大学物理 17真空中静电场1
- 格式:ppt
- 大小:1.78 MB
- 文档页数:11
第5章 真空中的静电场§ 物质的电结构实验证明,自然界中存在两种电荷,分别称为正电荷和负电荷.它们之间存在相互作用力,同种电荷相互排斥,异种电荷相互吸引.物体所带电荷的多少称为电量,用q 或Q 表示,电量的单位取库仑(C ).实验还表明,在自然界中,存在着最小的电荷基本单元e,任何带电体所带的电量只能是这个基本单元的整数倍,即),,( 21 n ne Q电荷的这一特性称为电荷的量子性.实验测得这基本单元的电量为).()(.C C e 19191060211049602177331 近似为由于e 的量值非常小,在宏观现象中不易观察到电荷的量子性,常将电量Q 看成是可以连续变化的物理量,它在带电体上的分布也看成是连续的.由物质的电结构可知,原子中一个电子带一个单位负电荷,一个质子带一个单位正电荷,其量值就是C e 19106021 .,原子失去电子带正电,原子得到电子带负电.随着人们对物质结构的认识,1964年盖尔曼(M ·Gell-Mann )等人提出了夸克模型,认为夸克粒子是物质结构的基本单元,强子(质子、中子等)是由夸克组成的,而不同类型的夸克带有不同的电量,分别为e 31 或e 32 .截止1995年,核子的6个夸克已全部被实验发现,可靠的依据也证明了分数电荷的存在.但到目前为止还没有发现自由状态存在的夸克 .我们已经知道,在正常情况下物体不带电,呈电中性,即物体上正、负电荷的代数和为零.当物体呈带电状态时,是由于电子转移或电子重新分配的结果,在电子转移或重新分配的过程中,正、负电荷的代数和并不改变.大量实验表明,把参与相互作用的几个物体或粒子作为一个系统,若整个系统与外界没有电荷交换,则不管在系统中发生什么变化过程,整个系统电荷量的代数和将始终保持不变.这一结论称为电荷守恒定律,它是自然界中一条基本定律.实验还发现,一切宏观的、微观的,物理的、化学的、生物的等过程都遵守电荷守恒定律.§ 库仑定律实验表明,带电体之间的相互作用与带电体之间的距离和所带电量有关,也与带电体的大小、形状、电荷在带电体上的分布情形以及周围介质的性质有关.所以在通常情况下,两个带电体之间的相互作用表现出与多种因素有关的复杂情形.当带电体的线度与带电体之间的距离相比小得多时,带电体的大小、形状对所研究问题的影响可以忽略,这样的带电体称为点电荷.显然,点电荷的概念与质点、刚体等概念一样,是对实际情况的抽象,是一种理想化的物理模型.一个带电体能否看成点电荷,必须根据具体情况来决定.一般的带电体不能看成点电荷,但总可以把它看成是许多点电荷的集合体,从而能由点电荷所遵从的规律出发,得出我们所要寻找的结论.本节我们讨论真空中点电荷间的相互作用.两点电荷之间的相互作用是库仑—1806)通过扭称实验于1785年总结出来的,其内容为:真空中两静止点电荷之间的相互作用力的大小与它们所带电量的乘积成正比 ,与它们之间距离的平方成反比;作用力的方向沿着两电荷的连线,同号电荷相斥(为正),异号电荷相吸(为负),这一结论称为库仑定律.其数学表达式为 r r q q k F ˆ221( ) k 为比例系数,在SI 单位制中,实验测得其数值为2222C m N C m N 991091098755188.k为使由库仑定律导出的其它公式具有较简单的形式,通常将库仑定律中的比例系数写为41 k ( ) 其中ε0为真空的电容率(或真空中的介电常数),于是库仑定律又可写为r r q q F ˆ20214 图(a)表示两个同号电荷的作用力是排斥力;图(b)表示两个异号电荷的作用力是吸引力.值得指出的是,库仑定律只适用于描述两个相对于观察者为静止的点电荷之的相互作用,这种静止电荷的作用力称为静电力(或库仑力).空气对电荷之间的作用影响较小,可看成是真空.例题 三个点电荷21q q 、和 Q 所处的位置如图 所示,它们所带的电量分别为C q q 6211002 . ,C Q 61004 ..求21q q 和对Q 的作用力.解:本问题一般是先利用库仑定律求出21q q 、分别对 Q 的作用力 F 和F ',然后求出它们的合力.由本问题的对称性可知 F 和 F '的 y 分量大小相等,方向相反,因而互相抵消.Q 所受21q q 、之合力方向沿 x轴正向.由库仑定律得1q 对Q 的作用力大小为N 290403010041002109984226692101...... r Q q F N 2305040290....cos F F x 所以Q 所受21q q 、之合力大小为N 46023022..cos ' F F F F f x x x作业(P120):§ 电场和电场强度一、静电场关于电荷之间如何进行相互作用,历史上曾经有过两种不同的观点.一种观点认为这种相互作用不需要媒质,也不需要时间,而是直接从一个带电体作用到另一个带电体上的.即电荷之间的的相互作用是一种“超距作用”.