不能通过检测”所以,3111()()303810P B =⋅=.……………13分2、第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。
二项分布与超几何分布辨析
二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.
例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:
(1)有放回抽样时,取到黑球的个数X的分布列;
(2)不放回抽样时,取到黑球的个数Y的分布列.
解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到
黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫ ⎪⎝⎭
,. 03
31464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴; 12
131448(1)55125
P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭; 212
31412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭; 30
3
3141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭. 因此,X 的分布列为
X
0 1 2 3 P 64125 48125 12125 1125 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:
03283107(0)15
C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P Y C ===. 因此,Y 的分布列为
Y
0 1 2 P 715 715 115
辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. “二项分布”与“超几何分布”的区别与联系 (1). “二项分布”所,满足的条件: ①每次试验中,事件发生的概率是相同的,是 一种放回抽样; ②.各次试验中的事件是相互独立的; ③.每次试验只有2种结果,要么发生,要么不发生。
(2).“超几何分布”的本质:在每次试验中某一事件发生的概率是不相同的,是不放回抽样。
(3).超几何分布需要知道总体的容量,二项分布不需要总体容量,但需要知道“成功率”。