这种作用方式可表示为电荷电荷另一种观点认为,任一电荷都在自己的周围空间产生电场,并通过电场对其它电荷施加作用力,这种作用方式可表示为电荷电场电荷大量事实证明,电场的观点是正确的.电场是一种客观存在的特殊物质,与由分子、原子组成的物质一样,它也具有能量、质量和动量.二、电场强度不同的带电体系具有不同的电场,同一电荷体系的电场在空间具有一定的分布.为了定量的描述电场中各点电场的性质,引入一新的物理量——电场强度. 电场的一个重要性质,就是对置于其中的电荷施加作用力.为此,在电场中引入电量为0q 的试探电荷来研究电场的性质.所谓试探电荷是这样一种电荷,首先它所带的电量要非常小,一致由于它的引入使原电场发生的改变可以忽略;其次它的几何尺寸亦必须非常小,一致可以看作点电荷.实验证明,在给定的场点处,试探电荷0q 所受的电场力F 与0q 之比为一常矢量,与0q 的大小无关;不同的场点,比值不同.可见比值F/0q 揭示了电场的性质,所以我们可将这一比值定义为电场强度,简称电场,用E 表示,即q F E 上式说明,静电场中任意一点的电场强度其大小等于单位试探电荷在该点所受到的电场力,其方向与正电荷在该点的受力方向相同.通常E 是空间坐标的函数.若E 的大小和方向均与空间坐标无关,这种电场称为匀强电场.在SI 单位制中.电场强度的单位为牛顿/库仑(N ·C -1),或伏特/米(V ·m -1)三、叠加原理和电场强度的计算1. 单个点电荷产生的电场考虑真空中的静电场是由电量为 q 的点电荷产生的,试探电荷0q 在其中的P 点所受的电场力可由库仑定律式()得r rq q F ˆ2004 式中r 是点P 相对于点电荷的位置矢量,r 是这位置矢量的大小,由电场强度的定义式()则得P 点处的电场强度为r rq r r q q F E 3020044 ˆ 上式表示,点电荷在空间任一点P 所产生的电场强度E 的大小,决定于这个点电荷的电量和点P 到该点电荷的距离.电场强度E 的方向与这个点电荷的符号有关,q 为正,电场强度E 的方向与位置矢量r 的方向相同;q 为负,电场强度E 的方向与位置矢量r 的方向相反.电场强度在空间呈球对称分布.2. 场强的叠加原理 多个点电荷的电场强度考虑空间存在n 个点电荷.实验证明,在它们的电场中任一点P 处,试探电荷0q 所受的电场力F 等于各点电荷分别单独存在时0q 所受电场力的矢量和,并利用电场强度的定义得:i q F E i E E F F 0/定义上式表明,在点电荷系的电场中,任意一点的电场强度等于每个点电荷单独存在时在该点所产生的电场强度的矢量和,这一结论称为场强的叠加原理.i i ii r r q E 3041进一步可表示为 3. 任意带电体产生的电场任意带电体的电荷可以看成是很多极小的电荷元dq 的集合,每一个电荷元dq 在空间任意一点P 所产生的电场强度,与点电荷在同一点产生的电场强度相同.整个带电体在P 点产生的电场强度就等于带电体上所有电荷元在P 点场强的矢量和.如果点P 相对于电荷元dq 的位置矢量为r ,则电荷元dq 在P 点产生的电场强度,进而整个带电体在P 点产生的电场强度为:r r dq E r r dq E d 30304141求积分 ).().().(135411254111541303030线分布面分布体分布r rdl r r dS r r dV E 应该注意,式— 都为矢量式.实际应用中多用标量式(投影式) ,如E 沿X 轴的投影式为cos 204r dq dE E x x 式中 表示r 与X 轴的夹角.例题 如图所示,有两个电量相等而符号相反的点电荷 + q 和 - q,相距l . 求在两点电荷的中垂面上任一点P 的电场强度.解:以l 的中点为原点建立坐标系,如图设点P 到点O 的距离为r .电荷 + q 和- q在点P 产生的电场强度分别用 E E 和表示 ,它们的大小相等为441220/l r q E E它们的方向如图所示.点P 的电场强度E 为 E E 和的矢量和,即 E E E E 的x 分量为23220x x x x 441cos cos /)/(l r ql E E E E EE 的y 分量为0sin sin y y y E E E E E所以,点P 的电场强度大小为负方向方向沿X l r ql E E x 23220441/)/(当l r 时,这样一对电量相等、符号相反的点电荷所组成的系统,称为电偶极子.从负电荷到正电荷所引的有向线段 l 称为电偶极子的轴 .电量q 与电偶极子的轴 l 的乘积,定义为电偶极子的电矩,用表示,即l q p由于l r ,故有323224r l r /)/(,所以在电偶极子轴的中垂面上任意一点的电场强度可表示为304rp E 电偶极子是一个很重要的物理模型,在研究电介质极化,电磁波的发射和吸收等问题中都要用到该模型.例题 有一均匀带电细直棒,长为L,所带总电量为q .直棒外一点P 到直棒的距离为a ,求点P 的电场强度.解:如图所示,设直棒两端至点P 的连线与x 轴正向间的夹角分别为21 和,考虑棒上x 处的元段dx ,其带电量dx Lq dx dq ,它在P 点产生的电场强度大小为204d ldx E 其中 l 是微元dx 到P 点的距离, d E 的方向如图所示.计算其沿x 轴和y 轴的分量分别积分得:cos 204l dx dE E x x )sin (sin 1204 aLq2104d a cos )cos (cos sin 21004421 aLq d a E y 讨论 1) 对于半无限长均匀带电细棒( 2121220,//,或)则有a E x 04 ;aE y 04 2) 对于无限长均匀带电细棒( 210,)则有aE E y x 020 , 作业(P120):,§ 高斯定理一、电力线(电场线)为了对电场有一个比较直观的了解,可用图示的方法形象地描绘电场中的电场强度分布状况.为此在电场中作一系列有向曲线,使曲线上每一点的切线方向与该点的场强方向一致,这些有向曲线称为电力线(又称电场线),简称E 线. 为了使电力线不仅能表示出电场中各点场强的方向,而且还能表示出场强的大小,我们规定:电场中任一点场强的大小等于在该点附近垂直通过单位面积的电力线数,即)(电场线密度EdS dN 按此规定,电场强度的大小E 就等于电力线密度,电力线的疏密描述了电场强度的大小分布,电力线稠密处电场强,电力线稀疏处电场弱.匀强电场的电力线是一些方向一致,距离相等的平行线.静电场的电力线具有以下特点:(1)电力线起自正电荷(或来自无穷远),终止负电荷(或伸向无穷远),但不会在无电荷的地方中断,也不会形成闭合线.(2)因为静电场中的任一点,只有一个确定的场强方向,所以任何两条电力线都不可能相交.二、电通量通过电场中某一个曲面的电力线数称为通过该曲面的电通量。
第三篇 电磁学第七章 真空中的静电场本章只讨论真空中的电场,下一章再讨论介质中静电场。
静电场:相对于观察者静止的电荷产生的电场。
§7-1 电荷 库仑定律一、电荷1、电荷 种类 正电荷 负电荷作用 同性相斥异性相吸(一般地说:使物体带电就是使它获得多余的电子或从它取出一些电子) 2、电荷守恒定律电荷从物体的一部分转移到另一部分,这称为电荷守恒定律。
它是物理学的基本定律之一。
3、电荷量子化在自然界中所观察到的电荷均为基本电荷e 的整数倍。
这也是自然界中的一条基本规律,表明电荷是量子化的。
直到现在还没有足够的实验来否定这个规律。
二、库仑定律点电荷:带电体本身线度比它到其他带电体间的距离小得多时,带电体的大小和形状可忽略不计,这个带电体称为点电荷。
(如同质点一样,是假想模型)库仑定律:真空中两点电荷之间的相互作用力大小与他们电量乘积成正比,与他们之间距离成反比,方向在他们连线上,同性相斥、异性相吸。
这叫做库仑定律。
它构成全部⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧静电学的基础。
数学表达式:2q 受1q 的作用力:2122112r q q k F = 0> 斥力(同号)0< 吸引(异号) 采用国际单位制,其中的比例常数229/109c m N k ⋅⨯=。
写成矢量形式:123122112122122112r r q q k r r r q q k F =⎪⎪⎭⎫ ⎝⎛= 令041πε=k ,22120/1085.8m N c ⋅⨯=-ε⇒ 123122101241r r q q Fπε= (7-1) 说明:①12F 是1q 对2q 是作用力,12r是由1q 指到2q 的矢量。
②2q 对1q 的作用力为:()1212120212132121021441F r r q q r r q q F -=-==πεπε ③库仑定律的形式与万有引力定律形式相似。
但前者包含吸力和斥力,后者只是引力,这是区别。
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。
θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
对称分析E y =0。
θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。
真空中的静电场 一、选择题1、下列关于高斯定理的说法正确的是(A ) A 如果高斯面上E 处处为零,则面内未必无电荷。
B 如果高斯面上E 处处不为零,则面内必有静电荷。
C 如果高斯面内无电荷,则高斯面上E 处处为零。
D 如果高斯面内有净电荷,则高斯面上E 处处不为零。
2、以下说法哪一种是正确的(B )A 电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向B 电场中某点电场强度的方向可由0q FE 确定,其中0q 为试验电荷的电荷量,0q可正可负,F 为试验电荷所受的电场力C 在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同D 以上说法都不正确3、如图所示,有两个电2、 下列说法正确的是(D )A 电场强度为零处,电势一定为零。
电势为零处,电场强度一定为零。
B 电势较高处电场强度一定较大,电场强度较小处电势一定较低。
C 带正电的物体电势一定为正,带负电的物体电势一定为负。
D 静电场中任一导体上电势一定处处相等。
3、点电荷q 位于金属球壳中心,球壳内外半径分别为21,R R ,所带静电荷为零B A ,为球壳内外两点,试判断下列说法的正误(C )A 移去球壳,B 点电场强度变大 B 移去球壳,A 点电场强度变大C 移去球壳,A 点电势升高D 移去球壳,B 点电势升高4、下列说法正确的是(D )A 场强相等的区域,电势也处处相等B 场强为零处,电势也一定为零C 电势为零处,场强也一定为零D 场强大处,电势不一定高5、如图所示,一个点电荷q 位于立方体一顶点A 上,则通过abcd 面上的电通量为(C ) A 06q ε B 012q ε C 024q ε D 036qε6、如图所示,在电场强度E 的均匀电场中,有一半径为R 的半球面,场强E 的方向与半球面的对称抽平行,穿过此半球面的电通量为(C ) A E R 22π B E R 22π C E R 2π DE R 221π7、如图所示两块无限大的铅直平行平面A 和B ,均匀带电,其电荷密度均为)(20-•〉m C σσ,在如图所示的c b a 、、三处的电场强度分别为(D ) A 0,,00,εσ B 0,2,00,εσ C 000,,2εσεσεσ D 00,0,εσεσ8、如图所示为一具有球对称性分布的静电场的E ~r 关系曲线.请指出该静电场是由下列哪种带电体产生的.(B )A 半径为R 的均匀带电球面.B 半径为R 的均匀带电球体.C 半径为R 的、电荷体密度为Ar =ρ(A 为常数)的非均匀带电球体D 半径为R 的、电荷体密度为r A /=ρ(A 为常数)的非均匀带电球体 9、设无穷远处电势为零,则半径为R 的均匀带电球体产生的电场的电势分布规律为(图中的0U 和b 皆为常量):(C)10、如图所示,在半径为R 的“无限长”均匀带电圆筒的静电场中,各点的电场强度E 的大小与距轴线的距离r 关系曲线为(A )da bc qA11、下列说法正确的是( D )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零。
第八章 真空中的静电场 1、[D] 2、[C]要使p 点的电场强度为零,有两种可能:1、在p 点的右侧放正电荷;2、在p 点的左侧放负电荷。
根据题意为负电荷,根据点电荷强度的公式:204rQ E πε=。
其中r=1,负电荷产生的电场:2442120210=⇒=r rQ r Q πεπε,该点在原点的左边。
3、[D]1、粒子作曲线运动的条件必须存在向心力。
2、粒子从A 点出发经C 点运动到B 点是速率递增,存在和运动方向一致的切向力。
3、依据粒子带正电荷,作出作用在质点上的静电力后,符合上诉1、2条件的是[D]。
4、[C]5、[B]6、[D]1、点电荷的电场强度:r e rq E204πε=;2、无限长均匀带电直导线:r rq e rq E r20022πεπε==;3、无限大均匀带电平面:r e E2εσ=4、半径为R 的均匀带电球面外的电场强度:r r R r R r e rq E r302230204414εσσππεπε=⋅==7、[C]对高斯定理的理解。
E是高斯面上各处的电场强度,它是由曲面内外所有静止点和产生的。
∑=0q 并不能说明E有任何特定的性质。
8、[A]应用高斯定理有:⎰=⋅sS d E 0,即:⎰⎰⎰⎰=∆Φ+⋅=⋅+⋅=⋅∆ses s s S d E S d E S d E S d E 0⎰∆Φ-=⋅seS d E9、[B]10、[C]依据公式:R r rQ E ≥=,420πε已知:,4,22σπR Q R r ==代入上式可得:2024444εσπεσπ==RR E11、[D]先构建成一个边长为a 的立方体,表面为高斯面,应用高斯定理,一个侧面的磁通量为: 0661εq S d E S d E ss=⋅=⋅⎰⎰12、[D]13、[D]半径为R 的均匀带电球面:R r R Q U <=,40πεR r r Q U >=,40πε半径为R 的均匀带电球体: R r r Q U >=,40πεR r RQ r R RQ U <+-=,4)(802230πεπε正点电荷: ,40rQ U πε=负点电荷: ,40rQ U πε-=14、[C]分析:先求以无限远处为电势的零点.则半径为R 电量为Q 的球面的电势: 0)(,4)(0=∞=U RQ R U πε,4)()(0RQ R U U U R πε-=-∞=∞对15、[B]利用电势的叠加来解。
大学物理真空中的静电场答案【篇一:第九章真空中的静电场(答案)2013】] 1(基础训练1)图中所示为一沿x轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+?(x<0)和-? (x>0),则oxy坐标平面上点(0,a)处的场强e为?? (a) 0. (b) i. 2??0a???????i?j?. (c) i. (d)4??0a4??0ae??e??矢量叠加后,合场强大小为:【提示】:左侧和右侧半无限长带电直线在(0,a)处产生的场强大小e+、e-大小为:?,方向如图。
e合?2??0a[ c ] 2(基础训练3)如图所示,一个电荷为q的点电荷位于立方体的a角上,则通过侧面abcd的电场强度通量等于:qq (a) . (b) .6?012?0(c)qq. (d) . 24?048?0【提示】:添加7个和如图相同的小立方体构成一个大立方体,使a处于大立方体的中心。
则大立方体外围的六个正方形构成一个闭合的高斯面。
由gauss定理知,通过该高斯面的电通量为q?0。
再据对称性可知,通过侧面abcd的电场强度通量等于q。
24?0[ d ] 3(基础训练6)在点电荷+q的电场中,若取图中p点处为电势零点,则m点的电势为(a)qq.(b) .4??0a8??0a(c)?q?q.(d) .4??0a8??0a【提示】:vm??pm??ae?dl??q4??0r2a?2?q8??0a1[ d ] 4(基础训练6)、如图所示,cdef为一矩形,边长分别为l和2l.在dc延长线上ca=l处的a点有点电荷+q,在cf的中点b点有点电荷-q,若使单位正电荷从c点沿cdef路径运动到f点,则电场力所作的功等于:q5?1q1?5?? (a) . (b)4??0l5?l4??0lq3?1q5?1??(c) . (d) . 4??0l4??0l3???qa?q(v?v)?1?0?(?【提示】:c?f?? 0cf4??l0??[ c ] 5(自测提高4)如图9-34,设有一“无限大”均匀带正电荷的平面。
《大学物理》练习题及详细解答-—真空中的静电场 1. 1. 电荷为电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零?处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以,所以200200)1(π4)1(π42-=+x qq x qq e e 故 223+=x2. 2. 电量都是电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)(1)(1)在这三角形的中心放在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡一个什么样的电荷,就可以使这四个电荷都达到平衡((即每个电荷受其他三个电荷的库仑力之和都为零为零)?(2))?(2))?(2)这种平衡与三角形的边长有无关系这种平衡与三角形的边长有无关系这种平衡与三角形的边长有无关系? ?解:解:(1) (1) (1) 以以A 处点电荷为研究对象,由力平衡知,q ¢为负电荷,所以为负电荷,所以2220)33(π4130cos π412a q q a q ¢=°e e故 qq33-=¢ (2)(2)与三角形边长无关。
与三角形边长无关。
与三角形边长无关。
3. 3. 如图所示,半径为如图所示,半径为R 、电荷线密度为1l 的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2l 的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dl dq1l =,dq 在带电圆环轴线上x 处产生的场强大小为处产生的场强大小为)(4220R x dqdE +=p e根据电荷分布的对称性知,0==z y E E23220)(41cosR x xdqdE dEx+==p e q式中:q 为dq 到场点的连线与x 轴负向的夹角。
《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。
(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。
(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。
(B )通过S 面的电通量不变,P 点的电场强度变化。
(C )通过S 面的电通量改变,P 点的电场强度不变。
(D )通过S 面的电通量改变,P 点的电场强度变化。
6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。